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ABSTRACT

Whole-body pose estimation aims to regress human pose models
that include the body, hand, and facial details from RGB images.
While the task of whole-body mesh recovery has been extensively
studied in recent literature, the focus has predominantly been on hu-
man mesh recovery for a single person, despite the frequent occur-
rence of multiple people in practical scenarios. Similar to body-only
cases, such single-person whole-body pose estimation methods
often fail in the multiple-people problem for two reasons: (i) Given
the ambiguous bounding box, which could contain more than one
instance, it is difficult for single-person-oriented methods to regress
the body mesh model of the target person. (ii) Single-person pose
estimation approaches neglect the person-person occlusions and
the depth order among instances, thus generating interpenetrated
models. In this paper, we propose the Multi-person Expressive
POse (MEPO) model, which exploits expressive 3D human model
reconstruction for multiple people. To our best knowledge, our
model is the first multi-person whole-body mesh reconstruction
model, which is intensified by heatmap, depthmap, and depth or-
der loss. We propose the Heatmap Enhancement Net (HENet) to
leverage the heatmap information to assist the model in concentrat-
ing on the target person in crowded multi-person cases, while the
depthmap delivers depth information of the image. Furthermore,
we impose a depth order loss to recover human mesh precisely for
overlapped people. In our experiments, we evaluate our model on
multiple challenging datasets, including AGORA, which consists
of complex occlusions similar to real-world scenarios. Our method
has a significant performance improvement compared with the
state-of-the-art pose estimation methods.
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1 INTRODUCTION

With the grooming of deep learning [44], 3D human pose estima-
tion has been drawing broader attention recently. It is involved
in various applications, such as sign language understanding [40],
AR [7], VR [5], robotics [27], and human-object interaction detec-
tion [51]. To achieve a more accurate deformation of the human
pose, methods of reconstructing a parametric human model from
a single image have been introduced [25, 28, 56] in the past few
years. Given a single RGB image, these methods estimate human
body joints and recover a parametric human model, such as the
widely used SMPL [33] model from the image.

In recent years, the academic community has expanded its focus
beyond body-only pose estimation to include the intricacies of
hand, finger, and facial movements. These elements are crucial for
understanding human activities in a more comprehensive manner.
Advanced techniques have been developed to reconstruct detailed
models of human hands [16, 26, 29, 47], faces [11, 15, 48, 49], and
entire human bodies [10, 14, 35, 38, 43].

Whole-body methodologies such demonstrate the ability to re-
cover whole-body models from keypoint detection. Other approaches,
like FrankMocap [43], ExPose [10], PIXIE [14], and Pose2Pose [35],
adopt a segmented strategy. This involves initially dividing the
subject into parts such as the head, body, and hands. Each part is
then processed to regress its corresponding model. These models
are subsequently integrated to form a cohesive and expressive hu-
man model. This segmented approach allows for a more detailed
and accurate representation of the human form, enhancing the
understanding of human body dynamics in various contexts.

However, such single-person methods predominantly employ
a top-down approach. This involves initially identifying the indi-
vidual within an image, followed by the reconstruction of the pose
mesh within the defined bounding box. However, applying these
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(a) Detection result

(b) Baseline (c) MEPO (Ours)
Figure 1: Human reconstruction in the crowded scene. In
Figure 1a, the detection bounding box (red) of the woman in
the front is ambiguous. Existing whole-body pose estimation
method [43] cannot handle such ambiguity and depth order
relation between overlapped people (Figure 1b), while our
model can reconstruct human models correctly under this
crowded situation (Figure 1c).

single-person methodologies to multi-person pose estimation tasks
presents two primary challenges. Firstly as pointed out in [45],
in scenarios involving multiple people, a single image crop might
contain more than one instance, and single-person pose estimation
methods fail to estimate body pose for such an ambiguous image
crop. For example, as depicted in Figure 1a, the bounding box sur-
rounding the foremost woman also includes a considerable portion
of the second woman’s body. In Figure 1b, due to the ambiguous
bounding box, the pose estimation model incorrectly recognizes
the head of the woman behind as the head of the woman in the
front. Secondly, these single-person-oriented approaches ignore
the depth order of overlapping people, which leads to inconsistent
depth ordering and mesh model interpenetration. As shown in Fig-
ure 1b, the body meshes of two people are interpenetrated because
the model simply recovers their body mesh models but is unaware
of the depth order relations of two instances.

Expanding our perspective, it becomes apparent that current
methods for reconstructing whole-body human mesh models scarcely
address the complexities of multi-person pose estimation. To the
best of our knowledge, the majority of existing whole-body pose
estimation techniques are designed with a single-person focus. Con-
versely, most current multi-person pose estimation methods [9, 20,
45, 57] primarily target body-only mesh regression, leaving the area
of multi-person whole-body pose estimation relatively uncharted.

To address the aforementioned challenges, we propose a multi-
person whole-body pose estimation model, Multi-person Expressive
POse (MEPO). The method consists of two stages. The first stage
of the model detects instances from the raw image, and the second
stage reconstructs the whole human body model for each detected
instance. Specifically, we propose a novel Heatmap Enhancement
Net (HENet) to address the ambiguous bounding box issue men-
tioned previously. We first generate a heatmap that represents the
existence information of each instance, and then we apply the
heatmap to the intermediate image features to assist the network
in recognizing each instance. This way, the model is designed to
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focus on the target person even in ambiguous bounding boxes and
regress the human model correspondingly. Meanwhile, to address
the depth order issue on the overlapping people, we introduce the
depthmap and the depth order loss into our model to handle the
depth order relations among instances. We evaluate our model on
multiple datasets [37, 39, 50], and our model outperforms state-of-
the-art methods. As shown in Figure 1c, our model is robust to
crowded scenes which contain overlapped instances.

The contributions of our paper are summarized as follows: (i)
We propose a novel multi-person pose estimation method named
MEPO. To the best of our knowledge, our model is the first multi-
person pose estimation method to reconstruct expressive human
parametric models with finger details and facial expressions. (ii) We
introduce a novel HENet to alleviate the ambiguity of the implicit
bounding box to improve the mesh reconstruction model perfor-
mance in crowded scenes. Moreover, we introduce depthmap and
depth order loss to handle the depth order of overlapping instances.
(iii) We evaluate our model on multiple datasets, including a chal-
lenging dataset, AGORA [37], and our proposed model outperforms
state-of-the-art whole-body pose estimation methods.

2 RELATED WORK
2.1 Human Modeling

The simplest way to represent human poses is to use 2D/3D key
points to represent body joints. However, keypoints based methods
can not provide sufficient information for human behavior anal-
ysis. Instead of using 2D or 3D keypoints, 3D parametric human
models describe human motions vividly and accurately. The main
idea of 3D parametric human models is to model the deformation
of 3D humans by a series of parameters. With a 3D parametric
human model, we can describe the human pose more accurately
than just using keypoints. The first successful approach in this
field is SCAPE [2]. The most commonly used model in academia,
SMPL [33] is a skinned vertex-based model, which contains 6890
vertices and 23 joints.

Similarly to the human body model, models for hand deforma-
tion, such as MANO [42] and models for face deformation, such as
3DMM [3] and FLAME [30], have also been proposed. In addition,
recently, researchers proposed parametric human models that not
only represent a part of the human body, but also model the human
body together with hands or face. SMPLH [42] combines the SMPL
model with the MANO hand model to capture body and hands mo-
tions together. SMPL-X [39] model extends the SMPL body model
with the MANO hand model and the FLAME head model. SMPL-X
model contains 10475 vertices and 54 joints, with which 24 joints
for body representation and the rest for hands and face, including
jaw, eyeballs, and fingers.

In our work, we follow the recent whole-body pose estimation
works [10, 14, 35, 38] and take the SMPL-X model as our output
format.

2.2 Multi-Person Pose Estimation

Monocular multi-person pose estimation is to predict joints or
regress human mesh models of all the people from a single RGB
image. Handling occlusions and determining depth orders among
individuals are crucial aspects to consider in multi-person pose
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estimation methods of this nature. According to the different de-
sign strategies used in the model, multi-person body mesh recovery
methods can be categorized into two types: two-stage methods
and one-stage methods. Two-stage methods are straightforward
methods in multi-person pose estimation, the main idea of which
is to convert multi-person tasks to single-person pose estimation
tasks by first detecting and cropping instances from the image with
the off-the-shelf detectors [17] and applying body model recovery
methods for each instance. However, truncations, occlusions, and
interpenetrations in multi-person cases drive it hard for the tar-
get person to regress correctly. Therefore, handling person-person
occlusions and depth orders among instances becomes important
in top-down approaches. Jiang et al. [20] introduces the interpen-
etration loss to avoid colliding models and the pixel level depth
ordering-aware loss based on instance segmentation to reconstruct
more accurate human models. 3DCrowdNet [9] generates a 2D
pose heatmap for the target person based on the off-the-shelf 2D
pose estimator and passes it to a joint-based body mesh regressor.
Recently, some papers have tried to find one-stage solutions for
multi-person pose estimation. One-stage methods not only exe-
cute faster but also omit the ambiguous bounding box shortage of
top-down methods. For example, Sun et al. [45] propose ROMP to
handle the occlusions and inference in real-time. Zhang et al. [57]
propose a one-stage solution, which adopts an FPN [24] to repre-
sent the depth level for each instance and applies inter-instance
ordinal relation supervision to handle occlusions.

Despite the success of various multi-person pose estimation
methods, few explore the possibility of whole-body pose estimation
in multi-person cases. Unlike existing whole-body multi-person
pose prediction methods, such as [6] and [53], our model recon-
structs a 3D human mesh model instead of just predicting the
human pose as keypoints.

2.3 Whole-Body Pose Estimation

Whole-body (full-body) pose estimation aims to recover not only
human body models but also expressive models with hands and
faces. At an early time, whole-body pose estimation is a challenging
task because of the lack of datasets, the absence of the human para-
metric model for whole-body representation, and the inconsistent
annotations from various datasets. Consequently, researchers have
to train each part of the model separately on different datasets.
Besides the development of off-the-shelf methods [15, 26] to re-
construct the expressive face and hand models, datasets [37, 38, 55,
58] with SMPL-X [39] format annotations published in recent years
also accelerate the progress on whole-body pose estimation, in
which EHF [38], THUman2.0 [55], and MultiHuman [58] are small
datasets that contain hundreds of images for evaluation. SMPL-
X [39], the model developed from SMPL by adding MANO [41]
as the hand model and FLAME [31] as the face model, has re-
cently received increasing attention. Recent single-person pose
estimation approaches [10, 38, 43, 59] adopt SMPL-X model. For
instance, ExPose [10] introduces body-driven attention to extract
high-resolution image crops for hands and face to improve perfor-
mance. AGORA [37] is a recently released large synthetic dataset
with 15,754 images with ground-truth SMPL-X fittings.
Optimization-based approaches such as SMPLify-X [39] follow a
similar procedure of SMPLify [4] by taking detected 2D keypoints
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and optimizing the model parameters to reconstruct the model.
Most regression-based works [10, 38, 43, 59, 59] first regress model
parts on the body, hands, and face separately and then combine
all parts together. For example, Zhou et al. [59] recovers the face
with the 3DMM [12] face model and adopts SMPLH-neutral as the
body-hand joint model. FrankMocap [43] utilizes an integration
module to combine face, body, and hand parts into a whole-body
representation.

However, to the best of our knowledge, a whole-body method
for multi-person pose estimation remains absent in this area.

3 METHODOLOGY

In this paper, we introduce a novel approach for multi-person whole-
body mesh reconstruction, which tackles the challenges outlined in
Section 1. Specifically, our model addresses the issue of ambiguous
bounding boxes by utilizing a Heatmap Enhancement Net (HENet),
which effectively leverages heatmap information for localizing the
target instance in the bounding box. Additionally, to resolve the
complexity of determining the depth order of overlapping instances,
we have integrated a depthmap and a depth order loss mechanism
into our model. In this section, we begin by presenting a structured
overview of our model framework, followed by comprehensive
descriptions of its essential components.

3.1 Overall Framework

Given an image I, we propose a method that seeks to detect all the
person instances P in the image I and regresses an SMPL-X [39]
mesh model M, including body, hands, and face for each per-
son instance p;€P. Our approach is a two-stage pose estimation
method, where the first stage detects instances from the image, and
the second stage reconstructs human mesh models for detected
instances. Furthermore, we propose to use a HENet to deal with
the ambiguous bounding box problem and introduce the depthmap
and the depth order loss to handle person-person occlusions in
multi-person scenarios.

Figure 2 shows an overview of the model architecture. We first
use off-the-shelf 2D pose estimation methods to detect instances p;
from the image I and output their corresponding 2D joints Jp,. In
the meantime, we use a DepthNet to output the image depthmap
Fp. We pass each detected instance into FaceBranch, HandBranch,
and BodyBranch. Following the approach of [34], for FaceBranch,
we process the face crop with ResNet [18], followed by a fully
connected layer to get face expression y€R!? and jaw joint 9f€R3.
For HandBranch, we first apply ResNet on hand crops to get hand
features F, 4,4, and then we employ the PoseNet to Fy,,,4 to get
hand joint feature Fj, ., which is concluded as:

Flana = froseNet (fResNet (Inand))- (1)
A fully connected layer is applied to the hand joint feature Fj, .
to get finger joints 8,€R*. The hand joint feature will also be
concatenated to the body joint feature Fj, dy

In the BodyBranch, we process the image crop with convolu-
tional layers to get the intermediate image feature Fp,. The HENet
takes heatmap, and F, as inputs and produces heatmap-enhanced
image feature Fj,. F,, is then concatenated with the depthmap Fp,
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Figure 2: Overview of the proposed MEPO. We use 2D pose estimation model to generate instance proposals as well as their 2D
joint heatmaps from the original image. For each detected instance, we pass it to BodyBranch, FaceBranch, and HandBranch
to get an expressive human model. We use the HENet to emphasize the existence of the target person in the image crop.
Additionally, the DepthNet outputs the depthmap from the original image, which is combined with heatmap enhanced image
feature to get the depth-aware optimized feature. We pass the optimized image feature to PoseNet to recover the SMPL-X [39]
mesh model. Furthermore, the model outputs a depth order level for each instance, and the depth order loss is applied to
address the ambiguous depth order issue among overlapping instances.

where Fp, is the heatmap feature of the instance p;, F} is the
depth-aware optimized image feature, and Fy;, is the corresponding oy _, o) P N
depthmap of p; from Fp. Then we pass F; to the PoseNet to get the oint heatmap “ O] + —

which is concluded as: @
FP0> Fpl, e Fpn = fCNN (fopenpose (I)), (2) ' MM L y4
F; = fuenet (Fp;. Fr,) @ Fy,, (3 : ™ Vi y,
i H ::;g;‘u p scalelayg pool N Slgmmd

body joint feature Fj, 4> and concatenate it with the hand joint \

feature Fj, , from the HandBranch to output body pose 0, €R®3, T RREE | f'e";’g; e Fiheneed
body shape feR1? and camera parameters KeR3. oo -
3.2 HENet Figure 3: Structure of HENet in our model. Inside HENet, we

extract the heatmap scale feature and heatmap bias feature

As discussed in Section 1, what we are trying to solve is not only a from the heatmap and apply them to the intermediate image

whole-body pose estimation problem but also a multi-person pose feature.

estimation problem. For multi-person pose estimation, especially

in crowded scenes, the instance detection result at the first stage

is likely to contain more than one instance. The existing whole- this section and then illustrate the performance gap between our
body human reconstruction model performs poorly due to such method and these methods in Section 4.3 and Section 4.4.
ambiguous detection results. Therefore, we propose to leverage the For each instance p; in the image I, we first predict the cen-
heatmap information to impose the reconstruction model focus on ter joints J, €R/MUMX2 of the person p;, where Jnum denotes the
the target person in an ambiguous bounding box. Though for multi- number of joints. With predicted joint coordinates, we apply a 2D
person pose estimation methods, there are several intends [9, 23, 45] Gaussian distribution to each selected joint. Next, to assist the mesh
to take advantage of the heatmap, our proposed method utilizes the reconstruction model in focusing on the target instance, we process
heatmap information more efficiently. We will begin by outlining intermediate image features as well as their corresponding heatmap
the advantages of our design over the aforementioned methods in in the Heatmap Enhancement Net (HENet). The design of HENet
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Accentuated E
depth feature,’

Figure 4: Structure of DepthNet in our model. We employ two
Image Depth Feature (IDF) branches to get the depth feature
and accentuated depth feature, which is concatenated with
the heatmap-enhanced feature.

aims to make the model focus on the target person in the image. To
this end, we adopted the concept of spatial attention [52, 54] and
utilized it to generate the scale weight feature in the scale feature
branch of the HENet.

The structure of our proposed HENet is shown in Figure 3. For
an intermediate image feature F,, eR“*W>*H  we apply convolu-
tional layers on the heatmap and obtain heatmap scale feature
and bias feature with the same size of the image feature indepen-
dently, Fj,€RC*W>H and Fj,, eRCXWXH regpectively, which are
processed along with the image feature Fp,, through HENet. With
the obtained heatmap scale feature Fj,,€RC*W*H for each pixel
on the scale feature, we apply the max pooling and average pooling
along the channels. We can obtain max pool Fpgx€R>*W*H and
average pool Fm,geRlXWXH , respectively. Then we reshape Fp,4x
and Fgg into R (WxH) 'and apply a sigmoid function. Then we re-
shape them back to RIXWXH and add two features element-wisely
to obtain the scale weight F,,eR™*W>H  The scale weight F,, is
multiplied element-wisely to the image feature, and the heatmap
bias feature Fpj, is added element-wisely to the image feature, which
is formulated as:

Fpe = Fpi OFy +Fpp, 4)

where Fj, is the enhanced image feature from the HENet.

3.3 DepthNet and Depth Order Loss

Besides ambiguous bounding boxes, the depth order relation be-
tween instances in the image is also an unsolved problem for ex-
isting whole-body pose estimation methods. In our method, we
propose to leverage depth information to deal with depth order
among instances. Specifically, we propose to use a DepthNet to
capture depth information from the image and use a depth order
loss to handle the depth order relations.

DepthNet: To obtain the depth information from the image, we
built a DepthNet in our model. The structure of the DepthNet is
shown in Figure 4. Given the image feature F;eRE*W  we use
two IDF branches to get the depth feature F; and the accentuated
depth feature F,; respectively. Inside each Image Depth Feature
(IDF) branch, we apply a 1-by-1 convolution to Fy to change its
channel. Then we reshape the output feature F; to R(CXH)xW,
After reshaping, we employ three 1-by-1 convolutional layers to
change the feature size from R(C*H)*XW 1o RWXH and obtain the
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Algorithm 1 Ground-Truth Depth Order Extraction.

1: Initialization
2: # d; is the depth level of instance p;
3. D={dy, d1, ..., dn }={0,0, ..., 0}
4: for each instance p; do
5 if p; is occluded by p; then
6 if d; < dj then
7 # O; is the set of occluders of p;
8 Add pjto O;
9: UPDATE_DEPTH(p;, O;)
10: procedure UPDATE_DEPTH(p;, O;)
11 for p;. € O; do
if d;. < d; then
dp=di+1
UpdateDepth(py, Or)

output depth feature F;eR"™W*H  For the branch to output ac-
centuated depth feature F,;, we additionally sum the intermediate
feature F; and the reshaped feature Fg from the Depth feature
branch to the accentuated features. The depthmap Fp is obtained
by concatenating the depth feature F; and the accentuated depth
feature F,; together. After we get the depthmap, we concatenate
the corresponding depthmap F, with the enhanced heatmap Fj,
to get the depth-aware optimized image feature.
Depth Order Loss: As mentioned in Section 1, single-person pose
estimation methods are unaware of the depth order of overlapping
instances in the image, leading to inconsistent depth ordering and
mesh model interpenetration. Therefore, we propose to use depth
order level d; for each instance p; to indicate the depth order rela-
tions among people in the image. A person who occludes others has
a higher depth order level. Jiang et al. [20] proposed a depth order
loss pixel-wisely, while we found that compared to the pixel-wisely
loss, depth order loss at the instance level is more stable. Inspired
by [8], we propose an instance-level depth order loss as illustrated
below.

As shown in Figure 2, after obtaining body joint features Fj, 4y

we output a depth order level d; of the instance. We can further
define the depth order loss as

_ Jlog(1 +exp(ld; i), di ~dif < T,

Lo = )2 j
' (di —dy)*, |di — di| > T,
where d; is the ground-truth depth order level, and T is a predefined
threshold to determine whether the predicted d; and d; are on the
same depth order level. Then we can compute the total depth order

loss for the entire image by averaging the loss of all the instances
in the image, which is

1
Laepth = N Z Lp)s
pi€P

©)

(6)

where N denotes the number of detected instances in the image,
and P denotes all detected instances.

The ground-truth depth order levels in our experiments are de-
fined and obtained from ground-truth mask annotations as shown
in Algorithm 1. The basic idea of the algorithm is that if an in-
stance occludes others, we update its depth order level as well as
its occluders’ depth order level.



ICMR ’24, June 10-14, 2024, Phuket, Thailand

Zhenghao Zhao, Hao Tang, Joy Wan, & Yan Yan

Method MPJPE | MVE | NMJE | NMVE |
B LHRH F  TB B LHRH F FB B FB B FB
SMPLify-X [39] | 182.1 46.5/49.6 52.9 231.8 | 187.0 48.3/51.4 489 236.5 | 2565 326.5 | 263.3 333.1
ExPose [10] 1504 72.5/68.8 552 2159 | 1515 74.9/71.3 51.1 217.3 | 1834 2633 | 1848  265.0
Frankmocap [43] | 1652 52.3/53.1 - - | 1683 54.7/557 - - |20 - |2078 -
PIXIE [13] 140.3 46.4/46.0 545 189.3 | 1422 49.5/49.0 50.2 191.8 | 171.1 2309 | 173.4 233.9
Hand4Whole [34] | 87.1 47.5/48.6 521 1365 | 91.1 49.5/50.5 485 140.6 | 99.2 1555 | 103.8 160.2
MEPO (Ours) 85.8 47.3/483 51.9 134.9 | 89.1 49.0/50.2 48.3 1383 | 97.1 153.2 | 102.2 158.6

Table 1: Quantitative comparisons with the SOTA whole-body methods. We compare our model with existing whole-body
methods on the AGORA dataset with whole-body settings. B, LH, RH, F, and FB denote corresponding metrics for body, left

hand, right hand, face, and whole-body, respectively.

y 4 & ulf 4
A
L V 4

Figure 5: Structure of the PoseNet in our model. We first use
the soft-argmax function to calculate joint coordinates via
Pose map. Then we use bilinear interpolation to sample the
joint features from the image feature.

3.4 DPoseNet

We use PoseNet to obtain SMPL-X parameters from the image
features. The structure of the PoseNet is shown in Figure 5. Given
the input image feature F}, a 1-by-1 convolutional layer is applied
and outputs a pose map P;. Then we use the soft-argmax to compute
the coordinates from pose map P;. For each coordinate we get, we
apply the bilinear interpolation on the input image feature F; to
obtain the features for each joint. Then we concatenate the obtained
features and joint coordinates together to get the joint feature F,.
The joint feature Fy, is passed to a fully connected layer to obtain
the pose parameters.
The loss function for our approach is formulated as:

L = Lpose + Laepths ()
where Lgepp, is the depth order loss introduced in Section 3.3. Lpose
is the total pose estimation loss, which is defined as:

Lpose = Lmesh + Ljoint + Lpboxs (8)
where L,,.s;, computes the L; loss between the predicted SMPL-
X parameters and groud-truth SMPL-X fits, Ljoins computes the
Ly loss between the predicted joint coordinates and the ground-
truth joint coordinates, Lyp,, computes the Ly loss between the

predicted and ground-truth bounding box center and size of the
face and hands.
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Method | MPJPE | | MVE | | NMJE | | NMVE |
HMR [22] 180.5 | 173.6 | 226.0 217.0
SPIN [25] 175.1 | 168.7 | 223.1 216.3
PyMAF [56] 200.2 | 207.4 | 168.2 174.2
EFT [21] 1963 | 203.6 | 159.0 165.4
ROMP [45] 116.6 | 113.8 | 134.0 130.8
BEV [46] 1053 | 1007 | 113.2 108.3
Hand4Whole [34] | 89.8 91.1 103.2 104.6
MEPO (Ours) 85.5 89.8 | 974 102.7

Table 2: Quantitative comparisons with SOTA body-only
based methods. We compared our model with existing body-
only methods (either single-person or multi-person) to illus-
trate the effectiveness of our method.

4 EXPERIMENTS

4.1 Datasets and Evaluation Metrics

Datasets: We train our model on the Human3.6M [19],
MSCOCO [32], MPII [1], and AGORA [37] training dataset, and
evaluate our model on the AGORA validation dataset, 3DPW [50],
and EHF [39]. AGORA is a synthetic dataset for 3D human pose
estimation. The dataset contains 14,000 high-resolution (4K) images
for training and 3,000 test images, each containing 5 to 15 people.
3DPW [50] is the first multiple-people dataset that captures human
poses and motions in the wild, including 51,000 frames of videos.
AGORA and 3DPW are considered challenging datasets because
they contain person-person occlusions, environmental occlusions,
and camera frame occlusions. EHF [39] dataset is a single-person
whole-body dataset including 100 images with SMPL-X annotations
and uses a vertex-to-vertex error.

Evaluation Metrics. The evaluation metrics on the AGORA [37]
dataset follow the AGORA official benchmark, including Normal-
ized Mean Vertex Error (NMVE), Normalized Mean Joint Error
(NMJE), Mean Vertex Error (MVE), and Mean Per Joint Position
Error (MPJPE) for whole-body, body, right hand, left hand, and face.
For 3DPW [50] evaluation, we report MPJPE, Mean Per Vertex Posi-
tion Error (MPVPE), and Procrustes Analysis MPJPE (PA-MPJPE).
For EHF [39] evaluation, we report PA-MPJPE and MPVPE for
whole-body, hands, and face.

4.2 Implementation Details

We implement MEPO with Pytorch [36]. We use OpenPose [6]
for instance detection and joint heatmap construction. We use
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Method | MPJPE | | PA-MPJPE | | MPVPE |
HMR [22] 130.0 76.7 -
SPIN [25] 121.2 69.9 144.1
ROMP [45] 91.3 54.9 108.3
PIXIE [13] 91.0 61.3 -
Hand4Whole [34] 86.6 54.4 -
MEPO (Ours) | 79.1 524 | 96.8

Table 3: Quantitative comparisons with SOTA methods on
3DPW dataset. We compared our model with existing meth-
ods on the 3DPW dataset to illustrate the effectiveness of our
method in real-world scenarios.

Resnet-50 [18] to process the image crops. Our model is trained
and fine-tuned on the Human3.6M [19], MSCOCO [32], MPII [1]
and AGORA [37] dataset, and is evaluated on AGORA, 3DPW [50],
and EHF [39] validation dataset. The ground-truth depth order
levels are obtained from the ground-truth masks as described in
Section 3.3. For single-person methods as the baseline, we use
OpenPose to detect instances in the image and then pass them to
the pose estimation methods for a fair comparison.

4.3 Comparison with State-of-the-Art Methods

AGORA Evaluation. We compare our method against the state-
of-the-art methods under the same AGORA evaluation protocol.
For fair comparisons, our model uses OpenPose [6] to detect peo-
ple in the image, which is the same instance detection settings
of the image pre-processing for state-of-the-art methods reported
in AGORA. The results are given in Table 1. From the table, we
can observe that our proposed model, MEPO, performs better than
state-of-the-art whole-body pose estimation methods.

As illustrated in Section 3, our model is aware of person-person
occlusions in the images, and AGORA includes many occlusions to
simulate real-world scenes. Other models that are built for single-
person detection are not capable of dealing with complex occlu-
sions.

We further compare our method against the leading edge, body-
only pose estimation methods, adhering to the AGORA evaluation
protocol. The objective of this comparison is to substantiate that
our model surpasses the currently available multi-person pose esti-
mation methods. Given that these existing multi-person methodolo-
gies generate body-only models, we compare our model under this
body-only setting. Specifically, we use the BodyBranch in our model
to predict the body-only 3D human model for fair comparisons.
Under body-only settings, we also use the AGORA benchmark
to evaluate the models, which calculate NMVE, NMJE, MVE, and
MPJPE on body pose predictions. For the performance of baseline
models, we use the performance reported by [37]. As shown in Ta-
ble 2, the proposed MEPO outperforms other baseline methods, i.e.,
HMR [22], SPIN [25], PYMAF [56], EFT [21], ROMP [45], BEV [46],
and Hand4Whole (body-only) [34]. Since AGORA contains com-
plex occlusions, methods that are unaware of occlusions, such as
HMR, SPIN, and PyMAF, do not have good overall performance. On
the contrary, methods that consider the occlusion issue or depth
order issue, such as BEV [46] and our model, have comparatively
good performance. These experiment results validate that our ap-
proaches are efficient in complex occluded cases and outperform
existing multi-person methods.
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PA-MPVPE | MPVPE |
Methods All Hands Face| All Hands Face
ExPose [10] 54.5 12.8 5.8 771 51.6 35.0
Frankmocap [43] | 57.5 12.6 - [107.6 428 -
PIXIE [13] 55.0 11.1 4.6 | 89.2 42.8 32.7
Hand4Whole [34] | 50.3 10.8 5.8 76.8 39.8 26.1
MEPO (Ours) 484 10.7 5.6 | 74.7 38.3 26.1

Table 4: Quantitative comparisons with the SOTA whole-body
methods on EHF dataset.

Method | MPJPE | | MVE | | NMJE | | NMVE |
Baseline 89.1 93.1 103.2 107.0
+ heatmap 86.8 91.9 100.5 106.7
MEPO W/0 Lgeprn | 864 | 911 | 99.4 | 1048

Table 5: Ablation results for HENet on AGORA.

3DPW Evaluation. We compare our results with existing pose
estimation methods on the 3DPW [50] dataset, which captures
human motions in the wild. For a fair comparison with body-only
methods, we use the BodyBranch of our model to compare with
other methods in the 3DPW dataset. For single-person methods,
we use OpenPose to extract instance crops for a fair comparison.
The results are shown in Table 3. We compared our model with
HMR [22], SPIN [25], ROMP [45], PIXIE [13] and Hand4Whole [34].
Our model outperforms the aforementioned methods.
EHF Evaluation. Since our model is a whole-body pose estimation
method, we also compare our method with the existing whole-body
method on a single-person whole-body pose dataset, EHF. The
experiment result is shown in Table 4. We compared our method
with the state-of-the-art methods, and our model outperforms these
approaches. This illustrates that the design of our proposed method
also benefits single-person pose estimation.

We also present the qualitative result of MEPO in Figure 6. The
images are from the AGORA [37] and 3DPW [50] dataset. Images
contain ambiguous bounding boxes and various occlusions, in-
cluding person-person occlusions, environmental occlusions, and
camera frame occlusions, which is challenging for single-person
pose estimation methods. We compare our qualitative results with
the leading whole-body method, i.e., Hand4Whole [34]. As circled
in Figure 6, it is challenging for the SOTA method to recover human
models under such occlusions. However, our model is able to handle
such complex situations and provide accurate whole-body repre-
sentation. The qualitative result shows that our model is robust
with crowds and can handle complex person-person occlusions.

4.4 Ablation Study

To illustrate the essential performance improvement of our methods
and the different effects of our methods under different settings,
we compare the performance on the AGORA dataset [37] under
different experiment settings.

HENet. We first evaluate the effect of the Heatmap Enhancement
Net (HENet) on performance. We proceed with a comparative anal-
ysis across three implementations: (1) the first implementation is
the baseline model without any incorporation of heatmap informa-
tion; (2) the second implementation directly concatenates the image
feature with the heatmap feature; (3) the third implementation in-
tegrates the HENet design of our model. The primary objectives
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(i) Original Image (ii) Ground-truth fitting (iii) MEPO result (Ours) (iv) SOTA method result
(a) Qualitative results of our method and SOTA method [34] comparisons on AGORA [37] dataset.
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(ii) MEPO result (Ours) (iii) SOTA method result

(b) Qualitative results of our method and SOTA method [34] comparisons on 3DPW [50] dataset.
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Figure 6: Qualitative results of our method and SOTA method [34] comparisons on AGORA [37] and 3DPW [50] dataset.

Compared to the SOTA method issues (red circled), our proposed model is robust to person-person occlusions. These results
validate that our model performs better under crowded situations.

Method | MPJPE | | MVE | | NMJE | | NMVE | a comparative experiment. We compared our model before and after

adding the depth order loss. The results are listed in Table 6. As
MEPO w/o Ldepth 86.4 911 99.4 104.8 shown in Table 6, after applying losses, our model has a lower
MEPO 85.8 89.1 97.1 102.1 MPJPE, MVE, NMJE, and NMVE than the baseline.

Table 6: Ablation results for depth order loss.
of this experimental setup are twofold. First, we aim to demon-
strate the critical role of heatmap information in our methodology.

5 CONCLUSION AND FUTURE WORK

Second, we intend to establish that our proposed HENet enhances In this paper, we present MEPO, a novel monocular, multi-person,
performance beyond what is achieved by merely concatenating 3D whole-body human pose recovery method to address the prob-
image and heatmap features. We evaluate these models via the lem of expressive pose estimation of multiple people. We propose
AGORA evaluation benchmark. to use HENet to extract heatmap information efficiently. The model
The experiment results are shown in Table 5. We can observe is depth-aware by introducing depthmap and depth order loss. Our
that in both experiments, the two strategies using heatmap both method has proved efficient while dealing with either crowd scenes
have better performance, while our proposed HENet structure per- or single-person cases. Our method outperforms existing whole-
forms better than simply concatenating the image and heatmap body pose estimation methods and multi-person pose estimation
features together. This shows that heatmap is beneficial for human methods. In the future, we plan to explore the possibilities of the
pose estimation. Furthermore, it proves that our proposed HENet one-stage method for multi-person whole-body pose estimation.
efficiently utilizes the information delivered by the joint heatmap. Acknowledgments: This research is partially supported by NSF
Depth Order Loss. To investigate whether the depth order loss 11S-2309073 and ECCS-2123521. This article solely reflects the opin-
leads to positive effects on the model performance, we also designed ions and conclusions of its authors and not the funding agencies.
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