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ABSTRACT

We address the problem of reconstructing 3D human face from
multi-view facial images using Structure-from-Motion (SfM) based
on deep neural networks. While recent learning-based monocular
view methods have shown impressive results for 3D facial recon-
struction, the single-view setting is easily affected by depth ambi-
guities and poor face pose issues. In this paper, we propose a novel
unsupervised 3D face reconstruction architecture by leveraging the
multi-view geometry constraints to train accurate face pose and
depth maps. Facial images from multiple perspectives of each 3D
face model are input to train the network. Multi-view geometry
constraints are fused into unsupervised network by establishing
loss constraints from spatial and spectral perspectives. To make
the trained 3D face have more details, facial landmark detector is
explored to acquire massive facial information to constrain face
pose and depth estimation. Through minimizing massive landmark
displacement distance by bundle adjustment, an accurate 3D face
model can be reconstructed. Extensive experiments demonstrate
the superiority of our proposed approach over other methods.
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1 INTRODUCTION

3D face reconstruction is widely applied to many fields such as vir-
tual reality (VR) and augmented reality (AR) [28]. To obtain robust
reconstruction against many factors such as age, gender and expres-
sion, current 3D face analysis methods majorly rely on the precise
3D Morphable Model (3DMM), which provide a parametric repre-
sentation of 3D face models [27]. However, the research of 3D face
reconstruction is obstructed by several inherent challenges. First,
obtaining ground-truth 3D annotations for in-the-wild images is
both expensive and laborious. Second, it is sensitive to the quantity
and quality of training data. Third, 3D face reconstruction methods
have limited capacity in representing details in face shapes and tex-
tures. Recently, some work has demonstrated that regressing 3DMM
parameters using convolutional neural networks(CNN) achieves
superior performance to traditional geometry methods[10].

In spite of the remarkable progress in this topic, the lack of reli-
able 3D constraints can cause unresolvable ambiguities: the height
of nose and cheekbones. This paper mainly focuses on exploiting
multi-view geometric constraints to reconstruct the faithful 3D
shapes from 2D face images. The main motivation is to incorporate
those constraints into our CNN model to estimate accurate face pose
and depth maps. To enable the trained 3D face having more expres-
sion details, we address the problem of reconstructing 3D human
face from multi-view facial images using Structure-from-Motion
(SfM) based on the CNN network. Targeting at face reconstruction
issues, we designed a learning-based SfM framework that can rely
on the face characteristics to reconstruct an accurate face shape
with arbitrary frames as input. To explore the face properties, we
developed a face landmark detection network to identify extensive
landmark points that cover the details of the entire face, which
can detect much more landmarks (e.g., 500 to 800) than the exist-
ing methods that can only detect 68 or maximally 106 landmarks.
The entire deep SfM network explores both spatial and spectral
constraints relying on the concept of bundle adjustment. From the
spatial perspective, displacement error is applied to constrain the
3D vertices and depth map, which enforces the 2D landmark points
to be consistent with the corresponding landmarks across different
frames on position. From spectral perspective, the RGB values of
pixels corresponding to the same 3D vertex should be close. Though
our network can leverage on massive landmarks, the SfM network
based on even just 68 landmarks commonly appeared on existing
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Figure 1: Overview of our deep 3D SfM face reconstruction architecture. Our network takes multiple frames as input. Geometry
bundle adjustment landmark consistency loss functions, spectral appearance consistency loss and global depth consistency
loss are highlighted as in Section 4 based on the concept of bundle adjustment. With the designed depth estimation and camera
motion network, the massive detected facial landmarks from target image can be warped to all other frames to serve as a spatial
geometry constraint together with spectral consistency. During the inference, our network is able to accept arbitrary number

of frames as input to generate a complete 3D face shape.

facial landmark detection methods can also achieve a superior 3D
face reconstruction effect.

To summarize, the contribution of our network is as follows: 1)
a deep unsupervised SfM network targeting at face reconstruction
is designed to explore the facial properties; 2) a landmark detec-
tion framework is developed to detect massive and stable landmark
points under various head poses; 3) the concept of bundle adjust-
ment in neural network is utilized to optimize the SfM learning
process, which explores the multiple-view geometric constraints; 4)
both spatial and spectral cues are applied to enhance the learning
effect. The training framework is shown in Fig. 1.

2 RELATED WORK

Single-view based reconstruction method Recent learning-based
methods mainly trained convolutional neural networks (CNN) to
recover 3D shapes from a single image. 3D scanning face objects
are served as ground truths to guide the network training [5] [23]
[12] [30]. Specially, those methods design networks to regress 3D
morphable face models (3DMM) [27] and fit the facial shape during
the testing. Such methods usually rely on a pre-existing 3DMM and
lack enough labelled training data.

Few recent works use self-supervised methods to deal with the
limited capacity of high-quality 3D face models for training [34]
[18]. Sanyal et al. [18] leveraged multiple images of a person to
fit a FLAME model. Zhou et al. [34] proposed a non-linear 3D
morphable face model to jointly learn shape and texture within a
geometric convolutional network. Tewari et al. [22] presented an

unsupervised model-based face auto-encoder based on pixel loss
to learn parameters like pose, shape, expression and illumination.
However, most of the aforementioned approaches still heavily rely
on 3DMM model parameters, and reconstruction only from one
single-view image exists pose and depth ambiguity.

Multiple-view based reconstruction method There are sev-
eral classic pipelines for 3D reconstruction with multi-view images
[20] [25], The majority of methods based on Structure-from-Motion
(SfM) or Simultaneous Localization and Mapping (SLAM) can gen-
erate 3D objects from 2D images by using the principles of multiple
view geometry. However, these classic geometry-based methods
are subject to a number of restrictions, especially precise feature
matching across images of different perspectives. The effect of
feature matching could be extremely poor when there is a large
baseline between the viewpoints [16]. In addition, the correct fea-
ture correspondences are also difficult due to surface reflections
and low/repetitive textures on objects [19][24][14]. Liang et al. [14]
proposed a 3D reconstruction method based on factorization SfM.
68 facial landmarks are extracted via learning-based method to
factorize matching landmarks. Although it addresses the landmark
self-occlusion issue caused by yaw rotation, the rotation invariance
is only limited to a relatively small angle. In addition, the detected
landmarks are not distinguished to be visible or occluded towards
the camera, which adds false positive correspondences in their
conventional factorization SfM method.

A better way to reconstruct faithful 3D faces is to exploit multi-
view geometric constraints based on deep neural networks. Dou
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et al. [4] combine deep convolutional neural networks (CNNs) to-
gether with recurrent neural networks (RNNs) to produce more
discriminative reconstructions. There are several unsupervised net-
works to address 3D face reconstruction from multiple images [21]
[26]. Tewari et al. [21] proposed a video-based unsupervised train-
ing network to learn a cross-frame consistent face shape based
on the shape and appearance across multiple frames of the same
face collected from the Internet. Wu et al. [26] also designed an
unsupervised multi-view framework to explore view-consistency
photometric loss to generate consistent texture information across
multiple views. However, those methods require extensive view’s
input to aggregate the 3D face. Different from such methods, our
method explores both spatial and spectral consistency to realize
a better representation of face shapes. During inference, we can
reconstruct an accurate face shape with arbitrary number of frames.

3 FACE LANDMARK DETECTION
FRAMEWORK

In this section, we elaborate the learning-based face landmark de-
tection framework. The landmark detection framework is to train
massive face landmark points which can facilitate the 3D SfM recon-
struction tasks. Existing methods mainly detect 68 face landmark
points, which distribute around the entire face and organ contours.
To further enhance the landmark constraints so as to reconstruct
more accurate face structures, we investigate to detect more face
landmark points. This process involves 3D face model landmark
identification and 2D face image landmark generation. Once we
obtain the trained labels for 2D image face landmark from the 3D
models, a designated neural network can be developed to detect
massive face landmarks that can effectively navigate the 3D SfM
reconstruction neural network training.

3.1 3D Model Landmark Generation

In order to provide training samples for the 2D landmark network,
we use 3DMM [28] to generate a 3D landmark model, as shown in
Fig. 2. Those 3D vertices cover the whole 3D face including visible
and invisible part from 2D view. However, because multi-view face
images are fed into 3D sfm reconstruction network, they need to
find the corresponding landmark matches between each view pair
based on sfm principles. The matching pairs can be formed from
two images crossing arbitrary pose variations (e.g.,0 degree and 30
degree view pair). We keep the 3D vertices visible from the camera’s
perspectives and filter out the invisible 3D vertices when labeling
the 3D vertices, which helps to eliminate the interference of the
invisible landmark from the 2D view in the process of detecting 2D
landmark. As shown in Fig. 3, when the face is rotated to different
angles, only the landmarks visible to the camera are displayed,
which is critical to establish correct correspondences. To align
landmarks between 2D images of different perspectives, each 3D
vertex is labeled with a unique ID.

3.2 2D Image Landmark Generation

To train landmark detection network, 2D images with labeled land-
marks are used as training samples. Once we have the 3D landmark
models with labeled vertices (with a unique ID for each vertex), the
3D models and labeled vertices can be projected to 2D space to ob-
tain images with identified landmarks. Assuming there is a virtual
camera, the projection matrix is composed by camera extrinsics

1352

MM 21, October 20-24, 2021, Virtual Event, China

Figure 2: 3D landmark model using 3DMM. Each 3D vertex
is labeled with a unique ID.

Figure 3: Selected 800 landmarks on 2D images projected
from 3D vertices.

(rotation and translation) and intrinsics (focal length and principal
point), which projects 3D vertices in world coordinate to 2D image
pixels in image coordinate, as equation below:

. w
xtm f 0 x0 O R ¢ )éw
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where p is the pixel position in 2D images, composed by its x
coordinate x'™ and y coordinate y"™. f represents focal length. x,
and yo are the principal point’s coordinates. R is a 3 * 3 rotation
matrix and ¢ is a 3 * 1 translation vector. X, Y, and Z" represent
the 3D point’s world coordinates. To increase the robustness of face
landmark detection, we rotate the virtual camera around the 3D
face model to generate a sequence of 2D face images and the 2D
landmark points projected by 3D vertices with unique IDs in world
coordinate, as shown in Fig. 3. Since each 3D vertex has a unique
ID in a 3D face model, when 3D vertices are projected to 2D images
from different perspectives, all the projected 2D landmark points
are ensured to be true positive correspondences in the sequence of
images from different perspectives.

3.3 Landmark Detection Framework

After using 3DMM to generate 3D vertices visible to camera and
project 3D vertices to 2D landmark points, we train the face land-
mark detection network with labeled 2D landmark points. Our
supervised landmark detection network takes facial images as in-
put with 800 (can be changed to other numbers) landmark labels
and outputs a feature vector of 1600 dimensions. Therefore, to learn
the 800 landmark points in 2D face images, the CNN network is
trained to make predicted feature vector close to ground truth label.
The network is composed of seventeen convolutional layers fol-
lowed by Rectified Linear Units (ReLU) activation function. A single
fully connected layer is applied to output a 1600 dimension vectors
which can reshape to 800 X 2 dimensional landmarks. During 3D
face reconstruction, the trained landmark detector detects the land-
marks for each face image to build detailed and tight constraints
for later depth and camera pose estimation network training, and
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then the landmarks from target image can be projected to all other
source images to achieve landmark bundle adjustment constraint.

4 DEEP SFM FRAMEWORK

The entire structure-from-motion neural network explores the
multiple-view geometry constraints to reconstruct the 3D face
based on a sequence of image inputs. With the images captured
from different perspectives of the 3D face model, the StM network
can reconstruct an accurate 3D face. In the training process, bun-
dle adjustment is applied to enforce the 2D pixels projected by
reconstructed 3D face points to be consistent in different camera
poses, which involves both spatial and spectral constraints. For
spatial loss, landmark points are applied to decrease the displace-
ment distance between the originally detected landmark points
from pre-trained landmark detector and the 2D pixels projected by
the reconstructed 3D face points. For spectral constraints, the 2D
pixels’ RGB values of the target image warped by the face depth
map and camera motion are enforced to be close to RGB values
of the source image. Based on our neural network structure and
the effective loss constraints, our deep SfM network can estimate
the face depth of each image accurately. Once the landmarks are
detected, the above spatial and spectral consistency constraints are
applied to optimize the 3D reconstructed face and camera poses,
which is entirely unsupervised due to the self-supervision between
3D reconstructed faces and camera poses based on our spatial and
spectral constraints.

4.1 Network Structure

The 3D SfM reconstruction framework is to predict the depth map
and camera pose through a sequence of images inputs with differ-
ent perspectives. Figure 1 demonstrates the basic structure of our
deep unsupervised 3D SfM face reconstruction network, which is
to jointly learn the depth map and the corresponding camera pose
by both spatial and spectral constraints between target image and
source image. The network structure can be divided into two parts.
One marked by blue color in Fig.1 is to generate an accurate depth
map with an encoder-decoder network structure. The encoder net-
work extracts significant features from the input images, composed
of seventeen convolutional layers and a single fully connected layer,
and then the decoder network uses skip connections [15] to fur-
ther interprets those feature representations to generate depth map.
Similar to the structure of the depth estimation network, instead
of generating depth maps, the camera pose estimation network
outputs relative 6 DoF parameters which can construct a rotation
matrix R (3%3) and a translation vector t (3x1).

4.2 Landmark Bundle Adjustment

With any consecutive frames as input, our deep SfM network is
able to estimate depth maps D, and recover them into a complete
point cloud. The relative 6 DoF poses P,.; between them can be
estimated from the pose estimation network. As we have already
trained a massive facial landmark detection network as introduced
in Sec.3.3, with the predicted depth information for each frame and
the estimated relative camera motions between any two frames, we
can build an unsupervised constraint using the detected landmarks
in the source view images and the warped landmarks of the target
view image. Different from other camera motion estimation algo-
rithms [33] [31], we extend the local frames optimization (3-snippet)
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to a full sequence for Bundle Adjustment (BA) optimization. The
proposed bundle adjustment-based landmark consistency loss is
defined as:

LLandmarkiBA = Z Z Z luni (x(Pap, Dm)) — usrc—Ni”z )
M N i

where 7 represents a mapping relationship from 3D points to 2D
pixels. Py, is the relative camera motion from the target image to
the source images. Dy corresponds to the depth value at the My,
target image. i is the number of the detected landmarks, and N
represents the number of all other views except the current view.
u € R? means the 2D coordinates of the face landmarks. The L2 loss
guidance here is to measure the distance difference between each
projected landmarks in the warped target image and the detected
landmarks in the source image and minimize it.

4.3 Spectral Constraints

Except for the designated bundle-adjustment based landmark con-
sistency loss, we further enforce the spectral appearance of target
image to be consistent with source images after warping based on
face depth and camera motion. This can be achieved by imposing
the following spectral photometric consistency loss:

Lspectral = Z Z Z ”Ii(ﬂ(Pab’ Dj - Pj)) —Ispek (Pj)”l ®3)
ik
where P,y is the relative camera motion from the target image to
the source images. D; corresponds to the depth value of a pixel
pj at the iy target image I;. Iy, is the k;, source image. The L1
loss is to guide the optimization by reducing the pixel RGB value
difference between the warped target image and the source image.
As L1 loss alone is not robust enough to the light illumination and
contrast variation, we extend it with the image structural similarity
index to jointly evaluate two images in illuminance, contrast, and
structure. The improved spectral appearance consistency loss is a
comprehensive expression of SSIM and L1 loss as:

Lspectral = Z Z Z M || (r(Pap. Dj - p) = Lyrei (P,
i

k J
+ )'2 I*SSIM(ZIi,Isrcfk)

4)
where SSIM(I;, I,._) compute the element-wise similarity be-
tween the warped target image I; and the source view image Is¢.
We set 1;=0.15 and A = 0.85 following [8] [7].

Depth maps are less sensitive to the gradient locality [1] com-
pared with normal color images. Therefore, we further introduce
depth consistency across multiple-view frames to solve possible
depth ambiguity. We synthesize the source depth maps Ds from
the target depth maps D;, and then force the synthesized source
depth to be close to the original source depth. We first compute a
scale ratio of these two depths, and then define a depth consistency
loss as follows:

_ 2iDe(d)

2 Ds(0)
where the 7 is the depth scale ratio between the synthesized depth
and the original depth. The designed loss is able to achieve a scale-

consistent estimation and provide an additional global geometry
supervisory to improve the reconstruction performance.

Liepth = ﬁ Dl Boti) = Di()]n (5)
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5 EXPERIMENTS
5.1 Experiment setting

For facial landmark detection network, the input image is a grayscale
image with the size of 384 x 384. The feature extraction stage is
composed of four convolutional layers, four pooling layers, and
three fully connected layer in the end. Each convolutional layer
contains a filter bank producing multiple feature maps. The Recti-
fied Linear Units (ReLu) [17] is selected as the activation function.
For the pooling layers, We conduct max-pooling on non-overlap
regions in the feature map. The fully connected layers are able to
output a 1600 feature vectors which reshapes 800 landmarks X 2 (x
and y coordinates) dimensions.

After extracting the 800 facial landmarks from each input im-
age, the SfM-based learning network takes a video sequence from
multiple views as input. The network simultaneously estimates the
camera motion from each concatenated image pair and estimate a
3D point cloud from the depth prediction network. The learning-
based 3D face reconstruction network is trained in an unsupervised
manner and do not need any 3D supervision to guide the training
process. It is implemented with PyTorch library and trained from
scratch using Adam optimizer [13] with f1 = 0.9 and 2 = 0.99.
Rectified Linear Units (ReLu) [17] is applied as activation functions
for all convolutional layers. The weights of the depth estimation
network and pose estimation network are initialized with Kaiming
initialization [11] method with 2 batch size to achieve a trade-off be-
tween the efficiency and the memory usage. The whole framework
is trained for 50 epochs.

5.2 Dataset Introduction

Stirling ESRC 3D face dataset [6] is utilized to manually generate a
group of rendered multi-view images. The original format of the
3D objects is in a wavefront file containing 101 subjects (male =
47, female = 54) of 3D facial scans in a neutral expression. We uti-
lize Trimesh [3] to continuously rotate the virtual camera every 2
degrees to project 3D objects into an image to generate rendered im-
age sequences with a fixed focal length of 500 pixels. The resolution
of the generated images are 384 X 384.

Facescape [29] is a large-scale dataset that contains a large num-
ber of high-quality 3D face subjects, parametric models and multi-
view images. The age and gender of each object are also included in
the original dataset. 847 subjects with 20 expressions (totally 16490
models) are provided for training, which is roughly 90 percent of
the complete whole dataset. In this work, we randomly choose 6640
together with the selected 3D models in the Stirling ESRC 3D face
dataset for training, and the other 2000 objects for testing. The 2D
image generation process shares the same process as in the Stirling
ESRC 3D face dataset.

5.3 Landmark Detection

Through training a set of rendered multi-view face images gener-
ated by the Stirling ESRC 3D face datasets and the Facescape 3D
face datasets, the landmark detection network has superior perfor-
mance with massive landmarks. As shown in Fig. 4, we compare
ground truth landmarks with detected landmarks on the same im-
age to demonstrate a good generalization and robustness when
taking different views as input. Meanwhile, the mean squared er-
ror (MSE) between ground truth landmarks and corresponding
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detected landmarks is 4.52. In addition, to verify whether the land-
marks are aligned between different perspectives, we visually plot
corresponding landmarks detected from the face landmark detector
between image pairs having different perspectives. As shown in
Fig. 5, all the corresponding landmarks are matched correctly. Our
landmark model is not affected by occlusion when rotating any
degrees, indicating the stable landmark detection performance.

28
1 4

Figure 4: Green: ground truth landmarks; Red: detected land-
marks by the landmark detection network.

Figure 5: Aligned 2D landmarks across multiple views

5.4 Qualitative Result

We provide visual results of the reconstructed 3D point clouds from
input RGB images in Fig. 6 and Fig. 7. For each input image, the
corresponding 3D point cloud is produced accurately and shown at
two different viewpoints. With the help of the proposed spectral
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Figure 6: Visual results on Stirling ESRC 3D face dataset. For each sample, we show the input image at the first column, and
the 3D reconstruction results at different viewpoints at the second and third columns.

Figure 7: Visual results on Facescape face dataset. For each sample, we show the input image at the first column, and the 3D
reconstruction results at different viewpoints at the second and third columns.

and spatial loss, the 3D shape is able to be well recovered and the
details are able to be reproduced, such as in nose and mouth. we
also validate the accuracy of our proposed method using Facescape
dataset,. As shown in Fig. 7, the four input images are similar but
the reconstructed 3D point clouds can clearly be distinguished by
different expression feature from their eyebrow, eye and mouth.

5.5 Quantitative Result

We first demonstrate the effect of the number of the facial landmarks
to the accuracy of the depth estimation result. We report the MSE
between the ground truth depth map that is directly projected from
the 3D face model and the estimated depth map. As shown in Table
1. We observe that from 68 to 568 landmarks, the MSE achieves a
significant decrease from 20.15 to 4.26 on Stirling ESRC 3D dataset
and from 19.72 to 7.09 on facescape dataset, which demonstrates
the effectiveness of the proposed pipeline.

To evaluate the effects of each component and the proposed loss
constraint, we conduct an ablation analysis on both Stirling ESRC
3D face dataset and Facescape dataset, as shown in Fig. 10. We
visually compare the depth maps with only the proposed spectral
appearance consistency loss, only bundle-adjustment consistency
loss based on 68 landmarks, and full pipeline with 568 landmarks.
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It can be observed that depth information becomes more consistent
and smooth from left to right. As shown in first column, due to
the similarity of face’s pixel values, only using spectral appearance
consistency is unable to recover depth accurately. If only using
bundle-adjustment consistency loss on 68 landmarks, extensive
face depth details (e.g., regions around nose) are unable to be recov-
ered since there are few or even no landmarks in specific regions,
as shown in second column. Therefore, to improve the accuracy,
both spectral and spatial constraints relying on the massive de-
tected landmarks are introduced to learn facial depth information.
As shown in fourth column, the depth maps are complete, con-
sistent and smooth. The largest accuracy improvement benefits
from the proposed landmark consistency loss across multiple-view
frames. The full pipeline with all the constraints achieves the best
performance on both datasets.

5.6 Comparison with State-of-the-art Methods

We provide a visual comparison on Stirling ESRC 3D face and
Facescape dataset with other recent state-of-the-art face recon-
struction methods. Each method is fed with the input image to
generate a 3D face model to get a fair comparison. We compare our
network with 3DDFA [35], Pix2Face [2], VRN [12], 3DDFA_v2 [9]
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Figure 8: Visual comparisons on reconstructed face shape from Stirling ESRC 3D face dataset between our result and other
recent methods. First column: raw input image; second column: result from 3DDFA method; third column:result from VRN
method; fourth column: result from pix2face method; fifth column: result from 3DDFA_v2; sixth column: result from DF2Net
method; Seventh column: result from our pipeline; Eighth column: ground truth.
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Figure 9: Visual comparisons on reconstructed face shape from facescape dataset between our result and other recent methods.
First column: raw input image; second column: result from 3DDFA method; third column:result from VRN method; fourth
column: result from pix2face method; fifth column: result from 3DDFA_v2; sixth column: result from DF2Net method; Seventh
column: result from our pipeline; Eighth column: ground truth.
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MSE
68 landmarks | 200 landmarks | 300 landmarks | 400 landmarks | 500 landmarks | 568 landmarks
Stirling 17.15 16.83 12.31 9.65 6.89 4.26
Facescape 19.72 18.81 16.30 12.48 10.78 7.09

Table 1: Mean Squared Error using different number of landmarks to train network on Stirling ESRC 3D face and Facescape
datasets(in mm). We use ICP for alignment and compute point-to-point distance between our results and ground truth.

MSE

Stirling | Facescape
VRN [12] 17.32 20.89
pix2face[2] 11.74 25.84
3DDFA [35] 8.82 15.45
3DDFA v2[9] | 5.08 13.52
DF2Net [32] 4.58 8.14
Ours 4.26 7.09

Table 2: Mean Squared Error subjects on Stirling ESRC 3D
face dataset and Facescape dataset(in mm).

and DF2Net [32]. It can be observed in Fig. 8 and Fig. 9, our method
achieves more realistic and accurate reconstruction results than
most methods in shape. In Stirling ESRC 3D face dataset, it is espe-
cially obvious that our 3D reconstructed shape outperforms VRN
and pix2face methods. VRN method produce a lot of invalid infor-
mation when generating 3D shape and their nose scale is larger than
ground truth. The 3D reconstructed shape generated by Pix2face
method exists distortion and deformation, such as nose, mouth
and eyebrow. Compared to 3DDFA and 3DDFA_v2 outcomes, our
reconstructed 3D face model fully retains the input face image in-
formation. For example, 3DDFA and 3DDFA_v?2 respectively ignore
the teeth regions in the input image, with significant distortion and
deformation on the ear parts, even missing in some reconstruction
examples. In addition, our 3D shapes are more real overall. For
DF2Net method, although their 3D shaping effects are close to ours,
the 3D reconstruction of this method in the ear is very poor, which
is generally the most difficult components to reconstruct due to the
significant depth changes.

In the Facescape dataset, our method presents more detailed
information than other methods. For example, the ground truth
shapes of the second and the fourth rows are very similar. The
main differences are the different degrees of eye and mouth open-
ness. The method we propose can better present these differences.
Other methods have produced more blur and ambiguity because
they could not establish effective constraints in details to recover
the subtle changes. In addition, the 3D shapes generated by VRN,
pix2face and 3DDFA_v2 are quite different from the ground truth. It
is difficult to correspond the 3D shapes generated by their methods
to respective ground truth face models. The DF2Net method loses
significant information of the ear, and the depth values of the eye
are also significantly wrong (white convex). However, our method
can correctly estimate the depth of each organ based on the precise
spectral and spatial constraints. Overall, our method preserves the
complete input image information in the 3D reconstruction face
models compared with other state-of-the-art methods.

To obtain quantitative evaluation, we compare the reconstructed
3D point clouds with ground truth 3D models and report the aver-
aged point-to-point errors. The results are shown in Table 2. On
both Stirling ESRC 3D face and Facescape datasets, our proposed
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method achieves the lowest average Mean Squared Error (MSE)
across all test objects. Especially, our method achieves error of 4.26
lower than other methods (separately DF2Net : 4.58; 3DFFA : 8.82;
3DFFA_v2 : 5.08; pix2face : 11.74; VRN : 17.32) on Stirling ESRC 3D
face and error of 7.09 much lower than other methods (separately
DF2Net : 8.14; 3DFFA: 15.45;3DFFA_v2: 13.52;pix2face: 25.84;VRN:
20.89) on Facescape dataset.

Figure 10: Ablation study from depth maps on the Stirling
ESRC 3D face dataset (top two) and Facescape dataset (bot-
tom two) respectively . Left to right: raw input image; result
with only the designed spectral consistency loss;result with
only the designed bundle-adjustment 68 landmark consis-
tency loss; result in full loss with 568 landmark.

6 CONCLUSION

This paper develops a deep SfM framework targeting at 3D face
reconstruction. Bundle adjustment is incorporated in the CNN
training scheme to explore multiple view geometry relationship
across frames captured from different perspectives of the faces.
To establish reliable spatial constraints, a massive face landmark
detection method is developed that can detect 500 or even 800
landmarks with associated unique ID for each landmark. Spectral
constraints are further introduced to enhance the network training
effect, which reduces the color difference of pixels corresponding
to the same 3D point. Once the landmark detection is trained, the
SfM network training is unsupervised, which mitigates the labeling
efforts. Even with the widely used 68 landmarks, our SfM network
still achieves extraordinary 3D reconstruction accuracy.
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