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Abstract

Infrared Radiation (IR) images that capture the emit-
ted IR signals from surrounding environment have been
widely applied to pedestrian detection and video surveil-
lance. However, there are not many textures that ap-
peared on thermal images as compared to RGB images,
which brings enormous challenges and difficulties in var-
ious tasks. Visible images cannot capture scenes in the dark
and night environment due to the lack of light. In this paper,
we propose a Contour GAN-based framework to learn the
cross-domain representation and also map IR images with
visible images. In contrast to existing structures of image
translation that focus on spectral consistency, our frame-
work also introduces strong spatial constraints, with further
spectral enhancement by illuminance contrast and consis-
tency constraints. Designating our method for IR and RGB
image translation, it can generate high-quality translated
images. Extensive experiments on near IR (NIR) and far IR
(thermal) datasets demonstrate superior performance for
quantitative and visual results.

1. Introduction

Generative Adversarial Networks (GANSs) [¢] have been
applied to tackle the problem of image-to-image translation
in recent years [22, 16, 12, 13, 10, 26], such as summer-to-
winter, photo-to-painting, day-to-night, and label-to-photo.
Among all the image translation problems, visible and IR
image translation has significant application scenarios. On
one hand, once we can translate the thermal image to the
visible image, nearly all the computer vision techniques
that are not directly applicable to IR images can be applied,
which is critical to invisible (e.g. nighttime and hidden ob-
jects) tasks of surveillance and tracking. On the other hand,
once visible images are available, we can apply the visible
images to estimate the temperature of the surrounding envi-
ronment based on the translation.

However, due to the large discrepancy in spectral distri-
bution and appearance variation, existing methods still can-

Figure 1. Left: Input thermal (first row) and color visible (second
row) images. Right: Our cross-domain image translation result to
color (first row) and thermal (second row) domains. Our CCGAN
network is able to recover more details and keep scene boundaries
clear with the proposed constraints.

not translate IR images and visible color images well. As
it is known, infrared radiation images are sensitive to the
temperature from surrounding objects and more robust to
illumination changes. The textures and contexts in gray-
scale IR images are much fewer compared with visible im-
ages from color sensors. In addition, visible images could
be totally invalid in nighttime scenarios because the aper-
tures of RGB cameras will stay magnified for a longer time
to capture sufficient light. As a result, the captured images
involve significant image blur. With the aforementioned is-
sues, when applying the current GAN framework directly,
the translated IR images are more likely gray-scale images
and cannot reflect the spectral characteristic in real infrared
images. Their illuminance and contrast also suffer huge
gaps. Besides, the translated color images always suffer a
considerable blur and lack fine details. As a result of the
unsatisfactory results, we propose an image-to-image trans-
lation network designed to specifically transfer images be-
tween IR and visible modalities, as demoed in Fig. 1.

In this paper, we propose a novel framework to address
the cross-spectral image translation between infrared and
color images with a conditional generative adversarial net-
work, namely Contour Cycle GAN (CCGAN) as shown in
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Figure 2. Overview of the proposed network between IR and visible modalities. The green G box and blue G box separately represent the
entire image’s generator and the down-sampled image generator. G1 and G2 are two separate generators for two directions.

Fig. 2. The CCGAN framework is applied to multi-scale
generators and discriminators, which enforces the contour
consistency in both holistic and local levels. Through this
process, we can iteratively improve the translation effect by
enforcing the cycle consistency. As IR images are lack of
textures compared with RGB visible images, we explore
the translation framework based on their consistency on the
contours, which should appear on both modalities of im-
ages. Therefore, the layout distribution of the two modal-
ities’ images can be enforced to be consistent. Previous
GAN-based structures mainly rely on spectral (intensity or
color) consistency to guide the learning process. In contrast,
our CCGAN explicitly introduces strict spatial consistency
loss. Instead of constraining exactly corresponding contour
pixels, we constrain based on a local window region, which
can accommodate the variance of contour detection perfor-
mance across different modalities.

To further extract finer details from both visible and IR
images, we apply discriminators to differentiate the real im-
age and fake image regions and apply ROI consistency for
the translated back image to compare the ROI region pixel
difference. An illuminance contrast loss is added to learn
the correct mapping representation and further enhance the
spectral similarity between different modalities. This is par-
ticularly helpful to enhance the spectral similarity due to the
significant difference between color and thermal modalities.

To summarize, the contributions are as follows: 1) We
introduce the specific problem of IR-Visible image transla-
tion and propose a newly designed learning framework tar-
geted at this problem. 2) A Contour GAN framework with
loss constraints on holistic and local regions to enforce the
contour consistency aiming at IR-Visible translation. Un-
like previous GAN structures relying on spectral contrast
to lead the learning process, our GAN structure introduces
spatial consistency constraints. 3) We explore the transla-

tion of IR and visible images in both directions, from vis-
ible image to IR image and from IR image to visible im-
age, which can be applied in both sufficient and insuffi-
cient lighting (night) conditions. 4) The proposed method
is evaluated both qualitatively and quantitatively on public
datasets for far IR and near IR images with convincing re-
sults, which shows its potential ability in real-life applica-
tions. The translated color images from thermal images can
be successfully applied to 3D reconstruction and other tasks
based on thermal images. To the best of the author’s knowl-
edge, this is the first work to introduce spatial constraints in
GAN-based translation tasks for cross-spectral images.

2. Related work

Image-to-image translation aims to learn a mapping
representation to transform the input images to the tar-
get images in different domains. Recent success in this
filed benefits from the development of GAN frameworks.
Pix2pix [12] network used a “U-Net” architecture [23] for
the generator and a convolutional "PatchGAN” classifier as
the discriminator to make sure of the high-level similarity
of the translated results. The advantage of using Patch-
GAN is that it has fewer parameters while still being ap-
plicable to large images without sacrificing the quality of
the output. Pix2PixHD [27] further extended [!2] to gen-
erate high-resolution photo-realistic images from semantic
labels. Unlike methods mentioned above, dual learning was
introduced to GAN to train the model alternatively on both
sides, allowing translators to be trained from monolingual
data only. It was applied by He et al. [9] to enable the trans-
lation network to learn from unpaired data by iteratively up-
dating the two models at the same time until convergence.
Following the similar structure, CycleGAN [29], Dual GAN
[28], DiscoGAN [13], SingleGAN [19], Drit++ [15] and
RevGAN [26] were proposed to tackle the image translation
problem by learning the mapping between different visual
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domains jointly, each of them as a separate generative ad-
versarial network by deploying cycle-consistency loss func-
tion as well as an adversarial loss function across diverse
domains. However, these networks targeting for general
translation purpose are not able to show satisfactory per-
formance for the specific IR-visible domain translation.

IR images capture the reflected IR signals to generate
images, which can further be used in abnormal behavior
detection [25] and object tracking [7] [17]. Among dif-
ferent wavelength IR images, long-wave IR images, also
called thermal image, indicate the temperature of the ob-
ject’s surface which have been applied to detect humans or
animals [20, 1, 5], and search and rescue tasks [6], where
light is usually not sufficiently supplied. Similar work was
conducted by Fernandez et al. [5] to detect people in real-
time on an autonomous mobile platform, and Cielniak et
al. [3] to apply both visible and thermal cameras to track
multiple people. Leveraging both visible images and ther-
mal images through transfer learning [ | 8], localization tasks
have been conducted in the dark environment. Thermal sen-
sors have been utilized to detect non-heat generating objects
for robot navigation [4]. Spectral-spatial features [21] and
shape features [24] are also extracted to classify thermal
images. However, there has not been much work target-
ing the translation between the IR and visible images in the
past. The proposed approach generates higher quality sam-
ples that are more stable than previous methods and can be
applied to multiple real applications.

3. IR-Visible Image Translation
3.1. Cross-domain Cycle Consistency

Inspired by the cycle structure in [29], we further apply a
multi-scale cycle structure as the basic learning framework.
Under the basic cycle scheme, in order to capture both holis-
tic and local information in both visible and thermal modal-
ities, our network (illustrated in Fig. 2) consists of multi-
scale generators (green G and blue G) and a discriminator
(D) to enforce the model to learn more detailed informa-
tion. Each local generator includes a convolutional front-
end, three residual blocks and a deconvolution back-end,
and each local discriminator is composed of four convolu-
tional layers with increasing channels. To feed the shared
content vector and domain-specific styles as input to learn
a two-round representation mapping between Color-to-IR
and IR-to-Color as a structural constraint for the entire net-
work, we use the cross-domain consistency loss to force
the G1(G2(IR)) to be close to the original IR image and
G2(G1(Color)) to be close to the original color image. The
consistency between the original images and the translated
images can be expressed as:

Lcycle = EIEO’I‘Z(w)[”GQ(Gl(‘r)) - $||1]—|—

(1
Eyeori 1GUG2(y)) = yll,]

where L, represents the cross-domain cycle consistency
loss. E is the loss expectation of all the training sam-
ples. z and y separately represent color and IR modal-
ity. ori(x) and ori(y) are the original color and IR im-
age datasets. G1(x) translates the input color to IR image
and G2(G1(z)) further translates the IR to color modality,
which is compared with the original color image in the L1
distance (same process for IR). Ly, enforces the gener-
ated image in two directions to be as close to the original
image as possible to guide the structure holistically.

3.2. Domain Adversarial Constraint

To learn transformation relationships between images in
the source and target domains, we apply the adversarial loss
to combine generator and discriminator pairs at the same
time. The generators are to learn to transform IR image to
synthetic color images frr—coior and from color to syn-
thetic IR image foolor—1r- The synthetic images are then
differentiated and evaluated with real images by discrimi-
nators. As a result, the global adversarial loss is able to
simultaneously minimize the distribution difference of both
generated data and real data. The total bi-direction adver-
sarial loss and their separate loss are defined as follows:

Lgan = Lgan,ir—c + Lgan,c—ir
Lean,ir—c = Ezec,,.,,[1 = logDc(z)]

+ Eyerr,,,, [logDc (G (y))] 2)
Lean.c—1r = Eyerr,,,,[1 — logDir(y)]

+ EreC,ypim 109D1R(G(T))]

Lgan is the total adversarial loss, composed by color im-
age generation adversarial loss Lo an,1r—c and IR image
generation adversarial loss Lgan,c—1R-

3.3. ROI Cycle Consistency

However, there are specific regions (ROI) that may af-
fect more than others in the entire image translation ef-
fect. We apply existing salience detection to extract ROIs
based on image intensity, and an ROI pooling layer to crop
and resize bounding regions to the same size. ROI loss is
then introduced to recover the local region more precisely.
Global cycle consistency loss focus on the entire translated
images without attention to finer details and textures [27].
However, specific regions are critical in the image modal-
ity translation process. To recover the local region more
precisely, a loss term based on Region of Interest (ROI) is
proposed here to further improve the generated image qual-
ity. The ROI cycle consistency loss between the ROI re-
gions from the reconstructed images and the original input
images can be formulated as follows:

LZ,%Ie = Eyporeori2)[|G2(GL(zroT1)) — TROI||/]

3)
+Eyroreorin lG1G2(yror)) — yror|l;]
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4. Contour Consistency

As color and IR images reflect signals in different wave-
lengths (RGB: 380-700 nanometers, thermal: 8-14 microm-
eters), the image intensity between these two modalities
cannot correspond directly. To further build consistency be-
tween color and IR images, we apply the spatial contour in-
formation. The reason that we do not apply edge is mainly
because color images usually contain much more textures,
whose edges are not existing on the thermal images. With
the contours to contain the network, shapes of objects in-
side the images can be retained, leading to a more precise
translation effect. The detected contour result based on edge
detection is shown as in Fig. 3.

(a) Color Image (b) Contour of color image.

(c) Thermal image

(d) Contour of thermal image.

Figure 3. Color and thermal images and extracted contours.

Object contours are extracted using region-based active
contour detection algorithm [14]. Once the contours are ex-
tracted, we measure the contour distance between the two
images, as Fig. 4. Taking thermal to color image translation
as an example, for a contour point on the thermal image, if
there is also a contour point within the local window of the
corresponding pixel, the distance between the two points is
0; otherwise, the contour distance for this pixel pairis 1. As
the contours of thermal and color images may have small
shifts, we use a window region to constrain the correspon-
dences instead of using the exact corresponding pixels from
both images. The overall contour loss is the sum of all the
pixel loss. Each pixel’s loss value is described in Eq. 4. The
contour loss for the entire image is as Eq. 5.
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Figure 4. Distance calculation between corresponding pixels.
Within a 3 x 3 window, each pixel value in the window is ex-
amined. If there is a corresponding contour pixel, we consider it is
a correct contour translation for this pixel.
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where L;Z]w is the contour loss for each pixel. For one con-
tour pixel in the contour maps Iy, ., if in the correspond-
ing window with coordinates (¢ — 1,5 — 1), (i + 1,5 — 1),
(t—1,5+1), (i + 1,7+ 1) in the color image, the sum is
more than 0, that means there is a contour pixel in the win-
dow. Then the contour loss at this pixel is 0. Otherwise, the
pixel’s contour loss is 1. We sum up all the pixel contour
loss in the image with the dimension of p * ¢ to form the
image contour 108s L.oniour- If the pixel is not on the con-
tour, its contour map value I; ; is 0, which generates O in
the contour loss; otherwise, its contour map value is 1. The
loss value for this pixel depends on the corresponding win-
dow. The same operation is for both thermal-to-color and
color-to-thermal translation. The contour loss enforces the
generated image to be spatially close to the original images.

5. Spectral Enhancement

As the thermal and color are two quite different modali-
ties, the translated spectral values may also be quite differ-
ent. We therefore enhance the spectral similarity between
original and translated images. Within a cycle translation
concept, illuminance consistency and its contrast in local
regions can also enforce the local region to be similar to the
original image. For a local patch, we expect the translated
and the original images to be highly correlated and their av-
erage illumination strength to be close. At the same time,
we expect the illuminance contrast within a patch between
generated and original images to be similar as well, which
represents the illuminance distribution and can be evaluated
by the intensity variance. Our illuminance loss takes cor-
relation relationship, average illuminance coefficient, and
a contrast term into consideration, defined as follows for a
local patch:

Ou,a! 2zx!

_ -2\ 2
0200 (B 4a7) 02+

20,0,

Llocal,lz (‘T7 {L'/) =

(6)

where x and z’ are the original image and translated im-
age in the same modality. The first term is the correlation
relationship between the original data and predicted data.
The second term is to reduce the variation of average illu-
minance between x and x’. The third term is to measure the
intensity contrast to guarantee that they are in similar distri-
bution. Then we scan the entire image by sliding a 5-pixel
dimensional square window through the entire image with
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Figure 5. Visual comparison between our method and other state-of-the-art methods for IR-Visible and Visible-IR translation. For each
sample, Left: Input IR/visible image (top) and the corresponding visible/IR ground truth image (bottom). Right: CycleGAN [29] output
(top left); Pix2PixHD [27] output (top right); RevGAN [26] output (bottom left); Our output (bottom right). Compared with other methods,
our method for cross-domain image translation generates more real and detailed images in challenging scenes.

a moving step size of 2. Assuming there are M steps in this
process, the whole image illuminance loss is:

1 < .
LlI = M Z(l - ?ocal,lz) (7)

i=1

which averages all the local region illuminance consistency
and contrast.

6. Experiments
6.1. Datasets

EPFL NIR-VIS dataset [2] contains totally 477 high-
resolution images in 9 categories. These categories includ-
ing country, field, forest, indoor, mountain, old building,
street, urban and water captured by color camera and NIR
camera at the same time. All the images are resized to be
256 x256. We randomly choose 120 images for testing and
the rest images of the dataset are used for training.

KAIST is a long-wave infrared (LWIR) benchmark for
multi-spectral pedestrian detection. [11]. This dataset con-
sists of around 95k color-thermal pairs (640x480, 20Hz)
taken from a car during both day and night time. With a
beam splitter-based hardware to physically align the two
image domains, it does not need any post-processing. In this
work, we randomly choose 20000 image pairs for training
and another 2000 for testing.

6.2. Network Configuration

We train the network from scratch with Adam optimizer
where 81 = 0.9, 82 = 0.999 and € = 10~% . The initial
learning rate is set to be 0.0001, and we linearly decrease
the rate to zero over the next 100 epochs. The LeakyReLu

activation function is applied. Weights for input data are
initialized from a Gaussian distribution with a mean of 0
and standard deviation of 0.02. We train all our models on
an NVIDIA GTX1080Ti GPU with 11GB GPU memory.
The weights of different losses in the combined objective
function are set to be Aeyere=1.0, Agan=0.2, )\2/%{;1.0,
Aiz=0.5 and A optour =1.0. Though the cycle consistency
term plays a significant impact in the early stage, it becomes
less stable in the late stage to generate images. Thus we
progressively decrease the weight for the cycle consistency
term after half of the entire training process.

o = |
Figure 6. Visual result of our method to translate color image to
NIR domain, from input RGB images (top) to outputs (bottom).

6.3. Visual Evaluation

In this section, our method is compared with other state-
of-the-art methods in multi-modal image translation: Cy-
cleGAN [29], Pix2PixHD [27] and RevGAN [26]. By com-
paring different methods trained on the same split, it is ap-
parent in Fig. 5 that CycleGAN [29] has a serious wrong
mapping problem in textures and colors. For Pix2PixHD
[27] and RevGAN [26], though they perform better on map-
ping representation, they still lack sharp texture information
and exist some blurriness in details. It can be observed that
our method achieves the best visual performance in both
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Figure 7. Feature matching without and with the support of image
translation. (top row) SURF feature matching directly on thermal
images. (bottom row) SURF feature matching on thermal images
with the support of translated RGB images.

colorizing the thermal image and transferring the color im-
age to thermal domain. Our method not only can learn a cor-
rect mapping representation between multi-spectral domain
images but also preserve the objects’ textures and bound-
aries, which attributes to the newly designed ROI loss and
contour edge loss. Our additional image translation results
from color to Near IR domain are shown in Fig. 6.

Our result has shown that the translated images help to
significantly improve the feature matching performance for
thermal images. The demo inputs and their corresponding
results from our full pipeline are shown in Fig. 7. From
Fig. 7, SURF features almost cannot match on original in-
put thermal images. However, with the translated images,
SUREF features can be applied to thermal images bridging
the RGB images translated from thermal images.

An ablation analysis is provided in Fig. 8 based
on adding the ROI loss and contour edge consistency
loss or vice versa, including CCGAN-with/without-ROI,
CCGAN-with/without-contour consistency, and CCGAN
full pipeline. It can be seen that our full method (CCGAN-
full) captures and recovers finer details in specific regions
(e.g., cars, bicycles, and traffic cones) and suffers less from
blurriness compared with a partial implementation of our
method CCGAN-w/0-ROI and CCGAN-w/o-Contour. Fig.
9 demonstrates the capability of our method in nighttime
scenarios when visible images from RGB cameras are very
dim and almost invalid because of insufficient light. Our
translation method is able to recover the invisible light and
texture of the RGB camera in the nighttime by translating
thermal to color images, making the matching and detection
tasks for thermal images possible.

In addition to scenes, we further verify our algorithm on
living human face, as shown in Fig. 11. With a split of 80%
images of the Tufts face thermal-RGB dataset for training
and the rest for testing, we can observe that our method is
able to be extended into humans. More visual results are
provided in the supplementary video.

NIR-Color FIR-Color
PSNR | SSIM | COS | RMSE | PSNR | SSIM | COS | RMSE
CycleGAN [29] | 9.2011 | 0.4722 | 0.9408 | 0.5842 | 9.5713 | 0.4758 | 0.8452 | 0.5537
MUNIT [10] 13.2140 | 0.5061 | 0.9456 | 0.5000 | 12.2981 | 0.5075 | 0.8160 | 0.4351
Pix2PixHD [27] | 16.2137 | 0.6271 | 0.9620 | 0.4894 | 15.2596 | 0.5818 | 0.8674 | 0.4203
RevGAN [20] | 14.9573 | 0.5894 | 0.9547 | 0.5041 | 14.1239 | 0.5482 | 0.8463 | 0.4736
Ours 18.7115 | 0.6166 | 0.9861 | 0.4764 | 16.5169 | 0.6186 | 0.9388 | 0.3862

Table 1. Average results on PSNR, SSIM, COS similarity, and
RMSE on the testing dataset from IR to color domain. The best
results are marked in bold.

Color-NIR Color-FIR
PSNR SSIM COS | RMSE | PSNR SSIM COS | RMSE
CycleGAN [29] | 14.6093 | 0.6823 | 0.7824 | 0.2057 | 9.4033 | 0.3331 | 0.7507 | 0.3996
MUNIT [10] 15.3845 | 0.6852 | 0.8023 | 0.1784 | 11.6595 | 0.5243 | 0.7151 | 0.3657
Pix2PixHD [27] | 18.0427 | 0.7919 | 0.8314 | 0.1609 | 16.9011 | 0.7203 | 0.8308 | 0.3477
RevGAN [26] | 18.2430 | 0.8037 | 0.8528 | 0.1329 | 17.2903 | 0.7193 | 0.8433 | 0.2910
Ours 21.9635 | 0.8205 | 0.8655 | 0.1197 | 18.0431 | 0.7841 | 0.8911 | 0.2396

Table 2. Average results on PSNR, SSIM, COS similarity and
RMSE on the testing dataset from color to IR domain. The best
results are marked in bold.

IR-Color Color-IR
IS | FID | IS | FID
CycleGAN [29] | 1.0 | 97.3 | 1.2 | 80.2
MUNIT [10] 14 ] 759 | 1.6 | 583
Pix2PixHD [27] | 1.6 | 56.2 | 1.9 | 36.4
RevGAN [26] 1.5 597 | 2.1 | 29.6
Ours 1.7 | 39.2 | 2.2 | 21.5

Table 3. Additional results on Inception score (IS, higher is better)

and Frechet Inception Distance (FID, lower is better) on the testing
split from IR to color and color to IR domain.

6.4. Quantitative Evaluation

To evaluate the effectiveness of our method quanti-
tatively, we choose four commonly used measurement
metrics for image quality evaluation, which are Root
Mean Squared Error (RMSE), Peak Signal to Noise Ratio
(PSNR), Structural Similarity (SSIM), and COS Similar-
ity (COS). RMSE evaluates a root difference between the
two compared images, while PSNR indicates the level of
losses. SSIM is a metric evaluating the similarity level to
the human visual system that extracts useful information
from images such as structure, illuminance, and contrast.
COS similarity is defined as the average angular similar-
ity between every generated RGB pixel and the correspond-
ing ground truth image pixels. A comparison between our
proposed method and other recent methods is shown in Ta-
ble 1 and Table 2 for Far IR and Near IR images respec-
tively. It can be observed from Table 1 and Table 2 that
our method achieves the best performance in both Far IR
and Near IR datasets. Though CycleGAN [29] achieves
relatively good performance only in Color-Near IR conver-
sion, it performs worse on the Far IR dataset. Compared
with Pix2PixHD [27] and RevGAN [26], our method still
enjoys an improvement benefiting from the designed Con-
tour and ROI constraints on detail recovery. Results from
our method demonstrate that our proposed method is capa-
ble of learning the correct mapping features and representa-
tion from the source to target domains, and enjoys a signif-
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Figure 8. Ablation analysis of each core contribution in our network. From left to right: Source input thermal image; Ground truth color
images; Result without the proposed contour loss; Result without the proposed ROI loss; Result from our full pipeline.

Figure 9. Example images of our translated result on night scenar-
ios. Left to right: Input thermal image at nighttime; Real color
image at nighttime; Our translated image. It can be observed that
our method has the ability to estimate images under low light.

icant improvement compared with the MUNIT [10], Cycle-
GAN [29], Pix2PixHD [27] and RevGAN [26], especially

Ablation analysis on NIR and color conversion
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Ablation analysis on FIR and color conversion
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Figure 10. Quantitative PSNR comparisons on ablation analysis of
NIR-Color and FIR-Color conversion.

Figure 11. Additional results of RGB-thermal face image transla-
tion on Tufts face thermal-RGB dataset. Left to right in each row:
input raw RGB / thermal images; our estimated thermal / RGB
images; corresponding ground truth thermal / RGB images.

in terms of PSNR and RMSE. In addition to local geometric
measurements (PSNR/SSIM/COS/RMSE) above, we also
provide average results on Inception score (IS) and Frechet
Inception Distance (FID) to measure the quality of gener-
ated images by calculating the corresponding feature vec-
tors, as shown in Table 3. A higher IS score and lower FID
indicates better-quality images.

Fig. 10 shows a quantitative ablation analysis for each
key component in our designed framework. We observe the
highest PSNR in our full pipeline on all of the four domain
transfer scenarios, compared with partial constraints with-
out either of them (contour loss, ROI loss, illuminance and
contrast 10ss).
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7. Conclusion

We propose CCGAN, a GAN framework targeting IR
and visible image translation. We design the network based
on a multi-scale structure with constraints dedicated to IR
and visible image translation, which preserves the shared
properties between these two image modalities. The pro-
posed method is able to learn the mapping representations
between different image modalities. In addition to the spec-
tral constraint, the framework introduces spatial constraint
in image translation tasks through contour consistency. The
transformation from the visible image to infrared thermal
image makes it possible to predict the temperature of the ob-
ject surface for inspection and surveillance tasks. The trans-
formation from infrared images to visible images makes it
possible to apply existing computer vision algorithms on
thermal images such as image matching and 3D reconstruc-
tion. Our method improves the image translation perfor-
mance on both Far IR and Near IR datasets.
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