
Recovering Detectable Uncorrectable Errors via Spatial Data
Prediction

Kristen Guernsey
Holcombe Department of Electrical and Computer

Engineering - Clemson University
Clemson, SC, United States of America

kguerns@clemson.edu

Sarah Placke
Holcombe Department of Electrical and Computer

Engineering - Clemson University
Clemson, SC, United States of America

splacke@clemson.edu

Alexandra Poulos
Holcombe Department of Electrical and Computer

Engineering - Clemson University
Clemson, SC, United States of America

alpoulo@clemson.edu

Jon C. Calhoun
Holcombe Department of Electrical and Computer

Engineering - Clemson University
Clemson, SC, United States of America

jonccal@clemson.edu

ABSTRACT

High-performance computing applications are central to advance-

ment in many �elds of science and engineering. Central to this

advancement is the supposed reliability of the HPC system. How-

ever, as system size grows and hardware components run with

near-threshold voltages, transient upset events become more likely.

Many works have explored the problem of correcting data cor-

ruption; however, recovery is often left to checkpoint-restart or

application-speci�c techniques. Recovering from a checkpoint in-

curs overhead due to reading a checkpoint and recomputing lost

work. Allowing the application to recover just the corrupted data

enables faster and more e�cient recovery. This paper explores us-

ing spatial similarities to recover detectable uncorrectable errors.

We explore several reconstruction methods and evaluate their ef-

fectiveness at recovering corrupted entries in data arrays. Results

show that the Lorenzo 1-Layer prediction method yields the best

results, with over half of its reconstructions having less than 1%

relative error across all applications.

CCS CONCEPTS

• Hardware→ Error detection and error correction; Failure

recovery, maintenance and self-repair; • Software and its

engineering→ Software fault tolerance.

KEYWORDS

Detectable Uncorrectable Errors, High-performance Computing,

Forward Recovery, Data prediction

ACM Reference Format:

Kristen Guernsey, Sarah Placke, Alexandra Poulos, and Jon C. Calhoun. 2023.

Recovering Detectable Uncorrectable Errors via Spatial Data Prediction. In

Workshops of The International Conference on High Performance Computing,

Network, Storage, and Analysis (SC-W 2023), November 12–17, 2023, Denver,

This work is licensed under a Creative Commons Attribution International
4.0 License.

SC-W 2023, November 12–17, 2023, Denver, CO, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624120

CO, USA.ACM, NewYork, NY, USA, 9 pages. https://doi.org/10.1145/3624062.

3624120

1 INTRODUCTION

High-performance computing (HPC) applications enable scienti�c

discovery across many disciplines. However, as systems use more

complex components that are run at lower voltages to reduce power

consumption, the rate of faults has been shown to increase [17, 28].

Faults, which often manifest as bit-�ips in data paths, registers, or

memory storage cells, cause errors, which are classi�ed as follows.

Detectable and correctable errors (DCE) are detected by the sys-

tem and the corrupted value is recovered, allowing the application

to continue running. Detectable but uncorrectable errors (DUE)

are detected, but the system is unable to recover the corrupted

value. This typically results in an unexpected application crash that

forces the process to recover from a previous state, or checkpoint

[25]. The remaining possibility is that the error goes undetected,

wherein it generates deviations in the process’s state not su�cient

to crash the application. These deviations are referred to as silent

data corruption (SDC), and if not detected can result in the applica-

tion computing on erroneous data. Over time, this corruption can

propagate throughout a simulation and compromise the �delity of

the application’s �nal output [7].

Several techniques have been developed to detect the presence

of SDC. Traditional approaches rely on application redundancy in

space or time, but come at a high cost [21]. To reduce this over-

head, detection techniques which verify physical invariants in a

simulation - such as conservation laws [24] - or use data analytics

to detect outliers [3, 9, 27] have been developed. Other approaches

rely on modifying the algorithm or data structures to be more re-

silient [11, 16, 18]. The traditional method to recover from SDC and

DUE reinitializes the state of the program via a checkpoint [23, 25].

Alternatively, forward recovery seeks to rebuild the corrupted state

in the application by using the non-corrupted state [2, 12, 13, 16, 27].

Central to the success of forward recovery techniques is knowing

where corruption exists in the application. Knowing which ele-

ments(s) in a data array are corrupted allows for lower-cost local-

ized recovery. For example, if it is known that only one entry of an

array is corrupted, then we only need to restore a single entry.

507



SC-W 2023, November 12–17, 2023, Denver, CO, USA Kristen Guernsey, Sarah Placke, Alexandra Poulos, and Jon C. Calhoun

Prior approaches leverage spatial prediction for �ne-grained, lo-

calized recovery for individual data values [12, 13, 26, 27] but su�er

from a lack of context due to their generic low-level design. For

example, [12] and [13] work at the instruction level and only have

limited context of the application, function, and data. Incorporating

higher-level information from the application such as dimensional-

ity enables more accurate data reconstruction methods. Knowing

the dimensionality of the data enables determining the spatial neigh-

bors of a corrupted data element. Data dimensionality and spatial

prediction have already been shown to be e�ective tools to detect

SDC [3, 9], but these techniques have not been used to reconstruct

corrupted data entries. Other work uses spatial similarity via linear

interpolation to recover outliers [27]. Spatial data prediction forms

the heart of the SZ lossy data compressors [10, 20, 29] enabling

compression ratios ranging from 10–100×.

Because of its e�ectiveness of predicting data for HPC lossy data

compression and its ability to detect SDC, we explore spatial data

prediction for localized DUE recovery. Thus, we are able to convert

DUE into DCE. This paper makes the following contributions:

• investigates low-cost spatial prediction techniques to recover

from DUEs;

• demonstrates the relationship between data set smoothness

and reconstruction accuracy; and

• shows Lorenzo 1-Layer Prediction is an accurate reconstruc-

tion method for DUEs with at least half of its corrections

having less than 1% relative error across all applications.

The remainder of this paper is outlined as follows: Section 2

provides background on and motivation for the use of spatial pre-

diction to recover from detectable uncorrectable errors. Next, in

Section 3 we describe the spatial prediction algorithms and how

we use them to recover from DUEs. Section 4 presents our anal-

ysis of our methods and states implications of our �ndings. We

describe related works in the �eld in Section 5. Finally, we conclude

in Section 6.

2 BACKGROUND AND MOTIVATION

HPC simulations use numerical methods that leverage spatially

contiguous values to advance a simulation’s state from time-step to

time-step. For example, Figure 1 shows a standard 5-point stencil.

During a simulation, values at the stencil points for time-step Cġ
(blue circles) are used to compute the data value at the center of

the stencil at time-step Cġ+1 (red circle). Thus, using spatial values

to recover corrupted data entries should yield similar results. If the

exact stencil pattern is used, it may reconstruct the data exactly.

Consider the iterative stencil based Jacobi method for solving the

2D Heat di�usion problem (Equation 1). The temperature solution,

) (C, G,~), at point (G,~) and at time C + 1 is given by:

) (C + 1, G,~) = 0.25 () (C, G − 1, ~) +) (C, G + 1, ~)

+) (C, G,~ − 1) +) (C, G,~ + 1))) (1)

The temperature at point G,~ is computed solely from its neigh-

bors. Thus, if that entry was corrupted, and we reconstructed the

entry via averaging based on this 2D stencil, we reconstruct the

data via the Jacobi method. Therefore, combining spatial values

around the corrupted entry is an attractive solution for low-cost

data recovery.

Figure 1: A 5-point stencil in two dimensions. The values of

the blue points at time-step Cġ are used to compute the value

of the red center point at time-step Cġ+1 .

Prior work exploits the spatial and temporal smoothness of HPC

simulations to detect SDC solely based on data behavior, �agging

outlier values as possible corruptions when they fall outside an

expected range [3, 9]. Other work seeks to recover from DUEs in

memory by attempting to reconstruct or replace the erroneous

datum [13, 26, 27]. In [12], Fang et al. simply ignore that an uncor-

rectable error has occurred and allow the application to continue

running, relying on the algorithm’s intrinsic robustness to localized

perturbations to mask the e�ect of a corruption. This “compute

through errors” approach is leveraged in linear solver resilience to

recover from minor deviations [6, 8].

This work di�ers from prior reconstruction work [12, 13, 26, 27]

by leveraging higher-level application information. Having knowl-

edge of the dimensionality of a memory allocation allows us to

employ multi-dimensional spatial prediction and regression func-

tions to attempt to reconstruct the data. Moreover, we dynamically

determine the best reconstruction method to use in the region

around the corruption to improve reconstruction accuracy.

3 SPATIAL PREDICTION BASED RECOVERY

The de-facto method of recovering corrupted data in HPC at the

software level is checkpoint-restart. In checkpoint-restart, the ap-

plication periodically saves enough of its state such that when a

failure occurs or errors are detected, the application rolls back its

execution to the time when the checkpoint is taken. Thus, voiding

potentially sizable amounts of computation, and on average, is equal

to half of the time of the checkpointing period [30]. This expensive

recovery must occur even if only a small subset of data is corrupted.

Much lower overhead is possible if the location of the corruption

is localized and low-cost methods are used to reconstruct just the

corrupted portions of data.

3.1 Error Detection and Localization

Localized recovery from a detectable uncorrectable error (DUE) or

silent data corruption (SDC) requires knowledge of the location

of the corruption in memory. This work focuses on the pin-point

recovery of errors that exist inside elements of data bu�ers in main-

memory and/or cache. While it is possible for DUEs to corrupt

multiple data elements in an array, this paper is limited to the

corruption of a single element. The recovery design relies on two

techniques to detect the presence of corruption.

508



Recovering Detectable Uncorrectable Errors via Spatial Data Prediction SC-W 2023, November 12–17, 2023, Denver, CO, USA

The �rst method uses the machine-check architecture (MCA) for

DUEs in memory [15]. The machine-check architecture is an error

reporting mechanism on Intel based processors such that when a

machine error — e.g., error correcting code errors, parity errors,

system bus errors, TLB errors — is detected, the error type and

location is recorded in certain registers before a machine-check

exception (MCE) is generated. Catching the exception and inspect-

ing the registers allows for pinpointing the exact location where

the error occurs. For memory errors, we know the exact memory

address. We relate the memory address to a data array to perform

low-cost recovery.

The second method we utilize to detect the presence of data

corruption is point-wise data analytic based inspectors [3, 9]. The

algorithms leverage the fact that HPC applications that simulate the

evolution of physical phenomena through time exhibit temporal and

spatial smoothness in the data. Thus, these data analytic approaches

compute an expectation on what each data point in an array should

be or a range of plausibility. If the value is outside the range, we

�ag this element as corruption and initiate recovery.

3.2 Protecting Memory Allocations

Our detection methods identify the memory address or element of

an array that is corrupted. However, we have only a limited view of

what data is spatially contiguous to the corrupted value. For MCA,

we only have a memory address. Without knowing the alignment of

the data at the address and the size of each element, we are not able

to apply the recovery algorithms in Section 3.4. Moreover, without

knowing the dimensions of the data, the data analytic detectors

only know the linear predecessor and successor elements, limiting

which recovery algorithms are available.

In order to determine the data type of the corrupted memory

location and its spatial neighbors, we construct a registry table of

all important memory allocations1. When registering a memory

region, the user provides the base address of the array, the data

type, and the dimensionality. Optionally, the user can leverage their

domain-speci�c knowledge to assist in the recovery process by

specifying a speci�c recovery method to use when reconstructing

the data. If not speci�ed, we determine the locally optimal method.

To register a memory region, we use an approach similar to [3, 4],

where memory allocations are registered using a function call

(see Algorithm 10), where the 3D array d3d is recovered by any

method and the 2D array d2d is recovered by the Lorenzo method.

The prior works integrate data analytics based detectors into the

Fault Tolerance Interface library [5]. FTI is an easy to use multi-

level checkpointing library that makes e�cient use of the complex

memory hierarchy in HPC systems. We extend the FTI library to

allow for forward-recovery internally after SDC is encountered,

providing a means to continue application execution without hav-

ing to terminate the simulation2. We de�ne additional interfaces

to FTI_Protect that record the dimensionality and the recovery

method inside the FTIT_dataset structure that FTI uses to store

all the metadata for a protected dataset. When DUE is detected

in an element of a protected array, we recover using the recorded

1In our design, the important memory allocations are the same ones that are check-
pointed, but our design is not limited to just the checkpointed variables.
2Our approach is applicable to other multi-level checkpointing libraries such as
SCR [22] and VeloC [25].

recovery method. By integrating these recovery mechanisms with

the FTI library, there is no additional overhead incurred outside the

cost of recovering the corrupted value. Thus, our recovery cost is

much lower than the overhead of rolling back an application to a

prior state via checkpoint-restart.

Algorithm 1: Array registration.

1 Function main()

2 d3d← init_3d(N,N,N);

3 d2d← init_2d(N,N);

4 FTI_Protect(0,&d3d, 3D, dtype, N, N, N, RECOVER_ANY);

5 FTI_Protect(1, &d2d, 2D, dtype, N, N, RECOVER_LORENZO);

6 for Ī ← 0 toĐ do
7 update_vars(d3d, d2d);

8 FTI_sdccheck() ; /* Detects & corrects SDC */

9 end

10 return;

3.3 Recovering Corrupted Data

Once corruption has been detected, we initiate recovery by relating

the o�ending memory address to a data allocation using our table

of registered memory allocations. If the memory address is not

registered, we recover using checkpoint-restart. After locating the

correct memory allocation, we use the listed recovery method to

reconstruct the data, before continuing execution. If RECOVER_ANY

is listed, we initiate a localized auto-tuning to select the method that

is locally optimal before returning control to the main application.

3.4 Spatial Prediction Algorithms

Each of the following reconstruction algorithms approximates the

value of a corrupted datum based on some combination of spatial

neighbors. Each of the methods selected vary in the amount of data

required for the reconstruction and the accuracy of the reconstruc-

tion. We evaluate the e�ectiveness of these algorithms in Section 4.

To ease the discussion of each method, Table 1 de�nes common

notation we use when presenting the algorithms. In particular, we

denote the reconstruction function as 5Ħ and the data array as + .

Symbol Description

3 Number of Dimensions

8 Slowest changing corrupted index of two-dimensional

data set

9 Fastest changing corrupted index of two-dimensional

data set

5Ħ (8, 9) Prediction Value at index (8, 9)

+ (8, 9) Existing Value at index (8, 9)

Table 1: Notation.

3.4.1 Zero. Multiple prior works investigate the use of replacing

corrupted information with zero [12, 13], 5Ħ (8, 9) = 0. Although

low-cost, this method can su�er from large reconstruction error if

the range of the data is large and not centered about zero.

509



SC-W 2023, November 12–17, 2023, Denver, CO, USA Kristen Guernsey, Sarah Placke, Alexandra Poulos, and Jon C. Calhoun

3.4.2 Random. Prior work on SDC recovery investigates the use of

a random value to replace the corrupted entry [13]. We implement

this method to compare with prior work in the area. However,

instead of a fully random value — i.e., unbounded — we calculate a

random value within the range of the data array + as

5Ħ (8, 9) =<8=(+ ) + '(<0G (+ ) −<8=(+ )), (2)

where ' ∈ [0, 1].

3.4.3 Average. Spatial averaging is used to compute the solution

in stencil-based Jacobi relaxation (see Section 2). Similar prior work

also shows that HPC data exhibits spatial smoothness [10, 13].

This means that nearby values are often close in magnitude to

each other, and averaging neighboring values is a low-cost and

attractive method for reconstruction. However, the accuracy of

this method is dependent on the smoothness of the neighboring

values. The average recovery method considers immediate adjacent

values across all dimensions. Thus, this method works best if spatial

smoothness is exhibited across dimensions.

3.4.4 Curve Fi�ing. In [10], the authors utilize a curve-�tting

model to predict values when encoding a 1D data stream. These

methods consist of preceding-neighbor �tting, linear-curve �tting,

and quadratic-curve �tting. Here, we use these methods to predict

the value of a corrupted data point. For data sets that are multidi-

mensional, we linearize the data as in [10].

Preceding-neighbor �tting simply assigns the preceding value

to the corrupted data point, i.e., 5Ħ (8) = + (8 − 1). The linear-curve

�tting method �ts a linear line through two consecutive data points

to estimate the corrupted data value such that 5Ħ (8) = 2+ (8 − 1) −

+ (8 − 2). Quadratic curve-�tting assumes that the corrupted data

point lies on a quadratic curve, and uses three consecutive values

to recover the data 5Ħ (8) = 3+ (8 − 1) − 3+ (8 − 2) ++ (8 − 3).

3.4.5 Lorenzo Prediction. The Lorenzo prediction [14] methods

have been popularized and extended in HPC community as they

form a fundamental component of the SZ lossy compressor [29].

The original Lorenzo predictor [14] extends the two-dimensional

parallelogram predictor to up to four dimensions, and considers

only a single layer of values within each dimension surrounding the

datum being predicted. SZ’s version extends the original Lorenzo

predictor to up to 4-layers. While an increased number of layers

considers more spatial values for prediction, it can also bring uncor-

related or noisy data into the calculation. With layer-customization,

SZ achieves more than 2× the compression ratio of the original

SZ due to more accurately predicting data. For the details of the

Lorenzo equations, we refer the reader to the equations in [29].

Typical implementations of Lorenzo prediction, like that in SZ,

use previously processed data to predict not yet processed data.

That is, for a given prediction point 5Ħ (8, 9) on a two-dimensional

grid, this value is obtained using previous upwind values where the

element indices are less than 8 and 9 . In our implementation, we

are only recovering a single value rather than trying to compress a

data stream; thus, we do not need to rely on previously processed

points for our reconstruction. This allows us to use values from

any direction in order to recover the corrupted value. In 1D, we

have a left and right version of the prediction. In general, we have

2
Ě versions of the Lorenzo predictor for a 3 dimensional data array.

Our Lorenzo recovery method utilizes preceding spatial neighbors

to predict the corrupted value, unless preceding values are not

available due to the index of the corrupted value.

3.4.6 Linear Regression. SZ-2.0 introduces a new predictor, linear

regression. This predictor computes a series of coe�cients based

on the data being processed. The coe�cients parameterize a regres-

sion prediction model that predicts the values to be compressed.

We refer the reader to [20] for the details of the equations. When

computing the regression coe�cients, we exclude the corrupted

index to avoid signi�cantly impacting the prediction. Moreover,

unlike the implementation in SZ, this reconstruction method uses

the full dataset during reconstruction.

3.4.7 Local Linear Regression. The standard linear regression tech-

nique uses all the dataset. To lower the cost of this method, we

create a localized version similar to that of SZ. The localized ver-

sion overlays a patch of 3 layers in all dimensions around the

corrupted datum (+ (8 ± 3, 9 ± 3)). We use the data values inside

this patch to construct the regression coe�cients. As with the full

dataset version, we exclude the corrupted datum when computing

the regression coe�cients.

3.4.8 Lagrange Polynomial Interpolation. Lagrange polynomial in-

terpolation creates a : degree polynomial that interpolates a given

: + 1 data points. Lagrange polynomials are used in a variety of ap-

plications in numerical analysis and are used in Reed-Solomon error

correction codes. The Lagrange polynomial interpolation function

of degree : for values ~ğ to ~ğ+ġ is:

!(G) =

ġ∑

Ĩ=0

~ğ ℓĨ (G), (3)

where the basis functions ℓĠ (G) are de�ned as:

ℓĨ (G) =
∏

0≤ģ≤ġ,ģ≠ġ

G − Gģ

GĨ − Gģ
. (4)

In our implementation, we use : = 3 data points around the

corrupt element in the slowest changing dimension to construct

the polynomial. The surrounding data points include two preceding

values and one succeeding value.

4 EXPERIMENTAL RESULTS

4.1 Experimental Hardware and Application

Test Data

To quantify the e�ectiveness of the SDC and DUE recovery al-

gorithms from Section 3.4, we select 111 real-world data sets are

from 5 applications on SDRBench [1]. We show the details of each

application in Table 2.

All experiments are run on Clemson University’s Palmetto Clus-

ter, where we use nodes containing two Intel Xeon E5-2665 2.40GHz

processors and 64 GB of memory. We compile all of our code using

gcc version 8.5.0.

4.2 Experimental Design

The fault model assumes that hardware faults lead to bit-�ips in

memory locations. Furthermore, it is assumed that the location

of the corruption is identi�ed as a DUE by the machine check

510



Recovering Detectable Uncorrectable Errors via Spatial Data Prediction SC-W 2023, November 12–17, 2023, Denver, CO, USA

Name Domain Data Dimensions Data Set Count

Nyx Cosmology 512 × 512 × 512 6

CESM-ATM Climate 1800 × 3600 79

Miranda Hydrodynamics 256 × 384 × 384 7

HACC Cosmology 280953867 6

ISABEL Climate 100 × 500 × 500 13

Table 2: Overview of applications we extract data sets from.

architecture or via a software based detector (see Section 3.1). Thus,

we know the exact address where the corruption exists. We relate

the address to a memory allocation before recovering the data (see

Section 3.3).

In each of the experiments below, a fault injection campaign on

at least 6000 trials is conducted on each dataset from each applica-

tion. Each fault injection trial identi�es at random indices of the

corrupted datum. For each randomly selected value in the data set,

that value is corrupted with a single bit-�ip, and we evaluate each

of the reconstruction methods. In particular, the relative error in

the reconstructed data are compared to the original data values for

each recovery method.

4.3 Analyzing Method Accuracy

The reconstruction methods outlined in Section 3.4 di�er in both

complexity and their reconstruction accuracy. To assess how well

these methods reconstruct the corrupted datum, we compute the

relative error between the true value and the reconstructed values.

Depending on the end user’s demands, the corrupted datum must

be reconstructed to a speci�ed accuracy level. To account for this,

we investigate the relative error in the reconstructed datum at 3

levels: 1%, 5%, and 10%.

4.3.1 Overall Method Accuracy. Figure 2 showcases the overall ac-

curacy of the methods when considering all applications together.

Speci�cally, it demonstrates the percentage of predictions that pro-

duce a relative error less than 1%. From this �gure, we see a clear

dichotomy in the performance of the methods. Zero, Random, Lin-

ear Regression and Local Linear Regression successfully recover

the corrupted datum 17% of the time. The other methods see recon-

struction accuracy between 67-84%, with Lorenzo 1-Layer as the

best method with 84%.

Relaxing the accuracy requirement on the reconstruction to a

relative error within 5% (Figure 3) or 10% (Figure 4), all methods

see improvement3. Most substantially, Local Linear Regression sees

a 55% increase, going from 1% to 5%. We do not see as large of an

improvement in Linear Regression because its accuracy is hampered

by long range correlations across the full data set. Lorenzo 1-Layer

continues to be the best reconstruction method, increasing to 90%

and 92% for 5% and 10% relative error, respectively.

When looking at the three reconstruction accuracy levels, we

see that the user’s choice greatly determines which methods are

feasible. In the extreme, as with Local Linear Regression, we go from

completely discounting a method to it becoming a contender for

best. Thus, we have to leverage multiple best methods. In the lossy

3Related work in the area of lossy data compression consider these as acceptable
distortions in the data [19]

Ze
ro

Ra
nd

om

Av
er

ag
e

Pr
ec

ed
in

g 
Ne

ig
hb

or

Lin
ea

r C
ur

ve
 Fi

tti
ng

Qu
ad

ra
tic

 C
ur

ve
 Fi

tti
ng

Lo
re

nz
o 

1-
La

ye
r

Lo
re

nz
o 

2-
La

ye
r

Lo
re

nz
o 

3-
La

ye
r

Lo
re

nz
o 

4-
La

ye
r

Lin
ea

r R
eg

re
ss

io
n

Lo
ca

l L
in

ea
r R

eg
re

ss
io

n

La
gr

an
ge

 P
ol

yn
om

ia
l

Reconstruction Method

0

20

40

60

80

100

Pe
rc

en
ta

ge

Percent of Test Cases Within 1% of Correct Value

Figure 2: Method reconstruction with less than 1% relative

error.

Ze
ro

Ra
nd

om

Av
er

ag
e

Pr
ec

ed
in

g 
Ne

ig
hb

or

Lin
ea

r C
ur

ve
 Fi

tti
ng

Qu
ad

ra
tic

 C
ur

ve
 Fi

tti
ng

Lo
re

nz
o 

1-
La

ye
r

Lo
re

nz
o 

2-
La

ye
r

Lo
re

nz
o 

3-
La

ye
r

Lo
re

nz
o 

4-
La

ye
r

Lin
ea

r R
eg

re
ss

io
n

Lo
ca

l L
in

ea
r R

eg
re

ss
io

n

La
gr

an
ge

 P
ol

yn
om

ia
l

Reconstruction Method

0

20

40

60

80

100

Pe
rc

en
ta

ge

Percent of Test Cases Within 5% of Correct Value

Figure 3: Method reconstruction with less than 5% relative

error.

compression domain, SZ leverages this to select the best predictor

based on the data’s properties and accuracy requirements [20]. We

incorporate the selection between multiple best via auto-tuning.

4.3.2 Application Specific Method Accuracy. Because of the vari-

ability in data values between applications, some applications are

easier to recover data in than others. Figure 5 shows the breakdown

of Figure 2 by application and highlights clear di�erences between

them. The CESM application has the best prediction accuracywithin

the 1% relative error bound for most methods except Zero, Random,

Linear Regression, and Local Linear Regression. These methods

511



SC-W 2023, November 12–17, 2023, Denver, CO, USA Kristen Guernsey, Sarah Placke, Alexandra Poulos, and Jon C. Calhoun

Ze
ro

Ra
nd

om

Av
er

ag
e

Pr
ec

ed
in

g 
Ne

ig
hb

or

Lin
ea

r C
ur

ve
 Fi

tti
ng

Qu
ad

ra
tic

 C
ur

ve
 Fi

tti
ng

Lo
re

nz
o 

1-
La

ye
r

Lo
re

nz
o 

2-
La

ye
r

Lo
re

nz
o 

3-
La

ye
r

Lo
re

nz
o 

4-
La

ye
r

Lin
ea

r R
eg

re
ss

io
n

Lo
ca

l L
in

ea
r R

eg
re

ss
io

n

La
gr

an
ge

 P
ol

yn
om

ia
l

Reconstruction Method

0

20

40

60

80

100

Pe
rc

en
ta

ge

Percent of Test Cases Within 10% of Correct Value

Figure 4: Method reconstruction with less than 10% relative

error.

Ze
ro

Ra
nd

om

Av
er

ag
e

Pr
ec

ed
in

g 
Ne

ig
hb

or

Lin
ea

r C
ur

ve
 Fi

tti
ng

Qu
ad

ra
tic

 C
ur

ve
 Fi

tti
ng

Lo
re

nz
o 

1-
La

ye
r

Lo
re

nz
o 

2-
La

ye
r

Lo
re

nz
o 

3-
La

ye
r

Lo
re

nz
o 

4-
La

ye
r

Lin
ea

r R
eg

re
ss

io
n

Lo
ca

l L
in

ea
r R

eg
re

ss
io

n

La
gr

an
ge

 P
ol

yn
om

ia
l

Reconstruction Method

0

20

40

60

80

100

Pe
rc

en
ta

ge

Percent of Test Cases Within 1% of Correct Value
NYX CESM Miranda ISABEL HACC

Figure 5: Method reconstruction with less than 1% relative

error for each application.

correspond to the same methods that perform poorly in Figure 2.

This is due to the disproportionate number of CESM datasets (see

Table 2). For CESM, Average is the best method, indicating that

spatially close values are very close in magnitude. Furthermore,

Average performs well on all data sets except ISABEL, beating out

much more computationally complex methods. When looking at

the Zero method used by prior works [12, 13], we see poor per-

formance on all data sets, indicating that zero, although an easy

reconstruction algorithm, is not reliable.

Figure 6 and Figure 7 relax the relative error bound leads to

increase the percent of trials that succeed. Here, trial success is

de�ned as having a reconstructed value less than the error thresh-

old. However, we still see similar application orderings for most

Ze
ro

Ra
nd

om

Av
er

ag
e

Pr
ec

ed
in

g 
Ne

ig
hb

or

Lin
ea

r C
ur

ve
 Fi

tti
ng

Qu
ad

ra
tic

 C
ur

ve
 Fi

tti
ng

Lo
re

nz
o 

1-
La

ye
r

Lo
re

nz
o 

2-
La

ye
r

Lo
re

nz
o 

3-
La

ye
r

Lo
re

nz
o 

4-
La

ye
r

Lin
ea

r R
eg

re
ss

io
n

Lo
ca

l L
in

ea
r R

eg
re

ss
io

n

La
gr

an
ge

 P
ol

yn
om

ia
l

Reconstruction Method

0

20

40

60

80

100

Pe
rc

en
ta

ge

Percent of Test Cases Within 5% of Correct Value
NYX CESM Miranda ISABEL HACC

Figure 6: Method reconstruction with less than 5% relative

error for each application.

Ze
ro

Ra
nd

om

Av
er

ag
e

Pr
ec

ed
in

g 
Ne

ig
hb

or

Lin
ea

r C
ur

ve
 Fi

tti
ng

Qu
ad

ra
tic

 C
ur

ve
 Fi

tti
ng

Lo
re

nz
o 

1-
La

ye
r

Lo
re

nz
o 

2-
La

ye
r

Lo
re

nz
o 

3-
La

ye
r

Lo
re

nz
o 

4-
La

ye
r

Lin
ea

r R
eg

re
ss

io
n

Lo
ca

l L
in

ea
r R

eg
re

ss
io

n

La
gr

an
ge

 P
ol

yn
om

ia
l

Reconstruction Method

0

20

40

60

80

100
Pe

rc
en

ta
ge

Percent of Test Cases Within 10% of Correct Value
NYX CESM Miranda ISABEL HACC

Figure 7: Method reconstruction with less than 10% relative

error for each application.

methods. The biggest exception is Local Linear Regression, where

CESM has the highest success percentage.

4.4 Auto-tuning

Because there is not a single best method for all applications, our

auto-tuner searches for the best method in a spatially close region

around the corrupted datum. To understand the e�ectiveness of

the auto-tuner, we classify a tuning as successful if the reported

method yields a relative error within the threshold4. Figure 8 shows

the percent of trials where the auto-tuner’s selection yields the best

method, with ġ = 3 and with a 1% relative error. We select a 1%

relative error bound because that is the toughest con�guration and

provides the best opportunity for the auto-tuner. The percentage

for each application is comparable to the best methods in Figure 5.

4It does not have to yield the lowest relative error to be classi�ed as a success. It only
needs to be within the relative error tolerance.

512



Recovering Detectable Uncorrectable Errors via Spatial Data Prediction SC-W 2023, November 12–17, 2023, Denver, CO, USA

NY
X

CE
SM

M
ira

nd
a

IS
AB

EL

HA
CC

Application

0

20

40

60

80

100

Pe
rc

en
ta

ge

Percent of Test Cases Within 1% of Correct Value

Figure 8: Accuracy of the local tuning algorithm with ġ = 3.

NY
X

CE
SM

M
ira

nd
a

IS
AB

EL

HA
CC

Application

0

20

40

60

80

100

Pe
rc

en
ta

ge

Tuning Accuracy Rate

Figure 9: Percentage of trials where the auto-tuner selects

themethod that yields the lowest absolute relative error with

ġ = 3.

The largest di�erence is 2% for NYX. For HACC and CESM, our

tuning method yields a 1% and 0.1% improvement, respectively.

Although an auto-tuner may report a method that reconstructs

the datum within the relative error threshold, it might have the

lowest overall error. Figure 9 presents the probability that the auto-

tuner selects the method that yields the smallest relative error. The

auto-tuner gives the lowest relative error in HACC 42% of the time.

However, on Miranda, the auto-tuner gives the lowest relative error

7% of the time.

4.5 Runtime Overhead

Although, accuracy in reconstruction is the primary success metric,

we need to investigate the runtime cost associated with the methods

and auto-tuning to ensure viability. All the reconstruction methods

except for Linear Regression use a constant amount of data from

the data sets regardless of the dimensions of the data set. Linear

Regression requires all the elements of the data array. Given this,

we select a single representative data set, CLOUDf48 from ISABEL,

to use in our experiments that quantify the runtime overhead of

Ze
ro

Ra
nd

om

Av
er

ag
e

Pr
ec

ed
in

g 
Ne

ig
hb

or

Lin
ea

r C
ur

ve
 Fi

tti
ng

Qu
ad

ra
tic

 C
ur

ve
 Fi

tti
ng

Lo
re

nz
o 

1-
La

ye
r

Lo
re

nz
o 

2-
La

ye
r

Lo
re

nz
o 

3-
La

ye
r

Lo
re

nz
o 

4-
La

ye
r

Lin
ea

r R
eg

re
ss

io
n

Lo
ca

l L
in

ea
r R

eg
re

ss
io

n

La
gr

an
ge

 P
ol

yn
om

ia
l

Au
to

-Tu
ni

ng
 (k

=3
)

Method

10 3

10 1

101

103

Ov
er

he
ad

 (m
s)

Figure 10: Runtime overhead for the reconstructionmethods.

each method. To ensure accurate timings, we run each method in a

loop a minimum of 10 times and ensure that the loop’s total runtime

is greater than 1 second.

Figure 10 shows the runtime overhead for each method. Linear

Regression has the largest runtime due to it accessing all the data

elements. The remaining methods vary in overheads from 5e-5 ms

(Zero) to 0.028 ms (Local Linear Regression). When considering

auto-tuning, the overhead is 15.83 ms. However, the total overhead

for auto-tuning is the sum of the auto-tuning time and the method

execution time of what it classi�es as the best. Results show that

this is less than 15.86 ms. For these reconstruction methods, the

overhead is small relative to HPC application runtime. Moreover,

if we compare this method to checkpoint-restart, the overhead

of spatial recovery is still small. Checkpoint-restart overhead is

the time to recompute the work lost after the last checkpoint. On

average, the restart overhead is half of the checkpointing interval,

which can range from a few minutes to a few hours.

5 RELATED WORK

Many methods which leverage spatial and temporal smoothness

have been developed to allow an HPC application in execution to

detect and recover from faults. The authors in [24] use the invariant

of global mass to detect whether a transient upset has occurred. In

[3, 9], data values outside a prescribed range are identi�ed as SDC

via online monitoring. All of the preceding methods employ the

use of checkpoint/restart to recover from an invalid state. In [26],

corrupted data resulting from DUEs is recovered through a com-

bination of error-correcting code output and application-speci�c

context. In [13], a more general approach uses spatial averaging in

memory to reconstruct an erroneous datum. In [12], DUEs are sim-

ply ignored, and the application is allowed to continue executing.

Salloum et al. use linear interpolation to reconstruct outlier data

elements in PDE computation [27]. This work proposes a novel

forward-recovery method which leverages spatial data in all dimen-

sions to allow for an accurate reconstruction of a value which has

been corrupted, either by a DUE or via SDC.

513



SC-W 2023, November 12–17, 2023, Denver, CO, USA Kristen Guernsey, Sarah Placke, Alexandra Poulos, and Jon C. Calhoun

6 CONCLUSION

Detectable uncorrectable errors and silent data corruption are high-

risk corruption issues that can skew simulation results. While

checkpoint-restart or unique application techniques are functional

solutions, low-cost spatial recovery is a valuable combatant for DUE

and SDC correction. Our approach utilizes multiple reconstruction

methods. Each reconstruction method utilizes local data to recon-

struct the corrupted value through prediction. Results show that the

Lorenzo 1-Layer prediction method is the most accurate prediction

method, with over half of its predictions within 1% of the correct

value. However, discrepancies between individual reconstruction

method accuracy decrease in proportion to the data set’s spatial

smoothness. (Data sets with greater spatial smoothness produce

higher uniform accuracy.) Our auto-tuning allows for selecting the

best method most of the time across applications. Moreover, the low

runtime overhead compared to checkpoint-restart demonstrate that

spatial recovery is e�ective in mitigating the negative in�uences of

DUEs and SDC.

ACKNOWLEDGMENTS

Clemson University is acknowledged for generous allotment of

compute time on the Palmetto cluster. This material is based upon

work supported by the National Science Foundation under Grant

No. SHF-1910197, SHF-1943114, and OAC-2204011.

REFERENCES
[1] [n. d.]. SDRBench. https://sdrbench.github.io/
[2] Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Jean Roman, and Mawussi

Zounon. 2016. Numerical recovery strategies for parallel resilient Krylov linear
solvers. Numerical Linear Algebra with Applications 23, 5 (2016), 888–905.

[3] Leonardo Bautista-Gomez and Franck Cappello. 2015. Detecting Silent Data Cor-
ruption for Extreme-Scale MPI Applications. In Proceedings of the 22Nd European
MPI Users’ Group Meeting (Bordeaux, France) (EuroMPI ’15). ACM, New York, NY,
USA, Article 12, 10 pages. https://doi.org/10.1145/2802658.2802665

[4] L. Bautista-Gomez and F. Cappello. 2015. Exploiting Spatial Smoothness in HPC
Applications to Detect Silent Data Corruption. In 2015 IEEE 17th International
Conference on High Performance Computing and Communications, 2015 IEEE 7th
International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th
International Conference on Embedded Software and Systems. 128–133. https:
//doi.org/10.1109/HPCC-CSS-ICESS.2015.9

[5] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, and S.
Matsuoka. 2011. FTI: High performance Fault Tolerance Interface for hybrid
systems. In SC ’11: Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. 1–12. https://doi.org/10.
1145/2063384.2063427

[6] Jon Calhoun, Luke Olson, Marc Snir, and William D. Gropp. 2015. Towards a
More Fault Resilient Multigrid Solver. In Proceedings of the Symposium on High
Performance Computing (Alexandria, Virginia) (HPC ’15). Society for Computer
Simulation International, San Diego, CA, USA, 1–8. http://dl.acm.org/citation.
cfm?id=2872599.2872600

[7] Jon Calhoun, Marc Snir, Luke N. Olson, and William D. Gropp. 2017. Towards a
More Complete Understanding of SDC Propagation. In Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed Computing
(Washington, DC, USA) (HPDC ’17). ACM, New York, NY, USA, 131–142. https:
//doi.org/10.1145/3078597.3078617

[8] Marc Casas, Bronis R. de Supinski, Greg Bronevetsky, and Martin Schulz. 2012.
Fault Resilience of the Algebraic Multi-Grid Solver. In Proceedings of the 26th ACM
International Conference on Supercomputing (San Servolo Island, Venice, Italy)
(ICS ’12). Association for Computing Machinery, New York, NY, USA, 91–100.
https://doi.org/10.1145/2304576.2304590

[9] Sheng Di and Franck Cappello. 2016. Adaptive Impact-Driven Detection of Silent
Data Corruption for HPC Applications. IEEE Trans. Parallel Distrib. Syst. 27, 10
(Oct. 2016), 2809–2823. https://doi.org/10.1109/TPDS.2016.2517639

[10] Sheng Di and Franck Cappello. 2016. Fast Error-Bounded Lossy HPC Data
Compression with SZ. In 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium, IPDPS 2016, Chicago, IL, USA, May 23-27, 2016. 730–739.
https://doi.org/10.1109/IPDPS.2016.11

[11] James Elliott, Mark Hoemmen, and Frank Mueller. 2014. Evaluating the Impact
of SDC on the GMRES Iterative Solver. In Proceedings of the 2014 IEEE 28th
International Parallel and Distributed Processing Symposium (IPDPS ’14). IEEE
Computer Society, Washington, DC, USA, 1193–1202. https://doi.org/10.1109/
IPDPS.2014.123

[12] Bo Fang, Qiang Guan, Nathan Debardeleben, Karthik Pattabiraman, and Matei Ri-
peanu. 2017. LetGo: A Lightweight Continuous Framework for HPC Applications
Under Failures. In Proceedings of the 26th International Symposium on High-
Performance Parallel and Distributed Computing (Washington, DC, USA) (HPDC
’17). ACM, New York, NY, USA, 117–130. https://doi.org/10.1145/3078597.3078609

[13] Bo Fang, Hassan Halawa, Karthik Pattabiraman, Matei Ripeanu, and Sriram Krish-
namoorthy. 2019. BonVoision: Leveraging Spatial Data Smoothness for Recovery
from Memory Soft Errors. In Proceedings of the ACM International Conference
on Supercomputing (Phoenix, Arizona) (ICS ’19). Association for Computing Ma-
chinery, New York, NY, USA, 484–496. https://doi.org/10.1145/3330345.3330388

[14] Lorenzo Ibarria. 2007. Geometric Prediction for Compression. Ph. D. Dissertation.
USA. Advisor(s) Rossignac, Jarek. AAI3271523.

[15] Intel. 2021. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
3B: System Programming Guide, Part 2. Technical Report. Intel.

[16] Luc Jaulmes, Marc Casas, Miquel Moretó, Eduard Ayguadé, Jesús Labarta, and
Mateo Valero. 2015. Exploiting Asynchrony from Exact Forward Recovery for
DUE in Iterative Solvers. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Austin, Texas) (SC
’15). ACM, New York, NY, USA, Article 53, 12 pages. https://doi.org/10.1145/
2807591.2807599

[17] Himanshu Kaul, Mark Anders, Steven Hsu, Amit Agarwal, Ram Krishnamurthy,
and Shekhar Borkar. 2012. Near-Threshold Voltage (NTV) Design: Opportunities
and Challenges. In Proceedings of the 49th Annual Design Automation Conference
(San Francisco, California) (DAC ’12). Association for Computing Machinery,
New York, NY, USA, 1153–1158. https://doi.org/10.1145/2228360.2228572

[18] Kuang-Hua Huang and J. A. Abraham. 1984. Algorithm-Based Fault Tolerance
for Matrix Operations. IEEE Trans. Comput. C-33, 6 (1984), 518–528. https:
//doi.org/10.1109/TC.1984.1676475

[19] Xin Liang, Sheng Di, Dingwen Tao, Zizhong Chen, and Franck Cappello. 2018. An
E�cient Transformation Scheme for Lossy Data Compression with Point-Wise
Relative Error Bound. In 2018 IEEE International Conference on Cluster Computing
(CLUSTER). 179–189. https://doi.org/10.1109/CLUSTER.2018.00036

[20] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi Guo, Zizhong
Chen, and Franck Cappello. 2018. Error-Controlled Lossy CompressionOptimized
for High Compression Ratios of Scienti�c Datasets. In 2018 IEEE International
Conference on Big Data (Big Data) (Seattle, WA, USA, 2018-12). IEEE, 438–447.
https://doi.org/10.1109/BigData.2018.8622520

[21] R. E. Lyons and W. Vanderkulk. 1962. The Use of Triple-Modular Redundancy
to Improve Computer Reliability. IBM Journal of Research and Development 6, 2
(1962), 200–209. https://doi.org/10.1147/rd.62.0200

[22] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R. de Supinski.
2010. Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System. In SC ’10: Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis. 1–11. https:
//doi.org/10.1109/SC.2010.18

[23] Xiang Ni, Esteban Meneses, Nikhil Jain, and Laxmikant V. Kale. 2013. ACR:
Automatic Checkpoint/Restart for Soft and Hard Error Protection. In ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’13). IEEE Computer Society.

[24] D. Nicholae�, N. Davis, D. Trujillo, and R. W. Robey. 2012. Cell-Based Adaptive
Mesh Re�nement Implemented with General Purpose Graphics Processing Units.
Technical Report. Los Alamos National Laboratory – Eulerian Codes.

[25] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cappello. 2019. VeloC:
Towards High Performance Adaptive Asynchronous Checkpointing at Large
Scale. In 2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 911–920.

[26] Alexandra Poulos, Dylan Wallace, Robert Robey, Laura Monroe, Vanessa Job,
Sean Blanchard, William Jones, and Nathan DeBardeleben. 2018. Improving Ap-
plication Resilience by Extending Error Correction with Contextual Information.
In Proceedings of the31st International Conference on High Performance Computing,
Networking, Storage and Analysis (SC)Workshops 2018:8thWorkshop on Fault Toler-
ance for HPC at eXtreme Scale (FTXS) 2018. IEEE Computer Society, Los Alamitos,
CA, USA, Dallas, TX, USA, 19–28. https://doi.org/10.1109/FTXS.2018.00006

[27] Maher Salloum, Jackson R. Mayo, and Robert C. Armstrong. 2016. In-Situ
Mitigation of Silent Data Corruption in PDE Solvers. In Proceedings of the
ACM Workshop on Fault-Tolerance for HPC at Extreme Scale (Kyoto, Japan)
(FTXS ’16). Association for Computing Machinery, New York, NY, USA, 43–48.
https://doi.org/10.1145/2909428.2909433

[28] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh
Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, et al.
2014. Addressing failures in exascale computing. The International Journal of
High Performance Computing Applications 28, 2 (2014), 129–173.

514



Recovering Detectable Uncorrectable Errors via Spatial Data Prediction SC-W 2023, November 12–17, 2023, Denver, CO, USA

[29] Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. 2017. Signi�cantly
Improving Lossy Compression for Scienti�c Data Sets Based onMultidimensional
Prediction and Error-Controlled Quantization. In 2017 IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2017, Orlando, FL, USA, May 29 -

June 2, 2017. 1129–1139. https://doi.org/10.1109/IPDPS.2017.115
[30] John W. Young. 1974. A First Order Approximation to the Optimum Checkpoint

Interval. Commun. ACM 17, 9 (Sept. 1974), 530–531. https://doi.org/10.1145/
361147.361115

515


	Abstract
	1 Introduction
	2 Background and Motivation
	3 Spatial Prediction Based Recovery
	3.1 Error Detection and Localization
	3.2 Protecting Memory Allocations
	3.3 Recovering Corrupted Data
	3.4 Spatial Prediction Algorithms

	4 Experimental Results
	4.1 Experimental Hardware and Application Test Data
	4.2 Experimental Design
	4.3 Analyzing Method Accuracy
	4.4 Auto-tuning
	4.5 Runtime Overhead

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

