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ABSTRACT

Feature detection and extraction is considered to be one of

the most important aspects when it comes to any computer

vision application, especially the autonomous driving field

that is highly dependent on it. Thermal imaging is less ex-

plored in the field of autonomous driving mainly due to the

high cost of the cameras and inferior techniques available for

detection. Due to advances in technology the former does not

hold true anymore and there lies tremendous scope for im-

provement in the latter. Autonomous driving relies heavily on

multiple and sometimes redundant sensors, for which thermal

sensors are a preferred addition. Thermal sensors being com-

pletely dependent on the infrared radiation emitted are able

to frame and recognize objects even in the complete absence

of light. However detecting features persistently through sub-

sequent frames is difficult due to the lack of textures in ther-

mal images. Motivated by this challenge, we propose a triplet

based Siamese CNN for feature detection and extraction for

any given thermal image. Our architecture is able to detect

larger number of good feature points on thermal images than

other best performed feature detection algorithms with superb

matching performance based on our extracted descriptors.

Index Terms— Thermal Imaging, Triplet Siamese CNN,

Unsupervised Network, Feature Detection and Description

1. INTRODUCTION

Extracting features on visible images is well established. Fea-

tures such as SIFT [1], SURF [2], and ORB [3] provide us

with good and distinct local image descriptions. There are

also several other well-defined edge and corner detection al-

gorithms such as Canny edge detector, harris corner detector

[4], etc. These detectors form a core part for SFM and SLAM

[5] [6] methods. However these same techniques fail to yield

good quality feature detection results when used on thermal

images. For the case of autonomous driving or navigation in

general, visible images should be sufficient for most of the

time, but in conditions of low to none visibility caused by the

environment such as rain, fog, snow, night etc., even a good

quality high resolution camera is not sufficient. On the other

hand thermal imaging is robust to all these aforementioned

conditions and provides us with high quality information of

the scene. Nevertheless there are certain drawbacks when it

Fig. 1. Feature keypoint detection results. Left: Input image

frame under consideration; Right: our network output.

comes to thermal imaging - The high texture quality observed

in visible images is lost in case of thermal images, which also

forms the basis for standard feature detection and extraction

algorithms. Thermographic cameras detect infrared radiation

emitted from the body of an object making it possible to have

good visibility even in the absence of illumination. Warm

blooded animals or object thus become easy to detect mak-

ing thermal imaging useful in military and surveillance appli-

cations and has a great potential in the field of autonomous

driving as well.

In the deep learning era, obtaining unique, better and more

accurate features from images has improved immensely. But

almost all the approaches based on images from the visible

spectrum which are rich in feature textures failing to com-

pletely tackle the aforementioned problems. BRIEF [7], SIFT

[1], SURF [2], ORB [3], FAST [8] and WADE [9] algorithms

are able to detect some features in thermal images but the

quality of detection is rather unsatisfactory. Image-to-image

translation using Adversarial networks for thermal-visible do-

main transfer can be used as a workaround but the generated

images are based on assumptions and also may add additional

artifacts which are not desirable.

In this paper, we introduce a feature detection and extrac-

tion architecture based of Triplet neural network. For detec-

tion network, it takes in three image patches namely Anchor,

Positive and Negative. These patches are passed through a se-

ries of convolutional and fully connected layers. The result-

ing vector is kept to be 128 Dimensional helping the network

retain valuable feature information from the patches. Fea-
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Fig. 2. Thermal image feature detection and extraction architecture. Input given are three image categories: Anchor, Positive

and Negative images. RGB descriptor values are also provided to regress the anchor feature descriptor.

ture detection and description could be considered as a single

step where midpoints for the image patch with a high feature

embedding response is saved for feature matching purpose.

However in order to acquire the high feature response, we in-

troduce an intermediate step by adding fully connected layers

to previously trained model weight values. The network is

trained on 32x32 patches corresponding to features obtained

from KAIST [10] and CSS [11] datasets. The network is able

to learn high-quality feature descriptor for given patches and

then classify good distinct features which can be identified

very accurately through subsequent frames.

To summarize, the main contributions of our work are as

follows: 1. We propose a novel Triplet based network to

train robust feature detection on thermal scenes. 2. We pro-

pose a patch-based feature extraction network to learn 128-

dimensional descriptor vectors to overcome the texture and

context limitation of the thermal scenes. 3. We integrate

both of the proposed detection and extraction networks into

a full pipeline to enable stable and reliable feature match-

ing on thermal images. 4. We achieve a superior perfor-

mance in visual and quantitative comparison compared with

other widely-used classical and most recent deep learning al-

gorithms.

2. RELATED WORK

Classic feature detection and extraction methods. Key-

point detection and feature point matching using Canny [12]

for edge, Harris [4] for corner detection and Histogram of

Oriented Gradients (HOG) [13] had been typically done in the

past and were used in applications such as recognition and im-

age matching. Later SIFT was introduced, and due to its high

robustness gave results with higher accuracy irrespective of

the image scale, orientation, or rotation. SIFT localized and

learnt good features using Difference of Gaussian (DoG) at

multiple scales which made it more popular among the ex-

isting feature detection algorithms with the drawback being

its higher computing time. In the later years, faster imple-

mentations similar to SIFT were introduced namely Features

from Accelerated Segment Test (FAST), Binary Robust In-

dependent Elementary Feature (BRIEF), Oriented FAST and

Rotated BRIEF (ORB), Speeded up Robust Feature (SURF)

which had their share of advantages and disadvantages com-

pared to the SIFT extractor. ORB feature detector used multi-

scale pyramid which were nothing but representations of the

same image at different resolutions. Each level in the pyramid

is a downsampled version of the image in the previous level.

Deep learning based detection and extraction meth-

ods. With the increase in popularity of deep learning-based

methods, focus was shifted towards learning based. Patch

based feature descriptor learning has been also implemented

using Siamese network however most of the work has been

done in the RGB domain. Faiz et al. [14] depicts a Siamese

network trained for detection of change in satellite imagery

with the network architecture containing two VGG16 [15]

networks. PN-Net [16] took a Triplet based approach to gen-

erate descriptor which could be used in traditional match-

ing setup. In contrast to Hinge Embedding loss [17, 18],

they introduced SoftPN loss where the pairs of patches rep-

resented a soft negative mining. Another Siamese network

L2-Net [19] specifically trained for descriptor learning from

patches in Euclidean space showed state of the art perfor-

mance. They had an all convolutional structure with a stride

of 2 to achieve downsampling,and a loss function having three

error terms.SuperPoint [17] used an encoder-decoder based

approach having a shared encoder and two different decoders

for description and detection of features. Having a good per-

formance, it was limited to RGB images and failing to pro-

duce comparable results for thermal images. All the above-

mentioned methods can be used for feature descriptor extrac-

tion but only on RGB/grayscale images. Our model can be

considered as the first patch-based descriptor learning scheme

designed for a more challenging thermal image dataset.

3. FEATURE DETECTION AND EXTRACTION

ARCHITECTURE

To enable the network to learn meaningful features on ther-

mal images, we make use of the Triplet Network which is

trained on image pair patches extracted from visible-thermal

image pairs from the KAIST and CSS datasets. The image
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patches are selected such that they contain feature informa-

tion which are robust to scale and illumination changes. The

size of the extracted patches is set to 32x32 to encapsulate

enough information to be identified as a strong feature. For

selection of patches we make use of SIFT keypoints obtained

on visible images and extract a 32x32 patch around it. An-

other patch with the same coordinates is extracted from the

corresponding thermal image, thus allowing us with visible -

thermal patches containing features. This method of extract-

ing patches is not entirely accurate as there are many features

that are observed in visible images which are absent in ther-

mal images. To overcome this situation we further filter the

image patch pair by taking into account the variance observed

on thermal patches as shown in Fig. 3, thus only selectively

choosing patches for finer training. We also make use of

heavy data augmentations on these patches to add robustness.

Fig. 3. Patch selection criterion on the basis of variance mea-

sured.

Fig. 4. An illustration of the three types of input images to

the detection network: Anchor from RGB images; Positive

and negative patches from thermal scenes.

For training Triplet Network, we require 3 images: An-

chor, Positive Negative. The Anchor is the patch containing

feature keypoint extracted from the visible image. The Posi-

tive is the thermal patch corresponding to the Anchor and the

Negative is any patch but Positive. The Triplet network learns

embeddings of the positive patches but also of the negative

patches thus allowing us to accurately localize the keypoint.

3.1. Feature Description Network

The Triplet model requires three images (in our case patches

corresponding to SIFT features) for learning the similarity be-

tween images. The Triplet network learns distributed embed-

ding representation of data points where contextually similar

data points are projected in the nearby region and dissimi-

lar data points are projected far away from each other. We

use SIFT feature to detect the keypoints and from those de-

tected keypoints we extract 32 x 32 patches in the RGB and

thermal image. The Anchor(A) - This patch corresponds to

the detected SIFT feature in the RGB image. On obtaining

the anchor patch, the keypoint for it is saved. Positive(P) -

The saved keypoint location from the anchor patch is used. A

32x32 patch with the previously detected keypoint at the cen-

ter is chosen as the positive patch. Negative(N) - For the neg-

ative patches we randomly generate keypoint locations and

patches with the generated keypoint at the center are selected.

Here an additional step is included where we implement patch

selection based on the standard deviation of both RGB and

thermal patch under consideration. Only those patches are

selected which have a deviation value above a threshold in-

dicating a good feature response. This additional step further

helps in making the learning better and more robust. The se-

lected patches are then fed into the Triplet network for feature

description learning. The network consists of five convolu-

tional layers followed batch normalization and ReLU activa-

tion function. Dropout is used to add regularization in both

the models and finally two fully connected layers along with

a Sigmoid function are used to output a 128-dimension vector.

Margin ranking loss with margin of 0.2 is used as the loss

function which computes the distance between the input im-

ages trying to reduce distance between correct matches while

increasing the other, with ADAM [20] having a learning rate

of 0.001 and as the optimizer. The equation for loss is as:

L(A,P,N) = max{||f(A)−f(P )||2−||f(A)−f(N)||2+α, 0}
(1)

Along with the above-mentioned loss we also use a MSE

constraint by training the anchor patches with their respec-

tive descriptor values as ground truth to improve the learning.

We noticed that, by doing so the model learned features not

only based on the pixel intensity values. The introduction of

descriptor value causes the final 128-dimensional anchor fea-

ture vector to regress to the provided descriptor values. This

further improves the model performance on low resolution

dataset such as KAIST. The equation for loss is given as:

LMSE =
1

mn

m∑

i=1

n∑

j=1

(Yij − yij)
2 (2)

And the overall loss function for the feature detection net-

work is Ldetection = λ1L(A,P,N) + λ2LMSE .

3.2. Keypoint Detection Network

The 128-dimensional output from the above learned Triplet

architecture is connected to the keypoint detection network,

which shares the same structure of the feature description net-

work, thus allowing one-step detection and description. This

step helps the network classify good and bad feature patches

to further improve the feature description and detection. All

the intermediate layers are frozen and two Fully connected
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layers followed by ReLU activation function dedicated for de-

tection are added. A Sigmoid activation is used at the end of

the fully connected output. The input to this network is 32x32

thermal-thermal patch correspondences. The patches here in-

clude augmentation by scaling, flipping etc. Learning is per-

formed on positive and negative patches producing an output

score compared to 0 or 1. Binary cross entropy loss (BCE)

along with Adam optimization is used for classification.

Ldet(q) = −
1

N

N∑

i=1

yi ·(p(yi))+(1−yi)·log(1−p(yi)) (3)

Once a patch with good feature is detected, mid points of the

patch in the image coordinate are located and stored as key-

point. After the model is successfully trained and keypoints

are obtained we use simple distance measurement amongst

the output scores of descriptor values to find the correspond-

ing matches in the two thermal frames. With the shared net-

work and common layers, the feature detection and descrip-

tion can be much accelerated.

4. EXPERIMENTS

For training we use KAIST [10] and Cross-spectral Stereo

dataset (CSS) [11]. These datasets are chosen to make our

model more robust to low resolution (KAIST) as well as much

high resolution (CSS) thermal patches. The image frames

are selected such that they consist of unique features for effi-

cient learning. This does cause reduction in the total number

of images in the dataset but it is compensated by augmenta-

tion where the frames are flipped (horizontally and vertically),

scaled and even jitter is added to the frames before training.

The training dataset consists of 10,000 to 15,000 images and

32x32 sized patches are extracted from the images taking our

total dataset count to more than 150,000 images. For testing

we use around 1500 images with patches extracted from them

in a similar manner as in training.

We compared feature description and matching from SIFT

and deep network SuperPoint on different datasets. The re-

Fig. 5. Feature matching comparisons: Input images (Top),

SIFT feature matching (second row), Superpoint matching

(third row) and finally our model (Bottom).

Keypoint Detected Keypoint Matched

SIFT KAIST - 121 KAIST - 77

CSS - 274 CSS - 218

Superpoint KAIST - 97 KAIST - 63

CSS - 212 CSS - 163

Our Model KAIST - 562 KAIST - 405

CSS - 778 CSS - 582

Table 1. Comparisons on detection and matching.

sults of which are shown in Fig. 5 and 6. It can be observed

from Fig. 5 that our method is able to generate denser and

more reliable matchings on the challenging thermal scenes,

compared with classic SIFT algorithm and learning based Su-

perPoint. We also compare feature point detection for differ-

ent techniques. From the feature detection result in Fig. 6,

we can see that even though SIFT has a relatively good num-

ber of feature detection for the high resolution CSS dataset,

it is unable to produce a comparable result for low resolution

KAIST dataset. This is mainly because SIFT is designed for

images with high textures and hence gives a poor detection.

Besides the visual comparison, we also report the number

of the detected keypoints and the matched keypoints from our

trained model on the two datasets, compared with SIFT and

SuperPoint in Table 1. It can be noticed that either for key-

point detection and the final matching stage, our pipeline is

able to produce stable and promising features points.

Fig. 6. Feature detection comparison. Top-bottom: Input Im-

ages; SIFT matches; Third row: Superpoint matches; Final

row: Our method.

5. CONCLUSION

We propose a throughout feature detection and description

network for thermal descriptor learning based on Triplet

Siamese network, which designs an effective method for ex-

tracting descriptor values to be learned along with the inten-

sity images to obtain much better feature extraction. Both the

learning scheme and loss constraint demonstrate an effective

solution compared to other available methods. Our method is

easy to implement to be used in practical applications.
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