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ABSTRACT

We address the problem of reconstructing 3D human face from

multi-view facial images using Structure-from-Motion (SfM) based

on deep neural networks. While recent learning-based monocular

view methods have shown impressive results for 3D facial recon-

struction, the single-view setting is easily a�ected by depth ambi-

guities and poor face pose issues. In this paper, we propose a novel

unsupervised 3D face reconstruction architecture by leveraging the

multi-view geometry constraints to train accurate face pose and

depth maps. Facial images from multiple perspectives of each 3D

face model are input to train the network. Multi-view geometry

constraints are fused into unsupervised network by establishing

loss constraints from spatial and spectral perspectives. To make

the trained 3D face have more details, facial landmark detector is

explored to acquire massive facial information to constrain face

pose and depth estimation. Through minimizing massive landmark

displacement distance by bundle adjustment, an accurate 3D face

model can be reconstructed. Extensive experiments demonstrate

the superiority of our proposed approach over other methods.
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1 INTRODUCTION

3D face reconstruction is widely applied to many �elds such as vir-

tual reality (VR) and augmented reality (AR) [28]. To obtain robust

reconstruction against many factors such as age, gender and expres-

sion, current 3D face analysis methods majorly rely on the precise

3D Morphable Model (3DMM), which provide a parametric repre-

sentation of 3D face models [27]. However, the research of 3D face

reconstruction is obstructed by several inherent challenges. First,

obtaining ground-truth 3D annotations for in-the-wild images is

both expensive and laborious. Second, it is sensitive to the quantity

and quality of training data. Third, 3D face reconstruction methods

have limited capacity in representing details in face shapes and tex-

tures. Recently, somework has demonstrated that regressing 3DMM

parameters using convolutional neural networks(CNN) achieves

superior performance to traditional geometry methods[10].

In spite of the remarkable progress in this topic, the lack of reli-

able 3D constraints can cause unresolvable ambiguities: the height

of nose and cheekbones. This paper mainly focuses on exploiting

multi-view geometric constraints to reconstruct the faithful 3D

shapes from 2D face images. The main motivation is to incorporate

those constraints into our CNNmodel to estimate accurate face pose

and depth maps. To enable the trained 3D face having more expres-

sion details, we address the problem of reconstructing 3D human

face from multi-view facial images using Structure-from-Motion

(SfM) based on the CNN network. Targeting at face reconstruction

issues, we designed a learning-based SfM framework that can rely

on the face characteristics to reconstruct an accurate face shape

with arbitrary frames as input. To explore the face properties, we

developed a face landmark detection network to identify extensive

landmark points that cover the details of the entire face, which

can detect much more landmarks (e.g., 500 to 800) than the exist-

ing methods that can only detect 68 or maximally 106 landmarks.

The entire deep SfM network explores both spatial and spectral

constraints relying on the concept of bundle adjustment. From the

spatial perspective, displacement error is applied to constrain the

3D vertices and depth map, which enforces the 2D landmark points

to be consistent with the corresponding landmarks across di�erent

frames on position. From spectral perspective, the RGB values of

pixels corresponding to the same 3D vertex should be close. Though

our network can leverage on massive landmarks, the SfM network

based on even just 68 landmarks commonly appeared on existing



Figure 1: Overview of our deep 3D SfM face reconstruction architecture. Our network takesmultiple frames as input. Geometry

bundle adjustment landmark consistency loss functions, spectral appearance consistency loss and global depth consistency

loss are highlighted as in Section 4 based on the concept of bundle adjustment.With the designed depth estimation and camera

motionnetwork, themassive detected facial landmarks from target image can bewarped to all other frames to serve as a spatial

geometry constraint together with spectral consistency. During the inference, our network is able to accept arbitrary number

of frames as input to generate a complete 3D face shape.

facial landmark detection methods can also achieve a superior 3D

face reconstruction e�ect.

To summarize, the contribution of our network is as follows: 1)

a deep unsupervised SfM network targeting at face reconstruction

is designed to explore the facial properties; 2) a landmark detec-

tion framework is developed to detect massive and stable landmark

points under various head poses; 3) the concept of bundle adjust-

ment in neural network is utilized to optimize the SfM learning

process, which explores the multiple-view geometric constraints; 4)

both spatial and spectral cues are applied to enhance the learning

e�ect. The training framework is shown in Fig. 1.

2 RELATEDWORK

Single-viewbased reconstructionmethodRecent learning-based

methods mainly trained convolutional neural networks (CNN) to

recover 3D shapes from a single image. 3D scanning face objects

are served as ground truths to guide the network training [5] [23]

[12] [30]. Specially, those methods design networks to regress 3D

morphable face models (3DMM) [27] and �t the facial shape during

the testing. Such methods usually rely on a pre-existing 3DMM and

lack enough labelled training data.

Few recent works use self-supervised methods to deal with the

limited capacity of high-quality 3D face models for training [34]

[18]. Sanyal et al. [18] leveraged multiple images of a person to

�t a FLAME model. Zhou et al. [34] proposed a non-linear 3D

morphable face model to jointly learn shape and texture within a

geometric convolutional network. Tewari et al. [22] presented an

unsupervised model-based face auto-encoder based on pixel loss

to learn parameters like pose, shape, expression and illumination.

However, most of the aforementioned approaches still heavily rely

on 3DMM model parameters, and reconstruction only from one

single-view image exists pose and depth ambiguity.

Multiple-view based reconstruction method There are sev-

eral classic pipelines for 3D reconstruction with multi-view images

[20] [25], The majority of methods based on Structure-from-Motion

(SfM) or Simultaneous Localization and Mapping (SLAM) can gen-

erate 3D objects from 2D images by using the principles of multiple

view geometry. However, these classic geometry-based methods

are subject to a number of restrictions, especially precise feature

matching across images of di�erent perspectives. The e�ect of

feature matching could be extremely poor when there is a large

baseline between the viewpoints [16]. In addition, the correct fea-

ture correspondences are also di�cult due to surface re�ections

and low/repetitive textures on objects [19][24][14]. Liang et al. [14]

proposed a 3D reconstruction method based on factorization SfM.

68 facial landmarks are extracted via learning-based method to

factorize matching landmarks. Although it addresses the landmark

self-occlusion issue caused by yaw rotation, the rotation invariance

is only limited to a relatively small angle. In addition, the detected

landmarks are not distinguished to be visible or occluded towards

the camera, which adds false positive correspondences in their

conventional factorization SfM method.

A better way to reconstruct faithful 3D faces is to exploit multi-

view geometric constraints based on deep neural networks. Dou



et al. [4] combine deep convolutional neural networks (CNNs) to-

gether with recurrent neural networks (RNNs) to produce more

discriminative reconstructions. There are several unsupervised net-

works to address 3D face reconstruction from multiple images [21]

[26]. Tewari et al. [21] proposed a video-based unsupervised train-

ing network to learn a cross-frame consistent face shape based

on the shape and appearance across multiple frames of the same

face collected from the Internet. Wu et al. [26] also designed an

unsupervised multi-view framework to explore view-consistency

photometric loss to generate consistent texture information across

multiple views. However, those methods require extensive view’s

input to aggregate the 3D face. Di�erent from such methods, our

method explores both spatial and spectral consistency to realize

a better representation of face shapes. During inference, we can

reconstruct an accurate face shape with arbitrary number of frames.

3 FACE LANDMARK DETECTION
FRAMEWORK

In this section, we elaborate the learning-based face landmark de-

tection framework. The landmark detection framework is to train

massive face landmark points which can facilitate the 3D SfM recon-

struction tasks. Existing methods mainly detect 68 face landmark

points, which distribute around the entire face and organ contours.

To further enhance the landmark constraints so as to reconstruct

more accurate face structures, we investigate to detect more face

landmark points. This process involves 3D face model landmark

identi�cation and 2D face image landmark generation. Once we

obtain the trained labels for 2D image face landmark from the 3D

models, a designated neural network can be developed to detect

massive face landmarks that can e�ectively navigate the 3D SfM

reconstruction neural network training.

3.1 3D Model Landmark Generation

In order to provide training samples for the 2D landmark network,

we use 3DMM [28] to generate a 3D landmark model, as shown in

Fig. 2. Those 3D vertices cover the whole 3D face including visible

and invisible part from 2D view. However, because multi-view face

images are fed into 3D sfm reconstruction network, they need to

�nd the corresponding landmark matches between each view pair

based on sfm principles. The matching pairs can be formed from

two images crossing arbitrary pose variations (e.g.,0 degree and 30

degree view pair). We keep the 3D vertices visible from the camera’s

perspectives and �lter out the invisible 3D vertices when labeling

the 3D vertices, which helps to eliminate the interference of the

invisible landmark from the 2D view in the process of detecting 2D

landmark. As shown in Fig. 3, when the face is rotated to di�erent

angles, only the landmarks visible to the camera are displayed,

which is critical to establish correct correspondences. To align

landmarks between 2D images of di�erent perspectives, each 3D

vertex is labeled with a unique ID.

3.2 2D Image Landmark Generation

To train landmark detection network, 2D images with labeled land-

marks are used as training samples. Once we have the 3D landmark

models with labeled vertices (with a unique ID for each vertex), the

3D models and labeled vertices can be projected to 2D space to ob-

tain images with identi�ed landmarks. Assuming there is a virtual

camera, the projection matrix is composed by camera extrinsics

Figure 2: 3D landmark model using 3DMM. Each 3D vertex

is labeled with a unique ID.

Figure 3: Selected 800 landmarks on 2D images projected

from 3D vertices.

(rotation and translation) and intrinsics (focal length and principal

point), which projects 3D vertices in world coordinate to 2D image

pixels in image coordinate, as equation below:
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where ? is the pixel position in 2D images, composed by its x

coordinate Gğģ and y coordinate ~ğģ . 5 represents focal length. G0
and ~0 are the principal point’s coordinates. ' is a 3 ∗ 3 rotation

matrix and C is a 3 ∗ 1 translation vector. -ĭ , .ĭ , and /ĭ represent

the 3D point’s world coordinates. To increase the robustness of face

landmark detection, we rotate the virtual camera around the 3D

face model to generate a sequence of 2D face images and the 2D

landmark points projected by 3D vertices with unique IDs in world

coordinate, as shown in Fig. 3. Since each 3D vertex has a unique

ID in a 3D face model, when 3D vertices are projected to 2D images

from di�erent perspectives, all the projected 2D landmark points

are ensured to be true positive correspondences in the sequence of

images from di�erent perspectives.

3.3 Landmark Detection Framework

After using 3DMM to generate 3D vertices visible to camera and

project 3D vertices to 2D landmark points, we train the face land-

mark detection network with labeled 2D landmark points. Our

supervised landmark detection network takes facial images as in-

put with 800 (can be changed to other numbers) landmark labels

and outputs a feature vector of 1600 dimensions. Therefore, to learn

the 800 landmark points in 2D face images, the CNN network is

trained to make predicted feature vector close to ground truth label.

The network is composed of seventeen convolutional layers fol-

lowed by Recti�ed Linear Units (ReLU) activation function. A single

fully connected layer is applied to output a 1600 dimension vectors

which can reshape to 800 × 2 dimensional landmarks. During 3D

face reconstruction, the trained landmark detector detects the land-

marks for each face image to build detailed and tight constraints

for later depth and camera pose estimation network training, and



then the landmarks from target image can be projected to all other

source images to achieve landmark bundle adjustment constraint.

4 DEEP SFM FRAMEWORK

The entire structure-from-motion neural network explores the

multiple-view geometry constraints to reconstruct the 3D face

based on a sequence of image inputs. With the images captured

from di�erent perspectives of the 3D face model, the SfM network

can reconstruct an accurate 3D face. In the training process, bun-

dle adjustment is applied to enforce the 2D pixels projected by

reconstructed 3D face points to be consistent in di�erent camera

poses, which involves both spatial and spectral constraints. For

spatial loss, landmark points are applied to decrease the displace-

ment distance between the originally detected landmark points

from pre-trained landmark detector and the 2D pixels projected by

the reconstructed 3D face points. For spectral constraints, the 2D

pixels’ RGB values of the target image warped by the face depth

map and camera motion are enforced to be close to RGB values

of the source image. Based on our neural network structure and

the e�ective loss constraints, our deep SfM network can estimate

the face depth of each image accurately. Once the landmarks are

detected, the above spatial and spectral consistency constraints are

applied to optimize the 3D reconstructed face and camera poses,

which is entirely unsupervised due to the self-supervision between

3D reconstructed faces and camera poses based on our spatial and

spectral constraints.

4.1 Network Structure

The 3D SfM reconstruction framework is to predict the depth map

and camera pose through a sequence of images inputs with di�er-

ent perspectives. Figure 1 demonstrates the basic structure of our

deep unsupervised 3D SfM face reconstruction network, which is

to jointly learn the depth map and the corresponding camera pose

by both spatial and spectral constraints between target image and

source image. The network structure can be divided into two parts.

One marked by blue color in Fig.1 is to generate an accurate depth

map with an encoder-decoder network structure. The encoder net-

work extracts signi�cant features from the input images, composed

of seventeen convolutional layers and a single fully connected layer,

and then the decoder network uses skip connections [15] to fur-

ther interprets those feature representations to generate depth map.

Similar to the structure of the depth estimation network, instead

of generating depth maps, the camera pose estimation network

outputs relative 6 DoF parameters which can construct a rotation

matrix R (3×3) and a translation vector t (3×1).

4.2 Landmark Bundle Adjustment

With any consecutive frames as input, our deep SfM network is

able to estimate depth maps � , and recover them into a complete

point cloud. The relative 6 DoF poses %ĨěĢ between them can be

estimated from the pose estimation network. As we have already

trained a massive facial landmark detection network as introduced

in Sec.3.3, with the predicted depth information for each frame and

the estimated relative camera motions between any two frames, we

can build an unsupervised constraint using the detected landmarks

in the source view images and the warped landmarks of the target

view image. Di�erent from other camera motion estimation algo-

rithms [33] [31], we extend the local frames optimization (3-snippet)

to a full sequence for Bundle Adjustment (BA) optimization. The

proposed bundle adjustment-based landmark consistency loss is

de�ned as:

!ĈėĤĚģėĨġ_þý =
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where c represents a mapping relationship from 3D points to 2D

pixels. Pab is the relative camera motion from the target image to

the source images. �ĉ corresponds to the depth value at the"Īℎ

target image. 8 is the number of the detected landmarks, and #

represents the number of all other views except the current view.

D ∈ '2 means the 2D coordinates of the face landmarks. The L2 loss

guidance here is to measure the distance di�erence between each

projected landmarks in the warped target image and the detected

landmarks in the source image and minimize it.

4.3 Spectral Constraints

Except for the designated bundle-adjustment based landmark con-

sistency loss, we further enforce the spectral appearance of target

image to be consistent with source images after warping based on

face depth and camera motion. This can be achieved by imposing

the following spectral photometric consistency loss:
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where Pab is the relative camera motion from the target image to

the source images. � Ġ corresponds to the depth value of a pixel

? Ġ at the 8Īℎ target image �ğ . �ĩĨę−ġ is the :Īℎ source image. The L1

loss is to guide the optimization by reducing the pixel RGB value

di�erence between the warped target image and the source image.

As L1 loss alone is not robust enough to the light illumination and

contrast variation, we extend it with the image structural similarity

index to jointly evaluate two images in illuminance, contrast, and

structure. The improved spectral appearance consistency loss is a

comprehensive expression of SSIM and L1 loss as:
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∑
ğ

∑
ġ

∑
Ġ

_1


�ğ (c (Pab, � Ġ · ĦĠ)) − �ĩĨę−ġ (ĦĠ)




1

+ _2
1−ďďąĉ (ąğ ,ąĩĨę−ġ )

2

(4)

where ((�" (�ğ , �ĩĨę−ġ ) compute the element-wise similarity be-

tween the warped target image �ğ and the source view image �ĩĨę .

We set _1=0.15 and _2 = 0.85 following [8] [7].

Depth maps are less sensitive to the gradient locality [1] com-

pared with normal color images. Therefore, we further introduce

depth consistency across multiple-view frames to solve possible

depth ambiguity. We synthesize the source depth maps �̃ĩ from

the target depth maps �Ī , and then force the synthesized source

depth to be close to the original source depth. We �rst compute a

scale ratio of these two depths, and then de�ne a depth consistency

loss as follows:

!ĚěĦĪℎ =

1

|2 |

ę∑
ğ

��[ · �̃ĩ (8) − �Ī (8)
�� , [ =

∑
ğ �Ī (8)∑
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(5)

where the [ is the depth scale ratio between the synthesized depth

and the original depth. The designed loss is able to achieve a scale-

consistent estimation and provide an additional global geometry

supervisory to improve the reconstruction performance.



5 EXPERIMENTS
5.1 Experiment setting

For facial landmark detection network, the input image is a grayscale

image with the size of 384 × 384. The feature extraction stage is

composed of four convolutional layers, four pooling layers, and

three fully connected layer in the end. Each convolutional layer

contains a �lter bank producing multiple feature maps. The Recti-

�ed Linear Units (ReLu) [17] is selected as the activation function.

For the pooling layers, We conduct max-pooling on non-overlap

regions in the feature map. The fully connected layers are able to

output a 1600 feature vectors which reshapes 800 landmarks × 2 (x

and y coordinates) dimensions.

After extracting the 800 facial landmarks from each input im-

age, the SfM-based learning network takes a video sequence from

multiple views as input. The network simultaneously estimates the

camera motion from each concatenated image pair and estimate a

3D point cloud from the depth prediction network. The learning-

based 3D face reconstruction network is trained in an unsupervised

manner and do not need any 3D supervision to guide the training

process. It is implemented with PyTorch library and trained from

scratch using Adam optimizer [13] with V1 = 0.9 and V2 = 0.99.

Recti�ed Linear Units (ReLu) [17] is applied as activation functions

for all convolutional layers. The weights of the depth estimation

network and pose estimation network are initialized with Kaiming

initialization [11] method with 2 batch size to achieve a trade-o� be-

tween the e�ciency and the memory usage. The whole framework

is trained for 50 epochs.

5.2 Dataset Introduction

Stirling ESRC 3D face dataset [6] is utilized to manually generate a

group of rendered multi-view images. The original format of the

3D objects is in a wavefront �le containing 101 subjects (male =

47, female = 54) of 3D facial scans in a neutral expression. We uti-

lize Trimesh [3] to continuously rotate the virtual camera every 2

degrees to project 3D objects into an image to generate rendered im-

age sequences with a �xed focal length of 500 pixels. The resolution

of the generated images are 384 × 384.

Facescape [29] is a large-scale dataset that contains a large num-

ber of high-quality 3D face subjects, parametric models and multi-

view images. The age and gender of each object are also included in

the original dataset. 847 subjects with 20 expressions (totally 16490

models) are provided for training, which is roughly 90 percent of

the complete whole dataset. In this work, we randomly choose 6640

together with the selected 3D models in the Stirling ESRC 3D face

dataset for training, and the other 2000 objects for testing. The 2D

image generation process shares the same process as in the Stirling

ESRC 3D face dataset.

5.3 Landmark Detection

Through training a set of rendered multi-view face images gener-

ated by the Stirling ESRC 3D face datasets and the Facescape 3D

face datasets, the landmark detection network has superior perfor-

mance with massive landmarks. As shown in Fig. 4, we compare

ground truth landmarks with detected landmarks on the same im-

age to demonstrate a good generalization and robustness when

taking di�erent views as input. Meanwhile, the mean squared er-

ror (MSE) between ground truth landmarks and corresponding

detected landmarks is 4.52. In addition, to verify whether the land-

marks are aligned between di�erent perspectives, we visually plot

corresponding landmarks detected from the face landmark detector

between image pairs having di�erent perspectives. As shown in

Fig. 5, all the corresponding landmarks are matched correctly. Our

landmark model is not a�ected by occlusion when rotating any

degrees, indicating the stable landmark detection performance.

Figure 4: Green: ground truth landmarks; Red: detected land-

marks by the landmark detection network.

Figure 5: Aligned 2D landmarks across multiple views

5.4 Qualitative Result

We provide visual results of the reconstructed 3D point clouds from

input RGB images in Fig. 6 and Fig. 7. For each input image, the

corresponding 3D point cloud is produced accurately and shown at

two di�erent viewpoints. With the help of the proposed spectral



Figure 6: Visual results on Stirling ESRC 3D face dataset. For each sample, we show the input image at the �rst column, and

the 3D reconstruction results at di�erent viewpoints at the second and third columns.

Figure 7: Visual results on Facescape face dataset. For each sample, we show the input image at the �rst column, and the 3D

reconstruction results at di�erent viewpoints at the second and third columns.

and spatial loss, the 3D shape is able to be well recovered and the

details are able to be reproduced, such as in nose and mouth. we

also validate the accuracy of our proposed method using Facescape

dataset,. As shown in Fig. 7, the four input images are similar but

the reconstructed 3D point clouds can clearly be distinguished by

di�erent expression feature from their eyebrow, eye and mouth.

5.5 Quantitative Result

We�rst demonstrate the e�ect of the number of the facial landmarks

to the accuracy of the depth estimation result. We report the MSE

between the ground truth depth map that is directly projected from

the 3D face model and the estimated depth map. As shown in Table

1. We observe that from 68 to 568 landmarks, the MSE achieves a

signi�cant decrease from 20.15 to 4.26 on Stirling ESRC 3D dataset

and from 19.72 to 7.09 on facescape dataset, which demonstrates

the e�ectiveness of the proposed pipeline.

To evaluate the e�ects of each component and the proposed loss

constraint, we conduct an ablation analysis on both Stirling ESRC

3D face dataset and Facescape dataset, as shown in Fig. 10. We

visually compare the depth maps with only the proposed spectral

appearance consistency loss, only bundle-adjustment consistency

loss based on 68 landmarks, and full pipeline with 568 landmarks.

It can be observed that depth information becomes more consistent

and smooth from left to right. As shown in �rst column, due to

the similarity of face’s pixel values, only using spectral appearance

consistency is unable to recover depth accurately. If only using

bundle-adjustment consistency loss on 68 landmarks, extensive

face depth details (e.g., regions around nose) are unable to be recov-

ered since there are few or even no landmarks in speci�c regions,

as shown in second column. Therefore, to improve the accuracy,

both spectral and spatial constraints relying on the massive de-

tected landmarks are introduced to learn facial depth information.

As shown in fourth column, the depth maps are complete, con-

sistent and smooth. The largest accuracy improvement bene�ts

from the proposed landmark consistency loss across multiple-view

frames. The full pipeline with all the constraints achieves the best

performance on both datasets.

5.6 Comparison with State-of-the-art Methods

We provide a visual comparison on Stirling ESRC 3D face and

Facescape dataset with other recent state-of-the-art face recon-

struction methods. Each method is fed with the input image to

generate a 3D face model to get a fair comparison. We compare our

network with 3DDFA [35], Pix2Face [2], VRN [12], 3DDFA_v2 [9]



Figure 8: Visual comparisons on reconstructed face shape from Stirling ESRC 3D face dataset between our result and other

recent methods. First column: raw input image; second column: result from 3DDFA method; third column:result from VRN

method; fourth column: result from pix2face method; �fth column: result from 3DDFA_v2; sixth column: result from DF2Net

method; Seventh column: result from our pipeline; Eighth column: ground truth.

Figure 9: Visual comparisons on reconstructed face shape from facescape dataset between our result and other recentmethods.

First column: raw input image; second column: result from 3DDFA method; third column:result from VRN method; fourth

column: result frompix2facemethod; �fth column: result from 3DDFA_v2; sixth column: result fromDF2Netmethod; Seventh

column: result from our pipeline; Eighth column: ground truth.



MSE

68 landmarks 200 landmarks 300 landmarks 400 landmarks 500 landmarks 568 landmarks

Stirling 17.15 16.83 12.31 9.65 6.89 4.26

Facescape 19.72 18.81 16.30 12.48 10.78 7.09

Table 1: Mean Squared Error using di�erent number of landmarks to train network on Stirling ESRC 3D face and Facescape

datasets(in mm). We use ICP for alignment and compute point-to-point distance between our results and ground truth.

MSE

Stirling Facescape

VRN [12] 17.32 20.89

pix2face[2] 11.74 25.84

3DDFA [35] 8.82 15.45

3DDFA_v2 [9] 5.08 13.52

DF2Net [32] 4.58 8.14

Ours 4.26 7.09

Table 2: Mean Squared Error subjects on Stirling ESRC 3D

face dataset and Facescape dataset(in mm).

and DF2Net [32]. It can be observed in Fig. 8 and Fig. 9, our method

achieves more realistic and accurate reconstruction results than

most methods in shape. In Stirling ESRC 3D face dataset, it is espe-

cially obvious that our 3D reconstructed shape outperforms VRN

and pix2face methods. VRN method produce a lot of invalid infor-

mationwhen generating 3D shape and their nose scale is larger than

ground truth. The 3D reconstructed shape generated by Pix2face

method exists distortion and deformation, such as nose, mouth

and eyebrow. Compared to 3DDFA and 3DDFA_v2 outcomes, our

reconstructed 3D face model fully retains the input face image in-

formation. For example, 3DDFA and 3DDFA_v2 respectively ignore

the teeth regions in the input image, with signi�cant distortion and

deformation on the ear parts, even missing in some reconstruction

examples. In addition, our 3D shapes are more real overall. For

DF2Net method, although their 3D shaping e�ects are close to ours,

the 3D reconstruction of this method in the ear is very poor, which

is generally the most di�cult components to reconstruct due to the

signi�cant depth changes.

In the Facescape dataset, our method presents more detailed

information than other methods. For example, the ground truth

shapes of the second and the fourth rows are very similar. The

main di�erences are the di�erent degrees of eye and mouth open-

ness. The method we propose can better present these di�erences.

Other methods have produced more blur and ambiguity because

they could not establish e�ective constraints in details to recover

the subtle changes. In addition, the 3D shapes generated by VRN,

pix2face and 3DDFA_v2 are quite di�erent from the ground truth. It

is di�cult to correspond the 3D shapes generated by their methods

to respective ground truth face models. The DF2Net method loses

signi�cant information of the ear, and the depth values of the eye

are also signi�cantly wrong (white convex). However, our method

can correctly estimate the depth of each organ based on the precise

spectral and spatial constraints. Overall, our method preserves the

complete input image information in the 3D reconstruction face

models compared with other state-of-the-art methods.

To obtain quantitative evaluation, we compare the reconstructed

3D point clouds with ground truth 3D models and report the aver-

aged point-to-point errors. The results are shown in Table 2. On

both Stirling ESRC 3D face and Facescape datasets, our proposed

method achieves the lowest average Mean Squared Error (MSE)

across all test objects. Especially, our method achieves error of 4.26

lower than other methods (separately DF2Net : 4.58; 3DFFA : 8.82;

3DFFA_v2 : 5.08; pix2face : 11.74; VRN : 17.32) on Stirling ESRC 3D

face and error of 7.09 much lower than other methods (separately

DF2Net : 8.14; 3DFFA: 15.45;3DFFA_v2: 13.52;pix2face: 25.84;VRN:

20.89) on Facescape dataset.

Figure 10: Ablation study from depth maps on the Stirling

ESRC 3D face dataset (top two) and Facescape dataset (bot-

tom two) respectively . Left to right: raw input image; result

with only the designed spectral consistency loss;result with

only the designed bundle-adjustment 68 landmark consis-

tency loss; result in full loss with 568 landmark.

6 CONCLUSION

This paper develops a deep SfM framework targeting at 3D face

reconstruction. Bundle adjustment is incorporated in the CNN

training scheme to explore multiple view geometry relationship

across frames captured from di�erent perspectives of the faces.

To establish reliable spatial constraints, a massive face landmark

detection method is developed that can detect 500 or even 800

landmarks with associated unique ID for each landmark. Spectral

constraints are further introduced to enhance the network training

e�ect, which reduces the color di�erence of pixels corresponding

to the same 3D point. Once the landmark detection is trained, the

SfM network training is unsupervised, which mitigates the labeling

e�orts. Even with the widely used 68 landmarks, our SfM network

still achieves extraordinary 3D reconstruction accuracy.
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