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ABSTRACT
Data centers consume roughly 1–2% of the world’s electricity, with
the majority of it attributed to compute, making the computing in-
dustry a substantial source of greenhouse gas emissions. Resources
in data centers typically focus on providing high performance and
availability, but the question of sustainability in managing these
distributed resources often goes unnoticed over these other metrics.
This problem will only exacerbate as the data center computing
demand continues to increase.

In this paper, we address the sustainability aspect of load bal-
ancing in VMware’s Avi Global Server Load Balancer (GSLB). Our
GSLB deployment spans data centers across geographies and clouds
and relies on geographical proximity to shift client application re-
quests to the closest data center. In this work, we enhance the GSLB
service to additionally consider the real-time carbon intensity at
each data center as a factor in making a load-balancing choice.
Our carbon-aware prototype shows an average of 21% and a maxi-
mum of 51% reduction in carbon emissions while operating with
an acceptable latency.
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1 INTRODUCTION
Data centers consume an estimated 1–2% of global electricity pro-
duction [1], resulting in signi�cant carbon emissions in the atmo-
sphere and contributing to global warming. Data centers in the
United States alone directly use about 40,000 GWh/year [3]. The
data center electricity demand is only expected to rise in the near
future [10] due to an accelerated computation demand leading
to data center expansions, thus exacerbating the carbon emission
problem. As data centers typically source electricity from the local
grid, the carbon emission associated with data center computing
depends on the region where a particular data center resides. A
region generates electricity using a mixture of renewable (e.g., so-
lar) and non-renewable (e.g., coal) sources, which vary over time
as the demand changes. For example, zero-carbon solar generation
may dominate during the day, while high-carbon natural gas taking
over at night. The sources generating electricity also vary across
regions. For example, electricity in Quebec primarily comes from
zero-carbon hydropower, while in Poland, it is mainly generated
from high-carbon coal. Thus, data centers residing in regions with
a high non-renewable source percentage may emit more carbon
into the atmosphere than a data center in a green region for the
same amount of computing.

To tackle the carbon emissions generated due to data center
computing, organizations are moving towards carbon-neutral [19],
carbon-negative [15] or even carbon-free [9] operations. For ex-
ample, VMware is working towards achieving net-zero carbon
emissions for its operations and supply chain by 2030 [21]. Con-
sequently, there has been an in�ux of carbon-aware techniques
to reduce carbon emissions due to data center computing. Many
computing loads are delay tolerant (e.g., batch workloads) and can
be delayed to greener hours. For example, Google now shifts execu-
tion of load to greener times of the day [18]. However, a signi�cant
portion of data center workloads are latency sensitive (e.g., web re-
quests) and need to be executed as soon as possible. Although these
workloads cannot be shifted in time, we can leverage the fact that
these workloads are usually deployed in multi-cloud environments
with geographical fault tolerance. The availability of geographically
distributed data centres that can serve these workloads enables us
to spatially redirect such workloads to greener regions. When done
right, we expect the solution to honor latency constraints and not
degrade the user experience while at the same time reducing the
carbon impact.

Research contribution. In this paper, we study how VMware’s
Avi Global Server Load Balancer (GSLB) [20] can help reduce its
customers’ environmental impacts when serving latency-sensitive
workloads. Avi GSLB serves state-of-the-art applications that re-
quire high availability. These applications are deployed in multiple
geographically distributed data centers which are either private,
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public, or a hybrid of both. It balances loads at two di�erent levels:
between data centers using DNS and within a data center using a
distributed data plane. We attempt to show how re�ning our GSLB
data center selection algorithm can reduce the carbon impact of a
distributed service without degrading user experience. Speci�cally,
we make the following contributions:

• We describe the carbon-aware optimization that now con-
siders the real-time carbon intensity of di�erent regions as
another factor in selecting a data center to serve customer
requests in addition to the incumbent client-to-server dis-
tance.

• We describe the design of our GSLB and develop a prototype
that makes carbon-aware decisions and redirects stateless
workloads to greener regions. Our approach shows an aver-
age 21% carbon reduction over incumbent algorithms when
subjected to typical customer workloads.

Roadmap. The rest of the paper is as follows: Section 2 pro-
vides background on carbon metrics and motivates the need for
carbon-aware spatial load balancing. Section 3 describes related
work. Section 4 describes the design of our modi�cations and justi-
�es our choice of carbon intensity metric. Section 5 evaluates the
prototype that we built. Section 6 discusses the limitations of our
prototype and future challenges of carbon-aware spatial load bal-
ancing. Section 7 gives our next steps. Finally, Section 8 concludes
the paper.

2 BACKGROUND AND MOTIVATION
In this section, we provide a brief background on the carbon emis-
sions when electricity is generated from various renewable and
non-renewable sources and the carbon intensity associated with
electricity generation and consumption. We also motivate the need
to consider the carbon intensities of di�erent regions during spatial
load balancing to reduce the carbon emissions from computing.

Carbon emission factors. The carbon emission factor (CEF) of
a source is the amount of operational carbon emissions attributable
to a source of energy, in grams of carbon dioxide (or its equiva-
lent) per kilowatt-hour, written gCO2eq/kWh. Direct CEF measures
operational emissions when a source is converted to a unit of gen-
erated electricity. Renewable sources like solar, wind, etc., emit no
carbon when generating electricity, so their direct CEFs are zero.
Non-renewable sources have nonzero CEFs that vary based on the
type of plant and other factors. In this paper, we use the median
emission factor obtained from [4, 16] for each such source. Lifecycle
CEF of a source measures operational emissions and infrastructural
emissions upstream/downstream. Renewable sources have nonzero
lifecycle CEFs due to manufacturing, distribution, maintenance,
end-of-life disposal, etc.

Carbon intensity. The carbon intensity (CI) for a region is
de�ned as the amount of carbon emitted per unit of electricity
generated/consumed in that region, in gCO2eq/kWh. There are two
types of CIs:

• Average carbon intensity (ACI) is the average of the CEFs of
each electricity-generating source in the region, weighted by
the fraction of electricity produced by each source. Whether
to use lifecycle or direct CEF for calculating ACI is up to a
carbon optimization system to choose and justify.

Figure 1: Spatial variations in MCI across di�erent regions.
Some regions show a high variability whereas MCI in other
regions is fairly constant.

• Marginal carbon intensity (MCI) is the weighted average of
the CEFs of sources that are on the margin, i.e., the subset
of sources responsible for generating an additional unit of
electricity to meet a new load to the grid at any given time.
Direct CEFs are used, since MCI only considers incremental
electricity generation.

Consider a simpli�ed grid with equal solar (zero CI) and coal
(say, CI = 1000 gCO2eq/kWh). Then, the ACI is 500 gCO2eq/kWh.
However, if imposing an additional kWh load would be generated
from coal, the MCI is 1000 gCO2eq/kWh; if it would be generated
from solar, the MCI is zero. Real power grids usually have multiple
sources on the margin.

Global Server Load Balancer (GSLB). The VMware Avi load
balancer in�uences the choice of data center via DNS. A client’s
HTTP or other request looks up a DNS name speci�c to a particular
service. The DNS server that responds to it is provided by Avi’s
GSLB, which chooses one of the available data center IPs for the
reply. Most of the application load balancers deployed with GSLB
are designed so that content can be served optimally from any data
center. This stateless paradigm simpli�es the design and paves the
way for scalable, highly available applications.

Motivation. We observe two things while building a carbon-
aware load balancer. First, the sources and the fraction of electricity
a speci�c source generates vary across regions. For example, Texas
is heavily powered by coal, whereas Norway has a high use of
renewables. Consequently, both the ACI and the MCI vary spatially
and enable the opportunity to shift loads to greener regions (with
lower ACI or MCI) to reduce carbon emissions. Figure 1 shows how
MCI varies across three regions in North America and Europe over
a week in July (data provided by Watttime [22]). Whether to use
ACI or MCI is an open research problem; section 4.1 explains our
design choice.

Second, most requests that are load balanced in enterprise net-
works are short-lived. The lifetime of a typical HTTP request ranges
from a few milliseconds to, at most, tens of minutes.

We build on the above observations and evaluate the carbon gains
realized by load-balancing stateless, short-lived requests across data
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Figure 2: Carbon emissions in simulation with and without
carbon-aware load balancing.

centers. We built a simple simulation to further motivate our work
by estimating the potential for reducing carbon impact through
load balancing. Our simulation achieves a compromise between
latency (approximated using the distance between data centers
and clients) against the carbon intensity at each data center. In the
simulation, clients distributed across the United States send HTTP
tra�c and choose a server in California or Massachusetts during
each hour of a simulated 24-hour period, using real historical data
from the WattTime [22]. California had very low carbon intensity
via solar power during the sunniest hours of the day. In this period,
the carbon-aware GSLB directed most client requests to California,
resulting in near-zero carbon emissions. Figure 2 shows the sim-
ulation results, which show that the carbon-aware GSLB always
emits less carbon for the same amount of compute, resulting in an
average of 36% reduction in carbon emissions over the day.

3 RELATEDWORK
Gao et al. [7], Doyle et al. [5], and Zhou et al. [26] optimize carbon
emissions along with other factors like electricity cost, service level
agreements (SLAs), access latency etc., by routing client requests
across data centers. Our algorithm is inspired by these works and
optimizes carbon emissions and load-shifting distance. [7, 26] run
the optimization periodically while we do it online on a per-request
basis. We also consider MCI for carbon awareness because MCI is
potentially a better metric for shifting short-lived workloads spa-
tially (see Section 4.1), whereas the above works consider ACI. Our
algorithm is also implemented from a DNS and GSLB perspective
— we send back the IP of the server residing in the optimal data
center as a DNS response to the client, who then sends the actual
request to the optimal data center. We have limited knowledge
about the actual workload. In contrast, other works redirect actual
client loads in their optimization.

Recently, Zheng et al. [25] proposed migrating workloads to
regions with curtailed renewable energy. In contrast, for a client
request, we only select the data centers which can serve that request

and choose the optimal among them. MCI inherently captures
information about curtailment, and we do not need to take that into
consideration explicitly. Lindberg et al. [11] shift data center loads
geographically based on MCI. However, unlike our work, they do
not account for the load-shifting distance, which may incur a high
round-trip time latency if the workloads are shifted to a distant
data center.

Google has also recently started shifting their media process-
ing workloads to greener regions [8]. However, very little knowl-
edge about their design is available publicly. Furthermore, media
processing workloads are delay-tolerant. Thus, to the best of our
knowledge, our work is the �rst industrial-grade system that can
shift latency-sensitive stateless applications over geographically
distributed hybrid clouds in a carbon-aware fashion.
Temporal load balancing. Delay-tolerant jobs can also be load-
balanced by running them at a time when carbon intensity is low.
Google now proactively shape the loads within their data centers
and schedule the execution of delay-tolerant workloads to greener
hours [18]. Weisner et al. [23] measure the trade-o�s between car-
bon reduction and the time taken to complete a job by delaying jobs
to di�erent times in the future. These approaches reduce carbon
emissions by shifting delay-tolerant loads to greener times. While
temporal load balancing yields carbon savings, our work considers
spatial load balancing and is complementary to such approaches.

4 SYSTEM DESIGN
Our current GSLB considers latency as the most important single
metric for application performance. Di�erent applications can tol-
erate di�erent amounts of latency, ranging from 10–20 ms in some
production workloads to sub-seconds in others. The GSLB uses
an estimated geographical distance 38 between the client and data
center 8 , in miles, as a proxy for latency and obtains it using the
MaxMind geolocation database [14] to translate the IP address of
the client to a geographical location and calculating the distance
to each data center. Then, it selects the geographically closest data
center to the client. Using the precise location of a client instead of
a broader geographical location to estimate the client to data center
distance would not necessarily be more e�ective since DNS requests
can sometimes be cached at a higher level than an individual client.

Our modi�ed GSLB considers the MCI of the region in which the
data center resides, in addition to the client’s estimated distance
from each data center. The GSLB handles thousands of requests per
second, and any carbon-optimization algorithm implemented on it
must be lightweight to work on a real system. Hence, we choose
a simple linear scoring function to select the optimal data center
in terms of MCI and the distance between the client and the data
center. Our load balancer uses the following scoring function to
choose a data center:

For each data center 8 in 1 . . .=, it computes its score (8 as:

(8 = _ MCI8 + (1 � _)38 , (1)

with the condition

38  3max (2)

where MCI8 is the current marginal carbon intensity (MCI) at data
center 8 , in gCO2eq/kWh, 38 is the estimated geographical distance
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Figure 3: Carbon-aware load balancing architecture.

(in miles) between the client and the data center, 3max is the max-
imum allowed client-to-data center distance, and 0  _  1 is a
weighting factor. Both MCI8 and 38 are scaled down to have values
between 0 and 1 to counter their di�erence in magnitude. The al-
gorithm chooses the data center satisfying the condition with the
lowest score.

Figure 3 shows the design of our carbon-aware load-balancing
implementation. In the �gure, a client sends a DNS query for a
service load balanced by the GSLB (most services will have more
than the two choices of data centers shown in the �gure). The
GSLB computes a score per data center using Equation 1 per DNS
request and chooses the data center with the lowest score. Then, it
sends a DNS response with its choice to the client, thus directing
application tra�c to that data center for service until the DNS TTL
expires.

The _ variable weights the importance of carbon intensity in
the choice of data center. With _ = 0, only distance is considered;
with _ = 1, only carbon intensity; and intermediate values produce
intermediate weighting. Applications that can tolerate increased
latency can use a higher _. We used _ = 0.67 in our simulation
and prototype, weighing carbon intensity twice as important as
distance.

The GSLB uses a minimal time-to-live (TTL) in the responses it
sends to clients. MCI can change quickly; so this helps to ensure
that clients do not keep using one particular data center when a
di�erent one becomes preferable.

4.1 MCI as a design choice
The WattTime [22] service we used for this study provides both
average carbon intensity (ACI) and marginal carbon intensity (MCI)
data. There is currently no broad consensus on which is more appro-
priate for load-balancing. We chose MCI, as shown in Equation 1,
for the reasons described below.

First, several regions generate surplus electricity from renewable
sources at various times of day and year, which are usually curtailed
to maintain the supply and demand balance. For example, curtailed
energy from solar and wind was over 600 GWh in California in

March 2023 [2]. This curtailed energy is essentially a clean source
of electricity that is wasted. Thus, a carbon-aware load balancer
operating on every request would inherently bene�t by redirect-
ing the majority of requests to a region with ongoing curtailment.
Since MCI is based on the sources on the margin, MCI can capture
curtailment situations, as renewable sources will be on the margin
during those times. A zero MCI indicates energy curtailment and
excess renewable energy in that region. Using MCI would thus
take advantage of green energy which otherwise would have gone
unused. Using ACI, which considers all energy generation rather
than just marginal generation, would not take advantage of these
opportunities to nearly the same extent.

Second, the enterprise workloads we consider in this paper are
short-lived and also incur small increase in the data center load.
We assume that incremental changes in energy load due to the
load balancer are insigni�cant compared to the overall amount of
energy demand in the grid. We believe this assumption is valid for
initial adoption. This provides another motivation to choose MCI
as it can correctly capture the carbon emissions due to this small
incremental demand in a region.

Having said that, if our load-balancing strategy is widely adopted
and the increase in demand is no longer insigni�cant compared to
the grid demand increase, further study would be warranted. Also,
if we want to spatially redirect jobs that run for more extended time
periods so that sources on the margin may change while the job
is executing, an initial decision based only on MCI may not be the
best metric and other carbon metrics may be needed. Such design
choices are beyond the scope of this paper and is left as future work.
However, our approach will work with any such carbon metric. The
carbon intensity signal is an input to our system, and our approach
is not dependent on a speci�c ground truth source. Based on factors
like the type of workloads, customer needs etc., we can seamlessly
integrate our system with any available open-source [12, 13, 24],
or commercial carbon-intensity providing services [6, 17, 22].

5 EVALUATION
Section 2motivated our work through a simple simulation. Here, we
expand on this experiment using a prototype based on real tra�c.
Our prototype deployed our system in Azure Cloud on servers in
Azure data centers in US-West (Washington), US-East (Virginia)
and UK-South. The availability of carbon intensity data limited our
choice of data center locations for the prototype. On the other hand,
clients do not have the same constraint, so we spread them more
widely across the US and Europe. We limited our deployments only
to the Azure cloud in this paper. However, our GSLB can support
any public, private, or hybrid clouds.

The prototype ran for 2 hours at 12⇥ real-time; so that the run-
time represents 24 hours. During that time, it generated tra�c from
each client according to the tra�c pro�le for our customers such as
Adobe and Paypal, which consists of 70% GET requests of 1 kB size,
20% of GET/POST requests of 5 to 32 kB, and 10% large GETs of size
1 MB to 100 MB. We limited concurrent connections to 1,000 per
second and 4 requests per connection.

We deployed our GSLB DNS server in the Azure US-West region.
During the run, every hour, the GSLB adopted an update tomarginal
carbon intensity information fromWattTime historical data for one
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Figure 4: Carbon emissions for each load-balancing algo-
rithm.

Figure 5: Ratio of round-trip latency for carbon-aware algo-
rithm versus using geographical distance only.

particular day in January 2022 that we selected. We used a DNS
TTL of 30 s to encourage clients to frequently re-check the choice
of server.

We set 3max = 2000 km to ensure that clients contact servers
within a reasonable latency bound when di�erences in carbon
intensity are extreme. This ensures that, for example, a client in
Germany will not use a server in the United States, even if that
would yield lower carbon intensity.

To evaluate the carbon savings possible with our carbon-aware
algorithm, we compare it against the regular algorithm that consid-
ers only geographical distance. Figure 4 shows the carbon emissions
for each algorithm, calculated using the carbon intensity data and
carbon emission factors reported by WattTime. The space between
the two plotted lines on the graph represents the carbon emission
savings of the carbon-aware algorithm, which is the bene�t of our
work. Our results show an average carbon emissions savings of
21% and peaking at 51% savings.

Carbon awareness will only be adopted if its performance cost
is not too high. To test this, Figure 5 compares latency for the two
algorithms across the 24-hour period. For most of the day, the mean
latency of the greener algorithm is between about 80% and 110% of

the algorithm that only considers distance. The slightly reduced la-
tency for much of the day surprised us. Perhaps it can be explained
by the di�erence between network topology and geographical dis-
tance. The 95th and 99th percentiles show both lower and higher
values and a spike late in the day. The standard deviation plot shows
that the carbon-aware algorithm has considerably more latency
variability than the standard algorithm. However, most importantly,
the mean latency of our carbon-aware algorithm is comparable to
our baseline algorithm, which means that our solution can easily
be used in a real system.

6 LIMITATIONS OF OUR PROTOTYPE
In this paper, we describe a working prototype of the green load
balancing extension to VMware’s NSX Avi Global Server Load
Balancer (GSLB). While our prototype shows signi�cant potential
for reducing carbon emissions via spatial load balancing, more
needs to be done to build and deploy a carbon-aware GSLB that
can work in a production setting for multiple type of workloads
at scale. We discuss limitations of our work and future challenges
below:

First, our GSLB assumes that servers can be scaled automatically
and instantaneously in response to variations in demand. For in-
stance, we assume that servers can be brought into service quickly
to absorb tra�c spikes. However, in reality, there is a time over-
head for ramping up or down the servers. Carbon-aware GSLBs in
production need to consider auto-scaling protocols and their associ-
ated overheads. Second, in case a green data center is saturated, the
GSLB needs to redirect the requests to another data center while
still maintaining other constraints. Thus, a carbon-aware GSLB
should incorporate accurate real-time load information from all
data centers into its decision making. Third, we only considered
stateless workloads in this work. As MCI changes with time, con-
secutive requests from a given client could be redirected to di�erent
data centers by our carbon-aware GSLB. While this does not raise
issues for a stateless service, to host stateful services, mechanisms
to migrate state information across data centers is required, adding
extra overhead to our carbon-aware GSLB. Finally, unavailability
of carbon intensity data in some developing countries may make it
infeasible to implement a carbon-aware GSLB in those regions.

7 FUTUREWORK
In this prototype, we limited our evaluation to 24 hours. However,
we acknowledge that the carbon footprint of power can vary widely
depending on seasonality. In the future, we plan to evaluate our al-
gorithm’s performance more robustly over longer time periods and
di�erent seasons. We aim to test our prototype with real customer
workloads in production environments and, ultimately, to roll it
out to customers who could use it to achieve part of their carbon
reduction goals.

Additionally, we plan to extend our research in other directions.
As mentioned in Section 6, our current GSLB prototype has lim-
itations that need to be addressed. We plan to focus on adding
load and price information in our optimization as a next step. One
way to add load awareness would be introducing a load threshold
and not redirecting clients to data centers with load above that
threshold. This would prevent a green data center from becoming
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overloaded. Additionally, considering the energy cost could be es-
pecially valuable for high-cost regions, such as areas in Europe
with power shortages. If additional factors were to be considered,
then the simple approach of having the administrator specify a sin-
gle _ as a con�guration weight may no longer work; so either the
administrator would need to specify multiple weights or the load
balancer could intelligently generate precon�gured pro�les. Even
with the current simple setup, a friendlier way to con�gure would
be to specify an SLA for latency, with the load balancer choosing
the greenest data center that meets the SLA, with a feedback loop
to mitigate SLA violation. Also, our load balancer currently uses
the geographical distance from clients to servers to approximate
latency between them. In the future, measuring latency directly
could yield better results.

8 CONCLUSION
In this paper, we have shown how VMware’s Avi GSLB can play
a signi�cant role in reducing the carbon footprint of applications
considerably by steering tra�c to greener data centers. We built
a prototype that showed an average of 21% and a maximum 51%
carbon emissions saving with spatial load balancing. There is ample
scope for further innovations and improvements in this area. Enter-
prises struggle to showcase carbon savings, and such advancements
provide absolute metrics for organizations to quantify savings and
garner more carbon credits by reducing their carbon emissions.
We hope our approach paves the way for further enterprise-level
carbon optimization solutions.
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