Defending Multi-Cloud Applications Against Man-in-the-Middle
Attacks

Morgan Reece
mlr687@msstate.edu
Mississippi State University
Mississippi State, MS, USA

Nidhi Rastogi
nxrvse@rit.edu
Rochester Institute of Technology
Rochester, NY, USA

ABSTRACT

Multi-cloud applications have become ubiquitous in today’s or-
ganizations. Multi-cloud applications are being deployed across
cloud service provider platforms to deliver services to all aspects
of business. With the expansive use of multi-cloud environments,
security is at the forefront of concerns when deploying and man-
aging access to multi-cloud applications and the expanded attack
surface of these applications. Attackers can exploit vulnerabilities
in multi-cloud environments that expose privileged information to
inevitable attack.

In this paper we develop a multi-cloud victim web application
deployed as component services. These services are deployed on dif-
ferent cloud service providers. Being deployed on the different cloud
service providers expands the attack surface of the multi-cloud vic-
tim web application. Using the victim multi-cloud application, we
demonstrate a man-in-the-middle attack showing the stealing of
privileged credentials. Utilizing ParrotOS as the exploitation server,
we demonstrate an attack on an application deployed across three
cloud service providers: AWS, Azure, and Rackspace. Having suc-
cessfully attacked the application, we then implement mitigations
and verify the protection by attacking the protected application.

CCS CONCEPTS

« Security and privacy — Access control; Multi-factor authenti-
cation; Web protocol security; Security protocols.

KEYWORDS
multi-cloud; man-in-the-middle; ARP poisoning; identity security

ACM Reference Format:

Morgan Reece, Theodore Lander, Sudip Mittal, Nidhi Rastogi, Josiah Dykstra,
and Andy Sampson. 2024. Defending Multi-Cloud Applications Against
Man-in-the-Middle Attacks. In Proceedings of the 29th ACM Symposium on
Access Control Models and Technologies (SACMAT 2024), May 15-17, 2024,
San Antonio, TX, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3649158.3657051

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0491-8/24/05
https://doi.org/10.1145/3649158.3657051

Theodore Lander
tel127@msstate.edu
Mississippi State University
Mississippi State, MS, USA

Josiah Dykstra
josiahdykstra@acm.org
National Security Agency
Fort Meade, MD, USA

Sudip Mittal
mittal@cse.msstate.edu
Mississippi State University
Mississippi State, MS, USA

Andy Sampson
agsamps@uwe.nsa.gov
National Security Agency
Fort Meade, MD, USA

1 INTRODUCTION

The proliferation of cloud-hosted applications continues to increase.
While traditional cloud-hosted applications were designed to run as
a single-cloud service, recently more applications are being deployed
to different Cloud Service Providers (CSPs). Called multi-cloud ap-
plications, these software programs leverage resources and services
from multiple cloud providers to fulfill their functionality. For ex-
ample, organizations leverage multi-cloud environment, running
applications like human resources on Amazon Web Services (AWS)
and IT Service Management on Microsoft Azure [21]. Although
this provides interconnectedness, interoperability, and data shar-
ing, the complexity of the multi-cloud environment increases the
vulnerability to various threats such as credential theft, privilege
escalation, and man-in-the-middle attacks.

In this paper, we present a generic multi-cloud architecture for
simulating and testing attacks and their mitigation techniques (see
Figure 1). This architecture is implemented in our victim web appli-
cation. The victim web application is comprised of a web service, an
application service, an email service, and a database service, hosted
across multiple cloud providers.

Using the victim web application based on the multi-cloud archi-
tecture outlined, we execute a Man-In-The-Middle (MITM) attack
using ARP Poisoning, which allows the attacker to capture priv-
ileged credentials and compromise the database. The purpose of
demonstrating the MITM attack is to show the stealing of privileged
credentials and how security controls can mitigate vulnerabilities as
well as maintain security in a multi-cloud application. Additionally,
we show that security controls should encompass strong access
control, network security, and encryption of traffic at multiple lev-
els such as at the CSP, the application, and the APIs. It is worth
noting that while encryption and access control pose challenges in
multi-cloud applications due to differences in implementations by
CSPs, using TLS and IAM best practices can significantly improve
the security of multi-cloud applications. The main contributions of
this paper include:

(1) We develop a multi-cloud-based victim web application de-
ployed as component services on disparate cloud service
providers. allowing for the expansion and exposure of the
attack surface unique to the multi-cloud environment.

(2) We demonstrate a successful MITM attack that exploits ARP
Poisoning in a multi-cloud environment, and bring attention

https://orcid.org/0009-0008-1970-432X
https://orcid.org/0009-0008-9667-6078
https://orcid.org/0000-0001-9151-8347
https://orcid.org/0000-0002-2002-3213
https://orcid.org/0000-0002-3455-2562
https://orcid.org/0009-0004-4766-9921
https://doi.org/10.1145/3649158.3657051
https://doi.org/10.1145/3649158.3657051
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3649158.3657051
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649158.3657051&domain=pdf&date_stamp=2024-06-25

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA

to the vulnerabilities and relevance of strong access control
and network security.

(3) We propose and experimentally analyze a practical mitiga-
tion approach for the MITM attack in a multi-cloud environ-
ment. We focus on strong access control, network security,
and encryption for a holistic security approach.

The rest of the paper is structured as follows. In Section 2, we dive
into the background and existing research in multi-cloud attack
security and vulnerability mitigation strategies. Next, in Section 3,
we discuss the multi-cloud architecture and how it is used to build
and deploy a multi-cloud-based victim web application for attack
demonstration. In Section 4, we provide the details to execute a
MITM attack. In Section 5, we present the mitigation strategies and
finally, in Section 6, we summarize our research and suggest future
work.

2 BACKGROUND & RELATED WORK

In this section, we first contrast multi-cloud applications with single-
cloud applications. We then present the formal architecture of a
generic multi-cloud application, APPysc. This architecture serves
as a basis for our victim web application (Vyyepqpp, Section 3). In ad-
dition, we include a comprehensive examination of security issues
in multi-cloud applications.

2.1 Single vs. Multi-Cloud Applications

A multi-cloud application is a software program that executes its
functions by utilizing the resources and services of multiple cloud
providers. Multi-cloud applications offer a range of advantages com-
pared to single-cloud applications. These include cost optimization,
improved performance and scalability, enhanced availability and
resiliency, and the ability to avoid vendor lock-in [7]. By select-
ing the most economically viable services for various components
of the application, multi-cloud can yield substantial cost reduc-
tions in comparison to a single-vendor approach. Different cloud
providers demonstrate proficiency in distinct domains. Multi-cloud
deployments enable the utilization of the unique advantages of
each platform, resulting in enhanced performance. Deploying the
application across multiple cloud providers mitigates dependence
on a single platform, thereby improving resilience to failures and
reducing the likelihood of downtime. With multi-cloud, the ap-
plication is not constrained to the ecosystem of a single vendor.
This affords greater autonomy in selecting services that align with
system requirements and in negotiating favorable pricing [8].
Conversely, managing and optimizing a multi-cloud applica-
tion can be complex, requiring skilled personnel and specialized
tools [16]. Ensuring data security and access control across multiple
cloud platforms with differing security standards necessitates care-
ful implementation and execution [12]. Multiple contracts, billing
systems, and support channels are often part of multi-cloud, which
makes operational management difficult and time-consuming.

2.2 Multi-Cloud Application Architecture

A generic multi-cloud application APPysc, shown in Figure 1, has
multiple component services {s1, s2, 53, ..., Sk } €S, hosted on different
cloud platforms {c1, c2, ¢3, ..., cn } € C. Typically, a many-to-many

48

Morgan Reece et al.

map exists between the sets of cloud providers C and component
services S.

The component services S, hosted by the cloud providers C,
communicate with each other using Application Programming
Interfaces (APIs) over the Internet. These multiple communica-
tion paths between component services can be represented as
{Puser P1,1, P1,2, v Pi 5 "wpk,k} € P, where pi,j is the communi-
cation path between component services s; and s;. pyser is the
connection utilized by the user to communicate with APPy;c. Gen-
erally, multiple communication paths are programmed into APPysc
by its developers based on the multi-cloud application software
requirements.

Cloud Puser
Provider C; == R = ==
- —--- Plk==-=- >
~—
EEEES
- N
Component ™
Service S;
Cloud Cloud
Provider C, Internet Provider C,
e
= L
\ g -
{:} .o 1:%
Component Component
Service Sy Service Sk

Figure 1: Multi-Cloud Architecture The implementa-
tion of an application across a multi-cloud environ-
ment can have its k number of component services,
{s1,s2,83,....5t} € S, distributed across n number of
cloud providers, {ci,c2,¢3,...cn} € C. Communication
paths between component services are represented as
{p1,1, P1,2, .- Pi,js - Pk } € P, where p; ; is the communication
path between component services s; and s;. The user
communicates with component service 1 over path pyer.

In practice, most of the deployed multi-cloud applications have
three distinct types of component services. A web service manages
user interaction through a website or a mobile application. Multiple
application services process computational logic. Data repositories
and database services store APPyjc data for manipulation and re-
trieval. The following subsection addresses the vulnerabilities that
arise in this architecture as a result of its design decisions.

2.3 Security Concerns in Multi-Cloud
Applications

In Section 2.1, we presented differences between single and multi-
cloud applications. The architectural and implementation differ-
ences identified do not mitigate vulnerabilities; rather, they con-
tribute to the vulnerabilities. Multi-cloud applications inherit all
the security issues found in single-cloud environments [5]. In our
efforts to find supporting literature for our research, we discovered
that there is little research on multi-cloud risk and vulnerability
analysis, let alone multi-cloud exploitation.

Reece et al. present a multi-cloud risk and vulnerability analysis
model that integrates well-known industry standard frameworks

Defending Multi-Cloud Applications Against Man-in-the-Middle Attacks

to produce a holistic risk model [21]. The current fragmented ap-
proach leads to gaps in vulnerability identification and mitigation,
leaving security holes within the multi-cloud environment. The
paper addresses the need for this integrated approach by using
STRIDE, DREAD, and the MITRE ATT&CK frameworks to identify,
qualify, and mitigate risks in the multi-cloud environment. The
six attack vector categories that are identified and analyzed are
cloud architecture, APIs, authentication, automation, management
differences, and cybersecurity legislation.

Afolaranmi et al. present a method for enhancing the security
of a multi-cloud environment by utilizing a security evaluation
framework. The presence of buffer overflow and cross-site script-
ing attacks is emphasized, as they can have a significant impact
on multi-cloud environments. To address this issue, the developed
framework incorporates essential components, including opera-
tional and architectural perspectives [3].

Lingle et al. in their paper provide an overview of Security as
a Service (SECaaS) [13]. The preliminary examination reveals the
existing fragmented service offerings, such as logging as a service,
IAMaaS, SOCaaS, DLP, and IPS/IDS services, which are included
by each cloud service provider in their cloud offerings.

The subsequent stage of the analysis involves introducing a novel
third-party SECaaS (Security as a Service) that utilizes innovative
cloud security techniques.

IAM and its associated policies dictate the authorization process
for individuals seeking access to cloud resources. Additionally, they
represent a primary focus for potential attackers. This risk can be
exacerbated by multi-cloud strategies, which increase complexity
and make it more difficult to enforce a uniform IAM policy across
multiple cloud environments [2]. Attackers can exploit weak IAM
policies or poorly managed identities to gain unauthorized access
to resources and data. For instance, a common attack is identity
spoofing, where an attacker impersonates a legitimate user to by-
pass access control measures [15]. In multi-cloud environments,
the risks are intensified due to the presence of individual Identity
and Access Management (IAM) systems for each cloud platform,
which can complicate the coordination of their administration.

Vulnerabilities in a multi-cloud environment stem from differ-
ences in how CSPs implement common technologies, management
control schemes, and communication between component services
deployed in difference CSPs [21]. MITM attacks target exploiting the
expanded attack surface that is created when component services
are deployed in different CSPs. The MITM attack can be charac-
terized as a ‘fishing’ expedition where the attacker hopes to find
privileged information in the traffic that they have captured while
running the attack. In this paper, we exploit weaknesses in the
APPyc architecture. We next present our victim web application,
upon which we execute a MITM attack.

3 MULTI-CLOUD BASED VICTIM WEB
APPLICATION

To demonstrate the MITM attack in Section 4, we first describe a
multi-cloud victim web application (Viyepapp)- Vivebapp implements
the multi-cloud architecture (Section 2.2). The component services
of Viyebapp serve distinct functions demonstrative of a multi-cloud
application: web service and application service, email service, and

49

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA

database service. Vyyepapp Setup leverages three cloud providers:
Microsoft Azure, Amazon Web Services (AWS), and Rackspace
(Figure 2).

Vivebapp Web service is a python-flask application that provides
a user interface. It runs on a Linux server deployed in the Azure
cloud [17]. The web service renders the web pages, takes the input
from the user, and sends the data to the V,,epqpp application service
for processing. The V,epqp, application service written in Python
receives user data from the web service. Once data is received, the
application service executes the requested operation on the data.
Vivebapp application service communicates with two other services;
database service and email service. Vy,¢papp uses the Internet for
users to connect and the communication needs of the different
services hosted by the different cloud providers. User authentication
is provided through username/password credentials communicated
to Viyepapp over HTTPS.

<+——Path l—m

E Azure ‘

<— —— Path2 — —»

(web Services |

Application h\

Services
Base OS |

Hardware J

B aws ‘

Database
Services
~ Email Services

S3 Storage

Figure 2: Multi-Cloud based Victim WebApp Utilizing three
cloud service providers hosting four services. Communica-
tion between services takes place over the Internet via APIs.

The application service leverages APIs to communicate with the
database, and the email services hosted on AWS and Rackspace
respectively. The application service utilizes username and pass-
word credentials to authenticate via the database service API. The
connection to the database service uses the standard MySQL port
and API over the Internet. We use MySQL as our database service
hosted on AWS [6].

The database service utilizes the AWS S3 storage system for
its block storage of tables and data. The V,epqp, application ser-
vice communicates with the email service over the Internet by
sending email messages using the Simple Mail Transport Protocol
(SMTP) [11] and receiving email messages using the Internet Mes-
sage Access Protocol (IMAP) [1] API The email service is hosted
by Rackspace [20], and connections to the email service are authen-
ticated using credentials unique to the user sending or receiving
the email.

Vivebapp €xperimentation environment allows us to demonstrate
attacks on the Internet-exposed interface between the application
service and the database (see Section 4). Our V,yepqpp implementa-
tion, typical of multi-cloud deployment environments, provides us

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA

with a representative attack environment. These systemic vulnera-
bilities are rooted in data-sharing requirements in multi-cloud envi-
ronments [21]. When information is exchanged among component
services that are hosted on distinct cloud providers, trust is required
among the various component services of the victim web applica-
tion. Through access control, the confidentiality, availability, and
integrity of the information are validated, thereby establishing trust
between the different component services. Trust is a prerequisite
for information exchange among component services of Vi epapp
that are hosted on distinct cloud providers [18]. By implementing
access control that verify the information’s availability, confiden-
tiality, and integrity, trust can be established among component
services.

The interconnections and implementation details of the Vy,epapp
deployment are also shown in Figure 2. The Internet-exposed data
communications paths that are susceptible to attacks have been

defined below:
3:}<—Original Path. %:E
Database

Application New Path e

Service

R
{

Router

AN\
(-

Internet

MITM Attacker

Figure 3: Attack Diagram: The MITM attack removes the
original path between the application service and the router
and replaces it with a path through the attacker.

e Path 1 - User to/from Web Service: The V, epapp Web
services run in Azure and receive the user input over the
Internet (Figure 2). This is a common vector for many types of
attacks, including DDoS, traffic sniffing, credential stealing,
and cross-site scripting.

e Path 2 - Application Service to/from Database Service:
The application service, which is also deployed on the Azure
cloud server communicates with the AWS database service
over the Internet through an API identified as Path 2 in
Figure 2. This path is susceptible to attacks like MITM attacks,
substitution attacks, and privilege elevation.

e Path 3 - Application Service to/from Email Service: The
application service utilizes Path 3 to communicate email
operation commands to the email service. Utilizing the in-
formation in the database service, the application service
configures the authentication with the email service to allow
the user to send, read, and manage their emails. Path 3 uti-
lizes the SMTP (Simple Mail Transfer Protocol) and the IMAP
(Internet Message Access Protocol) API to communicate the
email operations requested by the user through the user in-
terface. A common attack on Path 3 is packet sniffing, which
includes credential stealing and other traffic interception or
injection attacks.

4 MAN IN THE MIDDLE ATTACK
DEMONSTRATION

A MITM attack was successfully executed on the Vi epqpp utilizing
ARP Poisoning. The attack on the application service was launched

50

Morgan Reece et al.

from the attack server, which is located on the same subnet as the
application service. The attack was executed on the path between
the application service, hosted on Azure, and the database, hosted
on AWS, along Path 2 as seen in Figure 2. We used Ettercap [19]
application running on a ParrotOS [14] Linux attack server to exe-
cute the ARP Poisoning attack and capture the re-routed network
traffic with Wireshark. Ettercap sends ARP messages that replace
the router’s MAC address with the attack server’s MAC address in
the applications service’s ARP table.

e B Q o

Targets
Target1
192.168.1.159

Target 2
192.168.1.1

Delete Delete

Starting Unified sniffing...

CO] DISCOVER
:CO] REQUEST 192.168.1.159

ARP poisoning victims:
GROUP 1:192.168.1.159 50:A0:30:0C:3E:CO

GROUP 2:192.168.1.1 A0:B5:3

Figure 4: Ettercap ARP Poisoning: Using Ettercap, the at-
tacker can send ARP commands to the application service
and replace the MAC address of the router with the MAC
address of the attack server.

~ % arp -a

? (192.168.1.1) at a@:b5:3c:1d:43:3d on ens ifscope [ethernet]

? (192.168.1.148) at 80:da:13:66:2f:81 on en5 ifscope [ethernet]

2 on ens ifscope [ethernet]

? (192.168.1.256) at ff:ff:ff:ff:ff:ff on ens ifscope [ethernet]

mdns.mcast.net (224.0.0.251) at 1:0:5e:0:0:fb on en5 ifscope permanent [ethernet

1

? (239.255.255.250) at 1:0:5e:7f:ff:fa on en5 ifscope permanent [ethernet]

broadcasthost (255.255.255.255) at ff:ff:ff:ff:ff:ff on ens ifscope [ethernet]
~ % arp -a

? (192.168.1.1) at on ens ifscope [ethernet]

? (192.168.1.148) at 80:da:13:66:2f:81 on en5 ifscope [ethernet]

2 on ens ifscope [ethernet]

? (192.168.1.255) at ff:ff:ff:ff:ff:ff on en5 ifscope [ethernet]

mdns.mcast.net (224.0.0.251) at 1:0:5e:0:0:fb on en5 ifscope permanent [ethernet

1

? (239.255.255.250) at 1:0:5e:7f:ff:fa on en5 ifscope permanent [ethernet]
broadcasthost (255.255.255.255) at ff:ff:ff:ff:ff:ff on en5 ifscope [ethernet]

Figure 5: Attacker ARP Poisoning: Utilizes ARP protocol to
update the ARP entry for the network router in the ARP
table of the application service.

A MITM attack is a cyber-attack where an attacker intercepts
and potentially alters the communication between two unsuspect-
ing parties. In a multi-cloud environment, an attacker executes a
MITM attack by inserting an attack server between two compo-
nent services along their communication path (see Figure 3). The
attacker utilizes ARP [10] as the initial attack vector. ARP is a net-
work protocol that communicates Media Access Control (MAC)
addresses of each device on a subnet to every other device on the
subnet to allow proper delivery of Ethernet packets throughout
that subnet. The MAC address is added to each Ethernet packet of
network communication to ensure proper delivery of the packet.
The ARP table on a network device, such as a server, contains the
IP Address and associated MAC address for each device on the
local subnet. ARP is a foundational protocol to Ethernet and has no
inherent security to prevent attacks such as ARP Poisoning. ARP

Defending Multi-Cloud Applications Against Man-in-the-Middle Attacks

Poisoning is the corruption of a service’s ARP table. Using Ettercap
on ParrotOS, the ARP Poisoning attack was executed on the ap-
plication service by replacing the MAC address of the router with
the MAC address of the attack server (see Figure 4). With the MAC
address replaced, the attack server now receives all the traffic from
the application service that is leaving the subnet, which includes
communication to the database service (see Figure 5).

The attacker will do three things with the traffic from the appli-
cation service: First, capture and store the traffic. Second, search
the captured traffic for user credentials and other privileged infor-
mation. Third, forward the traffic onto the router. Forwarding the
traffic keeps the communication between the application service
and database service active, and therefore prevents either service
from realizing that there is a MITM attack occurring.

The execution of the MITM attack attack on the Vy,¢pap) follows
these steps. The attacker compromises the Vepqpp network by
gaining control of a system on the same subnet. This is not covered
in our research and is assumed that the attacker has compromised
a system already on the network. The attacker installs the Ettercap
application with the ARP Poisoning functionality. The attacker runs
Ettercap and sets up the ARP Poisoning attack. The application
service is set as Target 1 and the router for the subnet is set as
Target 2. The ARP Poisoning attack is then initiated. The Ettercap
application sends an ARP update to the application service with
its own MAC address to be associated with the IP address of the
router. In Figure 5, the "arp -a" command is run before and after the
ARP Poisoning attack has begun. The first set shows the IP address
of the router, 192.168.1.1, which has a different MAC address than
the attack server, 192.168.1.195. The second set of outputs from
the "arp -a" command shows that the router and the attack server
have the same MAC address. With the ARP table poisoned, the
application service traffic meant for the router is instead going to
the attack server. Shown in Figure 3, the ARP Poisoning changes
the communication path with the router from the “Original Path"
to the “New Path”.

With the communication path now going through the MITM
Attacker, they can capture and inspect/analyze the packets from
the application service. In the analysis of the application’s network
traffic, we can find the admin credentials for the database service
(see Figure 6). The admin credentials to the database service allow
our attacker to read all data in the database. After successfully
retrieving data from the database, the attacker can then use the
extracted information to gain unauthorized access to the email
accounts stored in the database. The compromise of the email ac-
counts is beyond the scope of our MITM attack, thus we did not
exploit any of the users’ email accounts.

A successful MITM attack leads to the interception of privileged
information by the attacker. The compromise of sensitive informa-
tion enables the attacker to exploit it for the purpose of advancing
the attack or to trade or disclose the pilfered data.

5 MITIGATION AGAINST MITM ATTACKS

Mitigating MITM attacks in multi-cloud environments centers
around strong access control and network security. Attackers very
often deploy an ARP attack as the initial step to a MITM attack
since, as mentioned in Section 4, ARP has no inherent security,

51

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA

and is therefore susceptible to ARP Poisoning with limited direct
mitigation available.

Preventing ARP Poisoning can be done through a couple of tech-
niques. Static ARP tables would prevent the attacker from being
able to change the ARP table of the application service. However,
this limits the dynamic nature of the subnet, and in large environ-
ments would require a large amount of manual effort by network
engineers. Dynamic ARP Inspection, found on higher-end switches
verifies all ARP updates, and discards updates that look malicious.
This advanced feature is becoming more common on small busi-
ness switches but requires a higher level of network administration
effort and expertise.

If the techniques to prevent an ARP attack cannot be imple-
mented, then we can deploy mitigations that limit the impact of
a successful attack. Isolating each service to a subnet would help
mitigate an ARP attack. The network would have to be configured
to have one device per subnet, therefore ARP messages and up-
dates/changes would not be sent to other devices. Also, with the
isolation of each device, it would be easy to detect if an attacker
was able to add a device to a subnet which would be removed from
the network.

The mitigation against the MITM attack deployed in our Vyyepapp
is encryption, where we encrypt all the network traffic to and from
the application service. Several challenges come with deploying en-
cryption in a multi-cloud environment. APPyc are deployed across
multiple CSPs. Each CSP has its own method of implementing and
managing encryption. Strict coordination efforts must be put in
place to ensure that the communication path between services is se-
cure. The best practice noted in Scott et al. [23], is to always use TLS.
Our Vyyepapp mitigation implemented TLSv1.2. TLS must be imple-
mented on both sides of the communication path and should use the
highest common version that each service can support. Our data-
base service supported TLSv1.3, the latest TLS version. However,
our application service only supported up to TLSv1.2, therefore,
TLSv1.2 was implemented. To encrypt the path from the application
service to the database service we enabled encryption AWS for our
database instance. The counterpart in the application service is to
include the SSL/TLS certificate bundle (us-east-2-bundle.pem) from
AWS. The two sides of this configuration set up TLS encryption
of the communication path between the application service and
the database service. With encryption enabled, when our attacker

Frame 366: 216 bytes on wire (1728 bits), 216 bytes captured (1728 bits)
Ethernet II, Src: Microsoft_10:4c:c6 (00:0d:3a:10:4c:c6), Dst: 12:34:56:78:9a:bc (:
Internet Protocol Version 4, Src: 10.1.0.4, Dst: 3.129.155.171
Transmission Control Protocol, Src Port: 57994, Dst Port: 3306, Seq: 1, Ack: 79, Le
MySQL Protocol
Packet Length: 146
Packet Number: 1
Login Request
Client Capabilities: @xa2@f
Extended Client Capabilities: 0x003a
MAX Packet: 16777215
Charset: utf8mb4 COLLATE utf8mb4_general_ci (45)
Unused:
Username: admin
Password : (D
Schema: email-user
Client Auth Plugin: mysql_native_password
Connection Attributes

Figure 6: Attacker stolen credentials: Using Wireshark, the
attacker is able to capture and inspect the network traffic to
steal the user/administrator credentials.

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA

captures the network traffic, they are unable to decipher the data
that is being transferred between the component services.

Other mitigations noted in Scott et al. [23] target access control,
such as implementing SSO and secure API key management. Uti-
lization of a Single Sign-On (SSO) technology enables strong access
control. SSO offloads the authentication of a user to a third-party
identity provider that has implemented advanced authentication
methods like Multi-Factor Authentication (MFA). Access control
and IAM management policy differences between the CSPs cre-
ate vulnerabilities that can be exploited by attackers, which were
explained in Section 2.3. Without a third-party identity provider,
we were not able to implement SSO. Implementation of API keys
and their secure management is another mitigation that supports
strong access control in the APPyc. Because our Vi epgpp is in-
tegrating one application service and one database service, the
increased security gained through the use of an API key over user-
name/password combination is limited and therefore out of scope
for our experimentation.

A significant development in access control is Self Sovereign
Identity (SSI) [4, 9]. Authentication through SSI is dependent on
the trustworthiness of a third-party verifier and the verification of
the user’s identity. Integrating SSI in the multi-cloud environment
would enhance supervision of authentication across all component
services and empower users with greater control over privileged
information [22].

6 CONCLUSION & FUTURE WORK

The nature of a multi-cloud application being spread across multiple
cloud providers opens it up to attacks. The challenge in multi-cloud
architectures lies in securely integrating and accessing the dis-
tributed component services of the victim web application (Viyepapp)
discussed in our research. We conducted experiments that involved
launching targeted attacks against Vi epqapp- These attacks were
specifically focused on exploiting the limited or weak access con-
trols in place during the inter-service communication process. The
executed MITM attack showcased the attacker’s capability to inter-
cept and acquire the user’s information in the absence of sufficient
mitigations. The presence of limited mitigations increases the vul-
nerability of the Vi epqpp. potentially leading to more severe and
damaging attacks. We also discussed the benefits of incorporating
robust access controls, such as sophisticated user authentication
and network security technology, to minimize the vulnerability to
unauthorized access by potential attackers. Furthermore, we have
described the efficacy of implementing mitigations in reducing
the vulnerabilities inherent in such an environment. Additional
research is necessary in this domain as a result of the emergence of
new attacks carried out by the attackers. There is a need to inves-
tigate and understand how these new attacks are being deployed
and leveraged by attackers; and for the development of targeted
security strategies specific to these newly developed attacks.

52

Morgan Reece et al.

ACKNOWLEDGMENTS

This research was supported by NSA H98230-21-1-0317, and Na-
tional Science Foundation (NSF) grant #1565484.

REFERENCES

[1] B.Leiba A. Melnikov. 2021. Internet Message Access Protocol, RFC 9051. https:
/[www.ietf.org/rfc/rfc9051. html

[2] Sandesh Achar. 2022. Cloud Computing Security for Multi-Cloud Service
Providers: Controls and Techniques in our Modern Threat Landscape. Inter-
national Journal of Computer and Systems Engineering 16, 9 (2022), 379-384.

[3] Samuel Olaiya Afolaranmi, Borja Ramis Ferrer, and Jose Luis Martinez Lastra.
2018. A Framework for Evaluating Security in Multi-Cloud Environments. ,
3059-3066 pages. https://doi.org/10.1109/IECON.2018.8591454 ISSN: 2577-1647.

[4] Md. Rayhan Ahmed, A. K. M. Muzahidul Islam, Swakkhar Shatabda, and Salekul
Islam. 2022. Blockchain-Based Identity Management System and Self-Sovereign
Identity Ecosystem: A Comprehensive Survey. IEEE Access 10 (2022), 113436—
113481. https://doi.org/10.1109/ACCESS.2022.3216643

[5] Mohammed A. AlZain, Eric Pardede, Ben Soh, and James A. Thom. 2012. Cloud
Computing Security: From Single to Multi-clouds. In 2012 45th Hawaii Inter-
national Conference on System Sciences. IEEE, New York, NY, USA, 5490-5499.
https://doi.org/10.1109/HICSS.2012.153

[6] Amazon. 2024. Amazon Relational Database Service. https://aws.amazon.com/
rds/.

[7] M. G. Avram. 2014. Advantages and Challenges of Adopting Cloud Computing
from an Enterprise Perspective. Procedia Technology 12 (2014). https://doi.org/
10.1016/j.protcy.2013.12.525

[8] Ataollah Fatahi Baarzi, George Kesidis, Carlee Joe-Wong, and Mohammad
Shahrad. 2021. On Merits and Viability of Multi-Cloud Serverless. In Proceed-
ings of the ACM Symposium on Cloud Computing (Seattle, WA, USA) (SoCC
’21). Association for Computing Machinery, New York, NY, USA, 600-608.
https://doi.org/10.1145/3472883.3487002

[9] Md Sadek Ferdous, Farida Chowdhury, and Madini O. Alassafi. 2019. In Search of

Self-Sovereign Identity Leveraging Blockchain Technology. IEEE Access 7 (2019),

103059-103079. https://doi.org/10.1109/ACCESS.2019.2931173

Internet Engineering Task Force. 1982. An Ethernet Address Resolution Protocol: Or

Converting Network Protocol Addresses to 48.bit Ethernet Address for Transmission

on Ethernet Hardware. Request for Comments RFC 826. Internet Engineering

Task Force. https://doi.org/10.17487/RFC0826 Num Pages: 10.

J. Klensin. 2008. Simple Mail Transfer Protocol, RFC 5321.

editor.org/rfc/rfc5321. html

P. Ravi Kumar, P. Herbert Raj, and P. Jelciana. 2018. Exploring Data Security

Issues and Solutions in Cloud Computing. Procedia Computer Science 125 (2018),

691-697. https://doi.org/10.1016/j.procs.2017.12.089

Jason Lingle, Kevin Dickens, Iram Bakhtiar, and James Herford. 2019. Security-

as-a-Service in a Multi-Cloud Environment. https://doi.org/10.13140/RG.2.2.

27812.12166

Parrot Linux. 2024. Parrot Security. https://parrotlinux.org/. Accessed: 2023-10-

05.

Mohammad Masdari and Marzie Jalali. 2016. A survey and taxonomy of DoS

attacks in cloud computing. Security and Communication Networks 9, 16 (2016).

Lawrence E. Meyer and E. Billionniere. 2021. Upskilling to Meet Cloud Talent

Needs. 2021 ASEE Virtual Annual Conference null (2021), null. https://par.nsf.

gov/biblio/10288742

Microsoft. 2024. Azure Cloud. https://azure.microsoft.com/. Accessed: 202-01-12.

NR Paul and D Paul Raj. 2021. Enhanced Trust Based Access Control for Multi-

Cloud Environment. Computers, Materials & Continua 69, 3 (2021), 3079-3093.

Ettercap Project. 2024. Ettercap. https://www.ettercap-project.org/. Accessed:

2023-11-12.

Rackspace. 2024. Rackspace. https://www.rackspace.com/. Accessed: 2023-12-01.

Morgan Reece, Theodore Edward Lander, Matthew Stoffolano, Andy Sampson,

Josiah Dykstra, Sudip Mittal, and Nidhi Rastogi. 2023. Systemic Risk and Vulner-

ability Analysis of Multi-cloud Environments. arXiv:2306.01862 [cs.CR]

Morgan Reece and Sudip Mittal. 2022. Self-Sovereign Identity in a World of

Authentication: Architecture and Domain Usecases. arXiv:2209.11647 [cs.CR]

Sam Scott and Graham Neray. 2021. Best practices for REST API security: Au-

thentication and authorization - Stack Overflow. https://stackoverflow.blog/

2021/10/06/best-practices-for-authentication-and-authorization-for-rest-apis/

[10

[11

https://www.rfc-

(12]

(13]

I
&

https://www.ietf.org/rfc/rfc9051.html
https://www.ietf.org/rfc/rfc9051.html
https://doi.org/10.1109/IECON.2018.8591454
https://doi.org/10.1109/ACCESS.2022.3216643
https://doi.org/10.1109/HICSS.2012.153
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://doi.org/10.1016/j.protcy.2013.12.525
https://doi.org/10.1016/j.protcy.2013.12.525
https://doi.org/10.1145/3472883.3487002
https://doi.org/10.1109/ACCESS.2019.2931173
https://doi.org/10.17487/RFC0826
https://www.rfc-editor.org/rfc/rfc5321.html
https://www.rfc-editor.org/rfc/rfc5321.html
https://doi.org/10.1016/j.procs.2017.12.089
https://doi.org/10.13140/RG.2.2.27812.12166
https://doi.org/10.13140/RG.2.2.27812.12166
https://parrotlinux.org/
https://par.nsf.gov/biblio/10288742
https://par.nsf.gov/biblio/10288742
https://azure.microsoft.com/
https://www.ettercap-project.org/
https://www.rackspace.com/
https://arxiv.org/abs/2306.01862
https://arxiv.org/abs/2209.11647
https://stackoverflow.blog/2021/10/06/best-practices-for-authentication-and-authorization-for-rest-apis/
https://stackoverflow.blog/2021/10/06/best-practices-for-authentication-and-authorization-for-rest-apis/

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Single vs. Multi-Cloud Applications
	2.2 Multi-Cloud Application Architecture
	2.3 Security Concerns in Multi-Cloud Applications

	3 Multi-Cloud based Victim Web Application
	4 Man in the Middle Attack Demonstration
	5 Mitigation against MITM Attacks
	6 Conclusion & Future Work
	Acknowledgments
	References

