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Figure 1: Chain-of-thought prompting in natural language processing (left) and chain-of-look prompting in surgical triplet
recognition (right). (a) Chain-of-thought prompting helps answer a complicated question via a series of intermediate reasoning
steps, enabling transparancy and explainability. (b) Our proposed chain-of-look prompting helps multi-modal video reasoning
via (1) visual-semantic reasoning process that focuses on understanding semantics from the visual information and (2) spatio-
temporal reasoning process that leverages whole video context to understand the activity.

ABSTRACT
Surgical triplet recognition aims to recognize surgical activities as
triplets (i.e., <instrument, verb, target>), which provides fine-grained
information essential for surgical scene understanding. Existing
methods for surgical triplet recognition rely on compositional meth-
ods that recognize the instrument, verb, and target simultaneously.
In contrast, our method, called chain-of-look prompting, casts the
problem of surgical triplet recognition as visual prompt genera-
tion from large-scale vision-language (VL) models, and explicitly
decomposes the task into a series of video reasoning processes.
Chain-of-Look prompting is inspired by: (1) the chain-of-thought
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prompting in natural language processing, which divides a prob-
lem into a sequence of intermediate reasoning steps; (2) the inter-
dependency between motion and visual appearance in the human
vision system. Since surgical activities are conveyed by the actions
of physicians, we regard the verbs as the carrier of semantics in sur-
gical endoscopic videos. Additionally, we utilize the BioMed large
language model to calibrate the generated visual prompt features
for surgical scenarios. Our approach captures the visual reasoning
processes underlying surgical activities and achieves better per-
formance compared to the state-of-the-art methods on the largest
surgical triplet recognition dataset, CholecT50. The code is available
at https://github.com/southnx/CoLSurgical.

CCS CONCEPTS
• Computing methodologies → Activity recognition and under-
standing.

KEYWORDS
Surgical Triplet Recognition, Chain-of-Look Prompting, Verb-centric,
Endoscopic Videos

5007

https://doi.org/10.1145/3581783.3611898
https://github.com/southnx/CoLSurgical
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581783.3611898&domain=pdf&date_stamp=2023-10-27


MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Nan Xi, Jingjing Meng, and Junsong Yuan

ACM Reference Format:
Nan Xi, Jingjing Meng, and Junsong Yuan. 2023. Chain-of-Look Prompt-
ing for Verb-centric Surgical Triplet Recognition in Endoscopic Videos. In
Proceedings of the 31st ACM International Conference on Multimedia (MM
’23), October 29-November 3, 2023, Ottawa, ON, Canada. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3581783.3611898

1 INTRODUCTION
More than 4.8 billion people worldwide have no access to surgery
[1]. However, the need for surgery keeps growing worldwide [29].
The urgency of developing surgical AI systems that are highly
adaptable has become more pressing. These systems are essential
not only for assisting and intervening during surgical procedures,
but also for educating and training physicians.

One of the most commonly performed surgical procedures is
laparoscopic cholecystectomy (LC) [20] through endoscopic videos,
as it provides better clinical outcomes with less pain and faster re-
covery. To build a surgical assistance system for LC, a fundamental
step is to recognize fine-grained surgical workflows in endoscopic
videos, e.g. in the form of triplets of <instrument, verb, target>.
These triplets provide a fine-grained and holistic surgical activity
understanding for building surgical assistance systems. Existing
works on surgical triplet recognition are developed based on com-
positional methods, which recognize each individual elements in
surgical triplets separately. Triplet recognition results are then gen-
erated by combining the predictions of individual elements. For
example, Tripnet [18] and Rendezvous (RDV) [19] utilize a multi-
task learning framework to recognize instrument, verb and target
separately from a single video frame. The state-of-the-art Forest
GCN [30] recognizes surgical triplets by decomposing triplet recog-
nition into recognizing instruments, verbs and targets respectively
with the classification forest and Graph Convolutional Network
(GCN). Directly applying existing works for surgical triplet recog-
nition has two major drawbacks: (1) compositional methods model
triplet recognition by the three individual elements, lacking an
explicit reasoning process to guide the video understanding; (2)
existing methods exert equal emphasis on instrument, verb and
target, neglecting that the intent of surgical activities are mainly
conveyed by the action of the physicians (i.e., verbs).

To address the above drawbacks, we propose a novel chain-
of-look visual prompting scheme for verb-centric surgical triplet
recognition. Firstly, since existing compositional methods lack ex-
plicit reasoning processes to guide surgical triplet recognition, we
propose a chain-of-look prompting scheme to explicitly the decom-
pose surgical triplet recognition task into a series of video reasoning
processes and cast surgical triplet recognition task as visual prompt
generation. Our chain-of-look visual prompting scheme draws inspi-
ration from two main sources: (I) The chain-of-thought prompting
[28] in natural language processing (NLP), which is designed to
“prompt” the model with input-output reasoning steps. In light of
this, as shown in Fig. 1, we construct the first multi-modal reasoning
process by decomposing the generation of triplet prompt features
into two visual reasoning steps - the first step (chain𝐴𝐼 ) with global
semantic information and the second step (chain 𝐴𝐼 𝐼 ) with visual
information; (II) It has been identified in neuroscience that there
are two major processing systems in human vision system, one
for visual recognition of objects (known as "what" stream) and

the other for motion integration (known as "where" stream) [15].
These two systems work in sequence to process different visual
attributes: motion integration stream is in favor of sensitivity to
rapid temporal change, while visual recognition stream for coding
fine details. Secondly, actions of physicians during surgery convey
the intent of surgical activities, while instruments and targets are
chosen to accomplish the intended actions accordingly. Therefore,
verbs in surgical triplets carry key information of the surgical activ-
ities happening in endoscopic videos. To this end, we introduce the
verb-centric modeling scheme for video reasoning by first modeling
endoscopic videos with verb prompts (chain 𝐵𝐼 ) and then modeling
the temporal dynamics of those verb sequences among neighboring
frames(chain 𝐵𝐼 𝐼 ).

Specifically, we first generate frame captions from large-scale
VL model and further generate context-calibrated frame caption
features with pre-trained BioMed Language Model [4] based on
the original frame captions. Then we introduce visual-semantic
reasoning network (VSR) and spatio-temporal reasoning network
(STR) for surgical triplet prompting and verb prompting, respec-
tively. Each network contains two steps of chains of reasoning for
visual prompt featrue generation, which are akin to the chain-of-
thought prompting in NLP. Specifically, VSR includes CaptionTrip
Prompting (CTP) and VideoTrip Prompting (VTP). CTP is designed
to incorporate global semantic information into individual surgical
triplet prompts, serving as the first reasoning chain. VTP follows
CTP as the other reasoning chain with video information for surgi-
cal triplet prompting. Similarly, STR also contains two reasoning
chains: Verb Prompting (VP) and Dynamic GNN (D-GNN). VP is
introduced to abstract visual information of each frame into a fixed
number of verb prompts. D-GNN is then employed tomodel the tem-
poral dynamics across frames, thus enabling verb prompt features
to be more semantic-aware. Finally, triplet prediction is conducted
under the guidance of verb prompt features, which is less noisy
than only utilizing surgical triplet prompt features.

Our main contributions on the surgical triplet recognition in
endoscopic videos are summarized as follows:

• We introduce the chain-of-look prompting and design the
underlying visual reasoning processes in endoscopic videos
for surgical triplet recognition, generating visual-semantic
aware and spatio-temporal aware prompt features from VL
models. BioMed language model is further employed to cali-
brate semantic features for surgical scenarios.

• We present an verb-centric surgical triplet recognition mod-
eling scheme, which can reliably capture the most central
semantic information in surgical endoscopic videos.

• Our model achieves substantial improvements compared
with state-of-the-art methods for surgical triplet recognition.

2 RELATED WORK
2.1 Surgical Triplet Recognition
A surgical action in surgical ontology is described as a triplet with
instrument, verb and the target that the instrument is acting upon.
Surgical triplet recognition aims to recognize fine-grained surgical
actions from surgery videos. In early studies, retinal microsurgery
[22–25] and laparoscopic surgery [9, 25, 26] are the most concen-
trated fields for surgical triplet recognition. Other early methods for
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surgical triplet recognition include using detector-tracker frame-
work [24] and optical flow tracker [14]. Information of triplet anno-
tation for surgical phase recognition [9, 26] has also been employed.
However, those line of works do not produce fine-grained surgical
triplet recognition results. Recent solutions for fine-grained surgi-
cal triplet recognition include Tripnet [18] and RDV [19], which
are both compositional methods by modeling instrument, verb and
target individually. Another recent work Forest GCN [30] employs
classification forest and Graph Convolutional Network for surgical
triplet recognition.

2.2 Large Scale Visual-Language (VL) Models.
Recent pretrained large-scale VL models with a representative work
of CLIP [21] and BLIP [11] bridge visual and language information
by jointly learning two encoders. Follow-up studies employing
the pretrained VL models on downstream tasks have achieved re-
markable progress, including CLIP-Adapter [5] and PointCLIP [32].
Two types of mainstream VL model structures exist currently: (1)
Single-stream (1-stream) VL models [12] by directly fusing the
initial language/visual representation by utilizing the joint cross-
modal encoder, and (2) Double-stream (2-stream) VL models [16],
which separately apply the intra-modality processing to two modal-
ities along with a shared cross-modal encoder. Most single-stream
and parts of the double-stream VL models are regarded as self-
attention-based VL models because they directly perform cross-
modal modeling by applying single-stream self-attention module
to the modality representations. Comparatively, co-attention-based
VL models decouple the intra- and cross-modal modeling processes.

2.3 Prompt Learning
Prompt learning was first introduced in NLP area [6], aiming to
produce a task-specific template for language models. Common
prompt learning scheme involves hard prompt learning [5] and soft
prompt learning [13]. Hard prompt learning searches for a specific
word for the predesigned template, such as “I [MASK] running.”
in sentiment analysis, where the mask placeholder will be replaced
with either “love” or “hate”. Different from hard prompt learning,
soft prompt learning is designed to tune masked tokens into learn-
able vectors. We employ the idea of soft prompting, proposing
chain-of-look prompting modules for verbs and surgical triplets in
endoscopic videos. Motivated by the well performance of prompt
learning on NLP, recently researchers begin to apply it into the
vision-languagemodels. CLIP [21] uses amanually designed prompt
on the text encoder, which enables the zero-shot image classifica-
tion of vision-language model. To avoid human efforts on prompt
design, CoOp [34] proposes a continuous prompts learning method
and two implementations that can be applied on different recog-
nition tasks. Yet CoOp [34] seems over-fitting the base classes in
the training, resulting in inferior performance on unseen classes
even within the same dataset. To cure this problem, CoCoOp [33]
propose to generate an input-conditional vector for each image
by a lightweight neural network, which boosts the classifier per-
formance on new classes. Although CoOp and CoCoOp achieve
promising improvements, they requires supervised data from the
target datasets which may restrict the model scalability. In the con-
trary, Huang et al. [8] propose the unsuper- vised prompt learning

(UPL) method which improves transfer performance of CLIP-like
VL models.

2.4 Chain-of-Thought (CoT)
Chain-of-Thought (CoT) prompting is designed for enhancing LLMs
by prompting them to generate a sequence of intermediate rea-
soning steps, generating the final answer of a multi-step problem.
Those intermediate reasoning steps significantly improve the rea-
soning ability of LLMs to perform complex reasoning [17, 27, 28].
In addition, fine-tuning with CoT exhibit more harmless compared
with no CoT [2]. It has been regarded that CoT prompting is an
emergent property of model scale, suggesting the larger and more
powerful language models lead to better CoT performance. In order
to enhance the CoT ability and stimulate better explainability, fine-
tuning models on CoT reasoning dataset would also be a feasible
approach.

An example of CoT is shown in Fig. 1 (a). To solve a multi-step
math world problem containing complicated reasoning task, decom-
posing the problem into multiple intermediate steps is commonly
employed. The final answer is generated by solving each interme-
diate steps. LLMs is thus endowed with the ability to generate a
similar chain of thought to result in the final answer of a problem. In
this paper, we propose Chain-of-Look prompting similar with CoT
prompting by explicitly decomposing surgical triplet recognition
into a sequence of visual reasoning processes.

3 METHODOLOGY
In this part, we illustrate the architecture of our model in detail.
We first present the problem formulation of surgical triplet recog-
nition task. Then we introduce the two visual reasoning networks:
Visual-Semantic Reasoning (VSR) network and Spatio-Temporal
Reasoning (STR) network. These two visual reasoning networks
explicitly decompose surgical triplet recognition into a sequence of
visual prompting generation steps, constructing the chain-of-look
prompting scheme for surgical triplet recognition.

3.1 Formulation
Denote an endoscopic video dataset with (X,Y), where X repre-
sents the set of video frames andY indicates triplet labels<instrument,
verb, target>. The number of all possible triplets in the dataset is
𝑁 and the number of all possible verbs in the dataset is 𝐾 . Our
objective is to identify all the triplets that occur in each video frame
𝑥 ∈ X. The number of triplets occur in 𝑥 varies, meaning there
could be no triplets in 𝑥 , or there could be several triplets in 𝑥
simultaneously. We aim to learn a prediction model f𝜃 : 𝑥𝑖 → 𝑦𝑖 ,
where 𝜃 is the model parameter, 𝑥𝑖 denotes the input video frame
and 𝑦𝑖 ∈ {0, 1}𝑙×1 (𝑙 = |Y|) indicates the binary triplet prediction
vector.

3.2 Visual-Semantic Reasoning (VSR) Network
In this section, we illustrate VSR network in detail, which is de-
signed as a two-step chain-of-look reasoning process for triplet
prompt feature generation from pretrained large-scale VL model
(BLIP [11] and CLIP [21]). Concretely, as shown in Fig. 2, the first
chain-of-look reasoning process CaptionTrip Prompting (CTP) em-
ploys global semantic information of each frame for triplet prompt
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Figure 2: Our model is constructed with the visual-semantic reasoning (VSR) network and the spatio-temporal reasoning (STR)
network. Each of the two networks consists of two chain-of-look reasoning steps (VTR: CaptionTrip Prompting + VideoTrip
Prompting; STR: Verb Prompting + Dynamic GNN). Only the networks highlighted in blue are optimized during training. For a
surgical video segment, BLIP model produces frame captions of each frame, followed by CLIP model to generate initial caption
feature 𝑓𝑐 . Learnable context prompt features {𝑝𝑖 }𝑀𝑖=1 are then combined with caption feature 𝑓𝑐 and applied with a BioMed
language model to calibrate frame captions to be feasible in surgical scenarios. CLIP model is further utilized to produce
calibrated caption feature 𝑓𝑐 and initial triplet prompt features {𝑐𝑛}𝑁𝑛=1 as well as surgical triplet prompt features {𝑎𝑘 }𝐾𝑘=1. The
two reasoning networks generate verb prediction and triplet prediction, which are further combined for final surgical triplet
prediction.

feature generation. Follow-up reasoning process VideoTrip Prompt-
ing (VTP) employs visual information from frames. These two
complementary reasoning steps enable the final triplet prompt fea-
tures to be visual-semantic aware of the activities happening in
endoscopic videos.

In an endoscopic video dataset containing 𝑁 possible surgi-
cal triplets {𝑔𝑛}𝑁𝑛=1 of <instrument, verb, target>, we pre-define a
triplet prompt template 𝑡 (𝑔𝑛) =“A physician is using the [Instrument]
to [Verb] the [Target] in the surgery." for each triplet, where
“[Instrument]”, “[Verb]” and “[Target]” are replaced with their
corresponding class names in each triplet. Each template is applied
with a pretrained large-scale VL model CLIP (shown in Fig. 2) to
generate triplet prompt feature 𝑐𝑛 :

𝑐𝑛 = 𝐶𝐿𝐼𝑃 (𝑡 (𝑔𝑛)) ∈ R𝑑 , 𝑛 ∈ [1, 𝑁 ], (1)

where 𝑑 denotes the prompt feature dimension. The first chain-
of-look reasoning process CTP incorporates global semantic in-
formation of each frame into triplet prompt features for semantic
reasoning. To extract semantic information in video frames, we
employ the current state-of-the-art image caption model BLIP to
generate frame caption from frame 𝑥 and further generate caption

feature 𝑓𝑐 with CLIP model:

𝑓𝑐 = 𝐶𝐿𝐼𝑃 (𝐵𝐿𝐼𝑃 (𝑥)) ∈ R𝑑 . (2)

As shown in Fig. 2, since BLIP model is not trained on datasets in
medical domain, the generated frame captions from BLIP model
are not exactly coherent with the semantic meaning of the surgical
scene in the frame. Therefore, we introduce 𝑀 learnable context
prompt features {𝑝𝑖 }𝑀𝑖=1, 𝑝𝑖 ∈ R

𝑑 into caption feature 𝑓𝑐 and apply
BioMed Large Language Model (BioMedLM) to calibrate global
semantic information with BioMed domain knowledge, where the
value of𝑀 equals the sum of class numbers of instrument, verb and
target, respectively. {𝑝𝑖 }𝑀𝑖=1 are initialized with word embeddings
of class names of instrument, verb and target. Thus, we generate
context-calibrated caption feature 𝑓𝑐 :

𝑓𝑐 = 𝐶𝐿𝐼𝑃 (𝐵𝑖𝑜𝑀𝑒𝑑𝐿𝑀 (𝐴𝑣𝑔(𝑓𝑐 , 𝑝1, · · · , 𝑝𝑀 ))) ∈ R𝑑 , (3)

where𝐴𝑣𝑔 indicates average operation. The overall caption features
are denoted as f̂c ∈ R𝑇×𝑑 , where𝑇 is the length of a video segment.
CaptionTrip Prompting (CTP).Thefirst chain-of-lookprompt-
ing scheme CTP in VSR network is designed for semantic reason-
ing of triplet prompt features by “looking at” global semantic
information of endoscopic video frames. CTP module takes triplet
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prompt features {𝑐𝑖 }𝑁𝑖=1 and context-calibrated caption feature 𝑓𝑐
as inputs, generating global semantic-aware triplet prompt features
{𝑐′
𝑖
}𝑁
𝑖=1, 𝑐

′
𝑖
∈ R𝑑 . Concretely, CTP module consists of a multi-head

attention (MHA), where the query is triplet prompt feature 𝑐𝑖 while
the key and value are both context-calibrated caption feature 𝑓𝑐 .
A feed-forward network (FFN) is followed to learn video-specific
prompt feature 𝑐′

𝑖
,

𝑐𝑖 = 𝑀𝐻𝐴(𝑐𝑖 , f̂𝑐 ) + 𝑐𝑖 , (4)

𝑐′𝑖 = 𝐹𝐹𝑁 (𝑐𝑖 ) + 𝑐𝑖 . (5)
VideoTrip Prompting (VTP).The second chain-of-lookprompt-
ing scheme in VSR network is VTP, extending the previous se-
mantic reasoning process to visual reasoning process by incor-
porating visual information into triplet prompt features. Conse-
quently, VTP generates visual-semantic aware triplet prompt fea-
tures {𝑐𝑖 }𝑁𝑖=1, 𝑐𝑖 ∈ R

𝑑 . VTP holds the same structure with CTP, with
only the inputs changed to be the global semantic-aware triplet
prompt feature 𝑐′

𝑖
and visual feature 𝑓𝑣 ∈ R𝑑 of video frame. For a

video frame 𝐼𝑡 at time 𝑡 , visual feature is extracted from backbone
model ResNet18 [7]. Similar to Eq. 4 and Eq. 5, the visual-semantic
aware triplet prompt features 𝑐𝑖 generated from VHP is formulated
as

𝑐′𝑖 = 𝑀𝐻𝐴(𝑐
′
𝑖 , f𝑣) + 𝑐

′
𝑖 , (6)

𝑐𝑖 = 𝐹𝐹𝑁 (𝑐′𝑖 ) + 𝑐
′
𝑖 , (7)

where f𝑣 ∈ R𝑇×𝑑 represents all visual features of a video segment.

3.3 Spatio-Temporal Reasoning (STR) Network
In a surgical scene, the intention of surgical activities are determined
by the actions (verbs) occurred in that scene, while instruments
and targets serve as participants to accomplish different activities.
Namely, the verbs distinguish the uniqueness of different surgical
scenes, since the same instruments and targets could result in dif-
ferent surgical activities. Therefore, modeling temporal dynamics
of verbs in endoscopic videos provides fundamental semantic in-
formation of surgical scenes. To this end, we structurize the visual
feature of video frames into a fixed number of verb prompt features,
where each verb prompt feature represents a specific verb class.

For all the 𝐾 verb labels {𝑢𝑘 }𝐾𝑘=1 in the dataset, the verb prompt
template 𝑡 (𝑢𝑘 )=“A physician is [Verb]ing in the surgery.” is prede-
fined for each verb, where “[Verb]” represents each verb name in
the dataset. Then we generate verb prompt features {𝑎𝑘 }𝐾𝑘=1 with
CLIP text encoder:

𝑎𝑘 = 𝐶𝐿𝐼𝑃 (𝑡 (𝑢𝑘 )) ∈ R𝑑 , 𝑘 ∈ [1, 𝐾] . (8)

To endow the verb prompt features with spatio-aware reasoning
capabilities, we design a novel Verb Prompting (VP) module as the
first chain-of-look prompting scheme in STR network shown
in Fig. 3. VP takes visual feature 𝑓𝑣 and verb prompt features
{𝑎𝑘 }𝐾𝑘=1 as inputs and outputs spatio-aware verb prompt features
{𝑎′
𝑘
}𝐾
𝑘=1, 𝑎

′
𝑘
∈ R𝑑 . The VP module is divided into two stages: (I) In

the first stage, to align the verb prompt features and visual features
to the same embedding space, each visual feature 𝑓𝑣 is applied with
a Visual Prompting Network (VPN) against all the 𝐾 verb prompt
features {𝑎𝑘 }𝐾𝑘=1. The VPN first consists of a Multi-Head Attention
(MHA), where verb prompt feature 𝑎𝑘 serves as query, while visual

feature 𝑓𝑣 serves as key and value. MHA is followed by a Layer
Norm (LN) module, Feed-Forward Network (FFN) and another LN.
In this way, we generate learned visual prompt feature 𝑓 ′𝑣 :

𝑓 ′𝑣 = 𝑉𝑃𝑁 (𝑎𝑘 , 𝑓𝑣) ∈ R𝑑 , (9)

which is aligned to the same embedding space with respect to each
verb prompt feature 𝑎𝑘 . (II) The second stage of VP module employs
a lightweight attention module

𝐴𝑡𝑡𝑒𝑛(𝑄,𝐾,𝑉 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝑄𝐾T
√
𝑑

)
𝑉 (10)

to compute the relative importance of the learned visual prompt fea-
ture 𝑓 ′𝑣 to a specific verb prompt feature 𝑎𝑘 , where𝑄,𝐾,𝑉 ,

√
𝑑 repre-

sent query, key, value and scaling factor, respectively. This attention
module takes 𝑓 ′𝑣 as query, while 𝑎𝑘 as key and value, outputting
the spatio-aware verb prompt features {𝑎′

𝑘
}𝐾
𝑘=1: 𝑎

′
𝑘
= 𝐴𝑡𝑡𝑒𝑛(𝑓 ′𝑣 , 𝑎𝑘 ).

Thus the combined formulation of 𝑎′
𝑘
can be expressed as:

𝑎′
𝑘
= 𝐴𝑡𝑡𝑒𝑛(𝑄 = 𝑉𝑃𝑁 (𝑎𝑘 , 𝑓𝑣), 𝐾 = 𝑎𝑘 ,𝑉 = 𝑎𝑘 ) . (11)

The above visual reasoning step happens on spatio domain, fo-
cusing on what actions (verbs) are happening in a particular frame.
Since a video segment consists of a sequence of interdependent
frames, the next visual reasoning step should extend from one
frame to a sequence of frames along the timeline. In light of this,
we design the second chain-of-look prompting module to ex-
tend the reasoning process from spatio domain to temporal domain.
Now that we have semantic-aware verb prompt features {𝑎′

𝑘
}𝐾
𝑘=1

of each frame, we construct a fully-connected graph G at each time
𝑡 , whose nodes are the 𝐾 verbs with node features {𝑎′

𝑘
}𝐾
𝑘=1. Moti-

vated by the ROLAND model [31] of dynamic GNN, we capture
the temporal dynamics of semantic-aware verb prompt features by
recurrently updating node features over time. As shown in Fig. 4,
at time 𝑡 , dynamic GNN takes into 𝑎′

𝑘
, followed by GNN Layer 1 to

generate updated level 1 node state 𝐻 (1)
𝑡 :

𝐻̃
(𝑙 )
𝑡 = 𝐺𝑁𝑁 (𝑙 ) (𝐻 (𝑙−1)

𝑡 ), (12)

𝐻
(𝑙 )
𝑡 = 𝑈𝑝𝑑𝑎𝑡𝑒 (𝑙 ) (𝐻 (𝑙 )

𝑡−1, 𝐻̃
(𝑙 )
𝑡 ), (13)

where 𝑙 = {1, 2} indicates the number of GNN layer. Then node
embedding update is employed by taking 𝐻̃ (𝑙 )

𝑡 and historical node
state 𝐻 (𝑙 )

𝑡−1. Following ROLAND, we take GRU (Gated Recurrent
Unit) cell [3] for node embedding updating:

𝐻
(𝑙 )
𝑡 = 𝐺𝑅𝑈 (𝐻 (𝑙 )

𝑡−1, 𝐻̃
(𝑙 )
𝑡 ) . (14)

With generated 𝐻 (𝑙 )
𝑡 , the other stacked GNN Layer and Embedding

Update layer is applied to generate final node embedding𝐻𝐿𝑡 , where
𝐿 = 2 in our architecture. With the second chain-of-look prompting
module of dynamic GNN, the spatio-temporal aware verb prompt
features {𝑎𝑘 }𝐾𝑘=1 at time 𝑡 is generated, which equals to 𝐻𝐿𝑡 .

3.4 Surgical Triplet Prediction and Inference
Surgical triplet prediction is performed by employing the above
computed spatio-temporal aware verb prompt features {𝑎𝑘 }𝐾𝑘=1 and
visual-semantic aware triplet prompt features {𝑐𝑛}𝑁𝑛=1. For each
𝑎𝑘 ∈ R𝑑 of frame 𝑥 at time 𝑡 , we concatenate it with 𝑐𝑛 ∈ R𝑑 that
contains the same verb class within that triplet. Then we apply a
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Figure 3: Verb Prompting. Visual feature 𝑓𝑣 and verb prompt
features {𝑎𝑘 }𝐾𝑘=1 are applied with verb prompting network,
where {𝑎𝑘 }𝐾𝑘=1 serve as query and 𝑓𝑣 serves as key and value.
The generated visual feature 𝑓 ′𝑣 is further employed as query
in an attention module with verb prompt features {𝑎𝑘 }𝐾𝑘=1
perform as key and value. The spatio-aware verb prompt fea-
tures {𝑎′

𝑘
}𝐾
𝑘=1 are finally generated from the attention mod-

ule.

Figure 4: The structure of dynamic GNN for temporal model-
ing of verb prompt features across frames. For the 𝑘−th verb
(𝑘 ∈ [1, 𝐾]), semantic-aware verb prompt features 𝑎′

𝑘
at time

𝑡 and time 𝑡 − 1 are taken as inputs for dynamic GNN. The
embedding update at each time is based on both the node
states 𝐻 (𝑙 )

𝑡 and 𝐻̃ (𝑙 )
𝑡 at time 𝑡 as well as node states 𝐻 (𝑙 )

𝑡−1 and

𝐻̃
(𝑙 )
𝑡−1 at time 𝑡 − 1. Two embedding update layer and GNN

layer pairs are stacked for the generation of final node state
𝐻

(2)
𝑡 , which equals to the saptio-temporal aware verb prompt

feature 𝑎𝑘 .

multi-layer perceptron (𝑀𝐿𝑃 ) followed by a sigmoid function to
generate predicted logits 𝑝𝑡𝑟𝑖𝑝𝑛 ∈ [0, 1] of the triplet correspond-
ing to 𝑐𝑛 : 𝑝

𝑡𝑟𝑖𝑝
𝑛 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝐿𝑃 ( [𝑎𝑘 , 𝑐𝑛])), where [·, ·] indicates

concatenating operation. Thus, the triplet prediction loss L𝑡𝑟𝑖𝑝 for
each frame can be generated by computing the binary cross-entropy
(𝐵𝐶𝐸) between total triplet prediction logits {𝑝𝑡𝑟𝑖𝑝𝑛 }𝑁

𝑛=1 and triplet
ground truth {𝑦𝑡𝑟𝑖𝑝𝑛 }𝑁

𝑛=1, where 𝑦
𝑡𝑟𝑖𝑝
𝑛 ∈ {0, 1}:

L𝑡𝑟𝑖𝑝 =
1
𝑁

𝑁∑︁
𝑛=1

𝐵𝐶𝐸 (𝑝𝑡𝑟𝑖𝑝𝑛 , 𝑦
𝑡𝑟𝑖𝑝
𝑛 ). (15)

At the same time, we apply another MLP to for verb predic-
tion by employing semantic-temporal aware verb prompt features
{𝑎𝑘 }𝐾𝑘=1. The verb prediction logit 𝑝𝑣𝑒𝑟𝑏

𝑘
∈ [0, 1] are formulated as:

𝑝𝑣𝑒𝑟𝑏
𝑘

= 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝐿𝑃 (𝑎𝑘 )). Then the verb prediction loss L𝑣𝑒𝑟𝑏
is computed with the BCE between total verb prediction logits
{𝑝𝑣𝑒𝑟𝑏𝑛 }𝑁

𝑖=1 and verb ground truth {𝑦𝑣𝑒𝑟𝑏𝑛 }𝑁
𝑖=1, where 𝑦

𝑣𝑒𝑟𝑏
𝑛 ∈ {0, 1}:

L𝑣𝑒𝑟𝑏 =
1
𝐾

𝐾∑︁
𝑛=1

𝐵𝐶𝐸 (𝑝𝑣𝑒𝑟𝑏𝑛 , 𝑦𝑣𝑒𝑟𝑏𝑛 ). (16)

The overall loss function L to be optimized in the training phase
is formulated as:

L = L𝑡𝑟𝑖𝑝 + 𝜆L𝑣𝑒𝑟𝑏 , (17)
where 𝜆 is the weight for verb loss.

During inference, for each frame in a given endoscopic video
segment, we generate triplet prediction logits {𝑝𝑡𝑟𝑖𝑝𝑛 }𝑁

𝑛=1. A thresh-
old for triplet predicted logits is further set for obtaining the binary
triplet prediction.

4 EXPERIMENTS
4.1 Experiment Settings
4.1.1 Dataset. CholecT50 dataset [18][19] contains 50 endoscopic
videos of laparoscopic cholecystectomy surgery. Following the prac-
tice of [19], among all the videos, 35 videos are chosen for training,
5 videos for validation and the remaining 10 videos for testing.
There are 100 triplet classes presented as <instrument, verb, target>
in the dataset in total. Every single frame in a video could contain
one label, multiple labels or without any label.

4.1.2 Evaluation Metrics. We follow previous work [18][19] and
use average precision (AP) to measure triplet classes prediction
ability in the form of <instrument, verb, target> to evaluate the
performance of the model. Top-𝑁 recognition performance is fur-
ther employed to measure the ability of predicting the exact triplets
within its top 𝑁 outputs.

• Average Precision, For a given video during testing, AP
score for per triplet class is computed across all frames in
this video. The AP score for a given video is then obtained by
averaging all AP scores of triplet classes occur in this video.
The final mean AP (mAP) is calculated by averaging those
AP scores over all test videos. For the AP computation of
triplet classes recognition, a prediction is counted as correct
only when all of the three elements of the triplet are correctly
identified. We measure AP scores for instrument (𝐴𝑃𝐼 ), verb
(𝐴𝑃𝑉 ), target (𝐴𝑃𝑇 ), instrument-verb (𝐴𝑃𝐼𝑉 ), instrument-
target (𝐴𝑃𝐼𝑇 ) and instrument-verb-target (𝐴𝑃𝐼𝑉𝑇 ). Among
the six AP scores, 𝐴𝑃𝐼𝑉𝑇 serves as the main metric for eval-
uating the surgical triplet prediction ability.

• Top-𝑁 Accuracy, Given test sample 𝑥𝑖 , a model makes a
correct prediction if the ground-truth appears in its top 𝑁
prediction scores for the sample.We present the top-5, top-10
and top-20 accuracies for triplet recognition.

4.1.3 Implementation Details. All video frames are resized to a
unified dimension of 256×448 and no data augmentation operations
are employed during training. ResNet18 is used to extract visual
features. The prompt feature dimension 𝑑 is set to be 1024. GNN
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Table 1: Quantitative results of comparisons between SOTA methods and our proposed model on CholecT50 dataset. Δ CTP:
no CaptionTrip Prompting module; Δ VTP: no VideoTrip Prompting module; Δ VP: no Verb Prompting module; Δ D-GNN:
no Dynamic GNN module; Δ BioMedLM: no BioMed Language module; Δ verb loss: L𝑣𝑒𝑟𝑏 is not utilized for optimization.
𝐴𝑃𝐼 , 𝐴𝑃𝑉 , 𝐴𝑃𝑇 , 𝐴𝑃𝐼𝑉 , 𝐴𝑃𝐼𝑇 , 𝐴𝑃𝐼𝑉𝑇 represent the mean average precision of instrument, verb, targe, instrument-verb, instrument-
target and instrument-verb-target across all test videos.

𝐴𝑃𝐼 𝐴𝑃𝑉 𝐴𝑃𝑇 𝐴𝑃𝐼𝑉 𝐴𝑃𝐼𝑇 𝐴𝑃𝐼𝑉𝑇
Naive CNN [18] 57.7 39.2 28.3 21.7 18.0 13.6
TCN [19] 48.9 29.4 21.4 17.7 15.5 12.4
MLT [19] 84.5 28.4 28.2 26.6 21.2 17.6
Tripnet [18] 92.1 54.5 33.2 29.7 26.4 20.0
RDV [19] 92.0 60.7 38.3 39.4 36.9 29.9
Forest GCN [30] 93.1 60.1 40.2 36.2 37.5 36.7
Ours (Δ CTP) 85.3 56.8 37.4 32.5 34.2 32.8
Ours (Δ VTP) 84.8 57.1 35.4 32.0 35.1 31.9
Ours (Δ VP) 92.4 59.3 38.7 34.8 36.3 34.5
Ours (Δ D-GNN) 91.9 59.8 38.8 35.7 36.1 34.6
Ours (Δ BioMedLM) 92.6 60.5 39.2 36.7 38.6 36.3
Ours (Δ verb loss) 93.7 61.6 41.4 40.3 39.1 37.3
Ours 94.1 62.5 41.9 41.7 39.5 38.2

layers in Dynamic GNN is implemented as Graph Convolutional
Networks (GCN) [10]. MLPs in the model consists of 3 layers, with
ReLU activation function and LayerNorm at the end of each layer
except the last one. We employ the pretrained CLIP [21] model
as text encoder for extracting text features of 768-dim, which are
further projected to 1024-dim. The parameters of CLIP and BLIP [11]
are frozen during training. The number of heads in MHA module
in Sec. 3.2 is set to 8. 𝜆 in Eq. 17 is 0.2. During training, the initial
learning rate is 0.0002, decaying the learning rate of each parameter
group by 0.1 every 40 epochs. We use Adam as the optimizer for
network optimization and the weight decay is set to be 0.001.

4.2 Comparison with state-of-the-art methods
4.2.1 Quantitative Results. We compare our proposed model with
current state-of-the-art (SOTA) methods. Results in Tab. 1 show
that our method outperforms existing SOTA methods Forest GCN
[30] and RDV [19] in terms of the main metric 𝐴𝑃𝐼𝑉𝑇 (1.5 mAP
increase against Forest GCN and 8.3 mAP increase against RDV)
in test set. Our method also surpasses competing methods in all of
the five remaining AP scores (𝐴𝑃𝐼 , 𝐴𝑃𝑉 , 𝐴𝑃𝑇 , 𝐴𝑃𝐼𝑉 , 𝐴𝑃𝐼𝑇 ). Among
these five AP scores, 𝐴𝑃𝑉 (from 60.1 to 62.5 compared to Forest
GCN) and𝐴𝑃𝐼𝑉 (from 36.2 to 41.7 compared to Forest GCN) achieve
the largest improvements, indicating our verb-centric modeling
scheme generates more precise verb predictions compared to previ-
ous methods. For the Top-𝑁 accuracy of triplet prediction, results in
Tab. 2 indicates that our method achieves higher accuracy on all of
the three top-𝑁 metrics compared with SOTA methods. We further
show the top 10 predicted triplet classes from different methods
in Tab. 3. Results indicate the prediction pattern is different from
existing methods.

4.2.2 Qualitative Results. We qualitatively compare our method
with two SOTA methods RDV [19] and Forest GCN [30]. The top-5
triplet predictions of six test samples from each method are pre-
sented in Fig. 5. The qualitative results show that our model predicts

Table 2: Quantitative comparison of Top-𝑁 accuracy of triplet
classes prediction of differentmodels. Notations are the same
with Tab. 1.

Method Top-5 Top-10 Top-20
CNN [18] 67.0 80.0 90.2
TCN [19] 54.5 69.4 84.3
MTL [19] 70.2 80.2 89.5
Tripnet [18] 70.5 81.9 91.4
RDV [19] 76.3 88.7 95.9
Forest GCN [30] 83.2 91.8 97.0
Ours (Δ CTP) 72.1 79.5 91.2
Ours (Δ VTP) 71.8 82.2 90.8
Ours (Δ VP) 77.4 84.7 93.3
Ours (Δ D-GNN) 78.6 87.9 95.1
Ours (Δ BioMedLM) 82.0 88.5 94.3
Ours (Δ verb loss) 82.4 90.3 96.8
Ours 84.5 92.4 97.2

most of the ground-truth surgical triplets as top-5 confident output,
while RDV and Forest GCN only predict part of the ground truth
triplets as top-5 outputs. There are also some failure cases in the
predictions from our model, including the sample on the second
row and the third column of Fig. 5. This sample contains three
surgical triplets, but our model only predicts two of them in the
top 5 predictions. The missing prediction is possibly caused by the
severe occlusion between two instruments.

4.3 Ablation Studies
In this section, we analyze different design choices in our model. For
both visual-semantic reasoning (VSR) network and spatio-temporal
reasoning network (STR), we ablate each individual visual reason-
ing chain to validate the effectiveness of that chain on the whole
model. From the results of Tab. 1, ablating every single reasoning
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Table 3: Top 10 predicted triplet classes comparison with different methods. 𝐴𝑃𝐼𝑉𝑇 indicates the average precision score for
every single triplet class prediction. The average triplet 𝐴𝑃𝐼𝑉𝑇 of top 10 predictions from each method is presented at the
bottom of of the table.

Tripnet[18] RDV[19] Forest GCN [30] Ours

Triplet 𝐴𝑃𝐼𝑉𝑇 Triplet 𝐴𝑃𝐼𝑉𝑇 Triplet 𝐴𝑃𝐼𝑉𝑇 Triplet 𝐴𝑃𝐼𝑉𝑇
grasper,retract,gallbladder 77.3 grasper,retract,gallbladder 85.34 hook,dissect,gallbladder 84.48 hook,dissect,gallbladder 87.45
grasper,grasp,specimen-bag 76.5 grasper,grasp,specimen-bag 81.75 grasper,grasp,specimen-bag 83.61 bipolar,coagulate,liver 84.32
bipolar,coagulate,liver 67.39 hook,dissect,gallbladder 75.90 grasper,retract,gallbladder 82.35 grasper,grasp,specimen-bag 83.14
hook,dissect,gallbladder 57.54 grasper,retract,liver 66.70 bipolar,coagulate,liver 80.92 clipper,clip,cystic-duct 69.45
irrigator,aspirate,fluid 57.51 bipolar,coagulate,liver 63.12 grasper,retract,liver 70.23 hook,dissect,cystic-artery 67.84
grasper,retract,liver 54.25 clipper,clip,cystic-duct 59.68 hook,dissect,cystic-artery 65.46 irrigator,aspirate,fluid 64.33
clipper,clip,cystic-artery 47.44 bipolar,coagulate,blood-vessel 57.18 clipper,clip,cystic-duct 56.82 grasper,retract,gallbladder 61.95
scissors,cut,cystic-duct 42.57 scissors,cut,cystic-artery 53.84 grasper,retract,gallbladder 56.48 scissors,cut,cystic-duct 57.04
scissors,cut,cystic-artery 40.37 irrigator,aspirate,fluid 51.95 hook,dissect,peritoneum 49.50 grasper, retract, cystic-plane 53.67
clipper,clip,cystic-duct 39.62 clipper,clip,cystic-artery 51.52 bipolar,coagulate,gallbladder 40.24 clipper,clip,cystic-artery 47.96
mean 56.05 64.70 67.01 67.71

Figure 5: Comparison of qualitative results of Top-5 predictions from RDV [18], Forest GCN [30] and our model. Green boxes
represent correct triplet predictions, while red boxes and gray boxes represent wrong triplet predictions and ground truth,
respectively. Best view in screen.

chain in VSR network or STR network will result in the drop of
triplet recognition mAP performance, validating the effectiveness
of the two reasoning networks. We also notice that ablating the
CTP module and VTP module in VSR network results in more se-
vere mAP drop than ablating AP module and D-GNN module in
STR network. Meanwhile, ablating BioMedLM decreases triplet
mAP performance, suggesting that calibrating caption features
with domain knowledge is necessary for surgical triplet recogni-
tion. Ablating the verb loss term in Eq. 17 results in 0.9 𝐴𝑃𝐼𝑉𝑇
drop compared to optimizing two loss terms. This result suggests
that the verb prediction guides the triplet prediction to be more
accurate, possibly because the verb prediction is easier than triplet
prediction since the class number of verbs are much smller than
triplet class number. Similarly, Tab. 2 show the ablation results on
Top-𝑁 accuracy, presenting the same tendency shown in Tab. 1.

5 CONCLUSION
In this paper, we propose chain-of-look prompting scheme to ex-
plicitly decompose the surgical triplet recognition into a series of

visual reasoning processes in endoscopic videos and cast the sur-
gical triplet recognition task as a visual prompt generation task.
We further utilize BioMed language model to endow the generated
visual prompts to be applicable in surgical scene. We also regard
verbs as the central semantic carriers in surgical triplets and present
a verb-centric scheme to model surgical triplets. Extensive experi-
ments validate the effectiveness of our method for surgical triplet
recognition.
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Appendix A MORE QUANTITATIVE RESULTS
We show the per-class detection results of instrument, verb and
target in Tab. 4, Tab. 5 and Tab. 6, respectively. The instrument
names and verb names are listed on the top row of Tab. 4 and Tab. 5.
Target classes are denoted as numbers from 1 to 14 in the top row of

Tab. 6, corresponding to gallbladder, cystic-plate, cystic-duct, cystic-
artery, cystic-pedicle, blood-vessel, fluid, abdominal-wall-cavity, liver,
omentum, peritoneum, gut, specimen-bag, null respectively. Results
indicate that our method outperforms state-of-the-art methods in
most of those individual per-class recognition (highlighted in the
last row of each table).

Table 4: Results of Per-Class Instrument Detection (𝐴𝑃𝐼 ).

Method Grasper Bipolar Hook Scissors Clipper Irrigator mAP
CNN [18] 91.4 47.9 89.1 24.0 50.2 43.2 57.7
TCN [19] 90.5 37.6 86.2 15.9 33.3 29.6 48.9
MTL [19] 95.5 85.8 96.6 74.8 85.8 68.2 84.5
Tripnet [18] 97.8 91.2 98.1 90.7 92.1 82.7 92.1
RDV [19] 97.7 89.4 98.1 92.0 92.2 82.7 92.0
Ours 97.3 92.4 98.6 93.1 93.5 89.2 94.1

Table 5: Results of Per-Class Verb Detection (𝐴𝑃𝑉 ).

Method Grasp Retract Dissect Coagulate Clip Cut Aspirate Irrigate Pack Null mAP
CNN [18] 48.6 82.1 80.5 30.5 49.5 23.8 32.4 16.0 9.2 15.9 39.2
TCN [19] 24.9 80.2 66.4 27.4 31.9 14.7 14.8 13.9 2.0 15.4 29.4
MTL [19] 47.9 85.0 84.8 55.0 79.1 44.1 35.4 13.4 18.0 17.0 48.4
Tripnet [18] 45.8 88.1 86.7 66.3 85.1 68.3 44.9 12.2 22.5 20.1 54.5
RDV [19] 60.4 90.5 89.5 68.7 86.7 87.8 50.4 17.4 30.5 21.0 60.7
Ours 60.9 92.4 88.6 73.5 89.2 88.6 60.2 16.8 30.2 24.6 62.5

Table 6: Results of Per-Class Target Detection (𝐴𝑃𝑇 ).

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mAP
CNN [18] 84.2 14.8 26.3 18.7 14.3 3.6 32.4 10.1 49.8 35.2 8.4 8.4 69.3 15.9 28.3
TCN [19] 79.9 10.0 21.4 19.6 7.0 1.3 14.8 6.9 43.1 27.9 1.9 9.0 37.4 15.4 21.4
MTL [19] 85.1 12.2 29.3 18.6 6.5 6.4 30.6 9.8 55.7 35.8 2.1 8.4 71.1 17.5 28.2
Tripnet [18] 87.0 22.5 29.7 21.9 4.7 15.0 42.9 32.3 57.5 36.7 2.0 11.9 74.1 20.9 33.2
RDV [19] 89.1 15.3 35.2 34.5 22.7 11.4 53.7 40.6 59.3 46.6 4.3 12.5 84.0 25.0 38.3
Ours 91.4 15.6 39.6 34.9 21.8 17.7 58.6 41.7 73.9 49.8 14.6 15.2 88.4 23.4 41.9

5016


	Abstract
	1 Introduction
	2 Related Work
	2.1 Surgical Triplet Recognition
	2.2 Large Scale Visual-Language (VL) Models.
	2.3 Prompt Learning
	2.4 Chain-of-Thought (CoT)

	3 Methodology
	3.1 Formulation
	3.2 Visual-Semantic Reasoning (VSR) Network
	3.3 Spatio-Temporal Reasoning (STR) Network
	3.4 Surgical Triplet Prediction and Inference

	4 Experiments
	4.1 Experiment Settings
	4.2 Comparison with state-of-the-art methods
	4.3 Ablation Studies

	5 Conclusion
	References
	A More Quantitative Results



