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Scientific Significance Statement

Limnologists have long debated the relative importance of nitrogen vs. phosphorus in limiting or co-limiting primary produc-
tivity in lakes. However, much of our nutrient limitation knowledge comes from local studies and few studies have examined
the environmental context that may influence nutrient limitation in lakes across broad geographic extents. In our study of
3342 lakes across the conterminous United States, we found that all regions contained a mix of nitrogen-, phosphorus-, and
co-limited lakes and that majorities of lakes were phosphorus-limited only in the Northeast, Southeast, and Upper Midwest
regions. Moreover, lake, watershed, and regional characteristics combined were related to nutrient limitation. Therefore, suc-
cessful eutrophication management may require consideration of both nitrogen and phosphorus as well as additional factors
operating at local to regional scales.

Abstract

Although understanding nutrient limitation of primary productivity in lakes is among the oldest research priorities
in limnology, there have been few broad-scale studies of the characteristics of phosphorus (P)-, nitrogen (N)-, and
co-limited lakes and their environmental context. By analyzing 3342 US lakes with concurrent P, N, and chlorophyll
a (Chl a) samples, we showed that US lakes are predominantly co-limited (43%) or P-limited (41%). Majorities of
lakes were P-limited in the Northeast, Upper Midwest, and Southeast, and co-limitation was most prevalent in the
interior and western United States. N-limitation (16%) was more prevalent than P-limitation in the Great Basin and
Central Plains. Nutrient limitation was related to lake, watershed, and regional variables, including Chl a concentra-
tion, watershed soil, and wet nitrate deposition. N and P concentrations interactively affected nutrient-chlorophyll
relationships, which differed by nutrient limitation. Our study demonstrates the value of considering P, N, and envi-
ronmental context in nutrient limitation and nutrient-chlorophyll relationships.
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Understanding nitrogen (N) vs. phosphorus (P) limitation of
primary productivity in lake ecosystems is a long-standing
research priority in limnology. Nutrient limitation refers to the
primary limiting nutrient of phytoplankton abundance when
there is sufficient available energy (light and heat) (Hecky and
Kilham 1988). Many studies have argued that lakes are predom-
inantly P-limited based on N fixation increasing N concentra-
tions relative to P concentrations, thus promoting P-limitation
(Schindler 1977; Correll 1998; Carvalho et al. 2013; Fastner
et al. 2016; Schindler et al. 2016). However, other studies have
argued that limnologists underestimate N-limitation or co-
limitation (Downing and McCauley 1992; Sterner 2008; Paerl
et al. 2016; Myrstener et al. 2022). Explanations include recent
declines in atmospheric N deposition (Isles et al. 2018), the
potential for denitrification rates to exceed N fixation rates
(Scott et al. 2019), or research bias toward certain lake types or
regions (Poikane et al. 2022). Taken together, despite decades
of research, there is still a lack of consensus among limnologists
over the prevalence of N- vs. P-limitation in lake ecosystems.

An important source of this lack of consensus is likely over
what can be reasonably inferred from disparate studies with
different locations, types of lakes, temporal or spatial scales, or
primary methods (e.g., laboratory, mesocosm, whole-lake
experiments). However, a complement to these finer-scaled
studies that has been used less frequently are studies of thou-
sands of lakes across wide environmental gradients, which
could also help identify geographic patterns and potential
lake, watershed, or regional drivers of nutrient limitation that
cannot be studied at fine scales. For example, previous broad-
scale studies have identified lake trophic state as a predictor of
nutrient limitation. In a study of 1384 US lakes, Liang et al.
(2020) found that P-limitation was more prevalent in oligotro-
phic, mesotrophic, or eutrophic lakes, whereas co-limitation
was more prevalent in hypereutrophic lakes. Related, recent
global studies found that the probability of P-limitation
declined as lakes become more eutrophic (Zhou et al. 2022,
n =831 lakes; Zhao et al. 2023, n = 2849 lakes). Supporting
these results, Scott et al. (2019) found that eutrophic and hyp-
ereutrophic lakes were mostly N-limited because denitrifica-
tion exceeded N fixation (n = 1964 lakes).

Although the above studies suggest that trophic state is a
coarse predictor of nutrient limitation in lakes, other factors
are also known to drive relationships of N and P with produc-
tivity. It is well established that a combination of in situ and
external factors operating across spatial scales from lakes to
regions, such as lake depth, watershed land use/cover, and
regional climate, combine to influence lake nutrient concen-
trations and primary productivity (Read et al. 2015; Soranno
et al. 2015; King et al. 2019). However, few studies have
explicitly examined how such environmental context vari-
ables influence nutrient limitation or interact to influence
nutrient-chlorophyll relationships at broad scales. For exam-
ple, P-limitation can shift toward N- or co-limitation with
decreasing lake depth (Zhao et al. 2023). Moreover, such
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factors also combine to influence nutrient-chlorophyll rela-
tionships at broad scales. For example, water clarity, mean
depth, elevation, and regional air temperature mediated TP-
chlorophyll relationships in a study of 3874 lakes across
47 countries (Quinlan et al. 2021). TP-chlorophyll relation-
ships also varied regionally in relation to regional agriculture
and wetland cover in a study of 2105 lakes in the midwestern
and northeastern US (Filstrup et al. 2014). Additionally, N and
P can also interact to influence primary productivity (Harpole
et al. 2011), such that the effects of enrichment of one nutri-
ent on phytoplankton may depend on background concentra-
tions of the other (Frost et al. 2023). Collectively, these
studies demonstrate that nutrient cycling, nutrient limitation,
and nutrient-chlorophyll relationships in lakes are influenced
by a combination of lake, watershed, and regional environ-
mental context, including potential N-P interactions. How-
ever, rarely has the relative importance of a wide range of
environmental context variables been considered in a single,
multiscale analysis of nutrient-chlorophyll relationships
across thousands of lakes along the spectrum of N-, P-, and
co-limitation. Using a large database of 3342 US lakes with
concurrent N, P, and chlorophyll a (Chl a) data and multi-
scaled environmental context, we asked:

1. What is the prevalence of P-, N-, and co-limitation across
broad gradients of ecological context?

2. What are the lake, watershed, and regional characteristics
of P-, N-, and co-limited lakes?

3. How do nutrient-chlorophyll relationships vary across P-,
N-, and co-limited lakes?

Methods

Study lakes and limnological data

We analyzed lakes >4 ha in the conterminous US with
same-day epilimnion TP, TN, and Chl a samples collected
between May and September from 1991 to 2020 (LAGOS-US-
LIMNO v. 5; Shuvo et al. 2023). LAGOS-US-LIMNO consists of
lake water quality from the US Water Quality Portal, which
houses data from federal and state agencies (many of which
collaborate with citizen science programs) (National Water
Quality Monitoring Council 2021). LAGOS-US-LIMNO also
includes data from the 2007, 2012, and 2017 US National Lakes
Assessments (NLA; US Environmental Protection Agency 2010,
2016, 2022) and the US National Ecological Observatory Net-
work (NEON; Keller et al. 2008). We used the most recent con-
current samples available (one sample per lake; median
year = 2013) and applied water quality QA/QC procedures
from LAGOS-NE-LIMNO v. 1.087.3 (Soranno et al. 2019).
When TN measurements were unavailable, we calculated TN
by combining nitrite, nitrate, and total Kjeldahl nitrogen if
they were from the same sample. A total of 3342 lakes passed
these criteria, 1905 (57%) of which were sampled by the NLA.
We analyzed lakes across NEON regions (hereafter, regions),
which are delineated primarily based on climate (Hargrove and

:sdny) suonipuo)) pue swid 1, 3y 998 “[+707/60/61] U0 Areiqry aurjuQ A1 “Ansioatun) agers ueSydrA £q 0zH01°ZI01/2001°01/10p/wiod Kopim Areiqijaurjuo-sqndoyse//:sdny woly papeojumod 0 ‘THTT8LET

SULIY/W0d K[ 1M " ATRIq]

A5ULOIT suowtio)) dANeaI) a[qearjdde oy £q pauroAos a1e sa[onIe V() (asN JO SN 10§ AIRIQIT dUI[UQ AJ[TAN UO (SUONIPUOD-P!



McCullough et al.

Hoffman 1999). All regions had samples for approximately
1-5% of lakes >4 ha (22-472 lakes), except the Southern
Rockies and Colorado Plateau (13% of lakes with samples;
Table 1). Because the Atlantic Neotropical region had only four
sampled lakes, we lumped these with the Southeast.

We inferred P-, N-, and co-limitation based on mass TN :
TP ratios used by Zhou et al. (2022) derived from Guildford
and Hecky (2000). If TN : TP was < 9 or > 22.6, lakes were des-
ignated as N-limited and P-limited, respectively. TN : TP ratios
that fell between these thresholds were designated as co-
limited. TN : TP ratios are imperfect indicators of true limita-
tion of primary productivity in lakes given uncertainty in
nutrient bioavailability or the possibility that some other fac-
tor (such as light) may be more limiting than nutrients,
including conditions when both N and P concentrations are
high (Moon et al. 2021). However, ratios are appropriate and
practical for estimating nutrient limitation at the macroscale
(e.g., Elser et al. 2009a; Zhou et al. 2022). Such an approach is
necessary when studying the potential mediating effects of
lake, watershed, and regional factors on thousands of lakes,
for which labor-intensive measures of nutrient limitation are
unavailable.

Characteristics of P-, N-, and co-limited lakes

We applied Random Forest (RF) and Boruta feature selec-
tion to identify characteristics of P-, N-, and co-limited lakes
using TN : TP as the response variable and the “Boruta” R
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package (Kursa et al. 2010). Boruta feature selection uses an
ensemble of trees to identify relevant predictors by removing
unimportant ones based on exceeding the importance of per-
muted copies of the data known as shadow features (Kursa
et al. 2010). The algorithm iteratively and randomly per-
mutes each feature value, checking if tested features have
greater or lesser importance than the best shadow feature a
significant number of times until either accepted or dropped.
Features with no selection decision after the chosen number
of iterations are considered tentative. We examined 58 envi-
ronmental context variables at lake, watershed, or regional
scales (Supporting Information Table S1). Lake variables
reflected lake area, elevation, shape, hydrologic connectivity
(LAGOS-US-LOCUS v1.0; Smith et al. 2021), natural lake
vs. reservoir status (LAGOS-US-RESERVOIR v2; Polus
et al. 2022), and maximum depth (available for 76% of lakes)
(LAGOS-US DEPTH v1.0; Stachelek et al. 2021). Including
maximum depth reduced our analysis to 2551 lakes. Water-
shed variables represented local watershed land use/land
cover, watershed area and drainage ratio, hydrology, topogra-
phy, point-source pollution, and soil properties, whereas
regional variables included latitude, longitude, region mem-
bership, atmospheric deposition, climate, and hydrology
(LAGOS-US-GEO v1.0; Smith et al. 2022). Regional deposi-
tion, climate, and hydrology variables were measured at the
HU12 watershed scale. After 1000 Boruta iterations, 50 vari-
ables were accepted, 7 unimportant variables were dropped,

Table 1. Lakes, sampling effort, and nutrient information across NEON regions.

Sampled Sampling TPmean TPSD TNmean TNSD TN:TP TN:
NEON region lakes >4 ha All lakes >4 ha rate (%) (ugL") (ugL") (gL' (gL ") mean TPSD
1. Northeast 335 13,641 2.46 23 40 430 380 36 48
2. Mid-Atlantic 246 6522 3.77 53 66 1047 1116 32 49
3. Southeast* 375 21,449 1.75 41 59 773 564 40 58
5. Great Lakes 469 20,808 2.25 33 47 817 668 45 55
6. Prairie Peninsula 472 11,478 411 109 137 1450 1098 25 26
7. Appalachians and 97 3258 2.98 59 121 642 670 19 14

Cumberland Plateau
8. Ozarks Complex 147 15,205 0.97 77 93 769 536 19 24
9. Northern Plains 309 18,975 1.63 231 236 2779 2515 22 18
10. Central Plains 83 2126 3.90 93 125 790 647 17 15
11. Southern Plains 110 7991 1.38 101 145 1040 774 19 15
12. Northern Rockies 109 2724 4.00 36 88 491 923 23 28
13. Southern Rockies 255 1944 13.12 58 135 470 576 18 16
and Colorado Plateau

14. Desert Southwest 22 477 4.61 84 140 1027 1073 29 26
15. Great Basin 179 4349 412 89 143 713 821 19 25
16. Pacific Northwest 88 2111 417 33 44 380 476 21 24
17. Pacific Southwest 46 2801 1.64 72 177 399 345 19 12
Combined regions 3342 135,859 2.46 76 132 1002 1240 29 40
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and 1 variable (lake area) was identified as “Tentative”
(retained in the final RF model) (Supporting Information
Fig. S1). The final model used 5-fold repeated cross-validation
and explained 21.8% of variance in TN : TP. We estimated
the combined importance of each spatial scale (lake, water-
shed, regional) by calculating a grouped mean decrease in
Gini index weighted by the number of node splits that con-
tain variables within each spatial scale. We compared differ-
ences among N-, P-, and co-limited lakes for the top two
lake, watershed, and regional predictors of nutrient limita-
tion using Tukey’s contrasts on generalized linear models
(Gaussian or Gamma distribution) and the “multcomp” R
package (Hothorn et al. 2008).

Nutrient-chlorophyll relationships

We used generalized linear mixed models (GLMMs) with
the gamma distribution to examine nutrient-chlorophyll rela-
tionships using the lme4 R package (Bates et al. 2015). We
treated TN and TP (both log;o-transformed) as fixed variables
and region and nutrient limitation class (P-, N-, or co-limited)
as random factors to account for regional variation and the
effects of nutrient ratios. We applied chi-square tests (“anova”
function) to select best-fitting models (Supporting Informa-
tion Table S2). All analyses were performed in R 4.3.0 (R Core
Team 2023). Data, metadata, and R code are publicly available
here (McCullough et al. 2024, https://doi.org/10.5281/
zenodo.11049100).

Results

Prevalence of P-, N-, and co-limitation

Across the conterminous US, lakes were primarily co-
limited (TN : TP between 9 and 22.6; 42.8%; n = 1432) or
P-limited (TN:TP >22.6; 41.5%; n=1386) rather than
N-limited (TN : TP < 9; 15.7%; n = 524). Although all regions
contained a mix of P-, N-, and co-limitation, some regional
patterns emerged (Fig. 1). Narrow majorities of lakes were co-
limited in the Appalachians and Cumberland Plateau (63.9%),
Mid-Atlantic (56.1%), Ozarks Complex (55.8%), Southern
Plains (53.6%), and Pacific Southwest (52.2%) regions. In con-
trast, co-limitation was least prevalent in the Southeast
(27.5%) and Great Lakes (28.1%) regions where P-limitation
was most prevalent (61.3% and 67.6%, respectively). A narrow
majority of lakes were also P-limited in the Northeast (56.1%),
whereas a minority of lakes across all other regions were
P-limited, including < 25% of lakes in the Ozarks Complex,
Central Plains, Northern Rockies, Southern Rockies, and Great
Basin. N-limitation ranged from 2.7% of lakes (Northeast) to a
high of 38.0% (Great Basin). Results were generally consistent
when compared to an analysis of NLA data only (n = 1905
lakes) (Supporting Information Fig. S2; Table S3). Overall,
most US lakes were either co-limited or P-limited, with co-
limitation most common in the interior and western US and
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Fig. 1. (a) Study lakes by nutrient limitation and NEON region, indicated by
bold numbers. (b) Percentage of lakes by nutrient limitation across NEON
regions, arranged approximately west to east along the x-axis. 1 = Northeast,
2 = Mid-Atlantic, 3 = Southeast (includes four lakes from #4 Atlantic Neo-
tropical), 5 = Great Lakes, 6 = Prairie Peninsula, 7 = Appalachians and Cum-
berland Plateau, 8 = Ozarks Complex, 9 = Northern Plains, 10 = Central
Plains, 11 = Southern Plains, 12 = Northern Rockies, 13 = Southern Rockies
and Colorado Plateau, 14 = Desert Southwest, 15 = Great Basin,
16 = Pacific Northwest, 17 = Pacific Southwest.
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P-limitation most common in the Upper Midwest, Northeast,
and Southeast.

Characteristics of P-, N-, and co-limited lakes
Environmental context at lake, watershed, and regional scales
all predicted lake nutrient limitation. Chl a concentration was
the most important predictor of nutrient limitation, followed by
longitude, watershed percent clay in soil, and regional wet
nitrate deposition (Fig. 2; Supporting Information Fig. S3). Lake
variables had the highest importance and accounted for 56.4%
of combined weighted decrease in Gini index model accuracy
while watershed and regional variables accounted for 23.3% and
20.2%, respectively. The top two lake-scale predictors were Chl
a concentration and maximum depth, with P-limited lakes (Chl
a: 10.7 £18.5ugL™!, depth: 12.7+ 153 m) having lower
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Fig. 2. Mean importance scores of the top 15 predictors of lake nutrient
limitation identified by Boruta feature selection. Colors indicate variable
spatial scale.
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Chl a concentrations and greater maximum depth than
N-limited (Chl a: 34.0 + 62.8 ug L', depth: 9.08 + 13.2 m) and
co-limited (Chl a: 32.0 + 57.7 ug L depth: 9.84 + 13.8 m)
lakes (Fig. 3a,b). At the watershed scale, percent clay in soil and
percent cultivated crops were the strongest predictors of nutrient
limitation. N-limited lakes (clay: 19.3% =+ 6.88%, cultivated
crops: 24.9% =+ 30.7%) had higher percent clay in soil and per-
cent cultivated crops than P-limited (clay: 14.1% £ 6.93%, culti-
vated crops: 17.9% =+ 24.1%) and co-limited (clay: 17.6% +
7.08%, cultivated crops 22.9% =+ 28.3%) lakes (Fig. 3c,d). Longi-
tude and wet nitrate deposition were the top two predictors at
the regional scale. P-limited lakes (longitude: —89.6° + 12.8°,
deposition: 9.14 + 3.36 kg ha!) were more common in eastern
longitudes and experienced greater wet nitrate deposition than
N-limited (longitude: —-102° £ 12.9°, deposition:
6.57 + 3.65 kg ha™') and co-limited (longitude: —94.0° + 13.3°,
deposition: 8.46 + 3.50 kg ha ') lakes (Fig. 3e,f). See Supporting
Information Table S4 for summaries of all predictors and
Supporting Information Figs. S4-S8 for maps of top predictors.
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Fig. 3. Comparison of P- (blue), N- (green), and co-limited (pink) lakes across the top two predictors of nutrient limitation at lake (a, b), watershed (¢,
d), and regional (e, f) scales. The bolded lines in the boxes represent the median values of variables. Pairwise comparisons were based on Tukey’s con-

trasts. NS, nonsignificant difference; ***p < 0.001.
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Nutrient-chlorophyll relationships

Nutrient—-chlorophyll relationships varied across P-, N-, and
co-limited lakes and were related to interactions between TN
and TP (GLMM, p < 0.001). Slopes of TP-chlorophyll relation-
ships were greater in P-limited lakes and slopes of TN-
chlorophyll relationships were greater in N-limited lakes
(Fig. 4). Conversely, these respective relationships were weaker
in N-limited and P-limited lakes, indicating that primary limit-
ing nutrient concentrations were generally more strongly cor-
related with Chl a concentrations. Specifically, in N-limited
lakes, there was a strong positive relationship between Chl
a and TN concentrations (GLMM, slope 21.71, p <0.001),

(a) Chi~log(TP) in N-limited lakes
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(c) Chi~log(TP) in co-limited lakes
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Log(TN)=2.4; slope=1.32
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=
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with increasing slopes as TP concentrations increased provid-
ing evidence of TN : TP interaction (Fig. 4a,d). Additionally,
despite N-limitation, we observed a positive relationship
between Chl a and TP concentrations (GLMM, slope =0.38,
p<0.001), with increasing slopes as TN concentrations
increased (Fig. 4a). We also encountered interactions between
TN and TP in P-limited lakes (Fig. 4b,e). Whereas there were
significant, positive relationships between Chl a and both TP
and TN concentrations in P-limited lakes (GLMM, TP slope
>1.53, TN slope 20.47, p < 0.001), TP had greater slopes, indi-
cating stronger effects on Chl a concentrations. We did not
find significant interactions between TN and TP in co-limited

(d) Chi~log(TN) in N-limited lakes
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(e) Chi~log(TN) in P-limited lakes
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(f) Chl~log(TN) in co-limited lakes
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Fig. 4. Relationships between Chl a (ug L™") and log;o-transformed TN or TP concentrations, taking into account different levels of the other nutrient.
Plots (a—c) Chl a and logqo(TP) relationships in N-, P-, and co-limited lakes; and lines with different colors are the prediction lines at mean-SD (standard
deviation), mean, and mean + SD of log1o(TN). Plots (d-f) Chl a and log,o(TN) relationships in N-, P-, and co-limited lakes; and lines with different colors

are the prediction lines at mean-SD, mean, and mean + SD of log,o(TP). Shadow areas represent 95% confidence intervals. The mean + SD values of

l0g10(TN) in plots (a—c) are 2.81 + 0.49, 2.80 £ 0.35, and 2.82 + 0.43, respectively. The mean £ SD values of log,o(TP) in plots (d—f) are 2.09 + 0.50,

1.17 £ 0.38, and 1.64 + 0.44, respectively.
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lakes (GLMM, p =0.460; Fig. 4c,f). In summary, nutrient—
chlorophyll relationships were consistently positive across P-,
N-, and co-limited lakes. Relationships were generally stronger
for whichever nutrient was primarily limiting and both
nutrients interactively increased Chl a concentrations in both
N- and P-limited lakes.

Discussion

Our analysis of 3342 lakes across the conterminous US is
one of the largest studies of nutrient limitation of primary
productivity in lakes. We showed that US lakes are predomi-
nantly P-limited or co-limited, but with some distinct regional
patterns. Notably, two of the three regions with majority
P-limitation (Northeast and Upper Midwest) have many of the
longest-running, most well-known US lake monitoring pro-
grams (e.g., North Temperate Lakes Long-Term Ecological
Research program; Magnuson et al. 1997). Although such pro-
grams have provided foundational knowledge for limnology, it
is possible that some principles, such as the prevalence of
P-limitation, cannot be consistently applied to lakes in funda-
mentally different environmental contexts. Moreover, our find-
ing that nutrient-chlorophyll relationships were generally
stronger for the primary limiting nutrient has substantial impli-
cations for lake eutrophication management because of the wide
geographic variability in P-, N-, and co-limitation across the
United States. We not only found that all regions contained a
mix of P-, N-, and co-limited lakes, but also that the plurality of
lakes in 11 of 16 regions are co-limited and only 3 regions had a
majority of lakes limited by one nutrient. These findings are cor-
roborated by regional-scale studies that also found high preva-
lence of co-limitation but also mixes of P-, N-, and co-limitation
(Bratt et al. 2020; Lewis et al. 2020; Volponi et al. 2023). Taken
together, there is increasing evidence that eutrophication man-
agement should consider N and P jointly in most, if not all
regions.

A strength of our broad-scale approach is the ability to dem-
onstrate that lake nutrient limitation is related to a combina-
tion of environmental context at lake, watershed, and regional
scales. Our finding that Chl a concentration was the best pre-
dictor of nutrient limitation is consistent with past broad-scale
studies showing the importance of trophic state (e.g., Liang
et al. 2020). This has important implications in a global change
context for lakes at risk of eutrophication (Gilarranz
et al. 2022). We also found that lake maximum depth is a
strong predictor of nutrient limitation (consistent with Zhao
et al. 2023), but it may be just as noteworthy which variables
were unimportant, such as lake area and natural lake
vs. reservoir status (Fig. 2; Supporting Information S1). Interest-
ingly, longitude was an important predictor of limitation with
a greater prevalence of P-limitation and N-limitation in the
eastern and western US, respectively. This could reflect legacies
of intensive agriculture and urbanization in the eastern US, but
even remote mountain lakes in the western US can shift from
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N- to P-limitation due to atmospheric N deposition (Elser
et al. 2009b). However, soil properties, nitrate deposition, pre-
cipitation, hydrology, and agriculture were also important
regional predictors and many of these have spatial patterns
related to longitude (Lapierre et al. 2018). Teasing apart com-
plex, interacting mechanisms across scales is beyond the scope
of this paper, but is an important future step. Although our
3342 lakes are distributed across many wide ecological gradi-
ents, different drivers of nutrient limitation may still be more
important in other ecological contexts (e.g., very high or low
latitudes) and our findings of a mix of N-, P-, and co-limited
lakes across all regions caution against overgeneralizing pat-
terns and drivers of lake nutrient limitation. Nevertheless, we
expect our finding of the combined importance of lake, water-
shed, and regional context in lake nutrient limitation to apply
across diverse ecological settings.

Broad-scale studies such as ours can provide us with the
knowledge to apply to a broad range of ecological contexts and
can complement fine-scaled studies limited in the generalizabil-
ity of their findings. However, broad-scale approaches are lim-
ited in other ways. For example, TN : TP ratios represent a
coarse metric of nutrient limitation and our results only indi-
cate general patterns of how nutrients may influence primary
productivity. There are no practical ways to assess important
processes such as nutrient bioavailability or denitrification
vs. N fixation rates at the macroscale (e.g., Elser et al. 20094;
Bergstrom et al. 2020). Moreover, our study focused on lakes
> 4 ha (smaller lakes are rarely sampled; Shuvo et al. 2023) from
May to September, but nutrient limitation can vary seasonally,
particularly in small, shallow lakes (Maberly et al. 2020). Many
lakes throughout our study are biologically active outside May—
September, including during winter and particularly at lower
latitudes (Hampton et al. 2017). Therefore, a productive path
forward is to work toward connecting mechanistic insights
from finer-scaled studies to broad-scale patterns of lake nutrient
limitation across wide environmental gradients.

Although the long-standing nutrient limitation “debate” in
limnology may never be fully resolved, our results support a
more balanced view of nutrient limitation that recognizes the
critical role of both nutrients, as others have previously argued
(e.g., Sterner 2008; Conley et al. 2009; Harpole et al. 2011; Paerl
et al. 2020), and we add evidence that nutrient limitation varies
geographically according to a combination of lake, watershed,
and regional context. Our study uncovered a mix of P-, N-, and
co-limitation in all regions of the conterminous US, but with
considerable variability across and within regions. As large,
public limnological databases are increasingly coming online
(e.g., Canadian Lake Pulse Network, Huot et al. 2019; European
Multi-Lake Survey, Mantzouki et al. 2018; US NLA, Pollard
et al. 2018, China lake dataset, Zhang 2019; LAGOS-US
LIMNO, Shuvo et al. 2023) limnologists now have remarkable
capacity to study nutrient limitation in lakes across un-
precedented spatial and temporal scales and across wide ecolog-
ical gradients, particularly when coupled with multiscale
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environmental context (LAGOS-US, Cheruvelil et al. 2021;
HydroLAKES, Messager et al. 2016). Considering the ever-
increasing global change stressors on lakes, perhaps our best
bet for informing lake eutrophication management is to invest
our growing wealth of data toward a growing wealth of
knowledge.
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