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ABSTRACT
Many organizations, including governments, utilities, and busi-
nesses, have set ambitious targets to reduce carbon emissions
for their Environmental, Social, and Governance (ESG) goals. To
achieve these targets, these organizations increasingly use power
purchase agreements (PPAs) to obtain renewable energy credits,
which they use to compensate for the “brown” energy consumed
from the grid. However, the details of these PPAs are often private
and not shared with important stakeholders, such as grid operators
and carbon information services, who monitor and report the grid’s
carbon emissions. This often results in incorrect carbon accounting,
where the same renewable energy production could be factored
into grid carbon emission reports and separately claimed by organi-
zations that own PPAs. Such “double counting” of renewable energy
production could lead organizations with PPAs to understate their
carbon emissions and overstate their progress toward sustainability
goals, and also provide signi�cant challenges to consumers using
common carbon reduction measures to decrease their carbon foot-
print. Unfortunately, there is no consensus on accurately computing
the grid’s carbon intensity by properly accounting for PPAs. The
goal of our work is to shed quantitative and qualitative light on the
renewable energy attribution and the incorrect carbon intensity
estimation problems.
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1 INTRODUCTION
Many organizations, including governments, utilities, and busi-
nesses, have set ambitious targets for achieving net-zero carbon
emissions by 2050 or sooner [2, 6, 21, 30, 32–34]. These organiza-
tions often rely heavily on the electric grid. The e�ort to decarbonize
the grid has resulted in signi�cant investments in renewable energy
and a higher renewable energy penetration in many parts of the
world. However, the energy from the electric grid is unlikely to
be completely carbon-free in the near future [4]. Consequently,
organizations have begun to address their decarbonization goals
by “o�setting” carbon-intensive grid energy with zero-carbon re-
newable energy generated at other physical locations and times.

Many types of carbon o�sets exist today [9]. An example is
an annualized o�set that involves purchasing zero-carbon energy
over a year to match an organization’s annual energy consump-
tion. Another common o�set type is the purchase of renewable
energy certi�cates from a renewable energy producer to o�set the
consumption of brown energy. Studies have pointed out that nei-
ther o�set achieves true decarbonization since both involve local
consumption of non-carbon-free energy [10, 39].

The strictest o�setting approach used today, known as 24/7
carbon-free energy matching, performs location-speci�c matching
on an hourly basis [16]. This o�setting is primarily done through
power purchase agreements (PPAs). The renewable energy pro-
ducer (the seller) and the purchasing organization (the buyer) sign
an agreement where the buyer purchases energy at a “strike” price
and corresponding renewable energy credits. The seller sells the
energy in the wholesale market and settles the di�erence from the
strike prices with the buyer. The buying organization separately
buys the energy from the electric grid. It is worth noting that PPA
agreements are private transactions and, thus, are not visible to the
electric grid and other stakeholders. Studies have argued that 24/7
matching encourages the creation of additional renewable capacity
in the grid by providing guarantees on the return on investment to
developers who install and run these generation facilities [27].

From a consumer’s standpoint, whether the consumer is a resi-
dential home or a large organization, there is a critical attribution
problem of accurately apportioning the �nite amount of carbon-
free energy in the electric grid across various consumers, which
determines their carbon footprint. As per the greenhouse gas (GHG)
protocol, there are two primary ways of attributing carbon-free
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energy: location-based and market-based [37]. Location-based attri-
bution assumes that all consumers within an electric grid consume
an electricity mix based on all electricity-generating sources. That
is, location-based attribution assumes that electrons from various
generation sources in the electric grid cannot be distinguished from
one another. Hence, carbon-free energy is attributed to the electric
grid, and all the consumers use carbon-free energy in proportion
to the grid’s carbon-free and fossil-based generation. Alternatively,
Market-based attribution enables consumers to purchase carbon-
free electricity via Renewable Energy Certi�cates (RECs) or PPA
contracts and exclusively claim green electricity for their use. Al-
though it is physically impossible to dispatch a particular source to
a speci�c consumer unless there is a direct transmission line from
the generation plant to the consumer, the market-based method
still allows consumers to choose the source that supplies their elec-
tricity.

Consequently, the incentives introduced by both approaches are
diametrically opposed, which leads to di�erent stakeholders in the
electric grid using di�erent approaches for attribution. For example,
a company investing in PPAs would prefer market-based attribu-
tion to count all the renewable energy generated from that source
towards its consumption. Conversely, location-based attribution
better suits smaller organizations or household consumers who do
not have enough demand or �nancial power to purchase PPAs. The
lack of consensus on attribution approaches and the hidden nature
of PPAs can lead to double counting carbon-free energy use [18]
and incorrect calculation of an organization’s carbon footprint.
Speci�cally, unless done carefully, renewable energy’s contribution
may be counted once by an organization that has signed a PPA
agreement and again as a part of the grid’s energy mix lowering
the grid’s average carbon emissions. Such double counting and
mixing of location- and market-based attribution would likely lead
companies to underestimate and understate their carbon emissions.

These discrepancies can have two key implications. First, it
gives an incorrect impression of the decarbonization of the electric
grid. The same carbon-free energy is attributed di�erently through
market- and location-based attribution mechanisms, allowing mul-
tiple end users to “claim” each unit of carbon-free energy. Second, it
complicates the design of information services that estimate the car-
bon intensity of electricity supply and expose it in real-time to end
users. Computing researchers have been developing carbon-aware
resource management techniques to “green” large-scale systems,
such as hyperscaler cloud platforms, enterprise data centers, and
large GPU clusters for AI model training. This body of research
depends on visibility into the grid’s carbon intensity variations [3],
which have been used to develop scheduling methods, such as spa-
tial and temporal load shifting. The complexity of carbon attribution
mechanisms can result in problems with accurate carbon estima-
tion of electricity, which can lead such research and the resulting
techniques deployed in production systems to make incorrect car-
bon optimization decisions. In particular, consumers may increase
their demand because the grid’s carbon intensity appears low, even
though it may be high when excluding renewable energy attributed
to speci�c companies via PPAs. Thus, accurate attribution and esti-
mation are essential for driving carbon-aware computing research
and enabling organizations to achieve their decarbonization goals.

Figure 1: Carbon intensity shows spatial and temporal vari-
ations. The regions and periods with high renewable energy
have lower carbon intensity.

In this paper, we use a data-driven approach to highlight the
challenges in carbon-free energy attribution and carbon intensity
estimation. In doing so, we make the following contributions.
(1) We �rst discuss various carbon attribution methods from the

perspective of consumers, such as residential users and com-
mercial organizations, and discuss how di�erent attribution
methods may be suitable for di�erent end users.

(2) We then discuss how these attribution methods directly im-
pact carbon estimation techniques and how lack of visibility
into market-driven methods can result in potential double-
counting of renewable energy consumption. Our analysis
using ElectricityMaps’ [12] data for 123 regions demonstrates
that up to 66.07% renewable energy can be double-counted,
leading to up to 194% error in carbon intensity estimations.

(3) Finally, we conduct a preliminary study analyzing the impact
of inaccurate carbon intensity estimates on the carbon savings
by carbon-aware electric vehicle (EV) charging. Using Cali-
fornia as a case study, we show that the discrepancy between
the reported and actual carbon savings can be up to 156%.

2 BACKGROUND
In this section, we provide background on the electric grid and the
carbon intensity of electricity, di�erent carbon accounting methods,
how companies can claim renewable energy credits using power
purchase agreements, and 24/7 matching of carbon-free energy.

2.1 Electricity Distribution Grids
A region’s electricity grid is associated with generating, transmit-
ting, and distributing electricity [38]. Electricity in a region is gener-
ated using amixture of renewable and non-renewable sources. Once
generated, the grid transmits electricity over an interconnected net-
work of high-voltage transmission lines. Finally, the electricity is
distributed from stations and substations to the end consumers via
low-voltage transmission lines. Electricity grid operators must en-
sure that electricity supply always meets demand. The generation
of renewable sources like solar and wind is uncontrollable as it
depends on the weather. Hence, the grid also maintains a set of
generators that can be used to quickly compensate for any demand
that renewable sources cannot meet. If the electricity generation in
the grid is insu�cient to meet the current demand, the grid imports
electricity from the grid of neighboring regions with surplus elec-
tricity. Thus, the fraction of electricity generated in a region, called
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the source mix, varies spatially and temporally and often depends
upon the neighboring grids’ source mix.

2.2 Carbon Intensity of Electricity
Carbon intensity is a measure of the greenness of the electricity
in a region. The average carbon intensity (CI) of electricity can
be de�ned as the amount of carbon equivalent emitted (in grams)
per unit of electrical energy produced or consumed (in kWh). Cal-
culating the carbon intensity of production, without considering
imports, is straightforward and can be mathematically formulated
as a weighted average (refer [25]):

(⇠0A1>= �=C4=B8C~)0E6 =
Õ (⇢8 ⇤⇠⇢�8 )Õ

⇢8
(1)

where ⇢8 is the electrical energy produced (",⌘) by a source 8
& ⇠⇢�8 is the carbon emission factor (6/:,⌘) of that source.

The carbon intensity of the consumed electricity in a region is a
weighted average of the carbon intensity of the electricity produced
in that region and the carbon intensity of the electricity imported
from other regions. Calculating the consumption-based carbon
intensity is complex since an exporting region may itself import
from other regions, and hencewe need to trace the �ow of electricity
back to the original source to get the correct carbon intensity of
the imported electricity (refer [1, 5, 11, 17, 19, 22, 23, 35, 36]).

Figure 1 shows how the average carbon intensity varies spatially
and temporally across four regions. This change in carbon intensity
is due to the variability in the mixture of sources generating electric-
ity both across regions and with time. Since non-renewable sources
have higher CEFs than renewable sources (refer [25]), regions and
periods with a higher fraction of electricity generated by renewable
sources have lower carbon intensity.

2.3 Scope 2 Carbon Accounting Methods
Scope 2 emissions are de�ned as the indirect greenhouse gas (GHG)
emissions that result from the purchase of electricity [37]. Scope 2
carbon accounting allows consumers to calculate their operations’
scope 2 carbon emissions. Consumers are increasingly trying to
reduce the carbon footprint of their electricity consumption as
part of their sustainability goals. Few are shifting their demand
to low-carbon regions or periods to reduce their emissions; many
are setting “science-based targets (SBTs)” [7, 40] to align with the
global climate goals. Consumers are investing in renewable energy
via Power Purchase Agreements (PPAs); SBTs allow them to claim
credit for their renewable energy investments and lower the emis-
sions caused by the consumed electricity. According to the scope 2
GHG guidance protocol [37], there are two methods of estimating
carbon intensity and accounting for scope 2 emissions:
(1) Location-basedmethod. In this method, any electricity gener-

ated in a geographical region is attributed to the grid, regardless
of any renewable energy investments made by consumers in
that grid. All the consumers within that grid have the same car-
bon intensity, which is estimated using Equation 1. The location-
based method says that electricity �owing to a consumer is
always a mix of all the sources and cannot be segregated based
on a particular source.

(2) Market-based method. In this method, consumers investing
in renewable energy can claim the “greenness” of such electric-
ity while accounting for their carbon emissions, even if they
consume electricity from the grid that has a mix of renewable
and non-renewable sources. Carbon emissions of electricity
consumed by such consumers to meet any remaining demand,
or by consumers without investments, are calculated based
on the residual grid mix with all electricity under contract re-
moved. The market-based method is a �nancial way of account-
ing where electricity can be segregated based on the invested
sources, and carbon intensity is di�erent across consumers.
The Scope 2 GHG guide states that all companies should report

their emissions using both location-based and market-based meth-
ods (“dual reporting”), but they can use either of the methods to
meet their carbon emission reduction goals [8, 37].

2.4 Power Purchase Agreements
Power purchase agreements (PPAs) are contracts between an elec-
tricity producer (seller) and an electricity consumer (buyer) [15].
PPAs are usually long-term contracts for renewable energy (pri-
marily solar and wind) wherein the buyer can claim renewable
energy credits for their investment; that is, they get a certi�cate
and can use that to claim that they have met a fraction of their con-
sumption using the purchased electricity that was generated using
carbon-free energy sources. This certi�cate is called a Renewable
Energy Certi�cate (REC) in the U.S. and Guarantees of Origin (GO)
in Europe [26]. PPAs can be of the following two types:
(1) Physical PPA: In a physical PPA, the renewable energy project

is either on-site, directly supplying the electricity to the buyer,
or o�-site, where the renewable energy is fed into the same grid
where the buyer resides [15]. Note that in o�-site PPAs, the
seller feeds the renewable energy to the grid while the buyer
consumes the electricity from the grid. While the seller may
agree to “deliver” the energy to a speci�c delivery point in
the grid, there is no one-to-one transmission line or another
physical method of separating the contracted renewable energy
from the rest of the energy consumed by the buyer.

(2) Financial PPA: Financial PPAs are �nancial agreements where
the seller can be on the same or a di�erent grid, and electricity
is not considered delivered to the buyer. In a �nancial PPA, an
organization signs a PPA with renewable energy producers to
purchase green energy for an agreed price. The producer sells
the renewable energy in the wholesale electricity market and
settles the di�erence from the agreed price with the buyer [13,
14]. As a part of this �nancial transaction, the buyer receives the
associated credits and claims renewable energy for its needs.

There are other types of PPAs as well, but they typically are a
slight variation on either of the two main types of PPAs. One such
example is “sleeved PPA”, which leverages an intermediary utility
company to transmit power to a speci�c delivery point from a
renewable energy producer and transfer money from the buyer to
the renewable energy producer.

2.5 24/7 Carbon-Free Energy (CFE) Matching
The 24/7 hourly matching of carbon-free electricity (CFE) [16, 28]
requires the buyer to consume carbon-free electricity precisely
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H1 H2

500 MWh
0 g/kWh

500 MWh,
1000 g/kWh

(a) Neither �1 nor �2 invest in renewable
energy through PPA or by buying RECs.

10kWh
energyH1 H2

500 MWh
0 g/kWh

500 MWh,
1000 g/kWh

RECs

(b) �2 installs rooftop solar, does not sell its
RECs, and uses them personally.

10kWh
energyH1 H2

500 MWh
0 g/kWh

500 MWh,
1000 g/kWh

RECs

H1

(c) �2 installs rooftop solar, sells its RECs to
an organization that claims them.

Figure 2: An illustration of di�erent scenarios that can arise in a residential environment when a�ributing carbon-free energy to
di�erent entities in the electric grid.

when the seller generated it. The buyer and seller must also be
connected to the same grid. For a company to claim they are 100%
carbon-free, its renewable energy investments must align with its
demand every hour of the year. Currently, the most prevailing car-
bon o�set approach involves market-based matching of renewable
energy production with consumption on an annual basis. However,
this approach has a drawback: even if renewable energy is not
generated in a particular region at a certain time, the buyer can
still claim to be using renewable energy as long as the production
and consumption average out over the year. The 24/7 matching
approach eliminates this issue and enhances accountability in the
market-based accounting method. However, it must be noted that
24/7 matching is not the panacea, as even a company that uses 100%
CFE still relies on the grid infrastructure that needs to use fossil-
fuel-based energy sources that contribute to carbon emissions.

3 CARBON-FREE ENERGY ATTRIBUTION
This section elaborates on how carbon-free energy is attributed to
using location-based and market-based methods, with and without
renewable investments, by organizations that allow them to claim
renewable energy for their needs. We �rst leverage simple examples
of a toy grid to illustrate the challenges in energy attribution un-
der various scenarios in residential as well as commercial settings.
While the speci�cs of renewable energy investments and carbon
credits may vary signi�cantly, our analysis captures the essence of
the attribution problem for carbon-free energy and demonstrates
the potential for discrepancies in accounting for renewable energy.
Prior work has also made similar observations [7], and we contex-
tualize this knowledge for the researchers working on building or
computing decarbonization research.

3.1 Residential Settings
First, we examine a few scenarios for carbon-free energy attribution
in residential settings. We have a toy regional grid powered by
carbon-free wind energy and carbon-intensive coal power plants.
The carbon intensity of the coal power plant is 1000 g/kWh. These
sources provide electricity to the consumers with a total grid-level
energy demand of 1000 MWh. Both sources contribute equally to
the electricity supply. Within this region, we focus on two example
homes, labeled �1 and �2. Each of these homes consumes 20 kWh

of electric energy over a given time period, such as an hour. We
next describe di�erent attribution scenarios, as depicted in Figure 2,
a residential version of the commercial example in [7].

3.1.1 Case 1: The �rst case represents the state of a�airs for most
electric grid homes that are passive electricity consumers. Both
homes consume electricity directly from the grid, and neither has
bought any RECs or has a PPA agreement, as shown in Figure 2a.
In this case, location- and market-based methods attribute wind
and coal proportionally to both homes. Since wind produces 50%
of the electricity in the region, the consumption mix of both homes
has 50% wind. In this case, there is no cause for the discrepancy or
scope of double counting, as the carbon-free energy can only be
attributed in one way, regardless of the attribution method.

3.1.2 Case 2: In the next case, the home �2 installs an in front of
the meter 10 kWh solar array, which feeds the electricity it generates
into the grid. The grid’s energy mix now consists of wind, coal, and
solar power plants. While the new solar array can meet half of �2’s
demand, its contributions toward greening the grid are small as
its clean energy production is negligible compared to the overall
grid production. In this case, the amount of carbon-free energy
attributed to each home varies based on the attribution method
used. Under the market-based method (refer to Figure 2b), �2 can
claim 10 kWh of solar energy towards its energy demand, even if
the solar array is not physically delivering any electricity to �2.
The remaining demand is then met equally by wind and coal from
the grid. Thus, �2 claims 15 kWh of carbon-free energy — 10 kWh
from on-site solar and 5 kWh from wind energy in the electric grid.
On the other hand, even if the grid mix that �1 consumes contains
a fraction of the solar energy, it cannot be attributed to �1. Thus,
�1 still receives the same amount of wind and coal as in Case 1.

However, if the location-based approach is followed (refer to
Figure 2b), all of the carbon-free energy is attributed to the grid.
Hence, the grid now produces a combined 500.01MWh of carbon-
free energy, including wind and solar, shared by both homes. Since
solar production is negligible with respect to grid production, each
home now consumes 10 + Y kWh of carbon-free energy and 10 � Y
kWh of coal (Y << 1). As expected, the market-based attribution
bene�ts the home with the installed solar, whereas the location-
based investment bene�ts both the homes, although insigni�cantly
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(a) Neither⇠1 nor �2 invest in
renewable energy through PPA.

(b)⇠1 has physical PPA with o�site solar,
and claims renewable energy credits.

(c)⇠1 has �nancial PPA with solar in a remote grid, and
claims renewable energy credits.

Figure 3: An illustration of di�erent scenarios that can arise in a commercial environment when a�ributing carbon-free energy
to di�erent entities in the electric grid.

in this case. However, if �1 follows the location-based method but
�2 follows the market-based method, there will be a discrepancy
in counting as the 10 kWh of energy from solar would be counted
towards �2, as well as �1 through grid’s energy mix.
3.1.3 Case 3: The third case represents the current scenario of the
electric grid in developed countries where residential homes with
solar installations can sell their RECs to interested organizations
through a broker. For the sake of simplicity, we assume that�1 buys
RECs from �2 (refer to Figure 2c). The location-based attribution
method does not change and considers the grid mix containing coal,
wind, and solar, as in Case 2. However, in the market-based method,
the additional 10 kWh of carbon-free energy is now attributed to�1
instead of�2.�2 cannot claim this carbon-free energy even though
it had originally invested in it, or there will be double counting.

3.2 Commercial Settings
Next, we consider the case of technological companies having data
centers in a region that co-resides with other data centers and resi-
dential homes. The following section aims to show how to attribute
carbon-free energy when these companies invest in physical or
�nancial PPAs. Others [7] have also made similar observations.
We also show that lack of visibility into PPAs or RECs can cause
mis-counting of the invested carbon-free energy in the electric grid.

3.2.1 Case 1: Consider the same grid as earlier. The electricity
consumers are a company⇠1 having a 20 MWh data center, and �1
(refer to Figure 3a). Without renewable investment, location- and
market-based methods will attribute carbon-free energy propor-
tional to consumption. That is, ⇠1 and �1 will always receive 50%
carbon-free energy, since wind contributes to 50% of the production.
Since there is only one way the energy can be attributed, there is
no scope for double counting or discrepancy.

3.2.2 Case 2: Suppose ⇠1 invests in an additional 20 MWh o�site
solar farm that feeds the same grid via a physical PPA (refer to
Figure 3b). Assuming the demand is still 1000 MWh, the coal plant
reduces its production capacity to 480 MWh. Consequently, the
carbon-free production in the grid increases from 50% to 52% due
to the additional investment.

In the location-based method, the grid now has 52% carbon-free
electricity, and thus both⇠1 and�1 have 52% carbon-free electricity
in their consumption mix. However, in the market-based method,

⇠1 can claim the solar energy exclusively and claim to be 100%
renewable since the solar farm meets all its electricity demand.
Since 20 MWh is already claimed by ⇠1, the residual grid mix,
which represents the mix of energy sources once energy associated
with PPAs is removed, now has 500 MWh of wind and 480 MWH
of coal. Since �1 did not invest, �1’s electricity demand can only
be met by the residual grid mix, which has 51% carbon-free energy
after removing the contracted solar. However, in practice, �1 does
not know that ⇠1 has already been claimed when accounting for
their consumption mix; they will doubly count the solar energy.

3.2.3 Case 3: Finally, suppose ⇠1 instead invests in a �nancial
PPA, where the 20 MWh solar farm is connected to another grid (re-
fer to Figure 3c). This situation is even trickier as the local grid mix
does not change as there is no physical energy exchange between
the grids, but the remote grid becomes browner when ⇠1 claims
the solar energy. In this case, the location-based method would
attribute carbon-free energy similar to Case 1. In the market-based
approach, ⇠1 can still claim to be 100% renewable, although there
is no physical delivery of electricity from the solar farm to its data
center. Contrary to Case 2, �1’s energy mix remains the same, with
50% of its consumption mix being carbon-free. However, consumers
in the remote grid will see their electricity becoming browner and
must remove the contracted solar energy when accounting for their
fraction of carbon-free energy to avoid any double counting.

3.3 Potential for Accounting Discrepancies
Until now, we have used toy examples and hypothetical situations
to explain the di�erent possible scenarios in the electric grid and
the potential for double counting and accounting discrepancies in
those scenarios. However, the gravity of this situation depends on
the prevalence of renewable energy sources, such as solar and wind,
in the grid that can potentially be contracted for carbon accounting
purposes. We leverage a data-driven approach to assess the current
state of the grid and its short-term trend of renewable adoption.
We leverage data from electricityMaps [12] that provides us with
the total energy generation as well as the individual generation
from each energy source for 123 regions around the world. For this
analysis, we isolate solar and wind energy generation as the two
most common renewable energy sources contracted through PPAs.
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Figure 4: Hourly average energy production from solar + wind
as a percentage of overall energy generation for 123 Electrici-
tyMaps [12] regions in 2022. Each circle represents a region.

Figure 4 shows a scatter plot of total hourly energy production
in a given region on G-axis and the percentage of generation from
solar + wind power plants in the region on ~-axis. There are two
key takeaways from this analysis. First, a signi�cant number of
regions have a high renewable energy percentage. If a non-trivial
portion of this solar and wind capacity is contracted out through
PPAs and if these PPAs are not made visible publicly, there can be a
signi�cant potential for accounting discrepancies. In extreme cases,
more than 70% of the total generation mix may be susceptible to
this problem. Second, the high energy generation regions use solar
and wind for a smaller portion of their energy demand. However,
due to their size, even 10% renewable energy may be much bigger
than 60% for a smaller region in an absolute sense. As a result, all
the grid regions, irrespective of their low solar and wind percentage,
are susceptible to the attribution problem.

Figure 5 shows the cumulative density function of energy gener-
ation from solar + wind power in 2020 and 2022 for the same set of
regions as Figure 4. Despite the short time duration and the impact
of a worldwide pandemic, the percentage of energy from solar and
wind increased signi�cantly. As the world grapples with climate
change’s e�ects, the recent year’s curve (red for 2022) will keep
moving downwards, meaning more renewable penetration in the
grid, and thus complicating the energy attribution problem.
Key takeaway: Consumers with renewable investments would prefer
the market-based method whereas consumers without such invest-
ments would prefer the location-based method while attributing green
energy. The potential for discrepancies in carbon-free energy attri-
bution is real for residential and commercial settings due to various
organizations’ lack of consensus and information on renewable in-
vestments. For example, according to ElectricityMaps’ data, solar and
wind contributed to 66.07% electricity generation in South Australia.
If all the energy generated from solar or wind is purchased, all that
electricity can be potentially double counted. The current state of
the grid and its short-term trends suggest that more regions will be
susceptible to the attribution problem.

4 CARBON INTENSITY ESTIMATION
In this section, we show how the di�erent carbon-free energy attri-
bution methods discussed in Section 3 estimate the carbon intensity

Figure 5: Hourly average energy production from solar + wind
as a percentage of overall energy generation for the same re-
gions as in Fig. 4 in 2020 and 2022.
of the total grid mix and showcase the discrepancies in the current
carbon intensity estimation approaches due to double counting.
We assume that electricity production is always su�cient to meet
the demand, and there is no electricity exchange across grids for
simplicity. We also only consider operational emissions, where all
renewables are carbon-free.

4.1 Carbon Intensity of the Residual Grid Mix
First, we start with the carbon intensity of the residual grid mix,
which is the source mix after removing all contracted carbon-free
energy. The residual carbon intensity is only applicable for the
market-based method. Suppose the total electricity production in a
grid is ⇢, and the amount of contracted carbon-free energy is ⇢2 5 .
Then, the residual carbon intensity of the grid is

⇠�A4B =
Õ (⇢8 ⇤⇠⇢�8 )

⇢ � ⇢2 5
, (2)

where ⇢8 is the electrical energy produced (",⌘) by a source 8
that is not contracted (

Õ
⇢8 = ⇢ � ⇢2 5 ).

4.2 Carbon Intensity of the Total Grid Mix
Once the residual carbon intensity is estimated in the market-based
method, the carbon intensity of the total grid mix can be calcu-
lated in a similar manner as in [7]. The market-based carbon inten-
sity (⇠�<:C ) is di�erent for di�erent consumers depending on the
amount of electricity they purchased, and can be calculated using

⇠�<:C =
(⇡ � ⇡2 5 ) ⇤⇠�A4B

⇡
(3)

where ⇡ is the total electricity consumed by the consumer (con-
sumer electricity demand), and ⇡2 5 is the consumer electricity
demand met using the invested carbon-free sources. Thus, if some-
one did not invest in carbon-free electricity, ⇠�<:C = ⇠�A4B , and for
consumers with investments, ⇠�<:C < ⇠�A4B .

Alternatively, in the location-based method, any invested carbon-
free energy is also a part of the grid mix. The carbon intensity of
the grid electricity ⇠�;>2 always considers the total grid mix and
is the same across all consumers. Thus, it can be calculated using
Eq. 1.

585



Untangling A�ribution and Estimation E-Energy ’24, June 04–07, 2024, Singapore, Singapore

Figure 6: Carbon intensity of the residual electricity increases
as electricity is contracted out. The percentage increase varies
across regions, with regions with high solar and wind pene-
tration showing higher increases as all carbon-free energy is
contracted out.
4.3 Residual Carbon Intensity in Practice
As explained in Section 3, when a portion of the grid’s generation
capacity is directly contracted (i.e., purchased) by end consumers,
that energy purchase should be directly attributed to the purchas-
ing consumer and not be considered by the grid for computing
carbon intensity. Since the residual energy mix is obtained after
removing all contracted carbon-free sources, the carbon intensity
of the residual grid mix is usually higher than that of the total mix.
The magnitude of such increase in a region depends on the amount
of renewable penetration as well as the fraction of such renewables
that is contracted out. Figure 6 shows the percentage increase in
the carbon intensity of the residual mix if all solar and wind energy
is contracted, over the total mix if no energy is contracted (carbon
intensity data of total grid mix obtained from Electricity Maps [12]).
Note that when there are no contracts, ⇠�<:C using the total grid
mix is the same across all consumers, and is equal to ⇠�;>2 .

The problem arises when information about the residual mix
is unavailable in real-time. Any residential home or commercial
organization trying to reduce their carbon emissions relies on third-
party services to estimate the carbon intensity of their consumed
electricity. However, such services provide ⇠�;>2 , mainly due to
the lack of availability of real-time residual grid mix data. On the
other hand, consumers who have invested in renewables take green
energy credit for such investment and follow ⇠�<:C to account for
emissions due to demandmet from investments and⇠�;>2 to account
for emissions due to electricity consumed to meet any remaining
demand. This leads to inaccurate carbon intensity estimation for all
consumers due to double counting of the invested electricity. These
inaccuracies in carbon intensity estimates due to lack of visibility
into the residual mix can be quite large due to the di�erences
between ⇠�A4B and ⇠�;>2 and can result in signi�cant challenges
when performing carbon-aware optimizations.
Key Takeaway: Lack of information about the real-time residual
grid energy mix and standard method of attribution often results in
discrepancies while estimating the carbon intensity of the grid. As
shown in Figure 6, if all solar and wind electricity in South Australia
is purchased, the residual carbon intensity of the grid becomes 370.22
g/kWh, whereas the carbon intensity of the grid, including solar and
wind, is only 125.67 g/kWh. This is a 194 % increase in the grid carbon
intensity; if not estimated correctly, these discrepancies can lead to
gross overestimation of the “greenness” of electric grids.

5 IMPLICATIONS FOR OPTIMIZING CARBON
Many organizations plan to become net-zero or carbon-negative in
the coming decades. The computing industry has been at the fore-
front of this trend and has announced aggressive net-zero goals. For
example, nearly all major public cloud providers have announced
plans to run their data centers in a zero-carbon fashion by 2030
or sooner. Cloud providers have also begun exposing their cloud
servers’ carbon consumption to customers.

There has been signi�cant research in recent years on how cloud
providers and applications can leverage workload �exibility to re-
act to temporal changes in carbon intensity to reduce their carbon
footprint further. For example, cloud applications can shift their
computations to periods of the day when the carbon intensity is the
lowest, an approach known as temporal load shifting [31]. Others
have looked at moving cloud workloads to cloud regions with the
greenest electricity, called spatial load shifting [24]. Load-shifting
techniques depend on accurate knowledge of how electricity’s car-
bon intensity varies over time at a given cloud data center and how
it di�ers across the cloud data centers of the cloud provider.

Our previous sections have highlighted challenges in attributing
carbon-free energy generation and estimating grid carbon intensity
in the face of location- and market-based mechanisms. The lack
of visibility into market mechanisms can hurt the cloud’s carbon
optimization e�cacy. More generally, as such techniques become
more prevalent in varied domains such as green electric vehicle (EV)
charging, and �exible load shifting in buildings, the same problems
faced by cloud workloads today will be faced more broadly. In this
section, we perform a back-of-the-envelope analysis to highlight
the impact of these attribution and estimation challenges on a
simpli�ed carbon-aware EV charging framework.

5.1 Implications on Flexible EV Charging
In the residential sector, people are becoming increasingly carbon-
aware and moving �exible loads like electric vehicle (EV) charging,
laundry, etc., to low-carbon hours [20]. However, as the contracted
carbon-free electricity sources are removed from the grid, the tem-
poral variations in the carbon intensity decrease progressively.
Figure 7 shows how the temporal variations in carbon intensity
across a day decrease with an increasing PPA percentage, where
100% PPA means that all solar and wind in the grid are under PPA.
We obtained the ⇠�A4B values using Equation 2, and for each hour
of the day, we consider the representative value as the average of
all ⇠�A4B for that hour in 2022.

Consequently, there may be a signi�cant discrepancy between
the reported and actual carbon savings. For example, suppose Home
�1 follows a third-party carbon intensity service to shift doing their
laundry from the hour with the highest carbon intensity to the hour
with the lowest carbon intensity. In doing so, �1 seemingly reduces
their carbon emissions by 39.5%. However, the reduction is only
3% if all the solar and wind are already purchased (100% PPA) and
there is no double counting.

The problem is exacerbated if the third-party service forecasted
that the grid carbon intensity will decrease, but the residual grid
carbon intensity (assuming 100% PPA) follows an opposite trend.
Figure 8 shows a 24-hour period in California (CAISO), where the
residual grid carbon intensity increases when the total grid carbon
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Figure 7: Temporal variations in carbon intensity decrease as
the residual grid electricity gets more brown.

Figure 8: Carbon-aware load shi�ing based on a wrong car-
bon intensity signal may lead to incorrect optimizations and
overestimated emissions reduction.

intensity, including solar and wind, is supposed to be less. Suppose
Home �2 has a Battery Electric Vehicle (BEV) and a level 2 EV
charger [29]. BEVs take around 10 hours to charge using level
2 chargers [29]. �2 follows a carbon optimization plan based on
third-party forecasts and schedules their EV charging from hour
11 to hour 21. Home �1 then reports an average of 75.7 grams
of carbon emission per kWh consumed electricity. Again, if there
were no double counting, and everyone followed the market-based
approach, Home �2 would have emitted 194.5 grams of carbon
per kWh of electricity consumed in those hours, 118.8 grams/kWh
more than reported. Not only is this a discrepancy of 156% carbon
emission per kWh, but if �2 had full knowledge about the residual
carbon intensity, they may have scheduled their EV charging at
di�erent hours. We assume 100% PPA for this analysis to show the
maximum discrepancy possible.
Key Takeaway: Incorrect carbon intensity estimates and double
counting result in overestimation in the carbon emission reductions
reported by organizations following carbon-aware demand response
techniques. Although there may still be emission reductions even with
incorrect estimates, the situation appears much greener than it is,
enabling a false sense of sustainability.

6 RELATEDWORK
Recently, Bjorn et al. [7] have made similar observations on how
inaccurate use of RECs and PPAs provides a sense of in�ated emis-
sion reduction estimates. We contextualize this knowledge for re-
searchers working on residential or computing decarbonization.
We also present a simple case study on how such incorrect estima-
tions a�ect a decarbonization framework. Brander et al. [8] criticize
market-based accounting due to its complexities and lack of ac-
countability and recommend using the location-based method for
carbon emission calculations. Our work does not recommend any
particular method and just shows the inaccuracies in green energy
attribution and carbon intensity estimation and the potential dis-
crepancies between the actual and reported carbon emissions due
to that. Holzapfel et al. [18] show how using location-based and
market-based accounting in parallel can lead to double counting
in life cycle assessment and o�ers potential solutions against that.
While our work closely relates to that, we highlight such double
counting with respect to operational emission accounting residen-
tial and commercial computing scenarios.

7 CONCLUSIONS AND FUTUREWORK
In recent years, organizations have set aggressive goals to reduce
the carbon footprint of their electricity consumption as part of
their Environmental, Social, and Governance (ESG) goals. To do
so, these organizations increasingly use power purchase agree-
ments (PPAs) to obtain renewable energy credits, which they use to
compensate for their “brown” energy consumption. However, the
details of these PPAs are often not shared with grid operators and
carbon information services, which monitor and report the grid’s
real-time carbon emissions. This leads to contracted renewables
being double counted, which in turn causes a large discrepancy
between the actual and the reported carbon emission savings of
an organization — with the reported savings often overestimating
the emission reductions. In this paper, we explain how the current
approaches to energy attribution can lead to such discrepancies.
We also show with a simpli�ed decarbonization framework how
following signals from these carbon intensity services which do
not have information about PPAs can lead to an in�ated sense of
“greenness”. We hope our work raises awareness in the sustain-
able computing community about these challenges and leads to
better carbon emission accounting. As future work, we plan to do
a detailed study of how these discrepancies impact current state-
of-the-art carbon optimization techniques and develop algorithms
that can work with multiple carbon intensity estimates to reduce
carbon footprint without overestimation.
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