
Modeling Multi-Threaded Aggregated I/O for

Asynchronous Checkpointing on HPC Systems

Mikaila J. Gossman∗, Bogdan Nicolae†, Jon C. Calhoun∗
∗Holcombe Department of Electrical and Computing Engineering, Clemson University, Clemson, SC 29634

†Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439

Email: {mikailg, jonccal}@clemson.edu and {bnicolae}@anl.gov

Abstract—HPC systems encompass more components with
each new generation. As a result, the process of interacting with
stable storage systems like parallel file systems (PFS) becomes
increasingly difficult. Larger systems often result in more fre-
quent failures, increasing the need and frequency to incorporate
fault-tolerant mechanisms. One example is checkpoint-restart
(C/R), where applications or systems save their data to non-
volatile storage devices, such as a PFS. On failure, the system
or application is restored to a saved state and computation
continues. Today, asynchronous C/R is gaining traction for its
ability to checkpoint data to permanent storage concurrently
with the application. However, asynchronous C/R brings about
many new challenges. For starters, asynchronous C/R introduces
complex resource contention between the application and the
C/R implementation. Additionally, some implementations adopt
file-per-process writing strategies, which overwhelm PFS’ at
high core counts. In this work, we explore how multi-threaded
POSIX I/O impacts aggregated throughput. To this extent we
characterize the influence of different I/O parameters, such as
the number of writer threads and how they access storage devices,
has on aggregated I/O. We use the information gathered in this
study to identify best practices when performing aggregated I/O
as a first step in designing an efficient I/O aggregation scheme
for asynchronous C/R.

Index Terms—Checkpoint-Restart, C/R, Multi-Threaded I/O,
I/O Optimization, Fault Tolerance, I/O Aggregation, Asyn-
chronous Checkpoint-Restart

I. INTRODUCTION

Modern scientific applications are composed of high-

performance computing (HPC) workflows that leverage the

convergence between traditional bulk-synchronous simula-

tions, big data analytics, and artificial intelligence (AI). With

ever-increasing computational and data processing capabilities,

the push towards Exascale has resulted in HPC systems made

of thousands of compute nodes, each equipped with many-core

CPUs and GPUs, complemented by a heterogeneous storage

stack that includes deep local memory hierarchies (e.g., high

bandwidth memory, volatile host memory, persistent memory,

NVMe-enabled flash storage) and external data repositories

(e.g., parallel file systems).

Under such circumstances, it is not possible to leverage the

full I/O bandwidth of the HPC system, neither at the level

of a single compute node, nor globally across many compute

nodes by simply serializing I/O operations. Similar to how

parallel and distributed programming paradigms like MPI or

OpenMP [1] have allowed HPC applications to abstract and

optimize bulk-synchronous communication patterns by taking

advantage of high-end networking infrastructures, optimizing

parallel and distributed I/O patterns requires dedicated abstrac-

tions that combine expert knowledge of the node architecture,

network topology, and heterogeneous storage [2].

One fundamental I/O pattern in HPC is checkpointing: it

involves a large number of processes, distributed in groups

over a large number of compute nodes, that need to simultane-

ously capture important data structures at key moments during

runtime and save persistent checkpoints of these data structures

to an external data repository. Checkpointing is used in a wide

range of scenarios: fault tolerance based on checkpoint-restart,

batch job preemption (e.g., to make room for higher priority

on-demand jobs without losing progress), job migration, re-

visiting intermediate states (e.g. adjoint computations or AI

training of large models), exploring alternative computational

paths (e.g., sensitivity analytics of AI models), etc.

In this context, checkpointing is traditionally performed

synchronously by direct I/O interaction with the data repos-

itory. In this case, the application is blocked during the I/O

and experiences a delay equal to the I/O overhead. On the

flip side though, all resources are available for checkpointing

and therefore can be dedicated to minimize the I/O overhead.

However, with increasing heterogeneity of the compute nodes,

I/O can be overlapped with computations by performing them

asynchronously to reduce the impact on end-to-end runtime.

In this case, a common strategy is to capture the checkpoints

on fast local storage, then flush them in the background to

the data repository. This is challenging because it involves

competition for resources at all levels: CPU cores, memory

bandwidth, network bandwidth, etc. [3].

Asynchronous checkpointing has matured over time. For

example, Exascale-ready checkpointing libraries exist for use

in production [4]. However, while they focus on minimizing

the end-to-end impact on application runtime, they often do so

at the cost of utilizing data layouts that are not easy to manage

at user level. For example, VELOC [4] writes one file per

process to the parallel file system. While this is not a problem

if checkpoints are needed transparently (e.g. in fault tolerance

techniques based on checkpoint-restart), users often need to

change the data layout to make it easier to manipulate and

reuse checkpoints later. In this context, a common technique

is I/O aggregation that results a smaller number of files (e.g.

N-1 or N-M, with M << N).

Unfortunately, while I/O aggregation has been extensively

101

2023 22nd International Symposium on Parallel and Distributed Computing (ISPDC)

DOI 10.1109/ISPDC59212.2023.00021
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 19,2024 at 02:50:35 UTC from IEEE Xplore. Restrictions apply.

studied in the context of synchronous checkpointing (e.g.,

MPI-IO, HDF5), how to apply it for asynchronous checkpoint-

ing remains largely unexplored. In this paper, we perform an

initial study of what I/O parameters impact the performance

of asynchronous I/O aggregation. Specifically, given a set of

checkpoints captured as a set of local files on each compute

node and that need to be flushed to a parallel file system

concurrently, we vary (1) the number of writer threads, (2)

contiguity and alignment of data, and (3) number of files used

for aggregation. Our goal is to evaluate, identify and explain

configurations that maximize the overall I/O throughput. We

summarize our contributions as follows:

• We develop OpenMP benchmarks designed to act as a

simple and convenient proxy that enables a fast evaluation

of a large number of combinations of I/O parameters.

• We run extensive experiments using our benchmark on a

high-end HPC system to obtain a comprehensive set of

results that we study from multiple perspectives.

• From this study, we extract a set of best-practices that

we believe can by leveraged to design new asynchronous

I/O aggregation techniques and algorithms.

II. RELATED WORK

A. Multi-threading in I/O

Exploiting multi-threading capabilities to improve perfor-

mance of I/O is a well researched problem. In this context,

ROMIO, a popular MPI-IO implementation, has relied on

multi-threading to optimize a two-phase I/O protocol since

2014 [5]. ROMIO uses multiple threads to parallelize data

exchange between I/O leaders (processes interacting with the

PFS) and non-leaders (other processes), as well as actual file

I/O instructions (e.g. read/write). They found that further over-

lapping the multi-threaded communication and write stages

improved throughput by up to 60% in some cases.

As ROMIO has become well established in the HPC com-

munity, other works have explored extending multi-threaded

capabilities. Kang et al. [2] introduced a two-layer aggre-

gation method (TAM) that uses multi-threading to aggregate

all intra-node I/O requests before redistributing I/O requests

across all compute nodes. This directly reduces the amount of

messages exchanged between compute nodes to complete I/O

redistribution, and in some applications directly improves the

collective I/O operations. However, if I/O requests are already

sufficiently contiguous, TAM provides no improvement and

introduces redundant overhead. Feki et al. [1] use multi-

threading capabilities within MPI-IO to parallelize aggregating

I/O requests (denoted I/O build phase). Overlapping the build

phase with thread-initiated read/write operations (denoted file

access phase) results in a 69% faster I/O.

B. Multi-threading in Checkpointing

Libraries such as SCR [6] and FTI [7] have adopted multi-

level checkpointing for a long time. The focus on asyn-

chronous I/O using multi-threading has been further refined

by VELOC [4]. It maintains an active thread pool on each

compute node, managed by an active backend. When ap-

plication processes are ready, they first write their data as

independent files to node-local storage, then the application

resumes computation. At the same time, the active backend

uses an optimized flushing strategy to persist the checkpoints

for a variety of data repositories, including parallel file systems

(PFS). However, as the number of processes increases, the lack

of I/O aggregation support becomes burdensome [8].

A previous study [8] built on the asynchronous flushing

strategy of VELOC to perform file aggregation via the original

implementation’s POSIX threads, and with MPI-IO. However,

their results show that using POSIX threads to aggregate I/O

by simply writing the checkpoint content at different offsets

in the same file under concurrency suffers from false sharing,

which increases contention and reduces I/O throughput. MPI-

IO may improve the I/O throughput compared to the POSIX-

based method, however, it is limited by the collective oper-

ations it uses for synchronization, which have poor support

to address stragglers that are more likely to occur in asyn-

chronous I/O due to resource contention.

III. METHODOLOGY

We design and develop an OpenMP micro-benchmark to

characterize the expected performance of aggregated file I/O

under different configurations. To imitate a simple distributed

application ready to checkpoint, our micro-benchmark gener-

ates data for N compute nodes, each of which simulates K

processes per compute node writing separate files of 1 GiB

(±20%, to simulate a slight load imbalance) that need to be

checkpointed. We refer to this subset of the data as local data

throughout the rest of this manuscript. We fix K = 8, which

is a typical number of processes running on an HPC compute

node (because HPC systems typically employ 4-8 GPUs and

one process per GPU).

Unlike the naive POSIX I/O aggregation strategy described

in Section II, we assume a more advanced strategy that collects

the local data from groups of follower compute nodes on the

local storage of leader nodes, each of which is then responsible

to flush both its own local and the received data as checkpoint

files to the PFS. Note that a leader does not need to wait to

collect all received data before flushing to the PFS. Instead,

it can overlap I/O with the receive operations. We spawn M

OpenMP writer threads that collaborate to parallelize these two

concurrent stages as much as possible by balancing their load.

To avoid over-utilization of the memory used for buffering

received checkpoint files, data (whether from a local file or

received) is transferred in 64 MiB chunks.

We focus our study on evaluating the impact of: (1) the

number of writer threads, (2) the contiguity of the data, and

(3) the number of files used by the leader for I/O aggregation.

A. Multi-threading Design

The local files of the leader are evenly distributed among

the M OpenMP writer threads. Compared with evenly dis-

tributing a set number of bytes per thread, such a scheme

avoids synchronization overheads associated with assigning

102

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 19,2024 at 02:50:35 UTC from IEEE Xplore. Restrictions apply.

I/O operations at fine granularity. On the other hand, we do not

have to consider such overheads with regards to the received

data (from a write thread perspective), and thus it is divided

up into an even number of bytes per thread.

B. Contiguous, Interleaved and Aligned I/O

Contiguity and alignment of I/O operations play a signifi-

cant role in improving the aggregated I/O throughput of the

PFS for various reasons: OS caching, alignment to memory

pages, emphasis on performance optimizations (e.g., metadata)

for a small number of writers per file and for large I/O

operations that historically represented the majority in I/O

patterns, etc. Since we have chosen to flush to the PFS in

chunks of 64 MiB, our writes are always aligned. Thus,

in this work we focus on the impact of contiguity on the

performance and scalability of multi-threaded I/O. Since each

write thread will write a local file fully to the PFS, the question

of contiguity applies in our context for the received data.

To handle the received data, we implement two alternative

strategies for the writer threads:

Contiguous. We pre-assign a contiguous region in one of

the checkpoint files written to the PFS by the leader. In this

case, each writer thread needs to wait until it receives data

that falls within this region. While this may introduce some

delays, it guarantees contiguity and also benefits from the

overlapping of receives with I/O, which means the delays have

the potential to be masked. Specifically, each writer thread

writes a contiguous region starting at the following offset:

offset = tid ∗
recvtotal

tcount
(1)

Interleaved. We handle the received data on a first come,

first served basis. In this case, the writer threads do not wait for

specific data to be received, but at the expense of interleaving

I/O operations with different offsets at fine granularity, which

may lower I/O performance. Thus, each writer thread writes

a 64 MiB chunk of the received data at an offset defined by:

offset = S ∗ tid + (npasses ∗ tcount)) (2)

where S = 64 is the maximum size of the buffer in MiB,

tid is the thread ID, npasses is the number of times the writer

thread has written a chunk of data to the PFS, and tcount is

the total number of writer threads.

C. OST Load Balancing

We assume the PFS is deployed on P I/O servers (or OSTs

in the Lustre [9] terminology, which is a popular PFS on HPC

systems). To avoid over-subscribing the OSTs due to excessive

I/O concurrency (at scale, N >> P), but at the same time

allow better load balancing across the leaders to avoid OST

stragglers, we assume each leader will interact with a small,

controllable number of OSTs by deactivating striping. Thus we

implement our micro-benchmark with a configurable number

of non-striped aggregated checkpoint files per leader.

For this work, we assume we are not over-subscribing the

OSTs by choosing a total number of aggregated checkpoint

files M = P ∗ i, where i is a small number checkpoint files

assigned to each leader. However, we are also interested in

determining if the leader’s I/O bandwidth is limited by the

minimum between the bandwidth of its own network interface

and the aggregated bandwidth of using up to i OSTs.

IV. EXPERIMENTAL EVALUATION

A. Setup

1) Hardware and Software: Our experiments were per-

formed on Argonne’s Theta, an HPC system comprised of

Intel KNL 7230 compute nodes. Each node contains 64 cores

and 4 hardware threads per core. In these experiments, we use

a Lustre-based PFS with a peak aggregated bandwidth of 250

GB/s. The filesystem uses a total of 160 OSTs managed by 40

OSS’. Our benchmark is are written using OpenMP 4.5 and

compiled with GCC 7.5.0.

2) Methodology: For the purposes of these experiments, we

utilize a single compute node acting as a leader and simulate

K = 8 MPI processes per follower compute node (meaning

each “simulated” follower generates random data directly on

the leader rather than sending data over the network). Both

the local files of the leader and the simulated received data

amount to ≈ 1 GiB per MPI rank (to account for the slight

imbalance discussed previously). We vary the number of

followers reporting to the leader 1 − 64, which changes the

proportion of received checkpoint data vs. local checkpoint

data on the leader. Note that the writer threads will only

interact with memory buffers that are already prepared, which

eliminates potential delays in receiving data. This allows us

to isolate the impact of contiguity from the perspective of

I/O performance and scalability alone (rather than as a more

complex trade-off that we plan to study in future work).

Furthermore, we vary the number of M OpenMP writer

threads from 1−16, and the number of files per leader from 1−
8. The files per leader are varied in multiple of 4 (since Lustre

groups 4 OSTs into an OSS). Toggling the ratio between the

number of writer threads and the number of non-leader nodes

shows how the amount of work impacts throughput. The ratio

between the number of threads to number of files per leader

characterizes the impact of contention for the OST the file

is housed on. Finally, toggling the ratio between the number

of non-leaders to the number of files per leader clarifies the

greatest contributor to degradation observed in both of the

previous scenarios. We run each configuration 3 times and

average the results presented in the graphs.

Since the local files are always written contiguously, we

focus our study on the simulated received data, which is

subject to the contiguous vs. the interleaved strategy. The

metric we focus on is the aggregated I/O write throughput

(measured by dividing the total received size by the time-to-

completion of all writer threads).

B. Aggregating to One File Per Leader

Figure 1 illustrates the aggregated I/O write throughput

when M OpenMP writer threads aggregate to a single file.

103

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 19,2024 at 02:50:35 UTC from IEEE Xplore. Restrictions apply.

This corresponds to a scenario where multiple I/O writer

threads interact with a single OST (since striping is disabled).

Fig. 1: Contiguous vs. interleaved aggregated throughput

when number of files used for flushing = 1. Higher is better.

As can be observed, one I/O writer thread only reaches a

throughput of a few hundred MiB/s. In this case, the leader

engages a single CPU core, which is not enough to sustain a

high I/O throughput in its interactions with the OST. On the

other hand, as we increase the number of I/O writer threads,

we can see a dramatic increase in aggregated I/O throughput,

which reaches beyond 1 GiB/s for 8 I/O writer threads. This

is actually the optimal number of I/O writer threads. Beyond

that, when using 16 I/O writer threads, the aggregated I/O

throughput begins do see a significant drop, which means the

benefit of the leader engaging more CPU cores to avoid a

client-side CPU bottleneck is offset by excessive contention

to the OST, which needs to handle more concurrent writers

and therefore becomes a server-side bottleneck.

Regarding the scalability of increasing received data from

follower processes (8 GiB/node), we observe an interesting

effect. The aggregate I/O throughput is the highest for a small

number of followers, then drops slightly and stabilizes as the

number of followers increases. This can be explained by the

fact that the client-side OS cache on the leader absorbs write

I/O overheads slightly better for a small number of followers,

but, as expected, it begins to see diminishing returns.

Finally, when we compare the contiguous vs. the interleaved

strategy, we observe that the interleaved writing just barely

outperforms contiguous writing in all cases except for the

case of one writer (because in this case there is no difference

between the two strategies). As we continue to scale the

amount of data, the interleaving starts to converge to the

contiguous throughput. This is surprising because we initially

expected that issuing contiguous writes to the PFS would

obtain higher aggregated I/O throughput based on results from

works like TAM [2], and especially considering that a PFS is

tuned for large I/O operations. However, it seems that writing

in chunks of moderate sizes like 64 MiB is enough to mitigate

such considerations. While we could experiments with smaller

chunk sizes to see what sizes cause visible differences, this

would not have practical implications since HPC compute

nodes can easily spare 64 MiB buffer space for a small number

of I/O writer threads (which is 8 for our testbed).

C. Aggregating to More Files Per Leader

Fig. 2: Contiguous vs. interleaved aggregated throughput

when number of files used for flushing = 4. Higher is better

Figure 2 shows the aggregated I/O throughout for the case

in which the leader aggregates the checkpoining data to 4

files. We choose to examine this scenario to further explore

the relationship between the amount of data per node to

the number of files on the PFS. Furthermore, this gives us

the baseline performance of a single OSS (since each OSS

manages four OSTs, this allows us to saturate an OSS).

We observe in these experiments that 8 I/O writer threads,

which was the optimal configuration for one aggregated file,

continues to be the optimal configuration in this case too,

reaching up to ≈ 2.5 GiB/s aggregated I/O throughput. The

difference between the other number of I/O threads is much

more dramatic: 16 I/O writer threads reach just a little over 1.5
GiB/s, while 1 and 4 I/O writer threads reach a significantly

lower I/O throughout. Furthermore, we observe the same scala-

bility trend as for one aggregated file: more followers slightly

reduces the aggregated I/O throughput, which is especially

noticeable for the optimal configuration of 8 I/O threads.

The contiguous vs. interleaved strategies show an inter-

esting reversal in this case compared with the case of a

single aggregated file shown in Figure 1. Specifically, the

contiguous strategy now obtains a marginally better aggregated

I/O throughput. In this case, a possible explanation is that

interleaved writes that involve concurrent interactions with

more OSTs amplify the client-side cache consolidation over-

heads on the leader, which slightly reduces the aggregated I/O

throughput. However, this effect needs to be studied in greater

detail to confirm this explanation.

Lastly, we discuss the results when each leader aggregates

the checkpointing data to 8 files on the PFS. The results,

depicted in figure 3 shows virtually identical results compared

with the case of 4 aggregated files per leader that was

discussed in figure 2. This is an important finding, because

it shows that once client-side CPU bottlenecks are resolved

by using the optimal number of I/O threads, increasing the

number of aggregated files only helps alleviating the server-

side OST bottlenecks up to a point, after which the network

104

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 19,2024 at 02:50:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Contiguous vs. interleaved aggregated throughput

when number of files used for flushing = 8. Higher is better

bandwidth shared by the I/O writer threads in the interactions

with the PFS becomes a client-side bottleneck again.

At scale this has important implications: since we have a

small number of OSTs compared with number of compute

nodes (N >> P), it is important to limit the over-subscription

of OSTs to avoid the risk of some OSTs becoming stragglers.

V. CONCLUSION AND FUTURE WORK

Over the last decade, numerous efforts have shown the

potential for multi-threaded I/O to boost I/O write throughput

in large HPC systems. In this work we study various param-

eters and strategies that can be applied to checkpointing I/O

patterns: number of writer threads, interleaving of I/O under

concurrency, and the number of output files. Such findings are

important in the context of designing new I/O aggregation

strategies for asynchronous flushing using background I/O

writer threads, which is a gap in current state of art.

We specifically focus on leader-follower aggregation strate-

gies that collect checkpointing data on a subset of compute

nodes in order to limit the degree of contention on the I/O

servers of data repositories such as parallel file systems, which

typically come in much smaller numbers than the compute

nodes. In this case, we find that contiguous or interleaved

writing to the PFS results in roughly the same aggregated

I/O throughput. Specifically, if all I/O threads are writing to

a single file, it is slightly better to adopt an interleaving write

strategy. Otherwise, if I/O leaders aggregate into a subset

of files, it is better to assign contiguous regions of data to

minimize the number of OSTs each thread accesses. However,

given the difference between the two is minimal for modern

parallel file systems, our opinion is that future works should

focus on ensuring discrete, individual access to resources like

OSS’, OSTs, and storage devices, rather than guaranteeing

contiguity for each thread (which is harder to coordinate

efficiently and may have other impacts like not being able

to absorb delays in receiving checkpointing data efficiently).

Finally, we look at tuning the number of aggregated files

such that we can maximize utilization of the PFS without

overwhelming it. Our experiments show that we achieve a

maximum aggregated throughput of ≈ 2.5 GiB/s when writing

to 4 or more files. Based on these results, we conclude

that performance of multi-threaded I/O aggregation is most

significantly bound by how threads interact with OSTs. Thus,

future multi-threaded aggregation methods should focus on

minimizing the number of OSTs threads access. In general,

this is expected since other users on large distributed systems

are also accessing the limited set of OSTs. Thus, the more

OSTs an application or library utilizes, the greater likelihood

it has of being negatively impacted by other jobs. However, it

is somewhat non-intuitive, as file-per-process strategies (which

by nature access an increasing number of OSTs), typically pro-

vide the highest throughput. Therefore, future multi-threaded

I/O aggregation strategies should also focus on minimizing

not only the number of OSTs they access, but the underlying

storage devices on those OSTs as well.

In the future we plan to run these experiments across other

compute platforms in order to validate our experimental proce-

dure across various systems. Furthermore, we use the knowl-

edge gained here to design an optimized POSIX-based I/O

aggregation strategy for asynchronous checkpointing. Later,

we will characterize how our aggregation strategy impacts both

C/R libraries and concurrently running scientific applications.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-

tional Science Foundation under Grant No. SHF-1910197 and

SHF-1943114. The material was supported by U.S. Depart-

ment of Energy, Office of Science, under contract DE-AC02-

06CH11.357.

REFERENCES

[1] R. Feki and E. Gabriel, “Design and evaluation of multi-threaded op-
timizations for individual mpi i/o operations,” in 2022 30th Euromicro

International Conference on Parallel, Distributed and Network-based

Processing (PDP), 2022, pp. 122–126.
[2] Q. Kang, S. Lee, K. Hou, R. Ross, A. Agrawal, A. Choudhary, and W.-

k. Liao, “Improving mpi collective i/o for high volume non-contiguous
requests with intra-node aggregation,” IEEE Transactions on Parallel and

Distributed Systems, vol. 31, no. 11, pp. 2682–2695, 2020.
[3] S.-M. Tseng, B. Nicolae, F. Cappello, and A. Chandramowlishwaran,

“Demystifying asynchronous i/o interference in hpc applications,” The

International Journal of High Performance Computing Applications,
vol. 35, 2021.

[4] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cappello,
“Veloc: Towards high performance adaptive asynchronous checkpointing
at large scale,” in 2019 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), 2019, pp. 911–920.
[5] Y. Tsujita, K. Yoshinaga, A. Hori, M. Sato, M. Namiki, and Y. Ishikawa,

“Multithreaded two-phase i/o: Improving collective mpi-io performance
on a lustre file system,” in 2014 22nd Euromicro International Conference

on Parallel, Distributed, and Network-Based Processing, 2014, pp. 232–
235.

[6] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “Design,
modeling, and evaluation of a scalable multi-level checkpointing system,”
in Proceedings of the 2010 ACM/IEEE International Conference for

High Performance Computing, Networking, Storage and Analysis, ser.
SC ’10. USA: IEEE Computer Society, 2010, p. 1–11. [Online].
Available: https://doi.org/10.1109/SC.2010.18

[7] “Fault tolerance interface,” https://github.com/leobago/fti, accessed: 2022-
12-16.

[8] M. J. Gossman, B. Nicolae, J. C. Calhoun, F. Cappello, and M. C.
Smith, “Towards aggregated asynchronous checkpointing,” ArXiv, vol.
abs/2112.02289, 2021.

[9] “Lustre : A scalable , high-performance file system cluster,” 2003.

105

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 19,2024 at 02:50:35 UTC from IEEE Xplore. Restrictions apply.

