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Abstract— Bayer pattern is a widely used Color Filter Array
(CFA) for digital image sensors, efficiently capturing different
light wavelengths on different pixels without the need for a
costly ISP pipeline. The resulting single-channel raw Bayer
images offer benefits such as spectral wavelength sensitivity and
low time latency. However, object detection based on Bayer
images has been underexplored due to challenges in human
observation and algorithm design caused by the discontinuous
color channels in adjacent pixels. To address this issue, we
propose the BayerDetect network, an end-to-end deep object
detection framework that aims to achieve fast, accurate, and
memory-efficient object detection. Unlike RGB color images,
where each pixel encodes spectral context from adjacent pixels
during ISP color interpolation, raw Bayer images lack spectral
context. To enhance the spectral context, the BayerDetect
network introduces a spectral frequency attention block, trans-
forming the raw Bayer image pattern to the frequency domain.
In object detection, clear object boundaries are essential for
accurate bounding box predictions. To handle the challenges
posed by alternating spectral channels and mitigate the in-
fluence of discontinuous boundaries, the BayerDetect network
incorporates a spatial attention scheme that utilizes deformable
convolutional kernels in multiple scales to explore spatial
context effectively. The extracted convolutional features are then
passed through a sparse set of proposal boxes for detection and
classification. We conducted experiments on both public and
self-collected raw Bayer images, and the results demonstrate
the superb performance of the BayerDetect network in object
detection tasks.

I. INTRODUCTION

The goal of object detection is to localize a set of objects

and classify their categories within an image. Object detec-

tion algorithms based on deep convolutional neural networks

have been proposed [7] [31] [18] [9] [1]. Though all the

methods mentioned above achieve promising performance

in diverse aspects, they are all designed for RGB color

images, which are processed using image signal processor

(ISP) pipelines’ inputs. However, the ISP pipeline costs ex-

cessive storage and processing time and is also susceptible to

damaging or losing the primitive pixel information captured

by the raw camera sensor, such as demosaicing [11]. Bayer

pattern is a widely used Color Filter Array (CFA) that covers

the digital image sensors for capturing the different light

wavelengths. The generated raw Bayer images provide a

more comprehensive spectral range as RGB color images, but

in a single channel, much less than the 3 channels in RGB

color images. Though raw Bayer images enjoy the benefits

of less memory consumption, high speed due to the potential

saving of ISP procedures, and primitive preservation of

spectral information, raw Bayer images are still not used
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Fig. 1. BayerDetect network has the capability of achieving fast and
accurate object detection from 8-bit raw Bayer images.

for major computer vision tasks, such as object detection.

One reason is the discontinuity of spectral information in

neighboring pixels across the raw Bayer images, which

prohibits easy observation for human users and algorithm

design that relies on smooth color changes. Especially for

object detection tasks, clear object boundaries are required

for tightly bounding the objects.

In this work, we propose BayerDetect network, a novel

object detection framework that can effectively detect objects

based on raw Bayer images as Fig. 1. To capture better

frequency spectrum and Bayer coordinates from the raw

Bayer input via the high multi-path network, we replace

the widely used ResNet-based backbone with a spectral fre-

quency and spatial coordinate guided ResNext. The feature

representations are then converted into a small number of

proposals for efficiently learning and optimizing the sparse

candidates instead of constraining the dense candidates from

the Region Proposal Network (RPN). To overcome the lack

of contextual connections among adjacent pixels as RGB

color images, BayerDetect network proposes spectral and

spatial attention mechanisms to establish the spectral and

spatial relationship between adjacent pixels and mitigate the

color disconnection issues that existed in raw Bayer images.

The designated BayerDetect network can preserve the primi-

tive spectral wavelength information from the camera sensor

and capture the grid point locations from the Bayer pattern

under the proposed framework for efficient data storage and

computation. The overall framework is shown in Fig. 2.

The main contributions of our work are listed as follows:

1. We propose a novel framework to explore object detection

based on raw Bayer images. The framework can achieve

state-of-the-art detection accuracy with much lower storage20
23

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
OS

) |
 9

78
-1

-6
65

4-
91

90
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IR

OS
55

55
2.

20
23

.1
03

42
00

8

Authorized licensed use limited to: University of Georgia. Downloaded on September 19,2024 at 06:17:15 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Overview of our proposed BayerDetect network. A single raw Bayer image will be input into the detection network. The network will learn the
spectral and spatial-aware deformable attention that builds the context relationship between Bayer pattern grids and mitigates the channel discontinuous
issues of adjacent pixels of the raw Bayer images. Multiple-scale attention will be explored to detect objects of various scales in the Bayer images. The
detection is accelerated through sparse proposals and features.

requirements and computation costs with Bayer input and

sparse detector. To our best knowledge, BayerDetect network

is one of the first detection frameworks specifically designed

to detect objects on raw Bayer images, which demonstrates

the suitability of raw Bayer images on detection tasks. 2.

We decompose the raw Bayer images to different spectral

frequencies to better recover light wavelengths recorded by

the Bayer filter. The extracted spectral features are further

processed by spatial coordinate attention to explore spatial

dependencies among adjacent pixels. The output feature

maps can sufficiently focus on high-frequency details and the

Bayer grid pattern. 3. We propose spatial-aware deformable

convolution to exploit spatial relationships between neigh-

boring pixels with different color channels, which effectively

mitigate the pixel disconnection issue of object boundaries.

II. RELATED WORK

The goal of object detection is to localize and recognize

each object with a bounding box in an image. It can be

divided into anchor-based detectors and end-to-end detec-

tors. Anchor-based object detector consists of single-stage

detection [19] [28] [29] [34] and two stage detection [1]

[18]. Among these detectors, the anchor boxes are pre-

defined by the sliding windows and are assigned background

and foreground samples. Considering the pre-defined anchor

boxes are data independent, the training process usually re-

quires a careful selection of the hyper-parameters for efficient

optimization. Shape-prior-based detectors were designed to

detect objects with specific shapes (e.g., parabola) [24], [26].

Recent fully convolution-based anchor-free approaches (e.g.,

CenterNet [5], CornetNet [14] and FCOS [39]) still require

post-processing (e.g., non-maximum suppression (NMS))

steps for filtering those additional detections, which also

requires careful selection on the threshold and might not be

robust for complex scenes.

Different from aforementioned anchor-based approaches,

end-to-end algorithms are explored [32] [30] [2] [12]. Re-

cently, [12], DETR [2] and Deformable DETR [42] exploited

the relations among the diverse objects and predictions to

prevent additional post-processing steps. However, they are

still relatively expensive with massive object candidates.

Sparse-RCNN [35], as a purely sparse algorithm, focuses on

a small group of bounding boxes and the learnable proposals

instead of enumerating all dense images, hence efficient and

fast. Hybrid matching [13] is further proposed to improve

detection accuracy. 3D object detection can also be realized

with simultaneous depth estimation [25], [16]. Queries are

also applied to enhance the detection network training [6],

[22]. The consistency information in videos is also applied to

detect objects accurately [4]. And cross-transformer is devel-

oped for object detection [8]. Different from the approaches

mentioned above, our method is highlighted to be the first

to realize end-to-end object detection based on the spectral

wavelength and pattern geometry of the raw Bayer images.

Most Bayer patterns using Bayer Color Filter Array (CFA)

are designed for the reliable demosaicing process, which

is performed to interpolate the vacant red, green, and blue

values in the raw Bayer pattern images for restoring 3-

channel RGB color images [17] [40] [27] [21]. Furthermore,

hand-crafted algorithms are examined for color difference-

based interpolation [3], edge directional interpolation [15],

and reconstruction-based interpolation [33]. To encourage

better image demosaicing, deep learning approaches were

applied in [38] [37] [20]. On the other hand, Liu et al.

[20] laid special emphasis on a self-guidance network where

they used an initially estimated green channel as a guiding

force to recover all of the input image’s missing values by

supervising the network training according to the edge loss

of the reconstructed image as well as the ground truth color

image. Moreover, [41] assessed the image restoration effect

of restoring images from the raw domain of two different

OLED displays.
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Nonetheless, the direct and relatively straightforward raw

Bayer images are rarely explored in computer vision algo-

rithms, mainly because raw Bayer images are not straight-

forward to observe, thus adding difficulties in designing cor-

responding algorithms. This is especially an issue for object

detection tasks, which depend on clear and continuous object

boundaries to detect and bound the objects. These factors

limit the broader applications of raw Bayer images. The

paper demonstrates the possibility and benefits of utilizing

raw Bayer images on object detection tasks based on our

dedicated framework for Bayer patterns.

III. BAYERDETECT OBJECT DETECTOR

We propose BayerDetect network, a sparse object detec-

tion framework for specifically localizing and classifying

objects on raw Bayer images. The proposed network in-

troduces spectral frequency attention blocks to extract rich

contextual information from the features of the multi-path

group representation ResNeXt backbone. As the classical

convolution operations have only fixed and limited receptive

fields and are not able to adapt spatial information well for

many unseen objects and scenes, we further propose utiliz-

ing spatial-aware deformable convolution for more accurate

detection. This is especially helpful for raw Bayer images,

as the object boundaries are not connected in color channels.

The deformable convolution layers can provide attention to

those disconnected pixels to extract shape information. A

multi-scale attention mechanism is introduced to dynamically

combine the multi-scale pyramid features to maximally pre-

serve the low-level color and pattern features and the high-

level object semantics for detection. The combined features

are then aligned for each sparse proposal bounding box with

the RoIAlign operation. To add more shape and geometry

information to the coarse localization, the RoI features are

weighted by the proposal features. Finally, the re-weighted

features are forwarded to predict bounding boxes and precise

object classification. The detailed analysis is elaborated in the

following sections, where Sec. III-A introduces the principle

and benefits of the Bayer pattern, Sec. III-B, Sec. III-C,

Sec. III-D and Sec. III-E detail the architectures of each key

component and the loss constraints in the network.

A. Formulation of Raw Bayer Images

Most commercial digital cameras contain a single

CCD/CMOS sensor that can capture the light intensity

but not its wavelength or color. Generally, a Bayer color

filter array (CFA) is more productive because it overlays

the image sensor to comprehensively cover the field of

view and generate different filtered color information, which

eventually leads to a raw Bayer image (image mosaic).

Hence, normal RGB color S is possible to be recovered

with colors from the split spectral channels SR, SG and SB ,

where S = SR
⋃

SG ∪ SB .SB and SR together occupy a

quarter of all pixels, whereas SG occupies half of all image

pixels that existed in a quincunx lattice.

A demosaicing method is required to recover a full 3-

channel RGB image by interpolating the missing color

Fig. 3. An illustration of how the Bayer CFA is used in a typical camera
ISP pipeline.

Fig. 4. An illustration of the transformed 2D DCT coefficients.

channels based on the raw Bayer image. This demosaicing

method is effective in large areas with constant colors and

smooth surfaces. For scenes featuring high contrast areas,

such as those where colors constantly change and objects

move, demosaicing results in unwanted loss of details, which

could lead to color bleeding and artifacts such as zippering.

In the meantime, post-processing phases like demosaicing

add extra computation time and complexity in real applica-

tions. Hence, raw Bayer images are more appropriate for end-

to-end detection because the raw Bayer images preserve the

most primitive color information at a low cost. An illustration

of the raw Bayer image with zoom-in regions and standard

post-processing phases is shown in Fig. 3.

B. Spectral Frequency Attention

As introduced above, the adjacent pixels of raw Bayer im-

ages present different spectral channels. So we introduce our

dedicated spectral frequency attention block for exploring

the different spectral information captured by the primitive

camera sensor and the spatial coordinate attention for en-

hancing a wide range of contextual information on each local

Bayer pattern. The attention blocks are integrated into the

multi-path group representation ResNeXt for comprehensive

feature extraction.

Considering the raw Bayer CFA inherently captures dif-

ferent light wavelengths via the Bayer pattern and the high-

frequency details (e.g., fine boundaries) are important for ob-
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Fig. 5. The detailed structure of the spectral frequency attention block.
The input feature map is decomposed to the spectral frequency domain. The
output feature map is weighted by the attention from MLP and shares the
same dimension as the input feature map.

Fig. 6. An illustration of the ResNeXt block with our spectral frequency
attention.

ject localization, we propose decomposing the image features

to the frequency spectrum via Discrete Cosine Transform

(DCT). DCT is able to represent an image in the format

of a combination of sinusoids at different magnitudes and

frequencies, as Fig. 4. Provided with the input feature map

X ∈ RM×N , the 2D DCT spectrum F ∈ RM×N can be

expressed as:

Fij =

M−1
∑

m=0

N−1
∑

n=0

ai,j cos
π(2m+ 1)i

2M
cos

π(2n+ 1)j

2N
(1)

where a0,0 is 1√
MN

, corresponding to the lowest frequency.

For all other frequencies, ai,j can be computed as 2√
MN

.

Given the input feature map X ∈ RC×H×W , the cor-

responding DCT coefficients are in RF×C×H×W for the

selected F frequency components. By conducting DCT on

the input feature map and summarizing the output across

depth channels, the frequency matrix is obtained with a

dimension of C × J . Here, J = H × W. The embedding

matrix is then used to select the highest frequency response

via max pooling. The final output feature map is weighted

by the input feature map and the frequency attention vector,

as Fig. 5.

The introduced spectral frequency attention block is inte-

grated into the ResNeXt as the backbone of the proposed

BayerDetect network. Extending the idea of ResNet [10]

and Inception [36], ResNeXt utilizes a multi-path strategy

to stack the ResNet blocks and the grouping convolution

operation in Inception to aggregate the useful information

to increase accuracy without increasing complexity of the

model. An illustration of a basic block from ResNeXt

integrating with our introduced modules is shown in Fig.

6.

C. Multi-scale Features With Attention

Object detection usually relies on high-level features

that represent more object semantics and class information.

However, to fully exploit the Bayer pattern, we propose

highlighting the effect of the low-level features on the high-

level features to enrich the meaningful shape and color

information.

For two feature maps with diverse scales, we predict

scale-aware attention map to enhance the benefits of the

Bayer pattern on the detection performance. As illustrated

in Fig. 7, for each feature map from a smaller scale, we

first forward it to a 3 × 3 convolutional layer activated by

the sigmoid function to generate an attention map which has

the same dimension as the input. Then, the attention map

is up-sampled to the same size as the larger-scale feature

map. Element-wise multiplication is utilized to highlight

the larger-scale feature map with the learned attention map

dynamically. Finally, the attended larger feature map is added

to the original input feature map via the residual connection

to prevent potential feature degradation. Given the input

smaller scale feature map O, larger scale feature map L,

and the up-sampled learned attention map A ↑, the output

re-weighted feature map R can be expressed as: R = O ·A ↑

+L where R,A ↑ and L share the same dimension of

H ×W × C.

Fig. 7. An illustration of multi-scale feature attention mechanism.

D. Spatial-aware Deformable Convolution for Bayer Pattern

Due to spectral discontinuity, object boundaries are not

closely connected in position. Normal convolutional opera-

tions utilize the fixed locations and receptive field with an

input feature map and output the new features by computing

the weighted sum. However, fixed convolutions are not best

suited for dramatic object shape changes, especially for

Bayer images with pixels in neighboring locations repre-

senting different color channels. Therefore, in addition to

spectral attention, inspired by the deformable convolution,

we propose a novel spatial-aware deformable convolution

that is more suitable for Bayer grids. Different from the

normal deformable convolution, the offset for each convolu-

tional element within a sample grid is separately learned and

does not share the common parameter, which improves the

capability of adaptively capturing object shapes and spatial

information. More specifically, we propose the spatial-aware

deformable convolution connecting the backbone and the

Feature Pyramid Network (FPN) in order to more efficiently
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Train Validation Test

Images 3,500 500 500
Boxes 33,572 3,455 3,502

TABLE I

DETAILS OF OUR COLLECTED RAW BAYER IMAGE DATASET.

model the geometric information that existed in different

locations.

Given that the input feature map from the backbone is X ,

the output feature map is Y and each position on the output

feature map is p = (x′, y′), the 3×3 deformable convolution

at p can be expressed as:

Y (p) =

8
∑

i=0

W (pori ) · I (p+D · pori +Off(n)) (2)

where W is a matrix of weights. pori represents the positions

of the regular grid, and D is the dilation rate. For the normal

convolution, the spatial position will be p + D · pori . In

comparison, for the spatial-aware deformable convolution,

the output spatial position will be p+D ·pori +Off(n), which

is able to better generalize and more sensitive to irregular

shapes and structures. An illustration of the proposed spatial-

aware block is shown in Fig. 8.

Fig. 8. Overview of the introduced spatial-aware deformable convolution
and its block in the network.

E. Sparse Object Proposals and Features

Fig. 9. An illustration of the generation of sparse object features from our
network. RoI features and the corresponding proposal features are interacted
with to enhance the object localization estimation.

With the introduced attention-based ResNeXt and FPN

for generating dynamic multiscale feature maps, a sparse

object detection method based on [35] is adopted to prevent

dense and redundant object detection candidates for further

improving efficiency and accuracy.

More specifically, a small set of proposal boxes in the

size of N × 4 is designed as trainable parameters for

preventing the dense object positional candidates across the

entire image Bayer grids. RoI features are then extracted

Fig. 10. Samples of our collected raw Bayer image dataset.

from the proposal boxes by RoIAlign. Moreover, a group

of high-dimension proposal features is utilized for better

encoding the rich object characteristics such as shapes. The

RoI features, and the proposal features are combined with

a one-to-one interaction for generating the feature maps for

later object localization and classification. An illustration of

the sparse RoI feature generation is depicted in Fig. 9.

Object classification and bounding box regression loss: To

accurately classify objects, focal loss Lcls [19] is deployed

to obtain matching between the predicted classification and

the ground truth category label. Another major loss is

for regressing the bounding boxes. Unlike many existing

detectors to estimate bounding box dimensions under ini-

tial assumptions, we directly estimate the bounding boxes’

positions and dimensions. The most commonly used L1
loss is applied for regression. However, as our network has

multiple scales of bounding box predictions, the loss function

should be invariant to bounding box scales, especially when

the bounding box prediction is far from the ground truth.

To mitigate this influence, we further utilize a combination

of L1 and the scale-invariant generalized IoU loss LGIoU .

Therefore, the comprehensive bounding box regression loss

becomes:

Lreg = λL1

∣

∣

∣
bi − b̃i

∣

∣

∣

1

+ λgiouG IoU
(

bi, b̃i

)

(3)

where bi indicates the i th ground truth bounding box

location and b̃i indicates the i th estimated bounding box.

λL1 and λgiou are hyper-parameters for L1 and LGIoU set

to be 5.0 and 2.0 respectively. The overall objective function

is a sum of the abovementioned losses across the number of

detected objects as Lall = λclsLcls + λreg Lreg , where λcls

and λreg are set as 2.0 and 1.0.

IV. EXPERIMENTS

We first evaluate our approach on the Bayer images gen-

erated from the public MS COCO dataset and our collected

real-world raw Bayer image dataset. The Pascal VOC dataset

is also used to further verify the generality of our method.

We then perform comprehensive ablation studies regarding

network structures, input image type, and losses.

Dataset: Our experiments are conducted on the Bayer im-

ages generated from the challenging MS COCO benchmark,

including 80 categories. Models are trained on the official

COCO train2017 split and evaluated on the validation set.

The trained model is further verified on the VOC 2007 test

set without training for generalization validation. We reverse-

engineered the RGB images to 8-bit Bayer images and used

the simulated data for training and testing. We mimicked

the mosaic image with Bayer filter to extract only a single
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Method Backbone FPS AP AP50 AP75 APS APM APL

RetinaNet [19] ResNet-50 16.7 37.4 58.8 41.4 22.4 41.4 49.1
RetinaNet [19] ResNeXt-50 16.1 37.7 58.9 41.6 22.5 42.0 49.3

Faster-RCNN [31] ResNet-50 20.2 37.9 58.8 41.1 22.4 41.1 49.1
Faster-RCNN [31] ResNeXt-50 19.3 38.5 59.1 41.3 22.9 41.6 49.8
Cascade RCNN [1] ResNet-50 14.2 40.2 59.6 43.5 23.8 44.1 52.8
Cascade RCNN [1] ResNeXt-50 13.7 40.8 59.7 44.0 23.8 44.6 52.9

DETR [2] ResNet-50 18.2 15.4 29.4 14.5 4.3 15.1 26.7
DETR [2] ResNeXt-50 17.7 15.6 29.9 14.7 4.5 15.4 27.0

Deformable DETR [42] ResNet-50 20.6 37.2 55.5 40.5 21.1 40.7 50.5
Deformable DETR [42] ResNeXt-50 20.1 37.8 55.9 41.0 21.3 41.1 50.6

Sparse RCNN [35] ResNet-50 22.8 42.8 59.3 45.9 24.5 44.9 54.0
Sparse RCNN [35] ResNeXt-50 22.2 42.9 59.5 45.9 24.7 45.0 54.2

Ours ResNet-50 27.9 45.9 61.1 47.0 24.9 45.2 54.9
Ours ResNeXt-50 27.1 46.2 61.4 47.2 25.1 45.8 55.2

TABLE II

COMPARISON WITH DIFFERENT OBJECT DETECTORS ON THE SIMULATED RAW BAYER COCO 2017 VALIDATION DATASET.

Fig. 11. Comparison of qualitative results on the simulated COCO dataset. From top to bottom: input raw Bayer image with color pattern overlaid on it
for easier observation, our result, Cascade RCNN [1] detection, Sparse RCNN [35] detection.

channel for each 3-channel pixel in the sorted order of a

specific pattern. In this work, we are mimicking RGGB as

the most common Bayer pattern. For testing the framework

on the real-world raw Bayer images, we collect and label the

dataset based on the raw Bayer images captured by Nikon

D3500 digital camera, which consists of 10 categories. The

split of training, validation, and testing set is depicted in

Table I, and the sample images of our dataset are provided

in Fig. 10.

Implementation Details: ResNeXt is used as the backbone

network. The base learning rate is 2.5e− 5, which gradually

decreases from the 32nd epoch by a factor of 0.1. We used

AdamW [23] optimizer with weight decay 0.0001. Models

are trained for 42 epochs.

A. Results in Comparison with State-of-the-art

First, we quantitatively compare the proposed method with

recent state-of-the-art approaches. As shown in Table II,

our proposed method outperforms state-of-the-art detectors,

especially by a large margin when compared with Cascade

RCNN [1] and Sparse RCNN [35]. on AP and APL. The

same evaluation results are also reported on our real collected

raw Bayer image dataset in Table III. We note our method

exhibits high accuracy (AP = 52.5) with the ResNeXt depth

as only 50. The comparison results in Table III demonstrated

that the proposed method performs well on raw Bayer

images from real-world scenes. Meanwhile, due to the single-

channel image processing, the network complexity is reduced

based on our dedicated network structure, which results in a

significant increase in detection speed in terms of FPS.

We qualitatively evaluate the performance of the object

detection as shown in Fig. 11 and Fig. 12. It can be easily

noticed that our detector significantly improved [1] [35] in

preventing miss-predictions of persons and backpacks. And

our detection matches well with the labeled ground truth

annotations.

To widely validate the performance of the proposed

network and test the generalization capability on different

Authorized licensed use limited to: University of Georgia. Downloaded on September 19,2024 at 06:17:15 UTC from IEEE Xplore.  Restrictions apply. 



Method Backbone FPS AP AP50 AP75 APS APM APL

RetinaNet [19] ResNet-50 11.2 42.1 65.8 46.3 25.0 46.3 54.9
RetinaNet [19] ResNeXt-50 10.7 42.8 65.9 46.7 25.4 46.6 55.1

Faster-RCNN [31] ResNet-50 13.4 42.4 66.1 46.5 25.3 46.0 54.3
Faster-RCNN [31] ResNeXt-50 13.0 42.7 66.7 46.8 25.7 46.5 54.9
Cascade RCNN [1] ResNet-50 9.9 45.7 66.9 48.9 26.9 49.3 59.0
Cascade RCNN [1] ResNeXt-50 9.7 46.0 67.1 49.0 27.0 49.6 59.4

DETR [2] ResNet-50 13.1 17.6 33.1 16.5 4.8 16.2 30.1
DETR [2] ResNeXt-50 12.6 18.1 33.4 16.8 5.7 16.4 30.5

Deformable DETR [42] ResNet-50 14.0 42.4 62.2 45.3 23.7 45.3 56.8
Deformable DETR [42] ResNeXt-50 13.5 43.0 62.9 45.6 24.0 45.8 57.0

Sparse RCNN [35] ResNet-50 15.8 48.9 66.5 51.2 27.3 50.4 58.9
Sparse RCNN [35] ResNeXt-50 15.1 49.2 66.9 51.8 27.8 50.7 59.2

Ours ResNet-50 19.3 51.8 68.7 52.0 27.9 50.7 61.6
Ours ResNeXt-50 18.6 52.5 69.4 52.6 28.4 51.4 61.9

TABLE III

COMPARISON WITH DIFFERENT STATE-OF-THE-ART OBJECT DETECTORS ON OUR COLLECTED REAL-WORLD RAW BAYER IMAGE DATASET.

Fig. 12. Comparison of qualitative results on the real collected raw Bayer image dataset. From top to bottom: our result, Cascade RCNN [1] detection,
Sparse RCNN [35] detection.

Method Backbone mAP

RetinaNet ResNet-50 36.4
Cascade RCNN ResNet-50 46.5

VOC 2017 Sparse RCNN ResNet-50 49.7
Our ResNet-50 52.1
Our ResNeXt-50 53.6

TABLE IV

DETECTION RESULTS ON BAYER IMAGES GENERATED FROM VOC 2017

TEST SPLIT.

Method Type AP δ(%) Params (M)

RetinaNet RGB 39.0 − 90.4
Gray 37.9 1.1 ↑ 81.3
Bayer 37.7 1.3 ↑ 81.3

Ours RGB 46.3 − 35.3
Gray 44.2 1.1 ↓ 26.2
Bayer 46.2 0.1 ↓ 26.2

TABLE V

ABLATION STUDY ON THE EFFECT OF DIFFERENT INPUT IMAGE TYPES

ON THE DETECTION PERFORMANCE AND THE NUMBER OF NETWORK

PARAMETERS.

scenes, we evaluate our network on VOC 2017 dataset

in Table IV. Our method leads to about 2.4% mAP im-

provement in comparison with the top performing method

[35] on VOC 2017 test dataset with the same ResNet-50

backbone structure and 3.9% improvement using ResNeXt-

50 backbone.

B. Ablation Study

Ablation study on network inputs: Table V compares

the accuracy and the computation cost from different types

Spectral Freq Att. Multi-scale Att. Spatial-aware Deform LGIoU AP δ(%)
✓ − − − 44.0 −

✓ − − − 44.8 0.8 ↑

✓ ✓ − − 45.1 1.1 ↑

✓ ✓ ✓ − 45.9 1.9 ↑

✓ ✓ ✓ ✓ 46.2 2.2 ↑

TABLE VI

ABLATION STUDY ON THE EFFECT OF DIFFERENT COMPONENTS AND

LOSSES.

of image inputs. It can be observed through having 8-bit

channels, our proposed method shows significantly higher

performance on the Bayer images than the results from

the grayscale images, which indicates the proposed network

is able to learn richer location and shape contexts from

the Bayer pattern. When comparing the detection accuracy

between our results from RGB images and Bayer inputs,

there is a significant decrease in network complexity, which

indicates that our method can reduce storage for both images

and the network.

Ablation study on key components: We further conduct a

more detailed analysis of the effect of each key component in

our network design, as shown in Table VI. One can observe

that spectral frequency attention and multi-scale feature

attention together contribute a noticeable 1.1% improvement

compared with the naive implementation without any pro-

posed component. A spatial-aware deformable convolution

block further achieves a 0.8% gain following the attention

blocks. The incorporation of the generalized IoU loss for

reducing the unbalanced data distribution further raises the

mIoU to 46.2%, which outperforms the naive implementation

by almost 2.2%.
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Proposal AP AP50 AP75 FPS
100 43.9 60.2 46.1 27.5
200 45.0 60.9 46.3 27.4
400 46.2 61.4 47.2 27.1
800 46.7 61.8 48.1 26.2

TABLE VII

ABLATION STUDY ON THE EFFECT OF THE DIFFERENT NUMBERS OF

PROPOSALS.

Ablation study on proposal numbers: We further explore

the effect of proposal numbers on our method in Table VII.

The number of proposals from 100 to 400 increases the

detection accuracy dramatically. This accuracy enhancement

slows down from proposal number 400 to 800. Meanwhile,

the detection speed in terms of FPS decreases dramatically.

Therefore, we selected 400 proposals for our proposed

method based on the trade-off of detection accuracy and

speed.

V. CONCLUSION

We propose BayerDetect network, an end-to-end object

detection framework to detect and recognize objects on raw

Bayer images. With the 8-bit raw Bayer images without post-

processing ISP from the camera sensor, our approach is able

to save both computation time and memory. This architecture

explores the spectrum and geometry characteristics of the

Bayer pattern to mitigate the neighboring pixels’ channel

intersection issues of Bayer images, which achieves consis-

tent and significant performance gains on challenging public

dastasets and our collected raw Bayer image dataset.
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