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Abstract—Image-based localization provides an alternative
solution for camera pose estimation, which is a crucial compo-
nent for self-driving vehicles. Localization for vehicles requires
continuous feedback. We propose a solution that can accurately
estimate the vehicle position and orientation. In this solution, we
provide a complete pipeline for self-driving vehicles, including
map building and camera pose estimation. We first design a
convolutional neural network and train the localization system
based on the entire global map. During the real-time localization
stage, we fine-tune the network regressor online through the
training images in adjacent locations in the map, which can
enhance the localization accuracy significantly. Depending on
the vehicle motion, we adjust the scope of local training images
dynamically. We demonstrate the superior performance of our
method through experiments on benchmark dataset.

I. INTRODUCTION

The vision-based localization algorithm is to match the
query image against the map to estimate the camera pose.
We utilize SLAM [26] for map generation because of its
accuracy, and more importantly, the ability to generate a 3D
map in real-time. Unfortunately, SLAM solution may involve
accumulation error in the region that is far from the loop
closure point. To further improve the map accuracy, we can
build the map based on IMU and GPS data. A standard
approach to determine the location of a locally captured image
in the global map is to match their features and search for a
scene that yields maximal matches. A nicely structured map
allows us to utilize extra information to reduce the search
space and thus improves the efficiency of searching for correct
matches. The objective of the proposed algorithm is to localize
a road vehicle on a map. Under the road driving condition, the
images and corresponding camera poses are stored in a tree
structure, where the location of the corresponding branch is
the image location in the map given by the SLAM and GPS
solution, which increases the localization accuracy by focusing
on a local region.

We train a convolutional neural network based on images
and their camera poses. The camera pose is obtained from
the map building process. The trained network is a regression
framework with 6 degrees of freedom. As many SLAM
algorithms suffer from accumulation error issues, the map

and camera pose labels may be inaccurate. To make our
algorithm robust and widely applicable, our network can be
trained based on maps built by any SLAM/SfM methods. To
achieve this objective, we not only apply the camera pose
obtained from map generation process to learn the model but
also enforce geometric and photometric consistency during
the training process, which can help mitigate the inaccurate
camera pose label problems. We calculate the camera motion
based on the difference between camera poses associated with
images in a selected local keyframe set. Based on the camera
motion, we transform the image from one position to another
and examine the intensity difference between the overlayed
images. Meanwhile, as we have obtained the 3D point cloud
as a map, we back project the 3D points to the keyframes and
reduce the distance between back-projected points. In such a
case, we can rely on both spatial and temporal information to
learn the localization system. During the localization process,
the vehicle’s camera captures an image as the query. Our
localization procedure first utilizes the last known vehicle
camera pose as the initial guess to select a subset of image
frames with their camera poses. The selected frames are
applied to fine-tune the network online. Once the network is
updated, it will output the camera pose of the query image
using the trained regressor. We assume that the vehicle’s last
known location is close to its current location. The significant
error in determining the vehicle’s previous location could lead
to diverging result at the present time step. To overcome this
issue, when the last frame’s motion is mainly rotation, we
enlarge the search scope to increase the chance of accurately
fine-tune the network. The range of the search scope is set
back to the original configuration when the motion is mainly
translation. The strategy of dynamic search scope control
ensures the robustness of the algorithm to remove the error
in prior guess. The entire localization framework is shown in
Fig. 1.

Our contributions are summarized as follows: 1) we build a
complete solution targeting at self-driving vehicle localization,
including map building and vehicle pose estimation; 2) we ap-
ply a convolutional neural network to the vehicle localization
problem; 3) we propose a strategy to dynamically control the
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Fig. 1: The vehicle localization framework. A highly accurate map is generated for offline localization neural network training. Both spatial
and spectral photometric clues are applied to constrain the neural network learning. During online localization, the system will be refined
based on the adjacent images. The images used for online network optimization will be dynamically adjusted based on the vehicle motion.

scope based on camera pose indexing to fine-tune the neural
network online.

II. RELATED WORK

Visual localization estimates the camera pose, including
camera position and orientation, when given a query image
as the input. The initial map for localization is a database
of 2D images, each of which is associated with the position
information. Correspondingly, image retrieval was initially
applied to localize the query image [28]. In this process,
vocabulary structure [3 1], hierarchical search [37], and holistic
histogram features [36][15] are applied to enhance the image
retrieval speed.

Based on the development of 3D modeling algorithms [32]
[6], 3D point clouds are also used to localize the query
image. By registering the query scene to the 3D reconstruc-
tion point cloud, the system can estimate both the camera
position and orientation [l14][18]. 2D images features are
also directly matched to the 3D point cloud using Visual
words to accelerate the matching process among the entire
3D point cloud [29][19][20]. Randomized tree [12], random
forest [1] and embedded random ferns [9] were also used
to obtain the correspondences between image and map. 3D-
to-3D matching [21] and multitask learning frameworks [22]
were applied to improve the matching accuracy in a fast
speed. Cvivsic et al. [7] utilize stereo vision to track images
features and build a pose graph to optimize the localization
result. With the development of deep learning, CNN network
was applied to localize the query image [16]. The training
labels were from the camera pose estimation of structure-from-
motion (SfM). The camera pose was estimated from the train
regressor without specific feature matching. Expert Sample

Consensus [2] explores deep neural network on RANSAC to
enhance the feature matching accuracy and applied improved
feature matching on camera localization problem. KFNet
[41] incorporates Kalman filter in the localization process to
regress the scene coordinate. Inloc [33] densely match the
correspondences and synthesize views to build constraints for
indoor localization. Recurrent neural network is also applied
in global pose estimation [27]. However, Sattler et al. [30]
pointed out that CNN-based camera pose regression do not
consistently outperform hand-crafted image retrieval methods.
When the map size is increased, the classification accuracy is
also reduced due to the confusion of appearance. As the scope
for autonomous driving is usually city-scale or even larger, the
localization accuracy decreases with the increase of the map.
To deal with this problem, we apply an online refinement based
on our pre-trained neural network localization model.

To generate 3D maps in real-time, visual odometry (VO)
[40] and Simultaneous Localization and Mapping (SLAM)
algorithms [5] estimate the camera pose and 3D point cloud.
Though with the help of local bundle adjustment and loop
closure detection, the drift error can be reduced, the ac-
cumulation error is always the most significant issue for
SLAM and VO algorithms. The deep neural network is also
applied in VO [24][35][38]. However, existing deep neural
network-based methods mainly focus on the adjacent frames’
depth and camera pose estimation and have not realized the
loop closure detection issue, leading to the entire trajectory
largely differ from the ground truth. Different from the 3D
point cloud, our map models are built through 3D camera
poses, which will be introduced in section III. To localize
the query image, we apply a convolutional neural network-
based method, which is presented in section IV with basic
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Fig. 2: 3D map built by SLAM and adjusted based on IMU and GPS.
(a) Original ORB-SLAM Map. (b) Map adjusted by high precision
IMU and GPS. White points are the 3D points shown in the 2D map.
Red lines are the ground truth.

network structure and training method in section IV.A. Relying
on the vehicle location prior, we train neural network locally
online introduced in section IV.B and dynamically change of
the adjusting scope in section IV.C. The loss function to train
the neural network is described in section IV.D.

III. MAP BUILDING

An accurate map is critical to provide a precise reference
for the images to be localized, which can support to estimate
the vehicle position and orientation accurately. As the road
condition keeps changing, a fast and accurate map generation
method is required. To realize this objective, we use IMU, or
GPS or SLAM [26][25] as our map building method, as those
methods can be used in real-time with satisfactory accuracy.

Most autonomous driving (e.g., Google, Baidu, Ford) and
mapping service providers (e.g., HERE maps, TomTom) equip
their vehicles with high precision GPS and IMU, especially
for the map building purpose. Therefore, GPS and IMU or
SLAM are used to build the map. As maps are provided by
map companies, autonomous consumer cars are not required to
be equipped with high precision GPS and IMU. Alternatively,
we can also use the SLAM method to build the map, which
relies on loop closure detection to decrease the drift error.
We make the map based on each image’s camera pose. To
show the built map, we display the point cloud built by SLAM
and IMU/GPS (Fig. 2), which is another output of the SLAM
together with camera pose. The desired output for localization
is camera pose. However, as we also apply 3D points to train
the network, we also maintain the 3D map points together with
camera poses.

Once each image obtains its camera pose, we index images
into a K-D tree based on their camera poses. Our map building
method utilizes a clustering structure that groups the map
points in a specific window based on their locations. During
the network training stage, we apply the back-project error as
the loss function. Our framework of visual localization defines
that all map points from the same image belong to a cluster.
These clusters are indexed in a KD-tree based on their camera
poses.

IV. IMAGE-BASED LOCALIZATION
A. Overall Localization System

Once we have created an accurate map, we can utilize this
map to train a convolutional neural network to localize the
query image. To train this network, we first rely on Resnet101
network as the base of our model and apply transfer learning
to compensate for the training samples to learn our model. To
better support our task, we modify the ResnetlOl network
based on the following steps: (1) remove the last 3 fully
connected layers of Resnet101; (2) add a convolutional layer;
(3) add another pooling layer; (4) add an additional fully
connected layer; (5) normalize the output through softmax.

We tune the last four layers based on our entire mapping
data. The training labels are the 6 degrees of freedom obtained
from GPS and IMU or SLAM method, as well as the point
cloud data. The translation matrix is a 3-dimensional vector.
The rotation matrix is transformed into quaternion represented
a 4-dimensional vector. Then the label for each image is a
7-dimensional vector. The trained network is the localization
model that we will utilize to localize the image and obtain the
camera pose.

B. Online Local Fine Training Network

As the network is trained based on the entire map, the
network is targeted to provide satisfactory performance for the
entire map region. Once we know the rough vehicle location,
we can select a region of training samples to fine-tune the
network, which may provide more accurate camera pose esti-
mation for the current query image. As we choose just a tiny
number of images to tune the newly added layers, this local
training process can be conducted in the online process. As our
proposed algorithm utilizes a clustering structure that groups
the map points in a specific window based on their location,
we can quickly extract the images close to the current query
frame. 3D map generated from the vision-based algorithm can
be conveniently clustered based on images where the features
are extracted in SLAM. Our framework of visual localization
defines that images are indexed in a KD-tree based on their
camera poses.

During localization, we define the fine training scope as the
number of images that are used to fine train the neural network.
The scope defining the fine-tune region is approximated by the
vehicle last known camera pose. Assuming the update interval
of image measurement is sufficient, a moving vehicle operating
under the normal driving condition cannot have a dramatic
change in its ego-motion between two measurement images.
Thus, we can also utilize the localization result in the last
measurement to determine the network fine-tuning scope of the
current frame. We can propagate the search scope location with
vehicle kinematic model to further decrease the distance be-
tween vehicle location and search scope location and provide
faster and more accurate scope prediction between the query
image and the map. When there is no prior knowledge of the
vehicle available, we apply the trained network based on the
entire map without local training for the initial location. Once
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the starting location is identified, we determine the search area
based on the current location.

C. Dynamic Scope Control

The size of the online adjusting scope is dynamically up-
dated based on estimation accuracy. When the previous result
is accurate, a smaller search scope could be utilized, and vise
versa. This paper utilizes an initial search scope of 5 images
that cover the front, back, left and right direction of current
image location. When the vehicle motion is determined, i.e.,
the moving direction of the vehicle is known, we can further
narrow down the search scope. Experimentally, while the
vehicle is moving forward or backward, which means the
motion is mainly translation, there is a relatively substantial
overlap between adjacent query frames. When the scene alters
dramatically, such as significant rotation motion, we enlarge
the search scope. It is practically difficult to determine the
accuracy of the localization without a reference signal. Di-
rectly utilizing residual error for accuracy measurement can
sometimes be biased. In this paper, we propose to utilize
the ratio of the magnitude of translation and rotation vectors
as a criterion to predict our estimation accuracy. When the
ratio between translation and rotation magnitude is below a
predefined threshold, we increase the size of the training scope.
When the ratio increases to a limit, we can reduce the size
of the search scope back to the default configuration. The
threshold in our case is set to 2.

D. Loss Constraint

The result from the matching step gives a set of map points
and their 2D projection coordinates in the current measurement
image plane. The coordinate of a 3D point in camera body
frame, p, € IR3, can be calculated from its known coordinate
in the map frame, p € IR?, by Eq. 1:

P. :pr+tUJ (1)

The projection coordinate of p,, in image plane is calculated
with the perspective projection equation:

_ Ruips + Rispy + Rusp. + 1t
" Rsips + Rsopy + Rasp. + t.
_ Ro1py + Roapy + Rosp. + 1y
f Rsips + Raopy + Rasp. +1t.

We extract image feature coordinate [u,v] from the query
image and acquire the corresponding map points p,, from the
map, which is available in SLAM map building process. From
this given information, our objective is to estimate R,, and
t,,. We achieve this by solving an optimization problem that
minimizes the following loss function:
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where function Proj is the perspective projection equation at
the right side of Eq. 2 caused by the perspective camera model.

3)

Eq. 3 is the least square cost function.Our work parameterizes
the rotation matrix with the quaternion. The quaternion is a
4 x 1 unit vector, q = [q1, g2, g3, ¢4]. It yields less number
of parameters compared with the rotation matrix but does not
experience the singularity issue like Euler angle and Classical
Rodrigues parameters. Each element of a rotation matrix
parametrized with the quaternion is a multivariate quadratic
function of q. Although the element of the rotation matrix is
non-linear, we can show that Eq. 2 is linear in terms of rotation
matrix elements after manipulated into form of Eq. 4.

(uR31 — fR11)ps + (uRs2 — fR12)py
+ (uR33 — fRi2)p. = fto — ut.
(vRs1 — fR21)ps + (vVR32 — fR22)py
+ (vR33 — fR32)p. = fty, — vt,

Replacing the elements of rotation matrix in Eq. 4 with
quaternions leads to two multivariate 2"¢ order polynomial
equations. For the sake of compactness, we are not expanding
the Eq. 4 explicitly with quaternion. However, it is clear
that the estimation of a quaternion is reduced to solving two
multivariate 2"? order polynomial equations that have four
parameters. The reason we use both camera pose and 3D map
points from SLAM to train the network instead of just camera
pose is that in this way, we can in the largest extent reduce
the SLAM accumulation error in map building.

As SLAM/SfM may suffer from accumulation error, we
further constrain the camera pose and the learned map to be
consistent from both spatial and spectral perspectives. During
the SLAM/SfM processes, we obtain the camera pose for each
frame together with the depth map or 3D point cloud. To
spatially optimize the camera pose, we project the map points
to the different images. Meanwhile, we match the features
for the last frame’s points to the current image feature map.
Ideally, the matched point and projected pixels on the current
frame should be as close as possible, because the projected
point and the matched pixel should be from the same map
points. We plan to reduce the position difference between the
matched pixel and the projected pixel, as shown in Fig. 3(a). In
Fig. 3(a), p and p’ are the two projected pixels from the same
3D point P on two different images. pm is the matching pixel
to the left 3D projected pixel p. Ideally, p’ and pm should be
the same pixel as they both correspond to the same pixel p.
Therefore, we optimize the camera pose to make the distance
between the p’ and pm to be as small as possible. The spatial
constraining loss is as Eq. 5.

Lspatial = \/pm2 _p/2 = \/pm2 - (K(R2 P+ t2))25
pm —p=K(Rl-P+1t1)

“4)

&)

In Eq. 5, we define the loss function to be the distance
between the 3D projected pixel on the current frame p’ and
the pixel pm on the current frame corresponding to the 3D
projected pixel p of the previous frame. R2 and ¢2 are the
orientation and position matrices of the current camera pose,
which project the 3D point P from the world coordinate to

Authorized licensed use limited to: University of Georgia. Downloaded on September 19,2024 at 07:12:49 UTC from IEEE Xplore. Restrictions apply.



Fig. 3: Spatial (left) and spectral loss (right) in the network training
process. Spatial loss constrains the distance between the matching
features and back-projected points to be small. Spectral loss con-
strains corresponding pixels to be close in intensity.

the camera coordinate. The camera intrinsic matrix K further
projects the 3D point in camera coordinate to the image plane.
Similarly, R1 and t1 represent the orientation and position
matrices of the previous camera pose. p’ and pm are both the
corresponding pixels of p from two different perspectives: one
is from the feature matching, and another one is from the same
3D point re-projection. Through reducing the spatial distance
between p’ and pm by optimizing the camera pose, we can
further improve the camera pose estimation accuracy.

In addition to the spatial constraints, we also optimize the
network by spectral constraints. We project the 3D points to
the 2D images based on estimated camera poses. The 2D pixels
in different frames projected from the same 3D point should
appear similar, which means their intensity values should be
close to each other. Our objective is to reduce the spectral
distance as small as possible, which can help us to optimize the
camera pose, as shown in Fig. 3(b). In Fig. 3(b), the 3D point
P is projected to p and p’ in two frames. Ip and Ip’ are the
intensity of the two re-projected pixels. As the two pixels are
corresponding to the same 3D point, their pixel intensity value
should also be similar. We constrain the intensity represented
by SSIM to be close to optimize the camera pose, as the
following equation.

Lspectral =1- SSI]\I(IP7 Ip/)

6
p=K(R1xP+tl), p' =K(R2xP+12) ©

Similar to spatial constraint, (R1,¢1) and (R2,¢2) are extrin-
sics of the camera pose of the previous and current frame. K is
the intrinsic of the camera. Extrinsics and intrinsics project the
3D point P to the image pixels p and p’. Through reducing the
intensity value Ip and Ip’ of the two corresponding pixels, we
further optimize camera poses from the spectral perspective.

V. EXPERIMENTS

To output camera poses, we first use a CNN to efficiently
extract features and reduce feature representation dimension-
ality. The input of the Resnet is the query image followed
by fine-tuning layers whose size of the receptive field in the
network decrease from 7x7, 5x5 to 3x3 in order to extract
finer region. Following a fully-connected layer and Softmax
activation layer, the network returns a 7x1 transformation
vector. During the test process, every single query image is

(®)
Fig. 4: 3D points back-projected to the images based on the camera
pose inferred from the neural network after training. Blue points are
the 3D points back-projected to the image. Red points are original
pixels corresponding to the blue points. Yellow lines are the distance
in corresponding pixel-to-3D point pairs.

Fig. 5: Vehicle paths generated without dynamic online training range
determination function (left) and with this function (right). Red color
marks the region of major difference.

the input for the network and only the new added layers are
adjusted based on new inputs. The model is trained for 50
epochs. The batch size is 8 using Adam optimizer [17] where
f1 equals to 0.9 and (B2 is 0.999. The initial learning rate is
A =2 x 10~* and set to be half after the first 30 epochs till to
the end of training.

Our method is first tested on the public KITTI dataset [13],
which is mainly for self-driving tasks. In KITTI dataset, the
scenes are captured by two cameras under a stereo setting.
During the map building process, the system maintains the left
camera images and their associated camera poses in memory.
The right images will be used to test the accuracy of our lo-
calization method. As left and right cameras share similarities
in each pair of stereo images, we sample half (odd index) of
the left camera images for map generation. The right camera
images (even index) corresponding to non-selected left images
will be applied for testing to avoid the same scene for testing.
The training process is conducted only on the map generation
data. Therefore, map generation and training process share
the same sequence of data. And the testing data are different
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Fig. 6: Localization paths for all the 11 sequences on KITTI dataset. The white points are the ground truth, and the blue points are the

predicted camera position from our localization system.

P RMS error in position (m) Variance for position RMS error in attitude (rad) | Variance (Attitude)
erformance
X y z X y z X y Z X y Z

Our framework | 0.3952 | 0.1381 | 0.3491 | 0.1538 | 0.0209 0.1621 | 0.0071 | 0.0101 | 0.0076 | 0.000019 | 0.000061 | 0.000022
Superpoint [&] 0.4133 | 0.1458 | 0.3948 | 0.2268 | 0.03247 | 0.1763 | 0.0117 | 0.0161 | 0.0155 | 0.000047 | 0.000066 | 0.000053
D2-Net [10] 0.4056 | 0.1377 | 0.3329 | 0.2183 | 0.03347 | 0.1639 | 0.0114 | 0.0169 | 0.0147 | 0.000059 | 0.000060 | 0.000046
BRISK 0.7081 | 0.1876 | 0.4786 | 0.6052 | 0.0736 0.3104 | 0.0176 | 0.0281 | 0.0179 | 0.000069 | 0.00017 0.000074
ORB 0.4290 | 0.1555 | 0.2760 | 0.1820 | 0.0240 0.0759 | 0.0120 | 0.0163 | 0.0126 | 0.000036 | 0.000066 | 0.000039
SURF 0.6881 | 0.2492 | 0.5420 | 0.4711 | 0.0621 0.2936 | 0.0193 | 0.0302 | 0.0220 | 0.000093 | 0.00023 0.000121

TABLE I: Comparison of our localization framework and feature-based methods regarding the position and attitude estimation and variance.

video sequences compared with training data. To enlarge the
variance of the testing data, each of these 11 sequences testing
data is transformed with a homography matrix rotating the
image from 0-20 degrees to change viewpoints. Random noise
is added in the query video frames to change spot intensities
and simulate unseen conditions. The same training and testing
processes are conducted on all the methods to be compared
with the same training and testing data. In

We train the neural network system based on camera pose
optimization to reduce the 3D points back-projection spatial
loss and spectral photometric error. We first visually verify
the training effect based on the 3D back-projection error, as
shown Fig. 4. In Fig. 4, 3D points are back-projected to the
images using the camera pose inferred from the neural network
represented by the blue points. Original pixels correspond to
the 3D points during map generation stage are depicted by red
color. Yellow lines between the red and blue points represent
the distance between the back-projected 3D points and corre-
sponding 2D pixels. As can be observed, the small yellow lines
demonstrate the learning process is effective to output a correct
camera pose. To avoid confusion, this verification is conducted
on the training data split, which is used for map generation as
well, as the testing data split does not involve the local feature
extraction step. The rest experiments are conducted on testing
sequences without overlapping with the training data.

To further verify the effect of dynamic scope to camera pose
prediction, we apply the fixed online training scope without
dynamic online training range determination, indicating the
training scope is always kept the same size around the previous
frame’s location, as Fig. 5. From both Fig. 5(a) and 5(b),
the offset points from ground truth mainly are from the

large rotation area where the view changes dramatically, after
turning off the dynamic range determination function. When
vehicle turning at corners, the view has a relatively large
change by rotation, keeping the updating region too tight may
result in the loss of true positive training samples. From Fig. 5,
dynamically adjusting the local training scope will positively
affect the localization accuracy. A fixed training region may
introduce bias to update the network. The localization accuracy
of all the paths is displayed in Fig. 6.

We show our deep neural network’s performance with
regards to RMS error in position and attitude compared with
other dominant features and deep learning features (Superpoint
[8] and D2-Net [10]) fine-tuned on 10,000 random selected
images on the testing datasets as Table I. The localization
method of classical features is based on the same strategy
of our deep neural network with local search (first global
searching feature correspondences in 3D map and then refine
camera pose based on local feature matching to neighboring
images) and dynamic search region control based on the
same rotation and translation ratio. From Table I, our deep
neural network achieves the best performance in rotation and
translation measurement. We can see that the local search and
dynamic search scope control can lead to the high localization
accuracy for feature-based methods as well. However, our con-
volutional neural network-based approach can achieve the best
performance in terms of rotation and translation estimation,
including the average precision and variance, indicating the
stable performance of our method. Superpoint and D2-Net
are better than BRISK and SURF, and better than ORB in
several categories. In testing, D2-Net and Superpoint have the
largest correct matching rate. The less detected features in
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Our method | V-LOAM [40] | LOAM [39] | SOFT2 [7] | GDVO [43] | Stereo DSO [34] | PMO [I1] | MonoROCC [4] | SfMLearner [42] | Vid2depth [23]
Translation error 0.28% 0.63% 0.64% 0.65% 0.86% 0.93% 2.05% 1.11% 2.33% 1.86%
Rotation error (deg/m) | 0.000066 0.0014 0.0014 0.0014 0.0031 0.002 0.0051 0.0028 0.0063 0.0057

TABLE II: Comparison with other top performed SLAM and VO methods on KITTI dataset

D2-Net and Superpoint than ORB affected final performance.
Our method relieves from feature matching and achieves best
overall accuracy.

We also test our method in comparison with other state-of-
the-art localization methods. We show the position and attitude
errors in Fig. 7. A smaller number indicates better perfor-
mance. Among all the state-of-the-art localization methods,
Probabilistic model (stereo and monocular) [3], Global co-
visibility [19], Randomized tree with binary search [12], and
2D-t0-3D [29] are the methods relying on feature matching
and geometric verification without the use of deep neural
network. PoseNet [16], Expert Sample Consensus [2], and
KFNet [41] are based on convolutional neural networks to
infer the camera pose. Benefitting the network training struc-
ture, and online adjustment under dynamic scope control, the
proposed neural network system achieves the best accuracy for
both translation and rotation estimation compared with other
methods, indicating the effect of our neural network in terms
of localization tasks.
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Fig. 7: The error of position (upper) and attitude (bottom) compared
with state-of-the-art localization methods (Probabilistic model (stereo
and monocular) [3], Global co-visibility [19], Randomized tree with
binary search [12], 2D-to-3D [29], PoseNet [16]), Expert Sample
Consensus [2], and KFNet [41].

To verify the effect of each component in our pipeline, a
quantitative ablation study is added as Table IIl. From the

Error for Full pineli Without local | Without dynamic
ablation study wil prpeline fine-tuning scope change
Position (m) 0.55 1.63 1.08

Attitude (deg) | 0.83 1.22 0.97

TABLE III: Ablation study for quantitative analysis

table, local fine-tuning can avoid global confusion, which plays
a more critical role than dynamic scope change.

We understand that SLAM and VO may contain the ac-
cumulation error problem. Here we also want to compare
with the most advanced SLAM and VO methods to prove
the accuracy of our method, as this is the closest comparison
category in KITTI website, in addition to the comparison with
localization methods with map priors that we have already
shown in Fig. 7. We compare the most recent and best
performed SLAM and VO algorithms on KITTI odometry
category (V-LOAM (Lidar+camera) [40], LOAM (Lidar) [39],
SOFT?2 (stereo) [7], GDVO (stereo) [43], Stereo DSO [34],
PMO [11], MonoROCC [4]), which mainly based on classical
geometrical SLAM/VO methods, and deep neural network
based methods (SfMLearner [42] and Vid2depth [23]), as
Table II. Our method performs significantly better than the
SLAM and visual odometry methods from translation and
rotation error. It is noticeable that deep neural network based
methods perform worse on camera pose estimation than clas-
sical SLAM/VO methods, which we consider it is because
the optimization condition (e.g., loop closure) in epipolar
geometry based methods maintain tighter constraints. This
result is consistent with Sattler et al. [30]’s finding. This is also
part of the reason we apply classical geometrical SLAM as the
base to build the localization map. The overall performance
demonstrates that our method can provide reliable and superb
performance on vehicle ego-motion estimation.

VI. CONCLUSION

This paper presents a localization method for self-driving
vehicles that can accurately estimate the vehicle position and
orientation. We build maps composed of images with their
associated camera pose and index all the camera poses of the
map. We first train a CNN based on the training images, and
their camera poses with the global map. We further extract
the closest images and camera poses to train the network
online locally. The current vehicle pose is estimated through
the fine-tuned network globally and then locally. Based on the
translation and rotation motion magnitude ratio, we determine
the dominant motion of the vehicle and dynamically change
the scope to update the network. Experiments demonstrate
accurate localization effects.
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