Check for
Updates

Recovering Detectable Uncorrectable Errors via Spatial Data
Prediction

Kristen Guernsey
Holcombe Department of Electrical and Computer
Engineering - Clemson University
Clemson, SC, United States of America
kguerns@clemson.edu

Alexandra Poulos
Holcombe Department of Electrical and Computer
Engineering - Clemson University
Clemson, SC, United States of America
alpoulo@clemson.edu

ABSTRACT

High-performance computing applications are central to advance-
ment in many fields of science and engineering. Central to this
advancement is the supposed reliability of the HPC system. How-
ever, as system size grows and hardware components run with
near-threshold voltages, transient upset events become more likely.
Many works have explored the problem of correcting data cor-
ruption; however, recovery is often left to checkpoint-restart or
application-specific techniques. Recovering from a checkpoint in-
curs overhead due to reading a checkpoint and recomputing lost
work. Allowing the application to recover just the corrupted data
enables faster and more efficient recovery. This paper explores us-
ing spatial similarities to recover detectable uncorrectable errors.
We explore several reconstruction methods and evaluate their ef-
fectiveness at recovering corrupted entries in data arrays. Results
show that the Lorenzo 1-Layer prediction method yields the best
results, with over half of its reconstructions having less than 1%
relative error across all applications.

CCS CONCEPTS

« Hardware — Error detection and error correction; Failure
recovery, maintenance and self-repair; « Software and its
engineering — Software fault tolerance.

KEYWORDS

Detectable Uncorrectable Errors, High-performance Computing,
Forward Recovery, Data prediction

ACM Reference Format:

Kristen Guernsey, Sarah Placke, Alexandra Poulos, and Jon C. Calhoun. 2023.
Recovering Detectable Uncorrectable Errors via Spatial Data Prediction. In
Workshops of The International Conference on High Performance Computing,
Network, Storage, and Analysis (SC-W 2023), November 12—-17, 2023, Denver,

This work is licensed under a Creative Commons Attribution International
4.0 License.

SC-W 2023, November 12—17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624120

507

Sarah Placke

Holcombe Department of Electrical and Computer
Engineering - Clemson University
Clemson, SC, United States of America
splacke@clemson.edu

Jon C. Calhoun
Holcombe Department of Electrical and Computer
Engineering - Clemson University
Clemson, SC, United States of America
jonccal@clemson.edu

CO, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3624062.
3624120

1 INTRODUCTION

High-performance computing (HPC) applications enable scientific
discovery across many disciplines. However, as systems use more
complex components that are run at lower voltages to reduce power
consumption, the rate of faults has been shown to increase [17, 28].
Faults, which often manifest as bit-flips in data paths, registers, or
memory storage cells, cause errors, which are classified as follows.
Detectable and correctable errors (DCE) are detected by the sys-
tem and the corrupted value is recovered, allowing the application
to continue running. Detectable but uncorrectable errors (DUE)
are detected, but the system is unable to recover the corrupted
value. This typically results in an unexpected application crash that
forces the process to recover from a previous state, or checkpoint
[25]. The remaining possibility is that the error goes undetected,
wherein it generates deviations in the process’s state not sufficient
to crash the application. These deviations are referred to as silent
data corruption (SDC), and if not detected can result in the applica-
tion computing on erroneous data. Over time, this corruption can
propagate throughout a simulation and compromise the fidelity of
the application’s final output [7].

Several techniques have been developed to detect the presence
of SDC. Traditional approaches rely on application redundancy in
space or time, but come at a high cost [21]. To reduce this over-
head, detection techniques which verify physical invariants in a
simulation - such as conservation laws [24] - or use data analytics
to detect outliers [3, 9, 27] have been developed. Other approaches
rely on modifying the algorithm or data structures to be more re-
silient [11, 16, 18]. The traditional method to recover from SDC and
DUE reinitializes the state of the program via a checkpoint [23, 25].
Alternatively, forward recovery seeks to rebuild the corrupted state
in the application by using the non-corrupted state [2, 12, 13, 16, 27].
Central to the success of forward recovery techniques is knowing
where corruption exists in the application. Knowing which ele-
ments(s) in a data array are corrupted allows for lower-cost local-
ized recovery. For example, if it is known that only one entry of an
array is corrupted, then we only need to restore a single entry.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Prior approaches leverage spatial prediction for fine-grained, lo-
calized recovery for individual data values [12, 13, 26, 27] but suffer
from a lack of context due to their generic low-level design. For
example, [12] and [13] work at the instruction level and only have
limited context of the application, function, and data. Incorporating
higher-level information from the application such as dimensional-
ity enables more accurate data reconstruction methods. Knowing
the dimensionality of the data enables determining the spatial neigh-
bors of a corrupted data element. Data dimensionality and spatial
prediction have already been shown to be effective tools to detect
SDC [3, 9], but these techniques have not been used to reconstruct
corrupted data entries. Other work uses spatial similarity via linear
interpolation to recover outliers [27]. Spatial data prediction forms
the heart of the SZ lossy data compressors [10, 20, 29] enabling
compression ratios ranging from 10-100X.

Because of its effectiveness of predicting data for HPC lossy data
compression and its ability to detect SDC, we explore spatial data
prediction for localized DUE recovery. Thus, we are able to convert
DUE into DCE. This paper makes the following contributions:

o investigates low-cost spatial prediction techniques to recover
from DUEs;

e demonstrates the relationship between data set smoothness
and reconstruction accuracy; and

e shows Lorenzo 1-Layer Prediction is an accurate reconstruc-
tion method for DUEs with at least half of its corrections
having less than 1% relative error across all applications.

The remainder of this paper is outlined as follows: Section 2
provides background on and motivation for the use of spatial pre-
diction to recover from detectable uncorrectable errors. Next, in
Section 3 we describe the spatial prediction algorithms and how
we use them to recover from DUEs. Section 4 presents our anal-
ysis of our methods and states implications of our findings. We
describe related works in the field in Section 5. Finally, we conclude
in Section 6.

2 BACKGROUND AND MOTIVATION

HPC simulations use numerical methods that leverage spatially
contiguous values to advance a simulation’s state from time-step to
time-step. For example, Figure 1 shows a standard 5-point stencil.
During a simulation, values at the stencil points for time-step #;
(blue circles) are used to compute the data value at the center of
the stencil at time-step t;, (red circle). Thus, using spatial values
to recover corrupted data entries should yield similar results. If the
exact stencil pattern is used, it may reconstruct the data exactly.

Consider the iterative stencil based Jacobi method for solving the
2D Heat diffusion problem (Equation 1). The temperature solution,
T(t,x,y), at point (x,y) and at time ¢ + 1 is given by:

T(t+Lx,y)=025(T(t,x - Ly) +T(t,x+1,y)
+T(t,x,y— 1)+ T(t,x,y+1))) (1)

The temperature at point x, y is computed solely from its neigh-
bors. Thus, if that entry was corrupted, and we reconstructed the
entry via averaging based on this 2D stencil, we reconstruct the
data via the Jacobi method. Therefore, combining spatial values
around the corrupted entry is an attractive solution for low-cost
data recovery.

508

Kristen Guernsey, Sarah Placke, Alexandra Poulos, and Jon C. Calhoun

Figure 1: A 5-point stencil in two dimensions. The values of
the blue points at time-step #;. are used to compute the value
of the red center point at time-step f.

Prior work exploits the spatial and temporal smoothness of HPC
simulations to detect SDC solely based on data behavior, flagging
outlier values as possible corruptions when they fall outside an
expected range [3, 9]. Other work seeks to recover from DUEs in
memory by attempting to reconstruct or replace the erroneous
datum [13, 26, 27]. In [12], Fang et al. simply ignore that an uncor-
rectable error has occurred and allow the application to continue
running, relying on the algorithm’s intrinsic robustness to localized
perturbations to mask the effect of a corruption. This “compute
through errors” approach is leveraged in linear solver resilience to
recover from minor deviations [6, 8].

This work differs from prior reconstruction work [12, 13, 26, 27]
by leveraging higher-level application information. Having knowl-
edge of the dimensionality of a memory allocation allows us to
employ multi-dimensional spatial prediction and regression func-
tions to attempt to reconstruct the data. Moreover, we dynamically
determine the best reconstruction method to use in the region
around the corruption to improve reconstruction accuracy.

3 SPATIAL PREDICTION BASED RECOVERY

The de-facto method of recovering corrupted data in HPC at the
software level is checkpoint-restart. In checkpoint-restart, the ap-
plication periodically saves enough of its state such that when a
failure occurs or errors are detected, the application rolls back its
execution to the time when the checkpoint is taken. Thus, voiding
potentially sizable amounts of computation, and on average, is equal
to half of the time of the checkpointing period [30]. This expensive
recovery must occur even if only a small subset of data is corrupted.
Much lower overhead is possible if the location of the corruption
is localized and low-cost methods are used to reconstruct just the
corrupted portions of data.

3.1 Error Detection and Localization

Localized recovery from a detectable uncorrectable error (DUE) or
silent data corruption (SDC) requires knowledge of the location
of the corruption in memory. This work focuses on the pin-point
recovery of errors that exist inside elements of data buffers in main-
memory and/or cache. While it is possible for DUEs to corrupt
multiple data elements in an array, this paper is limited to the
corruption of a single element. The recovery design relies on two
techniques to detect the presence of corruption.

Recovering Detectable Uncorrectable Errors via Spatial Data Prediction

The first method uses the machine-check architecture (MCA) for
DUEs in memory [15]. The machine-check architecture is an error
reporting mechanism on Intel based processors such that when a
machine error — e.g., error correcting code errors, parity errors,
system bus errors, TLB errors — is detected, the error type and
location is recorded in certain registers before a machine-check
exception (MCE) is generated. Catching the exception and inspect-
ing the registers allows for pinpointing the exact location where
the error occurs. For memory errors, we know the exact memory
address. We relate the memory address to a data array to perform
low-cost recovery.

The second method we utilize to detect the presence of data
corruption is point-wise data analytic based inspectors [3, 9]. The
algorithms leverage the fact that HPC applications that simulate the
evolution of physical phenomena through time exhibit temporal and
spatial smoothness in the data. Thus, these data analytic approaches
compute an expectation on what each data point in an array should
be or a range of plausibility. If the value is outside the range, we
flag this element as corruption and initiate recovery.

3.2 Protecting Memory Allocations

Our detection methods identify the memory address or element of
an array that is corrupted. However, we have only a limited view of
what data is spatially contiguous to the corrupted value. For MCA,
we only have a memory address. Without knowing the alignment of
the data at the address and the size of each element, we are not able
to apply the recovery algorithms in Section 3.4. Moreover, without
knowing the dimensions of the data, the data analytic detectors
only know the linear predecessor and successor elements, limiting
which recovery algorithms are available.

In order to determine the data type of the corrupted memory
location and its spatial neighbors, we construct a registry table of
all important memory allocations'. When registering a memory
region, the user provides the base address of the array, the data
type, and the dimensionality. Optionally, the user can leverage their
domain-specific knowledge to assist in the recovery process by
specifying a specific recovery method to use when reconstructing
the data. If not specified, we determine the locally optimal method.

To register a memory region, we use an approach similar to [3, 4],
where memory allocations are registered using a function call
(see Algorithm 10), where the 3D array d3d is recovered by any
method and the 2D array d2d is recovered by the Lorenzo method.
The prior works integrate data analytics based detectors into the
Fault Tolerance Interface library [5]. FIT is an easy to use multi-
level checkpointing library that makes efficient use of the complex
memory hierarchy in HPC systems. We extend the FTI library to
allow for forward-recovery internally after SDC is encountered,
providing a means to continue application execution without hav-
ing to terminate the simulation®. We define additional interfaces
to FTI_Protect that record the dimensionality and the recovery
method inside the FTIT dataset structure that FTI uses to store
all the metadata for a protected dataset. When DUE is detected
in an element of a protected array, we recover using the recorded

In our design, the important memory allocations are the same ones that are check-
pointed, but our design is not limited to just the checkpointed variables.

2Qur approach is applicable to other multi-level checkpointing libraries such as
SCR [22] and VeloC [25].

509

SC-W 2023, November 12-17, 2023, Denver, CO, USA

recovery method. By integrating these recovery mechanisms with
the FTI library, there is no additional overhead incurred outside the
cost of recovering the corrupted value. Thus, our recovery cost is
much lower than the overhead of rolling back an application to a
prior state via checkpoint-restart.

Algorithm 1: Array registration.

1 Function main()

2 d3d « init_3d(N,N,N);
3 d2d « init_2d(N,N);

4 FTI_Protect(0,&d3d, 3D, dtype, N, N, N, RECOVER_ANY);

5 FTI_Protect(1, &d2d, 2D, dtype, N, N, RECOVER_LORENZO);
6 fort <— 0toT do

7 update_vars(d3d, d2d);

F FTI_sdccheck() ;

9 end

/* Detects & corrects SDC */

10 return;

3.3 Recovering Corrupted Data

Once corruption has been detected, we initiate recovery by relating
the offending memory address to a data allocation using our table
of registered memory allocations. If the memory address is not
registered, we recover using checkpoint-restart. After locating the
correct memory allocation, we use the listed recovery method to
reconstruct the data, before continuing execution. If RECOVER_ANY
is listed, we initiate a localized auto-tuning to select the method that
is locally optimal before returning control to the main application.

3.4 Spatial Prediction Algorithms

Each of the following reconstruction algorithms approximates the
value of a corrupted datum based on some combination of spatial
neighbors. Each of the methods selected vary in the amount of data
required for the reconstruction and the accuracy of the reconstruc-
tion. We evaluate the effectiveness of these algorithms in Section 4.
To ease the discussion of each method, Table 1 defines common
notation we use when presenting the algorithms. In particular, we
denote the reconstruction function as f, and the data array as V.

Symbol Description

d Number of Dimensions

i Slowest changing corrupted index of two-dimensional
data set

Jj Fastest changing corrupted index of two-dimensional
data set

fp(i,j) Prediction Value at index (i, j)

V(i,j) Existing Value at index (i, j)
Table 1: Notation.

3.4.1 Zero. Multiple prior works investigate the use of replacing
corrupted information with zero [12, 13], f, (i, j) = 0. Although
low-cost, this method can suffer from large reconstruction error if
the range of the data is large and not centered about zero.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

3.4.2 Random. Prior work on SDC recovery investigates the use of
a random value to replace the corrupted entry [13]. We implement
this method to compare with prior work in the area. However,
instead of a fully random value — i.e., unbounded — we calculate a
random value within the range of the data array V as

fp (i, j) = min(V) + R(max (V) — min(V)), 2)
where R € [0,1].

3.4.3 Average. Spatial averaging is used to compute the solution
in stencil-based Jacobi relaxation (see Section 2). Similar prior work
also shows that HPC data exhibits spatial smoothness [10, 13].
This means that nearby values are often close in magnitude to
each other, and averaging neighboring values is a low-cost and
attractive method for reconstruction. However, the accuracy of
this method is dependent on the smoothness of the neighboring
values. The average recovery method considers immediate adjacent
values across all dimensions. Thus, this method works best if spatial
smoothness is exhibited across dimensions.

3.4.4 Curve Fitting. In [10], the authors utilize a curve-fitting
model to predict values when encoding a 1D data stream. These
methods consist of preceding-neighbor fitting, linear-curve fitting,
and quadratic-curve fitting. Here, we use these methods to predict
the value of a corrupted data point. For data sets that are multidi-
mensional, we linearize the data as in [10].

Preceding-neighbor fitting simply assigns the preceding value
to the corrupted data point, i.e., f (i) = V(i — 1). The linear-curve
fitting method fits a linear line through two consecutive data points
to estimate the corrupted data value such that f, (i) = 2V (i — 1) —
V(i — 2). Quadratic curve-fitting assumes that the corrupted data
point lies on a quadratic curve, and uses three consecutive values
to recover the data f (i) =3V (i - 1) =3V(i—2) + V(i - 3).

3.4.5 Lorenzo Prediction. The Lorenzo prediction [14] methods
have been popularized and extended in HPC community as they
form a fundamental component of the SZ lossy compressor [29].
The original Lorenzo predictor [14] extends the two-dimensional
parallelogram predictor to up to four dimensions, and considers
only a single layer of values within each dimension surrounding the
datum being predicted. SZ’s version extends the original Lorenzo
predictor to up to 4-layers. While an increased number of layers
considers more spatial values for prediction, it can also bring uncor-
related or noisy data into the calculation. With layer-customization,
SZ achieves more than 2X the compression ratio of the original
SZ due to more accurately predicting data. For the details of the
Lorenzo equations, we refer the reader to the equations in [29].
Typical implementations of Lorenzo prediction, like that in SZ,
use previously processed data to predict not yet processed data.
That is, for a given prediction point f; (i, j) on a two-dimensional
grid, this value is obtained using previous upwind values where the
element indices are less than i and j. In our implementation, we
are only recovering a single value rather than trying to compress a
data stream; thus, we do not need to rely on previously processed
points for our reconstruction. This allows us to use values from
any direction in order to recover the corrupted value. In 1D, we
have a left and right version of the prediction. In general, we have

24 versions of the Lorenzo predictor for a d dimensional data array.

510

Kristen Guernsey, Sarah Placke, Alexandra Poulos, and Jon C. Calhoun

Our Lorenzo recovery method utilizes preceding spatial neighbors
to predict the corrupted value, unless preceding values are not
available due to the index of the corrupted value.

3.4.6 Linear Regression. SZ-2.0 introduces a new predictor, linear
regression. This predictor computes a series of coefficients based
on the data being processed. The coefficients parameterize a regres-
sion prediction model that predicts the values to be compressed.
We refer the reader to [20] for the details of the equations. When
computing the regression coefficients, we exclude the corrupted
index to avoid significantly impacting the prediction. Moreover,
unlike the implementation in SZ, this reconstruction method uses
the full dataset during reconstruction.

34.7 Local Linear Regression. The standard linear regression tech-
nique uses all the dataset. To lower the cost of this method, we
create a localized version similar to that of SZ. The localized ver-
sion overlays a patch of 3 layers in all dimensions around the
corrupted datum (V (i + 3, j = 3)). We use the data values inside
this patch to construct the regression coefficients. As with the full
dataset version, we exclude the corrupted datum when computing
the regression coefficients.

3.4.8 Lagrange Polynomial Interpolation. Lagrange polynomial in-
terpolation creates a k degree polynomial that interpolates a given
k + 1 data points. Lagrange polynomials are used in a variety of ap-
plications in numerical analysis and are used in Reed-Solomon error
correction codes. The Lagrange polynomial interpolation function
of degree k for values y; to y;,x is:

k
L(x) =) 4itr (), 3)
r=0
where the basis functions ¢;(x) are defined as:
x—x
to= [—X @
o<m<kmzk " ™

In our implementation, we use k = 3 data points around the
corrupt element in the slowest changing dimension to construct
the polynomial. The surrounding data points include two preceding
values and one succeeding value.

4 EXPERIMENTAL RESULTS

4.1 Experimental Hardware and Application
Test Data

To quantify the effectiveness of the SDC and DUE recovery al-
gorithms from Section 3.4, we select 111 real-world data sets are
from 5 applications on SDRBench [1]. We show the details of each
application in Table 2.

All experiments are run on Clemson University’s Palmetto Clus-
ter, where we use nodes containing two Intel Xeon E5-2665 2.40GHz
processors and 64 GB of memory. We compile all of our code using
gce version 8.5.0.

4.2 Experimental Design

The fault model assumes that hardware faults lead to bit-flips in
memory locations. Furthermore, it is assumed that the location
of the corruption is identified as a DUE by the machine check

Recovering Detectable Uncorrectable Errors via Spatial Data Prediction

Name Domain Data Dimensions Data Set Count
Nyx Cosmology 512 X 512 X 512 6
CESM-ATM Climate 1800 X 3600 79
Miranda Hydrodynamics 256 X 384 x 384 7
HACC Cosmology 280953867 6
ISABEL Climate 100 X 500 X 500 13

Table 2: Overview of applications we extract data sets from.

architecture or via a software based detector (see Section 3.1). Thus,
we know the exact address where the corruption exists. We relate
the address to a memory allocation before recovering the data (see
Section 3.3).

In each of the experiments below, a fault injection campaign on
at least 6000 trials is conducted on each dataset from each applica-
tion. Each fault injection trial identifies at random indices of the
corrupted datum. For each randomly selected value in the data set,
that value is corrupted with a single bit-flip, and we evaluate each
of the reconstruction methods. In particular, the relative error in
the reconstructed data are compared to the original data values for
each recovery method.

4.3 Analyzing Method Accuracy

The reconstruction methods outlined in Section 3.4 differ in both
complexity and their reconstruction accuracy. To assess how well
these methods reconstruct the corrupted datum, we compute the
relative error between the true value and the reconstructed values.
Depending on the end user’s demands, the corrupted datum must
be reconstructed to a specified accuracy level. To account for this,
we investigate the relative error in the reconstructed datum at 3
levels: 1%, 5%, and 10%.

4.3.1 Overall Method Accuracy. Figure 2 showcases the overall ac-
curacy of the methods when considering all applications together.
Specifically, it demonstrates the percentage of predictions that pro-
duce a relative error less than 1%. From this figure, we see a clear
dichotomy in the performance of the methods. Zero, Random, Lin-
ear Regression and Local Linear Regression successfully recover
the corrupted datum 17% of the time. The other methods see recon-
struction accuracy between 67-84%, with Lorenzo 1-Layer as the
best method with 84%.

Relaxing the accuracy requirement on the reconstruction to a
relative error within 5% (Figure 3) or 10% (Figure 4), all methods
see improvement>. Most substantially, Local Linear Regression sees
a 55% increase, going from 1% to 5%. We do not see as large of an
improvement in Linear Regression because its accuracy is hampered
by long range correlations across the full data set. Lorenzo 1-Layer
continues to be the best reconstruction method, increasing to 90%
and 92% for 5% and 10% relative error, respectively.

When looking at the three reconstruction accuracy levels, we
see that the user’s choice greatly determines which methods are
feasible. In the extreme, as with Local Linear Regression, we go from
completely discounting a method to it becoming a contender for
best. Thus, we have to leverage multiple best methods. In the lossy

3Related work in the area of lossy data compression consider these as acceptable
distortions in the data [19]

511

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Percent of Test Cases Within 1% of Correct Value

Reconstruction Method

100

Percentage
o
o

S
=)

N
o

0

9
3]
N

Random

Average

Preceding Neighbor
Linear Curve Fitting
Quadratic Curve Fitting
Lorenzo 1-Layer
Lorenzo 2-Layer
Lorenzo 3-Layer
Lorenzo 4-Layer

Linear Regression
Local Linear Regression
Lagrange Polynomial

Figure 2: Method reconstruction with less than 1% relative
error.

Percent of Test Cases Within 5% of Correct Value

Reconstruction Method

100

©
S

Percentage
[=2]
o

I
S

N
o

Zero
Random
Average

Preceding Neighbor
Linear Curve Fitting
Quadratic Curve Fitting
Lorenzo 1-Layer
Lorenzo 2-Layer
Lorenzo 3-Layer
Lorenzo 4-Layer

Linear Regression
Local Linear Regression
Lagrange Polynomial

Figure 3: Method reconstruction with less than 5% relative
error.

compression domain, SZ leverages this to select the best predictor
based on the data’s properties and accuracy requirements [20]. We
incorporate the selection between multiple best via auto-tuning.

4.3.2 Application Specific Method Accuracy. Because of the vari-
ability in data values between applications, some applications are
easier to recover data in than others. Figure 5 shows the breakdown
of Figure 2 by application and highlights clear differences between
them. The CESM application has the best prediction accuracy within
the 1% relative error bound for most methods except Zero, Random,
Linear Regression, and Local Linear Regression. These methods

SC-W 2023, November 12-17, 2023, Denver, CO, USA

100 Percent of Test Cases Within 10% of Correct Value

Reconstruction Method

©
o

Percentage
o
o

N
o

N
o

Zero
Random
Average

Preceding Neighbor
Linear Curve Fitting
Quadratic Curve Fitting
Lorenzo 1-Layer
Lorenzo 2-Layer
Lorenzo 3-Layer
Lorenzo 4-Layer

Linear Regression

Local Linear Regression
Lagrange Polynomial

Figure 4: Method reconstruction with less than 10% relative
error.

Percent of Test Cases Within 1% of Correct Value
m— NYX

g
N

mwm CESM = Miranda W= |SABEL == HACC

100

Percentage
IS o ®
5 8 g

N
15}

Random
Average

Preceding Neighbor
Linear Curve Fitting
Quadratic Curve Fitting

Lorenzo 1-Layer
Lorenzo 2-Layer
Lorenzo 3-Layer
Lorenzo 4-Layer

Linear Regression

Local Linear Regression
Lagrange Polynomial

Reconstruction Method

Figure 5: Method reconstruction with less than 1% relative
error for each application.

correspond to the same methods that perform poorly in Figure 2.
This is due to the disproportionate number of CESM datasets (see
Table 2). For CESM, Average is the best method, indicating that
spatially close values are very close in magnitude. Furthermore,
Average performs well on all data sets except ISABEL, beating out
much more computationally complex methods. When looking at
the Zero method used by prior works [12, 13], we see poor per-
formance on all data sets, indicating that zero, although an easy
reconstruction algorithm, is not reliable.

Figure 6 and Figure 7 relax the relative error bound leads to
increase the percent of trials that succeed. Here, trial success is
defined as having a reconstructed value less than the error thresh-
old. However, we still see similar application orderings for most

512

Kristen Guernsey, Sarah Placke, Alexandra Poulos, and Jon C. Calhoun

Percent of Test Cases Within 5% of Correct Value

== NYX mem CESM = Miranda Emm |SABEL mmm HACC

100

80

g
N

Percentage
N
5

~
S

Random
Average

Preceding Neighbor
Linear Curve Fitting
Quadratic Curve Fitting
Lorenzo 1-Layer
Lorenzo 2-Layer
Lorenzo 3-Layer
Lorenzo 4-Layer
Linear Regression
Local Linear Regression
Lagrange Polynomial

Reconstruction Method

Figure 6: Method reconstruction with less than 5% relative
error for each application.

Percent of Test Cases Within 10% of Correct Value

- NYX == |SABEL

0

0

s CESM == Miranda = HACC

Percentage
N a ©
5

N
5]

g
N

Random
Average

Preceding Neighbor
Linear Curve Fitting
Quadratic Curve Fitting
Lorenzo 1-Layer
Lorenzo 2-Layer
Lorenzo 3-Layer
Lorenzo 4-Layer
Linear Regression
Local Linear Regression
Lagrange Polynomial

Reconstruction Method

Figure 7: Method reconstruction with less than 10% relative
error for each application.

methods. The biggest exception is Local Linear Regression, where
CESM has the highest success percentage.

4.4 Auto-tuning

Because there is not a single best method for all applications, our
auto-tuner searches for the best method in a spatially close region
around the corrupted datum. To understand the effectiveness of
the auto-tuner, we classify a tuning as successful if the reported
method yields a relative error within the threshold*. Figure 8 shows
the percent of trials where the auto-tuner’s selection yields the best
method, with k = 3 and with a 1% relative error. We select a 1%
relative error bound because that is the toughest configuration and
provides the best opportunity for the auto-tuner. The percentage
for each application is comparable to the best methods in Figure 5.

“1t does not have to yield the lowest relative error to be classified as a success. It only
needs to be within the relative error tolerance.

Recovering Detectable Uncorrectable Errors via Spatial Data Prediction

10(I)Dercent of Test Cases Within 1% of Correct Value

80
[}
(o]
& 60
c
(]
2 40
(O]
o
20
0
= © 1
= z T @ S
=2] c o <
S 2 & T
s 2]

Application

Figure 8: Accuracy of the local tuning algorithm with k = 3.

Tuning Accuracy Rate

100
80
(]
()]
& 60
c
(]
2 40
(O]
[a
20 I
0 |
x s © — (@)
z 0 2 o <
() o g T
£)
Application

Figure 9: Percentage of trials where the auto-tuner selects
the method that yields the lowest absolute relative error with
k=3.

The largest difference is 2% for NYX. For HACC and CESM, our
tuning method yields a 1% and 0.1% improvement, respectively.

Although an auto-tuner may report a method that reconstructs
the datum within the relative error threshold, it might have the
lowest overall error. Figure 9 presents the probability that the auto-
tuner selects the method that yields the smallest relative error. The
auto-tuner gives the lowest relative error in HACC 42% of the time.
However, on Miranda, the auto-tuner gives the lowest relative error
7% of the time.

4.5 Runtime Overhead

Although, accuracy in reconstruction is the primary success metric,
we need to investigate the runtime cost associated with the methods
and auto-tuning to ensure viability. All the reconstruction methods
except for Linear Regression use a constant amount of data from
the data sets regardless of the dimensions of the data set. Linear
Regression requires all the elements of the data array. Given this,
we select a single representative data set, CLOUDf48 from ISABEL,
to use in our experiments that quantify the runtime overhead of

513

SC-W 2023, November 12-17, 2023, Denver, CO, USA

103
m
E
e
3
-1
£10
o
3
1073
. s w L,
e E § o 2 2 © © © © § § ® m
¢ S § & £ £ > > > > 2 2 £ 1
N kel = < k=] = © ©] © o “u ~
S ¢ o I & < 4 4 F ¢ 3§ g =
g Z 9O A & M <+ 5 5 5 o
o < v [o o = c
= 2 2 o o o o Q Q o £
o 5 5 N N N N -4 -4 a c
c c c c c - . S
5 ¢ Y 9 ¢ 9o ¢ § & § B
9 § £ 6 o6 o6 o6 © o ¢ 28
© o ® - 24 4 4 £ £ & 3
8 2 B 55§ 2
a © ® 8
3 3
o4 3
Method

Figure 10: Runtime overhead for the reconstruction methods.

each method. To ensure accurate timings, we run each method in a
loop a minimum of 10 times and ensure that the loop’s total runtime
is greater than 1 second.

Figure 10 shows the runtime overhead for each method. Linear
Regression has the largest runtime due to it accessing all the data
elements. The remaining methods vary in overheads from 5e-5 ms
(Zero) to 0.028 ms (Local Linear Regression). When considering
auto-tuning, the overhead is 15.83 ms. However, the total overhead
for auto-tuning is the sum of the auto-tuning time and the method
execution time of what it classifies as the best. Results show that
this is less than 15.86 ms. For these reconstruction methods, the
overhead is small relative to HPC application runtime. Moreover,
if we compare this method to checkpoint-restart, the overhead
of spatial recovery is still small. Checkpoint-restart overhead is
the time to recompute the work lost after the last checkpoint. On
average, the restart overhead is half of the checkpointing interval,
which can range from a few minutes to a few hours.

5 RELATED WORK

Many methods which leverage spatial and temporal smoothness
have been developed to allow an HPC application in execution to
detect and recover from faults. The authors in [24] use the invariant
of global mass to detect whether a transient upset has occurred. In
[3, 9], data values outside a prescribed range are identified as SDC
via online monitoring. All of the preceding methods employ the
use of checkpoint/restart to recover from an invalid state. In [26],
corrupted data resulting from DUEs is recovered through a com-
bination of error-correcting code output and application-specific
context. In [13], a more general approach uses spatial averaging in
memory to reconstruct an erroneous datum. In [12], DUEs are sim-
ply ignored, and the application is allowed to continue executing.
Salloum et al. use linear interpolation to reconstruct outlier data
elements in PDE computation [27]. This work proposes a novel
forward-recovery method which leverages spatial data in all dimen-
sions to allow for an accurate reconstruction of a value which has
been corrupted, either by a DUE or via SDC.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

6 CONCLUSION

Detectable uncorrectable errors and silent data corruption are high-
risk corruption issues that can skew simulation results. While
checkpoint-restart or unique application techniques are functional
solutions, low-cost spatial recovery is a valuable combatant for DUE
and SDC correction. Our approach utilizes multiple reconstruction
methods. Each reconstruction method utilizes local data to recon-
struct the corrupted value through prediction. Results show that the
Lorenzo 1-Layer prediction method is the most accurate prediction
method, with over half of its predictions within 1% of the correct
value. However, discrepancies between individual reconstruction
method accuracy decrease in proportion to the data set’s spatial
smoothness. (Data sets with greater spatial smoothness produce
higher uniform accuracy.) Our auto-tuning allows for selecting the
best method most of the time across applications. Moreover, the low
runtime overhead compared to checkpoint-restart demonstrate that
spatial recovery is effective in mitigating the negative influences of
DUEs and SDC.

ACKNOWLEDGMENTS

Clemson University is acknowledged for generous allotment of
compute time on the Palmetto cluster. This material is based upon
work supported by the National Science Foundation under Grant
No. SHF-1910197, SHF-1943114, and OAC-2204011.

REFERENCES

[1] [n.d.]. SDRBench. https://sdrbench.github.io/
[2] Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Jean Roman, and Mawussi
Zounon. 2016. Numerical recovery strategies for parallel resilient Krylov linear
solvers. Numerical Linear Algebra with Applications 23, 5 (2016), 888-905.
Leonardo Bautista-Gomez and Franck Cappello. 2015. Detecting Silent Data Cor-
ruption for Extreme-Scale MPI Applications. In Proceedings of the 22Nd European
MPI Users’ Group Meeting (Bordeaux, France) (EuroMPI ’15). ACM, New York, NY,
USA, Article 12, 10 pages. https://doi.org/10.1145/2802658.2802665
L. Bautista-Gomez and F. Cappello. 2015. Exploiting Spatial Smoothness in HPC
Applications to Detect Silent Data Corruption. In 2015 IEEE 17th International
Conference on High Performance Computing and Communications, 2015 IEEE 7th
International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th
International Conference on Embedded Software and Systems. 128-133. https:
//doi.org/10.1109/HPCC-CSS-ICESS.2015.9
[5] L.Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, and S.
Matsuoka. 2011. FTI: High performance Fault Tolerance Interface for hybrid
systems. In SC ’11: Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. 1-12. https://doi.org/10.
1145/2063384.2063427
[6] Jon Calhoun, Luke Olson, Marc Snir, and William D. Gropp. 2015. Towards a
More Fault Resilient Multigrid Solver. In Proceedings of the Symposium on High
Performance Computing (Alexandria, Virginia) (HPC ’15). Society for Computer
Simulation International, San Diego, CA, USA, 1-8. http://dl.acm.org/citation.
cfm?id=2872599.2872600
[7] Jon Calhoun, Marc Snir, Luke N. Olson, and William D. Gropp. 2017. Towards a
More Complete Understanding of SDC Propagation. In Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed Computing
(Washington, DC, USA) (HPDC °17). ACM, New York, NY, USA, 131-142. https:
//doi.org/10.1145/3078597.3078617
[8] Marc Casas, Bronis R. de Supinski, Greg Bronevetsky, and Martin Schulz. 2012.
Fault Resilience of the Algebraic Multi-Grid Solver. In Proceedings of the 26th ACM
International Conference on Supercomputing (San Servolo Island, Venice, Italy)
(ICS ’12). Association for Computing Machinery, New York, NY, USA, 91-100.
https://doi.org/10.1145/2304576.2304590
[9] Sheng Di and Franck Cappello. 2016. Adaptive Impact-Driven Detection of Silent
Data Corruption for HPC Applications. IEEE Trans. Parallel Distrib. Syst. 27, 10
(Oct. 2016), 2809-2823. https://doi.org/10.1109/TPDS.2016.2517639
[10] Sheng Di and Franck Cappello. 2016. Fast Error-Bounded Lossy HPC Data
Compression with SZ. In 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium, IPDPS 2016, Chicago, IL, USA, May 23-27, 2016. 730-739.
https://doi.org/10.1109/IPDPS.2016.11

[3

[4

fla

514

Kristen Guernsey, Sarah Placke, Alexandra Poulos, and Jon C. Calhoun

[11] James Elliott, Mark Hoemmen, and Frank Mueller. 2014. Evaluating the Impact
of SDC on the GMRES Iterative Solver. In Proceedings of the 2014 IEEE 28th
International Parallel and Distributed Processing Symposium (IPDPS °14). IEEE
Computer Society, Washington, DC, USA, 1193-1202. https://doi.org/10.1109/
IPDPS.2014.123
Bo Fang, Qiang Guan, Nathan Debardeleben, Karthik Pattabiraman, and Matei Ri-
peanu. 2017. LetGo: A Lightweight Continuous Framework for HPC Applications
Under Failures. In Proceedings of the 26th International Symposium on High-
Performance Parallel and Distributed Computing (Washington, DC, USA) (HPDC
’17). ACM, New York, NY, USA, 117-130. https://doi.org/10.1145/3078597.3078609
[13] Bo Fang, Hassan Halawa, Karthik Pattabiraman, Matei Ripeanu, and Sriram Krish-
namoorthy. 2019. BonVoision: Leveraging Spatial Data Smoothness for Recovery
from Memory Soft Errors. In Proceedings of the ACM International Conference
on Supercomputing (Phoenix, Arizona) (ICS ’19). Association for Computing Ma-
chinery, New York, NY, USA, 484-496. https://doi.org/10.1145/3330345.3330388
Lorenzo Ibarria. 2007. Geometric Prediction for Compression. Ph. D. Dissertation.
USA. Advisor(s) Rossignac, Jarek. AAI3271523.
Intel. 2021. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
3B: System Programming Guide, Part 2. Technical Report. Intel.
Luc Jaulmes, Marc Casas, Miquel Moretd, Eduard Ayguadé, Jests Labarta, and
Mateo Valero. 2015. Exploiting Asynchrony from Exact Forward Recovery for
DUE in Iterative Solvers. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Austin, Texas) (SC
’15). ACM, New York, NY, USA, Article 53, 12 pages. https://doi.org/10.1145/
2807591.2807599
Himanshu Kaul, Mark Anders, Steven Hsu, Amit Agarwal, Ram Krishnamurthy,
and Shekhar Borkar. 2012. Near-Threshold Voltage (NTV) Design: Opportunities
and Challenges. In Proceedings of the 49th Annual Design Automation Conference
(San Francisco, California) (DAC ’12). Association for Computing Machinery,
New York, NY, USA, 1153-1158. https://doi.org/10.1145/2228360.2228572
[18] Kuang-Hua Huang and J. A. Abraham. 1984. Algorithm-Based Fault Tolerance
for Matrix Operations. IEEE Trans. Comput. C-33, 6 (1984), 518-528. hittps:
//doi.org/10.1109/TC.1984.1676475
Xin Liang, Sheng Di, Dingwen Tao, Zizhong Chen, and Franck Cappello. 2018. An
Efficient Transformation Scheme for Lossy Data Compression with Point-Wise
Relative Error Bound. In 2018 IEEE International Conference on Cluster Computing
(CLUSTER). 179-189. https://doi.org/10.1109/CLUSTER.2018.00036
[20] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hangi Guo, Zizhong
Chen, and Franck Cappello. 2018. Error-Controlled Lossy Compression Optimized
for High Compression Ratios of Scientific Datasets. In 2018 IEEE International
Conference on Big Data (Big Data) (Seattle, WA, USA, 2018-12). IEEE, 438-447.
https://doi.org/10.1109/BigData.2018.8622520
[21] R.E.Lyons and W. Vanderkulk. 1962. The Use of Triple-Modular Redundancy
to Improve Computer Reliability. IBM Journal of Research and Development 6, 2
(1962), 200-209. https://doi.org/10.1147/rd.62.0200
[22] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R. de Supinski.
2010. Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System. In SC ’10: Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis. 1-11. https:
//doi.org/10.1109/SC.2010.18
Xiang Ni, Esteban Meneses, Nikhil Jain, and Laxmikant V. Kale. 2013. ACR:
Automatic Checkpoint/Restart for Soft and Hard Error Protection. In ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’13). IEEE Computer Society.
[24] D. Nicholaeff, N. Davis, D. Trujillo, and R. W. Robey. 2012. Cell-Based Adaptive
Mesh Refinement Implemented with General Purpose Graphics Processing Units.
Technical Report. Los Alamos National Laboratory — Eulerian Codes.
B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cappello. 2019. VeloC:
Towards High Performance Adaptive Asynchronous Checkpointing at Large
Scale. In 2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 911-920.
[26] Alexandra Poulos, Dylan Wallace, Robert Robey, Laura Monroe, Vanessa Job,
Sean Blanchard, William Jones, and Nathan DeBardeleben. 2018. Improving Ap-
plication Resilience by Extending Error Correction with Contextual Information.
In Proceedings of the31st International Conference on High Performance Computing,
Networking, Storage and Analysis (SC) Workshops 2018:8th Workshop on Fault Toler-
ance for HPC at eXtreme Scale (FTXS) 2018. IEEE Computer Society, Los Alamitos,
CA, USA, Dallas, TX, USA, 19-28. https://doi.org/10.1109/FTXS.2018.00006
Mabher Salloum, Jackson R. Mayo, and Robert C. Armstrong. 2016. In-Situ
Mitigation of Silent Data Corruption in PDE Solvers. In Proceedings of the
ACM Workshop on Fault-Tolerance for HPC at Extreme Scale (Kyoto, Japan)
(FTXS ’16). Association for Computing Machinery, New York, NY, USA, 43-48.
https://doi.org/10.1145/2909428.2909433
Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh
Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, et al.
2014. Addressing failures in exascale computing. The International Journal of
High Performance Computing Applications 28, 2 (2014), 129-173.

[12

[14

[15

[16

-
=

[19

[23

[25

[27

[28

Recovering Detectable Uncorrectable Errors via Spatial Data Prediction SC-W 2023, November 12-17, 2023, Denver, CO, USA

[29] Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. 2017. Significantly June 2, 2017. 1129-1139. https://doi.org/10.1109/IPDPS.2017.115
Improving Lossy Compression for Scientific Data Sets Based on Multidimensional [30] John W. Young. 1974. A First Order Approximation to the Optimum Checkpoint
Prediction and Error-Controlled Quantization. In 2017 IEEE International Parallel Interval. Commun. ACM 17, 9 (Sept. 1974), 530-531. https://doi.org/10.1145/
and Distributed Processing Symposium, IPDPS 2017, Orlando, FL, USA, May 29 - 361147.361115

515

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Spatial Prediction Based Recovery
	3.1 Error Detection and Localization
	3.2 Protecting Memory Allocations
	3.3 Recovering Corrupted Data
	3.4 Spatial Prediction Algorithms

	4 Experimental Results
	4.1 Experimental Hardware and Application Test Data
	4.2 Experimental Design
	4.3 Analyzing Method Accuracy
	4.4 Auto-tuning
	4.5 Runtime Overhead

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

