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Abstract—Image-based localization provides an alternative
solution for camera pose estimation, which is a crucial compo-
nent for self-driving vehicles. Localization for vehicles requires
continuous feedback. We propose a solution that can accurately
estimate the vehicle position and orientation. In this solution, we
provide a complete pipeline for self-driving vehicles, including
map building and camera pose estimation. We first design a
convolutional neural network and train the localization system
based on the entire global map. During the real-time localization
stage, we fine-tune the network regressor online through the
training images in adjacent locations in the map, which can
enhance the localization accuracy significantly. Depending on
the vehicle motion, we adjust the scope of local training images
dynamically. We demonstrate the superior performance of our
method through experiments on benchmark dataset.

I. INTRODUCTION

The vision-based localization algorithm is to match the

query image against the map to estimate the camera pose.

We utilize SLAM [26] for map generation because of its

accuracy, and more importantly, the ability to generate a 3D

map in real-time. Unfortunately, SLAM solution may involve

accumulation error in the region that is far from the loop

closure point. To further improve the map accuracy, we can

build the map based on IMU and GPS data. A standard

approach to determine the location of a locally captured image

in the global map is to match their features and search for a

scene that yields maximal matches. A nicely structured map

allows us to utilize extra information to reduce the search

space and thus improves the efficiency of searching for correct

matches. The objective of the proposed algorithm is to localize

a road vehicle on a map. Under the road driving condition, the

images and corresponding camera poses are stored in a tree

structure, where the location of the corresponding branch is

the image location in the map given by the SLAM and GPS

solution, which increases the localization accuracy by focusing

on a local region.

We train a convolutional neural network based on images

and their camera poses. The camera pose is obtained from

the map building process. The trained network is a regression

framework with 6 degrees of freedom. As many SLAM

algorithms suffer from accumulation error issues, the map

and camera pose labels may be inaccurate. To make our

algorithm robust and widely applicable, our network can be

trained based on maps built by any SLAM/SfM methods. To

achieve this objective, we not only apply the camera pose

obtained from map generation process to learn the model but

also enforce geometric and photometric consistency during

the training process, which can help mitigate the inaccurate

camera pose label problems. We calculate the camera motion

based on the difference between camera poses associated with

images in a selected local keyframe set. Based on the camera

motion, we transform the image from one position to another

and examine the intensity difference between the overlayed

images. Meanwhile, as we have obtained the 3D point cloud

as a map, we back project the 3D points to the keyframes and

reduce the distance between back-projected points. In such a

case, we can rely on both spatial and temporal information to

learn the localization system. During the localization process,

the vehicle’s camera captures an image as the query. Our

localization procedure first utilizes the last known vehicle

camera pose as the initial guess to select a subset of image

frames with their camera poses. The selected frames are

applied to fine-tune the network online. Once the network is

updated, it will output the camera pose of the query image

using the trained regressor. We assume that the vehicle’s last

known location is close to its current location. The significant

error in determining the vehicle’s previous location could lead

to diverging result at the present time step. To overcome this

issue, when the last frame’s motion is mainly rotation, we

enlarge the search scope to increase the chance of accurately

fine-tune the network. The range of the search scope is set

back to the original configuration when the motion is mainly

translation. The strategy of dynamic search scope control

ensures the robustness of the algorithm to remove the error

in prior guess. The entire localization framework is shown in

Fig. 1.

Our contributions are summarized as follows: 1) we build a

complete solution targeting at self-driving vehicle localization,

including map building and vehicle pose estimation; 2) we ap-

ply a convolutional neural network to the vehicle localization

problem; 3) we propose a strategy to dynamically control the
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Fig. 1: The vehicle localization framework. A highly accurate map is generated for offline localization neural network training. Both spatial
and spectral photometric clues are applied to constrain the neural network learning. During online localization, the system will be refined
based on the adjacent images. The images used for online network optimization will be dynamically adjusted based on the vehicle motion.

scope based on camera pose indexing to fine-tune the neural

network online.

II. RELATED WORK

Visual localization estimates the camera pose, including

camera position and orientation, when given a query image

as the input. The initial map for localization is a database

of 2D images, each of which is associated with the position

information. Correspondingly, image retrieval was initially

applied to localize the query image [28]. In this process,

vocabulary structure [31], hierarchical search [37], and holistic

histogram features [36][15] are applied to enhance the image

retrieval speed.

Based on the development of 3D modeling algorithms [32]

[6], 3D point clouds are also used to localize the query

image. By registering the query scene to the 3D reconstruc-

tion point cloud, the system can estimate both the camera

position and orientation [14][18]. 2D images features are

also directly matched to the 3D point cloud using Visual

words to accelerate the matching process among the entire

3D point cloud [29][19][20]. Randomized tree [12], random

forest [1] and embedded random ferns [9] were also used

to obtain the correspondences between image and map. 3D-

to-3D matching [21] and multitask learning frameworks [22]

were applied to improve the matching accuracy in a fast

speed. Cvivsic et al. [7] utilize stereo vision to track images

features and build a pose graph to optimize the localization

result. With the development of deep learning, CNN network

was applied to localize the query image [16]. The training

labels were from the camera pose estimation of structure-from-

motion (SfM). The camera pose was estimated from the train

regressor without specific feature matching. Expert Sample

Consensus [2] explores deep neural network on RANSAC to

enhance the feature matching accuracy and applied improved

feature matching on camera localization problem. KFNet

[41] incorporates Kalman filter in the localization process to

regress the scene coordinate. Inloc [33] densely match the

correspondences and synthesize views to build constraints for

indoor localization. Recurrent neural network is also applied

in global pose estimation [27]. However, Sattler et al. [30]

pointed out that CNN-based camera pose regression do not

consistently outperform hand-crafted image retrieval methods.

When the map size is increased, the classification accuracy is

also reduced due to the confusion of appearance. As the scope

for autonomous driving is usually city-scale or even larger, the

localization accuracy decreases with the increase of the map.

To deal with this problem, we apply an online refinement based

on our pre-trained neural network localization model.

To generate 3D maps in real-time, visual odometry (VO)

[40] and Simultaneous Localization and Mapping (SLAM)

algorithms [5] estimate the camera pose and 3D point cloud.

Though with the help of local bundle adjustment and loop

closure detection, the drift error can be reduced, the ac-

cumulation error is always the most significant issue for

SLAM and VO algorithms. The deep neural network is also

applied in VO [24][35][38]. However, existing deep neural

network-based methods mainly focus on the adjacent frames’

depth and camera pose estimation and have not realized the

loop closure detection issue, leading to the entire trajectory

largely differ from the ground truth. Different from the 3D

point cloud, our map models are built through 3D camera

poses, which will be introduced in section III. To localize

the query image, we apply a convolutional neural network-

based method, which is presented in section IV with basic
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(a) (b)

Fig. 2: 3D map built by SLAM and adjusted based on IMU and GPS.
(a) Original ORB-SLAM Map. (b) Map adjusted by high precision
IMU and GPS. White points are the 3D points shown in the 2D map.
Red lines are the ground truth.

network structure and training method in section IV.A. Relying

on the vehicle location prior, we train neural network locally

online introduced in section IV.B and dynamically change of

the adjusting scope in section IV.C. The loss function to train

the neural network is described in section IV.D.

III. MAP BUILDING

An accurate map is critical to provide a precise reference

for the images to be localized, which can support to estimate

the vehicle position and orientation accurately. As the road

condition keeps changing, a fast and accurate map generation

method is required. To realize this objective, we use IMU, or

GPS or SLAM [26][25] as our map building method, as those

methods can be used in real-time with satisfactory accuracy.

Most autonomous driving (e.g., Google, Baidu, Ford) and

mapping service providers (e.g., HERE maps, TomTom) equip

their vehicles with high precision GPS and IMU, especially

for the map building purpose. Therefore, GPS and IMU or

SLAM are used to build the map. As maps are provided by

map companies, autonomous consumer cars are not required to

be equipped with high precision GPS and IMU. Alternatively,

we can also use the SLAM method to build the map, which

relies on loop closure detection to decrease the drift error.

We make the map based on each image’s camera pose. To

show the built map, we display the point cloud built by SLAM

and IMU/GPS (Fig. 2), which is another output of the SLAM

together with camera pose. The desired output for localization

is camera pose. However, as we also apply 3D points to train

the network, we also maintain the 3D map points together with

camera poses.

Once each image obtains its camera pose, we index images

into a K-D tree based on their camera poses. Our map building

method utilizes a clustering structure that groups the map

points in a specific window based on their locations. During

the network training stage, we apply the back-project error as

the loss function. Our framework of visual localization defines

that all map points from the same image belong to a cluster.

These clusters are indexed in a KD-tree based on their camera

poses.

IV. IMAGE-BASED LOCALIZATION

A. Overall Localization System

Once we have created an accurate map, we can utilize this

map to train a convolutional neural network to localize the

query image. To train this network, we first rely on Resnet101

network as the base of our model and apply transfer learning

to compensate for the training samples to learn our model. To

better support our task, we modify the Resnet101 network

based on the following steps: (1) remove the last 3 fully

connected layers of Resnet101; (2) add a convolutional layer;

(3) add another pooling layer; (4) add an additional fully

connected layer; (5) normalize the output through softmax.

We tune the last four layers based on our entire mapping

data. The training labels are the 6 degrees of freedom obtained

from GPS and IMU or SLAM method, as well as the point

cloud data. The translation matrix is a 3-dimensional vector.

The rotation matrix is transformed into quaternion represented

a 4-dimensional vector. Then the label for each image is a

7-dimensional vector. The trained network is the localization

model that we will utilize to localize the image and obtain the

camera pose.

B. Online Local Fine Training Network

As the network is trained based on the entire map, the

network is targeted to provide satisfactory performance for the

entire map region. Once we know the rough vehicle location,

we can select a region of training samples to fine-tune the

network, which may provide more accurate camera pose esti-

mation for the current query image. As we choose just a tiny

number of images to tune the newly added layers, this local

training process can be conducted in the online process. As our

proposed algorithm utilizes a clustering structure that groups

the map points in a specific window based on their location,

we can quickly extract the images close to the current query

frame. 3D map generated from the vision-based algorithm can

be conveniently clustered based on images where the features

are extracted in SLAM. Our framework of visual localization

defines that images are indexed in a KD-tree based on their

camera poses.

During localization, we define the fine training scope as the

number of images that are used to fine train the neural network.

The scope defining the fine-tune region is approximated by the

vehicle last known camera pose. Assuming the update interval

of image measurement is sufficient, a moving vehicle operating

under the normal driving condition cannot have a dramatic

change in its ego-motion between two measurement images.

Thus, we can also utilize the localization result in the last

measurement to determine the network fine-tuning scope of the

current frame. We can propagate the search scope location with

vehicle kinematic model to further decrease the distance be-

tween vehicle location and search scope location and provide

faster and more accurate scope prediction between the query

image and the map. When there is no prior knowledge of the

vehicle available, we apply the trained network based on the

entire map without local training for the initial location. Once
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the starting location is identified, we determine the search area

based on the current location.

C. Dynamic Scope Control

The size of the online adjusting scope is dynamically up-

dated based on estimation accuracy. When the previous result

is accurate, a smaller search scope could be utilized, and vise

versa. This paper utilizes an initial search scope of 5 images

that cover the front, back, left and right direction of current

image location. When the vehicle motion is determined, i.e.,

the moving direction of the vehicle is known, we can further

narrow down the search scope. Experimentally, while the

vehicle is moving forward or backward, which means the

motion is mainly translation, there is a relatively substantial

overlap between adjacent query frames. When the scene alters

dramatically, such as significant rotation motion, we enlarge

the search scope. It is practically difficult to determine the

accuracy of the localization without a reference signal. Di-

rectly utilizing residual error for accuracy measurement can

sometimes be biased. In this paper, we propose to utilize

the ratio of the magnitude of translation and rotation vectors

as a criterion to predict our estimation accuracy. When the

ratio between translation and rotation magnitude is below a

predefined threshold, we increase the size of the training scope.

When the ratio increases to a limit, we can reduce the size

of the search scope back to the default configuration. The

threshold in our case is set to 2.

D. Loss Constraint

The result from the matching step gives a set of map points

and their 2D projection coordinates in the current measurement

image plane. The coordinate of a 3D point in camera body

frame, pc ∈ IR3, can be calculated from its known coordinate

in the map frame, p ∈ IR3, by Eq. 1:

pc = Rwp + tw (1)

The projection coordinate of pw in image plane is calculated

with the perspective projection equation:

u

f
=

R11px +R12py +R13pz + tx

R31px +R32py +R33pz + tz
v

f
=

R21px +R22py +R23pz + ty

R31px +R32py +R33pz + tz

(2)

We extract image feature coordinate [u, v] from the query

image and acquire the corresponding map points pw from the

map, which is available in SLAM map building process. From

this given information, our objective is to estimate Rw and

tw. We achieve this by solving an optimization problem that

minimizes the following loss function:

min
Rw,tw

L =

([

u

v

]

− Proj(Rw, tw, p)

)T

([

u

v

]

− Proj(Rw, tw, p)

)
(3)

where function Proj is the perspective projection equation at

the right side of Eq. 2 caused by the perspective camera model.

Eq. 3 is the least square cost function.Our work parameterizes

the rotation matrix with the quaternion. The quaternion is a

4 × 1 unit vector, q = [q1, q2, q3, q4]. It yields less number

of parameters compared with the rotation matrix but does not

experience the singularity issue like Euler angle and Classical

Rodrigues parameters. Each element of a rotation matrix

parametrized with the quaternion is a multivariate quadratic

function of q. Although the element of the rotation matrix is

non-linear, we can show that Eq. 2 is linear in terms of rotation

matrix elements after manipulated into form of Eq. 4.

(uR31 − fR11)px + (uR32 − fR12)py

+ (uR33 − fR12)pz = ftx − utz

(vR31 − fR21)px + (vR32 − fR22)py

+ (vR33 − fR32)pz = fty − vtz

(4)

Replacing the elements of rotation matrix in Eq. 4 with

quaternions leads to two multivariate 2nd order polynomial

equations. For the sake of compactness, we are not expanding

the Eq. 4 explicitly with quaternion. However, it is clear

that the estimation of a quaternion is reduced to solving two

multivariate 2nd order polynomial equations that have four

parameters. The reason we use both camera pose and 3D map

points from SLAM to train the network instead of just camera

pose is that in this way, we can in the largest extent reduce

the SLAM accumulation error in map building.

As SLAM/SfM may suffer from accumulation error, we

further constrain the camera pose and the learned map to be

consistent from both spatial and spectral perspectives. During

the SLAM/SfM processes, we obtain the camera pose for each

frame together with the depth map or 3D point cloud. To

spatially optimize the camera pose, we project the map points

to the different images. Meanwhile, we match the features

for the last frame’s points to the current image feature map.

Ideally, the matched point and projected pixels on the current

frame should be as close as possible, because the projected

point and the matched pixel should be from the same map

points. We plan to reduce the position difference between the

matched pixel and the projected pixel, as shown in Fig. 3(a). In

Fig. 3(a), p and p′ are the two projected pixels from the same

3D point P on two different images. pm is the matching pixel

to the left 3D projected pixel p. Ideally, p′ and pm should be

the same pixel as they both correspond to the same pixel p.

Therefore, we optimize the camera pose to make the distance

between the p′ and pm to be as small as possible. The spatial

constraining loss is as Eq. 5.

Lspatial =
√

pm2 − p′2 =
√

pm2 − (K(R2 · P + t2))2,

pm → p = K(R1 · P + t1)
(5)

In Eq. 5, we define the loss function to be the distance

between the 3D projected pixel on the current frame p′ and

the pixel pm on the current frame corresponding to the 3D

projected pixel p of the previous frame. R2 and t2 are the

orientation and position matrices of the current camera pose,

which project the 3D point P from the world coordinate to
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Fig. 3: Spatial (left) and spectral loss (right) in the network training
process. Spatial loss constrains the distance between the matching
features and back-projected points to be small. Spectral loss con-
strains corresponding pixels to be close in intensity.

the camera coordinate. The camera intrinsic matrix K further

projects the 3D point in camera coordinate to the image plane.

Similarly, R1 and t1 represent the orientation and position

matrices of the previous camera pose. p′ and pm are both the

corresponding pixels of p from two different perspectives: one

is from the feature matching, and another one is from the same

3D point re-projection. Through reducing the spatial distance

between p′ and pm by optimizing the camera pose, we can

further improve the camera pose estimation accuracy.

In addition to the spatial constraints, we also optimize the

network by spectral constraints. We project the 3D points to

the 2D images based on estimated camera poses. The 2D pixels

in different frames projected from the same 3D point should

appear similar, which means their intensity values should be

close to each other. Our objective is to reduce the spectral

distance as small as possible, which can help us to optimize the

camera pose, as shown in Fig. 3(b). In Fig. 3(b), the 3D point

P is projected to p and p′ in two frames. Ip and Ip′ are the

intensity of the two re-projected pixels. As the two pixels are

corresponding to the same 3D point, their pixel intensity value

should also be similar. We constrain the intensity represented

by SSIM to be close to optimize the camera pose, as the

following equation.

Lspectral = 1− SSIM(Ip, Ip′)

p = K(R1 ∗ P + t1), p′ = K(R2 ∗ P + t2)
(6)

Similar to spatial constraint, (R1, t1) and (R2, t2) are extrin-

sics of the camera pose of the previous and current frame. K is

the intrinsic of the camera. Extrinsics and intrinsics project the

3D point P to the image pixels p and p′. Through reducing the

intensity value Ip and Ip′ of the two corresponding pixels, we

further optimize camera poses from the spectral perspective.

V. EXPERIMENTS

To output camera poses, we first use a CNN to efficiently

extract features and reduce feature representation dimension-

ality. The input of the Resnet is the query image followed

by fine-tuning layers whose size of the receptive field in the

network decrease from 7×7, 5×5 to 3×3 in order to extract

finer region. Following a fully-connected layer and Softmax

activation layer, the network returns a 7×1 transformation

vector. During the test process, every single query image is

(a)

(b)

Fig. 4: 3D points back-projected to the images based on the camera
pose inferred from the neural network after training. Blue points are
the 3D points back-projected to the image. Red points are original
pixels corresponding to the blue points. Yellow lines are the distance
in corresponding pixel-to-3D point pairs.

Fig. 5: Vehicle paths generated without dynamic online training range
determination function (left) and with this function (right). Red color
marks the region of major difference.

the input for the network and only the new added layers are

adjusted based on new inputs. The model is trained for 50

epochs. The batch size is 8 using Adam optimizer [17] where

β1 equals to 0.9 and β2 is 0.999. The initial learning rate is

λ =2× 10−4 and set to be half after the first 30 epochs till to

the end of training.

Our method is first tested on the public KITTI dataset [13],

which is mainly for self-driving tasks. In KITTI dataset, the

scenes are captured by two cameras under a stereo setting.

During the map building process, the system maintains the left

camera images and their associated camera poses in memory.

The right images will be used to test the accuracy of our lo-

calization method. As left and right cameras share similarities

in each pair of stereo images, we sample half (odd index) of

the left camera images for map generation. The right camera

images (even index) corresponding to non-selected left images

will be applied for testing to avoid the same scene for testing.

The training process is conducted only on the map generation

data. Therefore, map generation and training process share

the same sequence of data. And the testing data are different
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Fig. 6: Localization paths for all the 11 sequences on KITTI dataset. The white points are the ground truth, and the blue points are the
predicted camera position from our localization system.

Performance
RMS error in position (m) Variance for position RMS error in attitude (rad) Variance (Attitude)
x y z x y z x y z x y z

Our framework 0.3952 0.1381 0.3491 0.1538 0.0209 0.1621 0.0071 0.0101 0.0076 0.000019 0.000061 0.000022

Superpoint [8] 0.4133 0.1458 0.3948 0.2268 0.03247 0.1763 0.0117 0.0161 0.0155 0.000047 0.000066 0.000053

D2-Net [10] 0.4056 0.1377 0.3329 0.2183 0.03347 0.1639 0.0114 0.0169 0.0147 0.000059 0.000060 0.000046

BRISK 0.7081 0.1876 0.4786 0.6052 0.0736 0.3104 0.0176 0.0281 0.0179 0.000069 0.00017 0.000074

ORB 0.4290 0.1555 0.2760 0.1820 0.0240 0.0759 0.0120 0.0163 0.0126 0.000036 0.000066 0.000039

SURF 0.6881 0.2492 0.5420 0.4711 0.0621 0.2936 0.0193 0.0302 0.0220 0.000093 0.00023 0.000121

TABLE I: Comparison of our localization framework and feature-based methods regarding the position and attitude estimation and variance.

video sequences compared with training data. To enlarge the

variance of the testing data, each of these 11 sequences testing

data is transformed with a homography matrix rotating the

image from 0-20 degrees to change viewpoints. Random noise

is added in the query video frames to change spot intensities

and simulate unseen conditions. The same training and testing

processes are conducted on all the methods to be compared

with the same training and testing data. In

We train the neural network system based on camera pose

optimization to reduce the 3D points back-projection spatial

loss and spectral photometric error. We first visually verify

the training effect based on the 3D back-projection error, as

shown Fig. 4. In Fig. 4, 3D points are back-projected to the

images using the camera pose inferred from the neural network

represented by the blue points. Original pixels correspond to

the 3D points during map generation stage are depicted by red

color. Yellow lines between the red and blue points represent

the distance between the back-projected 3D points and corre-

sponding 2D pixels. As can be observed, the small yellow lines

demonstrate the learning process is effective to output a correct

camera pose. To avoid confusion, this verification is conducted

on the training data split, which is used for map generation as

well, as the testing data split does not involve the local feature

extraction step. The rest experiments are conducted on testing

sequences without overlapping with the training data.

To further verify the effect of dynamic scope to camera pose

prediction, we apply the fixed online training scope without

dynamic online training range determination, indicating the

training scope is always kept the same size around the previous

frame’s location, as Fig. 5. From both Fig. 5(a) and 5(b),

the offset points from ground truth mainly are from the

large rotation area where the view changes dramatically, after

turning off the dynamic range determination function. When

vehicle turning at corners, the view has a relatively large

change by rotation, keeping the updating region too tight may

result in the loss of true positive training samples. From Fig. 5,

dynamically adjusting the local training scope will positively

affect the localization accuracy. A fixed training region may

introduce bias to update the network. The localization accuracy

of all the paths is displayed in Fig. 6.

We show our deep neural network’s performance with

regards to RMS error in position and attitude compared with

other dominant features and deep learning features (Superpoint

[8] and D2-Net [10]) fine-tuned on 10,000 random selected

images on the testing datasets as Table I. The localization

method of classical features is based on the same strategy

of our deep neural network with local search (first global

searching feature correspondences in 3D map and then refine

camera pose based on local feature matching to neighboring

images) and dynamic search region control based on the

same rotation and translation ratio. From Table I, our deep

neural network achieves the best performance in rotation and

translation measurement. We can see that the local search and

dynamic search scope control can lead to the high localization

accuracy for feature-based methods as well. However, our con-

volutional neural network-based approach can achieve the best

performance in terms of rotation and translation estimation,

including the average precision and variance, indicating the

stable performance of our method. Superpoint and D2-Net

are better than BRISK and SURF, and better than ORB in

several categories. In testing, D2-Net and Superpoint have the

largest correct matching rate. The less detected features in
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Our method V-LOAM [40] LOAM [39] SOFT2 [7] GDVO [43] Stereo DSO [34] PMO [11] MonoROCC [4] SfMLearner [42] Vid2depth [23]

Translation error 0.28% 0.63% 0.64% 0.65% 0.86% 0.93% 2.05% 1.11% 2.33% 1.86%

Rotation error (deg/m) 0.000066 0.0014 0.0014 0.0014 0.0031 0.002 0.0051 0.0028 0.0063 0.0057

TABLE II: Comparison with other top performed SLAM and VO methods on KITTI dataset

D2-Net and Superpoint than ORB affected final performance.

Our method relieves from feature matching and achieves best

overall accuracy.

We also test our method in comparison with other state-of-

the-art localization methods. We show the position and attitude

errors in Fig. 7. A smaller number indicates better perfor-

mance. Among all the state-of-the-art localization methods,

Probabilistic model (stereo and monocular) [3], Global co-

visibility [19], Randomized tree with binary search [12], and

2D-to-3D [29] are the methods relying on feature matching

and geometric verification without the use of deep neural

network. PoseNet [16], Expert Sample Consensus [2], and

KFNet [41] are based on convolutional neural networks to

infer the camera pose. Benefitting the network training struc-

ture, and online adjustment under dynamic scope control, the

proposed neural network system achieves the best accuracy for

both translation and rotation estimation compared with other

methods, indicating the effect of our neural network in terms

of localization tasks.

0.55

3.70

39.16

4.13 4.88 5.02

10.58

2.32 1.98

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Our method Probabilitistic

model

(stereo)

Probabilitistic

model

(Monocular)

Global co-

visibility

Randomized

tree with

binary search

2D-to-3D PoseNet Expert

Sample

Consensus

KFNet

P
o

si
ti

o
n

 e
rr

o
r 

(m
)

0.83

1.35

5.43

3.75
4.06 4.21

6.93

3.24

2.71

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Our method Probabilitistic

model

(stereo)

Probabilitistic

model

(Monocular)

Global co-

visibility

Randomized

tree with

binary search

2D-to-3D PoseNet Expert

Sample

Consensus

KFNet

A
lt

it
u

d
e

 e
rr

o
r 

(d
e

g
re

e
)

Fig. 7: The error of position (upper) and attitude (bottom) compared
with state-of-the-art localization methods (Probabilistic model (stereo
and monocular) [3], Global co-visibility [19], Randomized tree with
binary search [12], 2D-to-3D [29], PoseNet [16]), Expert Sample
Consensus [2], and KFNet [41].

To verify the effect of each component in our pipeline, a

quantitative ablation study is added as Table III. From the

Error for
ablation study

Full pipeline
Without local
fine-tuning

Without dynamic
scope change

Position (m) 0.55 1.63 1.08

Attitude (deg) 0.83 1.22 0.97

TABLE III: Ablation study for quantitative analysis

table, local fine-tuning can avoid global confusion, which plays

a more critical role than dynamic scope change.

We understand that SLAM and VO may contain the ac-

cumulation error problem. Here we also want to compare

with the most advanced SLAM and VO methods to prove

the accuracy of our method, as this is the closest comparison

category in KITTI website, in addition to the comparison with

localization methods with map priors that we have already

shown in Fig. 7. We compare the most recent and best

performed SLAM and VO algorithms on KITTI odometry

category (V-LOAM (Lidar+camera) [40], LOAM (Lidar) [39],

SOFT2 (stereo) [7], GDVO (stereo) [43], Stereo DSO [34],

PMO [11], MonoROCC [4]), which mainly based on classical

geometrical SLAM/VO methods, and deep neural network

based methods (SfMLearner [42] and Vid2depth [23]), as

Table II. Our method performs significantly better than the

SLAM and visual odometry methods from translation and

rotation error. It is noticeable that deep neural network based

methods perform worse on camera pose estimation than clas-

sical SLAM/VO methods, which we consider it is because

the optimization condition (e.g., loop closure) in epipolar

geometry based methods maintain tighter constraints. This

result is consistent with Sattler et al. [30]’s finding. This is also

part of the reason we apply classical geometrical SLAM as the

base to build the localization map. The overall performance

demonstrates that our method can provide reliable and superb

performance on vehicle ego-motion estimation.

VI. CONCLUSION

This paper presents a localization method for self-driving

vehicles that can accurately estimate the vehicle position and

orientation. We build maps composed of images with their

associated camera pose and index all the camera poses of the

map. We first train a CNN based on the training images, and

their camera poses with the global map. We further extract

the closest images and camera poses to train the network

online locally. The current vehicle pose is estimated through

the fine-tuned network globally and then locally. Based on the

translation and rotation motion magnitude ratio, we determine

the dominant motion of the vehicle and dynamically change

the scope to update the network. Experiments demonstrate

accurate localization effects.
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