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Abstract

Infrared Radiation (IR) images that capture the emit-

ted IR signals from surrounding environment have been

widely applied to pedestrian detection and video surveil-

lance. However, there are not many textures that ap-

peared on thermal images as compared to RGB images,

which brings enormous challenges and difficulties in var-

ious tasks. Visible images cannot capture scenes in the dark

and night environment due to the lack of light. In this paper,

we propose a Contour GAN-based framework to learn the

cross-domain representation and also map IR images with

visible images. In contrast to existing structures of image

translation that focus on spectral consistency, our frame-

work also introduces strong spatial constraints, with further

spectral enhancement by illuminance contrast and consis-

tency constraints. Designating our method for IR and RGB

image translation, it can generate high-quality translated

images. Extensive experiments on near IR (NIR) and far IR

(thermal) datasets demonstrate superior performance for

quantitative and visual results.

1. Introduction

Generative Adversarial Networks (GANs) [8] have been

applied to tackle the problem of image-to-image translation

in recent years [22, 16, 12, 13, 10, 26], such as summer-to-

winter, photo-to-painting, day-to-night, and label-to-photo.

Among all the image translation problems, visible and IR

image translation has significant application scenarios. On

one hand, once we can translate the thermal image to the

visible image, nearly all the computer vision techniques

that are not directly applicable to IR images can be applied,

which is critical to invisible (e.g. nighttime and hidden ob-

jects) tasks of surveillance and tracking. On the other hand,

once visible images are available, we can apply the visible

images to estimate the temperature of the surrounding envi-

ronment based on the translation.

However, due to the large discrepancy in spectral distri-

bution and appearance variation, existing methods still can-

Figure 1. Left: Input thermal (first row) and color visible (second

row) images. Right: Our cross-domain image translation result to

color (first row) and thermal (second row) domains. Our CCGAN

network is able to recover more details and keep scene boundaries

clear with the proposed constraints.

not translate IR images and visible color images well. As

it is known, infrared radiation images are sensitive to the

temperature from surrounding objects and more robust to

illumination changes. The textures and contexts in gray-

scale IR images are much fewer compared with visible im-

ages from color sensors. In addition, visible images could

be totally invalid in nighttime scenarios because the aper-

tures of RGB cameras will stay magnified for a longer time

to capture sufficient light. As a result, the captured images

involve significant image blur. With the aforementioned is-

sues, when applying the current GAN framework directly,

the translated IR images are more likely gray-scale images

and cannot reflect the spectral characteristic in real infrared

images. Their illuminance and contrast also suffer huge

gaps. Besides, the translated color images always suffer a

considerable blur and lack fine details. As a result of the

unsatisfactory results, we propose an image-to-image trans-

lation network designed to specifically transfer images be-

tween IR and visible modalities, as demoed in Fig. 1.

In this paper, we propose a novel framework to address

the cross-spectral image translation between infrared and

color images with a conditional generative adversarial net-

work, namely Contour Cycle GAN (CCGAN) as shown in
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Figure 2. Overview of the proposed network between IR and visible modalities. The green G box and blue G box separately represent the

entire image’s generator and the down-sampled image generator. G1 and G2 are two separate generators for two directions.

Fig. 2. The CCGAN framework is applied to multi-scale

generators and discriminators, which enforces the contour

consistency in both holistic and local levels. Through this

process, we can iteratively improve the translation effect by

enforcing the cycle consistency. As IR images are lack of

textures compared with RGB visible images, we explore

the translation framework based on their consistency on the

contours, which should appear on both modalities of im-

ages. Therefore, the layout distribution of the two modal-

ities’ images can be enforced to be consistent. Previous

GAN-based structures mainly rely on spectral (intensity or

color) consistency to guide the learning process. In contrast,

our CCGAN explicitly introduces strict spatial consistency

loss. Instead of constraining exactly corresponding contour

pixels, we constrain based on a local window region, which

can accommodate the variance of contour detection perfor-

mance across different modalities.

To further extract finer details from both visible and IR

images, we apply discriminators to differentiate the real im-

age and fake image regions and apply ROI consistency for

the translated back image to compare the ROI region pixel

difference. An illuminance contrast loss is added to learn

the correct mapping representation and further enhance the

spectral similarity between different modalities. This is par-

ticularly helpful to enhance the spectral similarity due to the

significant difference between color and thermal modalities.

To summarize, the contributions are as follows: 1) We

introduce the specific problem of IR-Visible image transla-

tion and propose a newly designed learning framework tar-

geted at this problem. 2) A Contour GAN framework with

loss constraints on holistic and local regions to enforce the

contour consistency aiming at IR-Visible translation. Un-

like previous GAN structures relying on spectral contrast

to lead the learning process, our GAN structure introduces

spatial consistency constraints. 3) We explore the transla-

tion of IR and visible images in both directions, from vis-

ible image to IR image and from IR image to visible im-

age, which can be applied in both sufficient and insuffi-

cient lighting (night) conditions. 4) The proposed method

is evaluated both qualitatively and quantitatively on public

datasets for far IR and near IR images with convincing re-

sults, which shows its potential ability in real-life applica-

tions. The translated color images from thermal images can

be successfully applied to 3D reconstruction and other tasks

based on thermal images. To the best of the author’s knowl-

edge, this is the first work to introduce spatial constraints in

GAN-based translation tasks for cross-spectral images.

2. Related work

Image-to-image translation aims to learn a mapping

representation to transform the input images to the tar-

get images in different domains. Recent success in this

filed benefits from the development of GAN frameworks.

Pix2pix [12] network used a “U-Net” architecture [23] for

the generator and a convolutional ”PatchGAN” classifier as

the discriminator to make sure of the high-level similarity

of the translated results. The advantage of using Patch-

GAN is that it has fewer parameters while still being ap-

plicable to large images without sacrificing the quality of

the output. Pix2PixHD [27] further extended [12] to gen-

erate high-resolution photo-realistic images from semantic

labels. Unlike methods mentioned above, dual learning was

introduced to GAN to train the model alternatively on both

sides, allowing translators to be trained from monolingual

data only. It was applied by He et al. [9] to enable the trans-

lation network to learn from unpaired data by iteratively up-

dating the two models at the same time until convergence.

Following the similar structure, CycleGAN [29], DualGAN

[28], DiscoGAN [13], SingleGAN [19], Drit++ [15] and

RevGAN [26] were proposed to tackle the image translation

problem by learning the mapping between different visual
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domains jointly, each of them as a separate generative ad-

versarial network by deploying cycle-consistency loss func-

tion as well as an adversarial loss function across diverse

domains. However, these networks targeting for general

translation purpose are not able to show satisfactory per-

formance for the specific IR-visible domain translation.

IR images capture the reflected IR signals to generate

images, which can further be used in abnormal behavior

detection [25] and object tracking [7] [17]. Among dif-

ferent wavelength IR images, long-wave IR images, also

called thermal image, indicate the temperature of the ob-

ject’s surface which have been applied to detect humans or

animals [20, 1, 5], and search and rescue tasks [6], where

light is usually not sufficiently supplied. Similar work was

conducted by Fernandez et al. [5] to detect people in real-

time on an autonomous mobile platform, and Cielniak et

al. [3] to apply both visible and thermal cameras to track

multiple people. Leveraging both visible images and ther-

mal images through transfer learning [18], localization tasks

have been conducted in the dark environment. Thermal sen-

sors have been utilized to detect non-heat generating objects

for robot navigation [4]. Spectral-spatial features [21] and

shape features [24] are also extracted to classify thermal

images. However, there has not been much work target-

ing the translation between the IR and visible images in the

past. The proposed approach generates higher quality sam-

ples that are more stable than previous methods and can be

applied to multiple real applications.

3. IR-Visible Image Translation

3.1. Cross­domain Cycle Consistency

Inspired by the cycle structure in [29], we further apply a

multi-scale cycle structure as the basic learning framework.

Under the basic cycle scheme, in order to capture both holis-

tic and local information in both visible and thermal modal-

ities, our network (illustrated in Fig. 2) consists of multi-

scale generators (green G and blue G) and a discriminator

(D) to enforce the model to learn more detailed informa-

tion. Each local generator includes a convolutional front-

end, three residual blocks and a deconvolution back-end,

and each local discriminator is composed of four convolu-

tional layers with increasing channels. To feed the shared

content vector and domain-specific styles as input to learn

a two-round representation mapping between Color-to-IR

and IR-to-Color as a structural constraint for the entire net-

work, we use the cross-domain consistency loss to force

the G1(G2(IR)) to be close to the original IR image and

G2(G1(Color)) to be close to the original color image. The

consistency between the original images and the translated

images can be expressed as:

Lcycle = Ex∈ori(x)[‖G2(G1(x))− x‖1]+

Ey∈ori(y)[‖G1(G2(y))− y‖1]
(1)

where Lcycle represents the cross-domain cycle consistency

loss. E is the loss expectation of all the training sam-

ples. x and y separately represent color and IR modal-

ity. ori(x) and ori(y) are the original color and IR im-

age datasets. G1(x) translates the input color to IR image

and G2(G1(x)) further translates the IR to color modality,

which is compared with the original color image in the L1

distance (same process for IR). Lcycle enforces the gener-

ated image in two directions to be as close to the original

image as possible to guide the structure holistically.

3.2. Domain Adversarial Constraint

To learn transformation relationships between images in

the source and target domains, we apply the adversarial loss

to combine generator and discriminator pairs at the same

time. The generators are to learn to transform IR image to

synthetic color images fIR−Color and from color to syn-

thetic IR image fColor−IR. The synthetic images are then

differentiated and evaluated with real images by discrimi-

nators. As a result, the global adversarial loss is able to

simultaneously minimize the distribution difference of both

generated data and real data. The total bi-direction adver-

sarial loss and their separate loss are defined as follows:

LGAN = LGAN,IR→C + LGAN,C→IR

LGAN,IR→C = Ex∈Cori(x)
[1− logDC(x)]

+ Ey∈IRori(y)
[logDC(G(y))]

LGAN,C→IR = Ey∈IRori(y)
[1− logDIR(y)]

+ Ex∈Cori(x)
[logDIR(G(x))]

(2)

LGAN is the total adversarial loss, composed by color im-

age generation adversarial loss LGAN,IR→C and IR image

generation adversarial loss LGAN,C→IR.

3.3. ROI Cycle Consistency

However, there are specific regions (ROI) that may af-

fect more than others in the entire image translation ef-

fect. We apply existing salience detection to extract ROIs

based on image intensity, and an ROI pooling layer to crop

and resize bounding regions to the same size. ROI loss is

then introduced to recover the local region more precisely.

Global cycle consistency loss focus on the entire translated

images without attention to finer details and textures [27].

However, specific regions are critical in the image modal-

ity translation process. To recover the local region more

precisely, a loss term based on Region of Interest (ROI) is

proposed here to further improve the generated image qual-

ity. The ROI cycle consistency loss between the ROI re-

gions from the reconstructed images and the original input

images can be formulated as follows:

LROI
cycle = ExROI∈ori(x)[‖G2(G1(xROI))− xROI‖1]

+EyROI∈ori(y)[‖G1(G2(yROI))− yROI‖1]
(3)
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4. Contour Consistency

As color and IR images reflect signals in different wave-

lengths (RGB: 380-700 nanometers, thermal: 8-14 microm-

eters), the image intensity between these two modalities

cannot correspond directly. To further build consistency be-

tween color and IR images, we apply the spatial contour in-

formation. The reason that we do not apply edge is mainly

because color images usually contain much more textures,

whose edges are not existing on the thermal images. With

the contours to contain the network, shapes of objects in-

side the images can be retained, leading to a more precise

translation effect. The detected contour result based on edge

detection is shown as in Fig. 3.

(a) Color Image (b) Contour of color image.

(c) Thermal image (d) Contour of thermal image.

Figure 3. Color and thermal images and extracted contours.

Object contours are extracted using region-based active

contour detection algorithm [14]. Once the contours are ex-

tracted, we measure the contour distance between the two

images, as Fig. 4. Taking thermal to color image translation

as an example, for a contour point on the thermal image, if

there is also a contour point within the local window of the

corresponding pixel, the distance between the two points is

0; otherwise, the contour distance for this pixel pair is 1. As

the contours of thermal and color images may have small

shifts, we use a window region to constrain the correspon-

dences instead of using the exact corresponding pixels from

both images. The overall contour loss is the sum of all the

pixel loss. Each pixel’s loss value is described in Eq. 4. The

contour loss for the entire image is as Eq. 5.

0

1 0

1 0

000

0

0

1 0

1 0

100

0

Figure 4. Distance calculation between corresponding pixels.

Within a 3 × 3 window, each pixel value in the window is ex-

amined. If there is a corresponding contour pixel, we consider it is

a correct contour translation for this pixel.

L
i,j
pix =

{

1, (
∑i+1

m=i−1

∑j+1
n=j−1 Im,n) == 0

0, (
∑i+1

m=i−1

∑j+1
n=j−1 Im,n) > 0

(4)

Lcontour =

p
∑

i=1

q
∑

j=1

Ii,jL
i,j
pix (5)

where L
i,j
pix is the contour loss for each pixel. For one con-

tour pixel in the contour maps Im,n, if in the correspond-

ing window with coordinates (i− 1, j − 1), (i+ 1, j − 1),
(i− 1, j + 1), (i+ 1, j + 1) in the color image, the sum is

more than 0, that means there is a contour pixel in the win-

dow. Then the contour loss at this pixel is 0. Otherwise, the

pixel’s contour loss is 1. We sum up all the pixel contour

loss in the image with the dimension of p ∗ q to form the

image contour loss Lcontour. If the pixel is not on the con-

tour, its contour map value Ii,j is 0, which generates 0 in

the contour loss; otherwise, its contour map value is 1. The

loss value for this pixel depends on the corresponding win-

dow. The same operation is for both thermal-to-color and

color-to-thermal translation. The contour loss enforces the

generated image to be spatially close to the original images.

5. Spectral Enhancement

As the thermal and color are two quite different modali-

ties, the translated spectral values may also be quite differ-

ent. We therefore enhance the spectral similarity between

original and translated images. Within a cycle translation

concept, illuminance consistency and its contrast in local

regions can also enforce the local region to be similar to the

original image. For a local patch, we expect the translated

and the original images to be highly correlated and their av-

erage illumination strength to be close. At the same time,

we expect the illuminance contrast within a patch between

generated and original images to be similar as well, which

represents the illuminance distribution and can be evaluated

by the intensity variance. Our illuminance loss takes cor-

relation relationship, average illuminance coefficient, and

a contrast term into consideration, defined as follows for a

local patch:

Llocal lx(x, x
′) =

σx,x′

σxσx′

·
2x̄x̄′

(x̄2 + x̄′
2
)
·
2σxσx′

σ2
x + σ2

x′

(6)

where x and x′ are the original image and translated im-

age in the same modality. The first term is the correlation

relationship between the original data and predicted data.

The second term is to reduce the variation of average illu-

minance between x and x′. The third term is to measure the

intensity contrast to guarantee that they are in similar distri-

bution. Then we scan the entire image by sliding a 5-pixel

dimensional square window through the entire image with
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Figure 5. Visual comparison between our method and other state-of-the-art methods for IR-Visible and Visible-IR translation. For each

sample, Left: Input IR/visible image (top) and the corresponding visible/IR ground truth image (bottom). Right: CycleGAN [29] output

(top left); Pix2PixHD [27] output (top right); RevGAN [26] output (bottom left); Our output (bottom right). Compared with other methods,

our method for cross-domain image translation generates more real and detailed images in challenging scenes.

a moving step size of 2. Assuming there are M steps in this

process, the whole image illuminance loss is:

Llx =
1

M

M
∑

i=1

(1− Li
local lx) (7)

which averages all the local region illuminance consistency

and contrast.

6. Experiments

6.1. Datasets

EPFL NIR-VIS dataset [2] contains totally 477 high-

resolution images in 9 categories. These categories includ-

ing country, field, forest, indoor, mountain, old building,

street, urban and water captured by color camera and NIR

camera at the same time. All the images are resized to be

256 ×256. We randomly choose 120 images for testing and

the rest images of the dataset are used for training.

KAIST is a long-wave infrared (LWIR) benchmark for

multi-spectral pedestrian detection. [11]. This dataset con-

sists of around 95k color-thermal pairs (640x480, 20Hz)

taken from a car during both day and night time. With a

beam splitter-based hardware to physically align the two

image domains, it does not need any post-processing. In this

work, we randomly choose 20000 image pairs for training

and another 2000 for testing.

6.2. Network Configuration

We train the network from scratch with Adam optimizer

where β1 = 0.9, β2 = 0.999 and ε = 10−8 . The initial

learning rate is set to be 0.0001, and we linearly decrease

the rate to zero over the next 100 epochs. The LeakyReLu

activation function is applied. Weights for input data are

initialized from a Gaussian distribution with a mean of 0

and standard deviation of 0.02. We train all our models on

an NVIDIA GTX1080Ti GPU with 11GB GPU memory.

The weights of different losses in the combined objective

function are set to be λcycle=1.0, λGAN=0.2, λROI
cycle=1.0,

λlx=0.5 and λcontour =1.0. Though the cycle consistency

term plays a significant impact in the early stage, it becomes

less stable in the late stage to generate images. Thus we

progressively decrease the weight for the cycle consistency

term after half of the entire training process.

Figure 6. Visual result of our method to translate color image to

NIR domain, from input RGB images (top) to outputs (bottom).

6.3. Visual Evaluation

In this section, our method is compared with other state-

of-the-art methods in multi-modal image translation: Cy-

cleGAN [29], Pix2PixHD [27] and RevGAN [26]. By com-

paring different methods trained on the same split, it is ap-

parent in Fig. 5 that CycleGAN [29] has a serious wrong

mapping problem in textures and colors. For Pix2PixHD

[27] and RevGAN [26], though they perform better on map-

ping representation, they still lack sharp texture information

and exist some blurriness in details. It can be observed that

our method achieves the best visual performance in both
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Figure 7. Feature matching without and with the support of image

translation. (top row) SURF feature matching directly on thermal

images. (bottom row) SURF feature matching on thermal images

with the support of translated RGB images.

colorizing the thermal image and transferring the color im-

age to thermal domain. Our method not only can learn a cor-

rect mapping representation between multi-spectral domain

images but also preserve the objects’ textures and bound-

aries, which attributes to the newly designed ROI loss and

contour edge loss. Our additional image translation results

from color to Near IR domain are shown in Fig. 6.

Our result has shown that the translated images help to

significantly improve the feature matching performance for

thermal images. The demo inputs and their corresponding

results from our full pipeline are shown in Fig. 7. From

Fig. 7, SURF features almost cannot match on original in-

put thermal images. However, with the translated images,

SURF features can be applied to thermal images bridging

the RGB images translated from thermal images.

An ablation analysis is provided in Fig. 8 based

on adding the ROI loss and contour edge consistency

loss or vice versa, including CCGAN-with/without-ROI,

CCGAN-with/without-contour consistency, and CCGAN

full pipeline. It can be seen that our full method (CCGAN-

full) captures and recovers finer details in specific regions

(e.g., cars, bicycles, and traffic cones) and suffers less from

blurriness compared with a partial implementation of our

method CCGAN-w/o-ROI and CCGAN-w/o-Contour. Fig.

9 demonstrates the capability of our method in nighttime

scenarios when visible images from RGB cameras are very

dim and almost invalid because of insufficient light. Our

translation method is able to recover the invisible light and

texture of the RGB camera in the nighttime by translating

thermal to color images, making the matching and detection

tasks for thermal images possible.

In addition to scenes, we further verify our algorithm on

living human face, as shown in Fig. 11. With a split of 80%

images of the Tufts face thermal-RGB dataset for training

and the rest for testing, we can observe that our method is

able to be extended into humans. More visual results are

provided in the supplementary video.

NIR-Color FIR-Color

PSNR SSIM COS RMSE PSNR SSIM COS RMSE

CycleGAN [29] 9.2011 0.4722 0.9408 0.5842 9.5713 0.4758 0.8452 0.5537

MUNIT [10] 13.2140 0.5061 0.9456 0.5000 12.2981 0.5075 0.8160 0.4351

Pix2PixHD [27] 16.2137 0.6271 0.9620 0.4894 15.2596 0.5818 0.8674 0.4203

RevGAN [26] 14.9573 0.5894 0.9547 0.5041 14.1239 0.5482 0.8463 0.4736

Ours 18.7115 0.6166 0.9861 0.4764 16.5169 0.6186 0.9388 0.3862

Table 1. Average results on PSNR, SSIM, COS similarity, and

RMSE on the testing dataset from IR to color domain. The best

results are marked in bold.

Color-NIR Color-FIR

PSNR SSIM COS RMSE PSNR SSIM COS RMSE

CycleGAN [29] 14.6093 0.6823 0.7824 0.2057 9.4033 0.3331 0.7507 0.3996

MUNIT [10] 15.3845 0.6852 0.8023 0.1784 11.6595 0.5243 0.7151 0.3657

Pix2PixHD [27] 18.0427 0.7919 0.8314 0.1609 16.9011 0.7203 0.8308 0.3477

RevGAN [26] 18.2430 0.8037 0.8528 0.1329 17.2903 0.7193 0.8433 0.2910

Ours 21.9635 0.8205 0.8655 0.1197 18.0431 0.7841 0.8911 0.2396

Table 2. Average results on PSNR, SSIM, COS similarity and

RMSE on the testing dataset from color to IR domain. The best

results are marked in bold.

IR-Color Color-IR

IS FID IS FID

CycleGAN [29] 1.0 97.3 1.2 80.2

MUNIT [10] 1.4 75.9 1.6 58.3

Pix2PixHD [27] 1.6 56.2 1.9 36.4

RevGAN [26] 1.5 59.7 2.1 29.6

Ours 1.7 39.2 2.2 21.5

Table 3. Additional results on Inception score (IS, higher is better)

and Frechet Inception Distance (FID, lower is better) on the testing

split from IR to color and color to IR domain.

6.4. Quantitative Evaluation

To evaluate the effectiveness of our method quanti-

tatively, we choose four commonly used measurement

metrics for image quality evaluation, which are Root

Mean Squared Error (RMSE), Peak Signal to Noise Ratio

(PSNR), Structural Similarity (SSIM), and COS Similar-

ity (COS). RMSE evaluates a root difference between the

two compared images, while PSNR indicates the level of

losses. SSIM is a metric evaluating the similarity level to

the human visual system that extracts useful information

from images such as structure, illuminance, and contrast.

COS similarity is defined as the average angular similar-

ity between every generated RGB pixel and the correspond-

ing ground truth image pixels. A comparison between our

proposed method and other recent methods is shown in Ta-

ble 1 and Table 2 for Far IR and Near IR images respec-

tively. It can be observed from Table 1 and Table 2 that

our method achieves the best performance in both Far IR

and Near IR datasets. Though CycleGAN [29] achieves

relatively good performance only in Color-Near IR conver-

sion, it performs worse on the Far IR dataset. Compared

with Pix2PixHD [27] and RevGAN [26], our method still

enjoys an improvement benefiting from the designed Con-

tour and ROI constraints on detail recovery. Results from

our method demonstrate that our proposed method is capa-

ble of learning the correct mapping features and representa-

tion from the source to target domains, and enjoys a signif-
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Figure 8. Ablation analysis of each core contribution in our network. From left to right: Source input thermal image; Ground truth color

images; Result without the proposed contour loss; Result without the proposed ROI loss; Result from our full pipeline.

Figure 9. Example images of our translated result on night scenar-

ios. Left to right: Input thermal image at nighttime; Real color

image at nighttime; Our translated image. It can be observed that

our method has the ability to estimate images under low light.

icant improvement compared with the MUNIT [10], Cycle-

GAN [29], Pix2PixHD [27] and RevGAN [26], especially

Figure 10. Quantitative PSNR comparisons on ablation analysis of

NIR-Color and FIR-Color conversion.

Figure 11. Additional results of RGB-thermal face image transla-

tion on Tufts face thermal-RGB dataset. Left to right in each row:

input raw RGB / thermal images; our estimated thermal / RGB

images; corresponding ground truth thermal / RGB images.

in terms of PSNR and RMSE. In addition to local geometric

measurements (PSNR/SSIM/COS/RMSE) above, we also

provide average results on Inception score (IS) and Frechet

Inception Distance (FID) to measure the quality of gener-

ated images by calculating the corresponding feature vec-

tors, as shown in Table 3. A higher IS score and lower FID

indicates better-quality images.

Fig. 10 shows a quantitative ablation analysis for each

key component in our designed framework. We observe the

highest PSNR in our full pipeline on all of the four domain

transfer scenarios, compared with partial constraints with-

out either of them (contour loss, ROI loss, illuminance and

contrast loss).
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7. Conclusion

We propose CCGAN, a GAN framework targeting IR

and visible image translation. We design the network based

on a multi-scale structure with constraints dedicated to IR

and visible image translation, which preserves the shared

properties between these two image modalities. The pro-

posed method is able to learn the mapping representations

between different image modalities. In addition to the spec-

tral constraint, the framework introduces spatial constraint

in image translation tasks through contour consistency. The

transformation from the visible image to infrared thermal

image makes it possible to predict the temperature of the ob-

ject surface for inspection and surveillance tasks. The trans-

formation from infrared images to visible images makes it

possible to apply existing computer vision algorithms on

thermal images such as image matching and 3D reconstruc-

tion. Our method improves the image translation perfor-

mance on both Far IR and Near IR datasets.
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