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Abstract—In a real-life meeting environment, individuals of-
ten demonstrate a remarkable ability to selectively focus their
attention on specific visual information. This ability allows them
to naturally concentrate on a specific region of interest while
tuning out others. Understanding and exploiting such selective
attention remains unexplored in a user-centric teleconferencing
system, where there is a potential to customize video streaming
and foveated rendering based on the viewer’s attention. This
paper proposes a novel user-centric scene analysis module that
fully leverages the power of selective attention for online meeting
scenarios and recognizes the unequal importance of individual
pixels in the videos. The module determines the user’s selective
attention through the meeting contexts. The contextual represen-
tation of the meeting is modeled as a combination of two primary
components: proactive user interaction within the system and
passive real-time analysis of high-level visual semantics from the
scenes. As the meeting progresses, the interactive scene anal-
ysis module dynamically updates its contextual representation,
offering a dual advantage: (a) Videos can be selectively and
adaptively streamed within a user’s attention, resulting in band-
width savings of up to 78 percent. (b) The module enhances the
overall quality of the user experience by facilitating higher user
interactivity, particularly in meeting-related tasks such as screen
sharing, privacy-preserving user blocking, background removal,
automatic user attention shift detection, etc. Our interactive scene
analysis module makes significant progress toward enabling an
efficient, immersive, and intelligent teleconferencing system.

Index Terms—Interactive Scene Analysis, Teleconferencing
System, User-centric System

I. INTRODUCTION

The development of teleconferencing systems has contin-
uously evolved over the past decades due to their critical
role in facilitating connections among individuals. Traditional
platforms such as Zoom, Microsoft Teams, and Skype offer a
cost-effective and convenient way for people to collaborate in
real-time, regardless of their physical location. However, these
systems have limitations in capturing users’ selective attention.
They uniformly transmit pixel-level information to users with-
out considering the varying importance of each pixel, based
on user interaction and meeting context. This approach results
in two primary limitations: (a) limited flexibility for users
to manage and direct their visual focus, and (b) constrained
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Fig. 1: An interactive example of a user-facing interface, where
someone typing on a laptop triggers a prompt to share the
screen, or a group of object nodes is selected for foveated
rendering or blocking in the conference room. Regions distin-
guished by color masks indicate associated pixel groups.

interaction pathways that require navigating complex icon lists
to perform actions like screen sharing or switching screens.

To address these challenges, our research is motivated
by the understanding that the importance of pixels varies
depending on the context. Certain areas, such as a presenter
or a whiteboard during a demo, are more critical to remote
participants. The importance of pixels can dynamically change
based on user interaction, which reflects interests in specific
regions and may fluctuate due to personal interests and privacy
concerns. Transmitting all pixels uniformly wastes bandwidth
and ignores visual focus. Ideally, a streaming system should
detect and utilize discrepancies in pixel importance, consider-



ing both room context and user interactions.

With these motivations, we propose a novel interactive scene
analysis module. This module aims to equip video conferenc-
ing systems with an understanding of contextual information
and natural participant interactions. Contextual information is
extracted and summarized in a graph-structured representation,
named the scene graph[l]. The scene graph provides users
with an interactive interface to identify areas of interest or
privacy concerns in the video. It assists the streaming system
in determining the importance of each pixel. As illustrated
in Figure 1, this scene graph overlays the remote user’s
view, allowing user interaction to request foveated or blocked
functionality, or additional streaming sessions when certain
events are detected. In addition to scene graph interactions,
the system accommodates direct text and click prompts and
produces object masks, supported by the vision foundation
model Segment Anything (SAM)[2]. For segmentation effi-
ciency, CondlInst[3]-based interactive segmentation is provided
as a real-time option.

Our contribution also involves customizing the Scene Graph
Generation (SGG) model for teleconferencing. A significant
challenge is the absence of a dedicated indoor meeting room
dataset with comprehensive ground truth annotations. This
data scarcity hinders the possibility of fine-tuning the model.
Pre-trained SGG models on large world datasets, such as
VGI[4], could serve as a naive solution with extra operations
of filtering out all the irrelevant category labels of objects and
relationships. However, this strategy may not be optimal due to
distribution shifts between VG and indoor conference rooms.
The distribution shifts are two-fold: First, the VG dataset is a
mix of diverse indoor and outdoor scenes, while the desired
test environment is completely indoor. Second, the relationship
category labels within the dataset are unevenly distributed,
creating a long-tail effect. This skews the dataset away from
the types of relationship instances pertinent to a meeting room
setting, which may be underrepresented in the VG data.

We propose a non-transformer-based SGG model under
an adversarial unsupervised domain adaptation framework to
tackle this. This model better adapts to indoor conference room
scenarios and selected labels without requiring extra ground
truth annotation.

II. RELATED WORK
A. Scene Graph Generation Model

Scene Graph Generation (SGG) is a fundamental task that
bridges vision and language, garnering attention from both the
computer vision and natural language processing communities.
Initially presented as visual relation detection in [5], SGG
task involves detecting each relationship independently. It was
later formulated as a graph representation in [6], a pioneer-
ing work incorporating contextual information in images for
relationship classification in the scene graph. Some following
works, like [7] began to utilize global contextual information
for refinement, leveraging the insight that object labels are
highly predictive of relation labels. [7] serves as one of the
strongest baselines in the pre-transformer era and is adopted

in our system. Recently, vision-language models for SGG
have become a popular research direction. Works like [8]
and [9] propose employing vision-language models for SGG,
achieving some level of few-shot ability in other domains.
Another line of research, exemplified by [10], addresses the
long-tail problem of VG [4] and the ambiguity of the labeling
process, arguing that SGG is not well-defined and can lead
to uninformative model predictions. Various dataset-balancing
methods and modifications to learning objectives have been
proposed to tackle this issue.

B. Unsupervised Domain Adaptation

Domain adaptation is relevant when a model is trained
on a large-scale source domain with ground truth labels and
then applied to an unlabeled target domain. Recent solutions
include Adversarial Discriminative training, with theoretical
support in [11] that derives the generalization bounds target
risks. Approaches like Domain-Adversarial Neural Network
[12] and Adversarial Discriminative Domain Adaptation[13]
employ adversarial objectives in training to align features from
both source and target domains. [14] is among the first works
that apply Unsupervised Domain Adaptation to scene graphs
and demonstrate promising results in adapting the model
to civic domains. In our module, Adversarial Discriminative
Domain Adaptation is adopted with a GAN-based loss, leading
to a successful model adaptation to meeting room scenarios.

C. Promptable Interactive Segmentation

Recently, SAM [2] from Meta was introduced as a prompt-
able model for segmentation. SAM can encode flexible
prompts including points, boxes, text, and masks with a prompt
encoder. SAM achieves (amortized) real-time performance in
prompt queries, assuming heavyweight image encoding is pre-
computed. However, this image encoding must be performed
on the entire image, making it impractical for mobile devices.
The concept of interactive segmentation through clicking pre-
dates SAM and the deep learning era, to generate accurate
object masks using a minimal number of clicks. In our system,
we provide a powerful but non-real-time SAM to prompt
user interaction, as well as an efficient real-time interactive
segmentation option over Condinst[3]. These segmentation
results support functionalities like foveated rendering and
blocking as per the user’s request. These 2D segmentation
algorithms can also be naturally extended to 360-degree video
live systems, such as [15].

III. INTERACTIVE SCENE ANALYSIS
A. User Interactivity

The interactive analysis module supports user interactions
through two main categories: passive interactions based on
events detected by the scene graph and proactive interactions
that can occur at any timestamp during the meeting.

The scene graph representation detects new meeting-related
objects and relationships, such as identifying someone typing
on a laptop or a person newly seated and starting to write on a
whiteboard. For example, if a person is detected to be typing



on his or her laptop, virtual participants will be notified, and
prompts will be sent, asking whether they want to view a new
streaming session (screen sharing of the computer) as a side
session window.

Participants can also interact with the graph, empowering
them to select nodes and relationships that fit their interests
or they wish to block, at any given time. This feature enables
participants to request video content with options like foveated
rendering or blocking, benefiting thereby both the system effi-
ciency and their individual preferences. Moreover, participants
can provide positive and negative clicks within videos to
specify object regions they prefer or wish to avoid, serving
as input for interactive segmentation algorithms. Finally, text
prompts to specify certain objects are supported, as well.

B. Scene Graph Definition

One of the key components in the interactive scene analysis
module is the scene graph. An example visualization of the
scene graph is demonstrated in the figure 1. It is a structured
representation G of semantic information of important objects
and relationships in between. GG consists of a set of bounding
boxes, a corresponding set of objects, assigning a pre-defined
set of class labels to each bounding box, and a set of
relationships between those objects. Overall, the SGG model
aims at detecting all potential triplets of a subject in a bounding
box with a label, relationship label, and object in a bounding
box with a label. The result can be easily stored as a JSON
file in the system.

C. Model Architecture

Our SGG model architecture is heavily inspired by Mo-
tifNet [7] architecture, which was state-of-the-art before the
transformer era. Building on the idea that global context in
an image aids the SGG task, MotifNet first detects objects
in the images and efficiently encodes the global context
between local predictors. (i.e. objects and relationships.). The
encoding of the global context is achieved by a bidirectional
Long Short-term Memory Network (LSTM) [16]. In the final
stage, the representations of the global contexts and the local
predictors are used to predict objects and relationship labels.
Our model follows a similar approach but extends it under
an adversarial domain adaptation framework. Here, object and
relationship features are forwarded to a neural network-based
discriminator instead of being used directly for classification.
Further insights into this domain adaptation framework will
be discussed in subsequent sections.

Stage I Object Detection predicts bounding boxes, corre-
sponding feature vectors, and probabilities of each category
label. Arbitrary object detector architecture can be used in this
stage. We use faster-RCNN [17] for its fast inference speed.
Stage I1 Context objects Encoding passes all proposed object
regions with feature vectors and class probabilities into a
bidirectional LSTM, which efficiently encodes object context
information into a single vector representation.

Stage III Object Decoding uses the object context infor-
mation to decode labels for each proposed bounding region,

conditioned on previous decoded labels with another LSTM.
Hidden states of the LSTM can be passed into another learned
fully connected layer for object labels.

Stage IV Relations (Edge) Context Encoding employs an
additional bidirectional LSTM to encode the context informa-
tion between relationships and objects.

Stage V Relations (Edge) Context Decoding utilizes an
LSTM to decode context information for pair-wise relation-
ships among a quadratic number of object pairs.

Stage VI Domain Discriminator is a feed-forward neu-
ral network that classifies whether an object or relationship
representation comes from the source or the target domain,
addressing data or label distribution shifts.

Stage VII Final Prediction involves an extra fully connected
layer to project object and relationship feature representations
onto a 1-D vector. A softmax is applied to produce a proba-
bility distribution of all object and relationship labels.

D. Unsupervised Domain Adaptation

Inspired by the success of Adversarial Discriminative Do-
main Adaptation (ADDA) [13] applications in other deep
learning-based models, and an attempt in [14] that tries
integrating the ADDA with SGG models, we introduce an
adversarial training pipeline that adapts the SGG model trained
on VG[4] dataset to a domain-specific setting of an indoor
conference room.

ADDA training is divided into different stages, similar to
standard GAN loss [18]. Initially, the source encoder is pre-
trained using source data from the VG dataset [4]. In the
second stage, the model performs adversarial adaptation by
jointly learning a target encoder and a discriminator that
predicts domain labels, with the source encoder frozen. During
testing, target images are mapped with the target encoder
to a shared feature space to perform tasks like predicate
classification. As stated in ADDA literature [13], we use the
same general adversarial loss function, the standard GAN loss.
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Fig. 2: Stage II of ADDA to deal with label shifts.
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Fig. 3: Stage II of ADDA to deal with data distribution shifts.
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We refer readers to more details of the general adversarial
loss function in the original ADDA paper [13]. When inte-
grating ADDA with SGG, we have two design choices for
the stage II adversarial training when applying the adversarial



training to the SGG model. As mentioned in the previous
section, both label shifts and data shifts between train/test
data result in a performance drop for the model. To address
label shifts, the discriminator works on each edge context
(relationship representation) between object pairs. It is learned
to distinguish between highlighted for meeting related rela-
tionships” or “non-highlighted” and backpropagates gradient
into the edge context layer in motifNet. This procedure is
demonstrated in Figure 2. For data shifts, the approach works
similarly to other recognition tasks relying on CNN features,
shown in Figure 3.

E. Interactive Segmentation

Prompting, recognized as a natural and effective mode of in-
teraction, has attracted significant attention since the evolution
of ChatGPT. Within the interactive scene analysis, users can
input prompts, either in text or through clicks, to achieve their
desired outcomes. As illustrated in Figure 4, users can provide
positive or negative clicks to accurately segment areas they
wish to foveate or block. Figure 5 further demonstrates the
power of text prompts. SAM leverages semantic knowledge
from natural language prompts to infer and identify the object
with the descriptive term “red thing”, instead of directly
specifying the identification of a red cup on the table.

The promptable interactive segmentation module offers two
models: the computationally intensive SAM[2] from Meta for
text and click prompts, and the real-time efficient CondInst[3]
for click prompts only. Users can extract important frames
and prompt them with text or clicks in SAM. However, this
choice cannot be made in real-time due to SAM’s heavyweight
image encoder (based on the Vision Transformer). For real-
time functionality of foveated rendering and blocking, users
can switch to interactive CondlInst for its efficiency. While we
made efforts to enable CondlInst to run in a real-time setting,
we opted not to include this in the paper as we could not
evaluate its quantitative performance on our indoor meeting
room dataset lacking ground truth annotations for masks.

Fig. 4: Positive Click in Green and Negative Click in Red.

FE. Implementation Details

SGG Model Details. The discriminator used in training
consists of three fully connected layers with 2048 hidden

Fig. 5: With the prompt: detect the red thing on the table.

units each. Each layer is followed by a batch normalization
and ReLU activation. A dropout rate of 0.5 is applied in the
training. The model and the discriminator are trained using
ADAM with learning rates of 0.001 and 0.01. We use a faster
RCNN detector model with a resnet50fpn backbone.
Selection of Categories. We manually select conference
event-related categories of object relationships. Among these,
the object labels “chair, table, notebook, laptop, board, person”
and relationship labels ”write on, type on, sit, stand on, beside
(the whiteboard),” are representative of conference progress.
These labels are essential in initiating, terminating, or creating
a new side window session operation during the meeting. In
addition to these labels, other meeting room events can be pre-
selected from the original dataset to benefit virtual participants.
By leveraging these labels and events, the teleconferencing
system can potentially provide a more immersive and interac-
tive experience for all participants.

Integration with Teleconferencing. A server with a powerful
GPU plays a crucial role in constantly running machine
learning-based scene analysis as a service. The server receives
a stream from a room camera and periodically executes the
SGG Models, transmitting the scene graph representation to
a remote client for interactive visualization. Moreover, when
users initiate foveated rendering or blocking interactions sent
from the clients, the server must execute an interactive frame-
level instance segmentation algorithm in real-time and provide
pixel groups of instance masks as requested by the clients.

IV. EXPERIMENTS

We collected a video dataset covering events in a conference
room. The dataset consists of 11 full HD video clips at
60 fps with a total length of 997 seconds. We use 8 clips
for unsupervised training and 3 for evaluation. We label
conference-related relationships and objects at selected frames
for evaluation of the model with Label Studio.

Previous studies have evaluated scene graph generation
models in PREDCLS, SGCLS, and SGGEN tasks. SGGEN
is unique in considering the model’s performance in detecting
all objects and relationships from scratch. In an SGGEN task,
the model has to simultaneously detect the set of objects and
predict the right predicate for each pair of objects. SGGEN
was adopted because our system needs to detect object rela-
tionships from scratch rather than relying on two given object
ground truths. The conventional metric for evaluating SGG
is Recall@K(R@K), which computes the fraction of times
the correct relationship is predicted in the top K predictions
with the highest probability. Recall @ 20 and Recall @



10 are measured in Table I when testing the model on our
dataset with our selected object and relationship labels in the
conference room. The results demonstrate that our customized
model outperforms the pre-trained model. The performance
gain might increase when the training dataset scales.

During inference, the SGG model takes an average of 0.33
seconds for a single 4K frame on an Nvidia RTX 3090,
achieving an inference speed of 3 frames per second. It is
important to note that methods related to Vision Transformers
[19] are prohibitively resource-intensive in the context of the
real-time scene analysis setting. They exhibit an inference
speed of 0.5 seconds per low-resolution image on TPU for
image classification tasks, which is notably slower than the
demands of real-time SGG. Regarding segmentation, the SAM
model operates at a speed of 0.452 seconds per frame on
Nvidia A100. On the other hand, a lightweight segmentation
based on Condinst can achieve a speed of 0.03 seconds per
frame, making it suitable for real-time applications.

TABLE I: Adversarially/Pre Trained Model Accuracy.

Setting Pre-trained ~ w/domain shift  w/label shift
SGGEN Recall20 48.6 51.2 50.3
SGGEN Recall10 443 45.0 45.2

In our video dataset, we manually labeled important meeting
events and simulated some user click prompts to imitate
foveated or blocking requests. In the most optimal simulation
scenario, where a user consistently focuses on a specific
person related to an important event, foveated rendering of
that person onto a static meeting room background resulted in
a remarkable 78% bandwidth savings in the video streams.

V. CONCLUSION

In this paper, we introduce an innovative interactive scene
analysis module designed for teleconferencing. This module
enhances the teleconferencing system by enabling functionali-
ties like user-focused foveated streaming, privacy-preserving
blocking, and efficient selective streaming. It comprises a
scene graph generation model customized for indoor meeting
room scenarios, along with real-time interactive segmentation.
Through experiments, we demonstrate the module’s efficiency,
accuracy, and feasibility. This represents a significant stride
towards creating an immersive, interactive, and intelligent
teleconferencing system.
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