6654

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 5, MAY 2024

Stochastic Integrated Actor—Critic for
Deep Reinforcement Learning

Jiaohao Zheng, Mehmet Necip Kurt™, Member, IEEE. and Xiaodong Wang"V, Fellow, IEEE

Abstract— We propose a deep stochastic actor—critic algorithm
with an integrated network architecture and fewer parameters.
We address stabilization of the learning procedure via an adap-
tive objective to the critic’s loss and a smaller learning rate
for the shared parameters between the actor and the critic.
Moreover, we propose a mixed on—off policy exploration strategy
to speed up learning. Experiments illustrate that our algorithm
reduces the sample complexity by 50%-93% compared with
the state-of-the-art deep reinforcement learning (RL) algorithms
twin delayed deep deterministic policy gradient (TD3), soft
actor—critic (SAC), proximal policy optimization (PPO), advan-
tage actor—critic (A2C), and interpolated policy gradient (IPG)
over continuous control tasks LunarLander, BipedalWalker,
BipedalWalkerHardCore, Ant, and Minitaur in the OpenAl Gym.

Index Terms— Actor—critic, adaptive objective, deep reinforce-
ment learning (RL), integrated network, mixed on-off policy
exploration, sample complexity.

I. INTRODUCTION

EINFORCEMENT learning (RL) is effective to learn and

control over complex and uncertain environments [1].
Especially with the combination of deep learning, RL has
been shown to perform well in many fields including robotics,
games, and automatic control [2], [3], [4]. In RL, an agent
interacts with an environment with the goal of learning
the reward-maximizing policy. The policy-based RL directly
optimizes the policy toward higher rewards. The value-based
RL learns the value (i.e., expected future reward) of each
environment state or state—action pair, and the optimal policy
is implicitly determined as the reward-maximizing action at
each state. The actor—critic RL is at the intersection of the
policy-based RL and the value-based RL such that the policy
(actor) is optimized in the direction suggested by the value
function (critic).

In deep RL, the actor and the critic strongly interact while
they are trained simultaneously toward the same objective (i.e.,
learning the reward-maximizing policy). We aim to use the
interdependency between them more explicitly and propose
an integrated actor—critic (LAC) algorithm. In this framework,
the actor and the critic share more knowledge, which enables

Manuscript received 22 October 2021; revised 5 June 2022;
accepted 3 October 2022. Date of publication 18 October 2022; date
of current version 3 May 2024. (Corresponding author: Xiaodong Wang.)

Jiaohao Zheng is with the Shenzhen Institutes of Advanced Technology.
Shenzhen 518055, China (e-mail: jh.zheng@siat.ac.cn).

Mehmet Necip Kurt was with the Department of Electrical Engi-
neering. Columbia University, New York, NY 10027 USA (e-mail:
m.n.kurt@columbia.edu).

Xiaodong Wang is with the Department of Electrical Engineering, Columbia
University, New York, NY 10027 USA (e-mail: wangx @ee.columbia.edu).

Digital Object Identifier 10.1109/TNNLS.2022.3212273

saving lots of parameters. However, shared parameters also
bring an additional challenge on the training stability. The
IAC can be motivated from animal brains such that although
different regions in a brain are assigned to different tasks, all
the regions are still interconnected, and a brain can act both
as an actor (i.e., select an action) and a critic (i.e., evaluate an
action).

Deep RL algorithms commonly suffer from slow learning
and high sample complexity. We propose a new model-free
off-policy deep stochastic IAC (SIAC) algorithm with a fresh
and novel set of tools and ideas. We list our main contributions
as follows.

1) We design a novel off-policy IAC network architecture,
where the actor and the critic have different inputs.

2) We propose a novel objective function that is adaptive to
the critic’s loss and a smaller learning rate for the shared
parameters to stabilize the training of the integrated
network.

3) We propose a novel mixed on—off policy exploration
strategy to further reduce the sample complexity.

4) Finally, we incorporate a set of recent deep learning
techniques (not commonly used in deep RL before),
namely, the dense convolutional network (DenseNet)-
like network architecture [5], hard-swish nonlinear-
ity [6], and adjustment of batch size and iteration
number [7], to further reduce the sample complexity
of our algorithm.

5) Our algorithm reduces the sample complexity by
50%—-93% compared with the state-of-the-art algorithms
the twin delayed deep deterministic policy gradient
(TD3) [8]. soft actor—critic (SAC) [9], proximal pol-
icy optimization (PPO) [10], advantage actor—critic
(A2C) [11], and interpolated policy gradient (IPG) [12]
over continuous control tasks LunarLander, Bipedal-
Walker, BipedalWalkerHardCore, Ant, and Minitaur in
the OpenAl Gym.

A preliminary version of our work has been presented as
the IAC algorithm in [13]. We summarize the main differences
between SIAC and TAC as follows.

1) SIAC is a stochastic policy gradient algorithm, whereas
IAC is a deterministic policy gradient algorithm. In gen-
eral, IAC learns faster in simpler tasks and SIAC learns
faster in more difficult tasks (see Section VII for the
experiment results).

2) SIAC has a novel mixed on—off policy exploration
strategy (see Section V).

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.htm! for more information.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 19,2024 at 15:13:48 UTC from |EEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5827-2533
https://orcid.org/0000-0002-2945-9240

ZHENG et al.: SIAC FOR DEEP REINFORCEMENT LEARNING

3) Both IAC and SIAC have adaptive objective functions.
For the training stability, the IAC objective function
includes a regularization term that roughly ensures keep-
ing the actor unchanged if the critic makes large errors.
On the other hand, the objective function of SIAC does
not include a regularization term. For training stability,
SIAC instead uses a smaller learning rate for the shared
parameters between the actor and the critic.

The remainder of the article is organized as follows.
Section II provides background information. Section III
presents the proposed integrated network architecture.
Section IV presents the proposed adaptive objective func-
tion. Section V explains the proposed mixed on—off policy
exploration strategy. Section VI presents further deep learning
techniques to improve the performance. Section VII provides
the experimental results. Section VIII discusses the related
work in the literature. Finally, Section IX provides some
concluding remarks.

1I. BACKGROUND

We consider a standard RL problem where an agent interacts
with a stochastic environment to maximize its expected total
reward. We model the problem as a Markov decision process
where at each discrete time ¢, the environment is in a particular
state s, € S. Assuming a fully observable environment, the
agent observes the state s;, takes an action a; € A, and receives
a reward r(s;, a;) € R in return of its action. At the same time,
the environment makes a transition to the next state s, with
the probability p(s;y1|s:,a;). This process is repeated until
a terminal state is reached. We assume that state and action
spaces are continuous and real-valued.

The return from a state is defined as the total discounted
future reward, G, = > .o,y 'r(si,a;), where y € [0,1]
denotes the discount factor. In RL, the agent’s goal is to learn
an optimal policy = : § — P(A4) to maximize its expected
return from the start, written by J™ = E; ~p= 4~z [Gol, where
p* denotes the state visitation distribution under the policy .
The agent’s policy can either be stochastic or deterministic.
In case the policy is stochastic, m (a;|s;) denotes a probability
density function over the action space given the state s;.

The expected return from a state—action pair is called the Q
value. If the policy « is followed after taking action a in state
s, the Q value is written by Q7 (s, a) = E,_,~p= .~ [G:|8; =
s, a; = a]. The Bellman equation provides a recursive relation-
ship between the current and the next Q values

Q" (st,ar) =r(se,ar) +y]Es,+|~p",a,+|~:r [QF (5141, ar41)]-

A. SAC Algorithm

The policy gradient algorithms are useful to solve the RL
problems, especially over continuous action domains. SAC [9]
is an off-policy stochastic policy gradient algorithm, where
a policy is learned with the goal of maximizing both the
expected return and the policy entropy

x* = argmax E, - pr g~rx [Z y! (r(s,, a;) + a'H(x(-|S;)))]
t=0
(1)

6655

where H(-) denotes the entropy measure, and a is the tem-
perature parameter that controls the relative importance of the
policy entropy versus the reward.

In SAC, the actor and the critic are neural networks. The
critic estimates the soft Q value function Q,, (s, a) parameter-
ized by w, and the actor learns a stochastic policy 7y parame-
terized by 8. The policy can be written in a functional form
by a; = fu(e, s;) where € is sampled from normal distribution
for a Gaussian policy, and the mean and standard deviation
of the policy are estimated by the actor network. Moreover,
a separate target critic network is kept with parameters w’,
which are slowly updated. The target critic network provides
stable targets to the critic for the soft @ value estimation
through the Bellman equation

yi=r(sna)+y (Qw'(srﬂ, ar41) — a log(mo (@ [3r+l}))
(2)

where a1 = fale, St41).

The critic updates its parameters w to minimize the differ-
ence between its soft Q value estimates and the given targets.
Let & = yr — Qu (s, a;). The critic minimizes the following
loss function over a mini-batch of samples chosen uniformly
from an experience replay buffer D:

L(w) = Es, a,,r(s1.a),50:1)~D, e~N' [512] (3)

where the replay buffer saves the experience tuples
(8¢, ar, r(5¢, ar), $i+1) collected during exploration.
The actor’s objective function can be written by

J(0) = Esopcon [Qusi, fole,)
—alog(zo(foe,)Is)) | @

The actor updates its parameters # via the policy gradient
VpJ (0) toward maximizing J (&).

The twin critics [8] can be used in SAC against over-
estimation of the @ value. In this case, denoting the twin
critics by {Q;w,j = 1,2} and the target twin critics by
{Qj.w,J=1,2}, the targets are computed as, see (2),

Ve=r(s,a)+y (j—.lnz Qjw (8141, A1)

—alog(mp(a |3r+l))) ¢)

Moreover, the actor’s objective function is written by,
see (4),

J(0) = E5,op e Lﬂ:llﬂz Qjw(st, fole, s0))

~ allaglg ik, sf)lsf))]- ©)

In SAC, the actor and critic parameters, # and w, are disjoint
and updated simultaneously in turn. Fig. 1 illustrates the actor
and twin critic networks in SAC. In the critic networks, the
input is formed by concatenating the state and action. Both
the actor and critic networks are multilayer perceptron (MLP),
where the number of layers and the width of each layer,
denoted with m in Fig. 1, can be tuned depending on the
learning task complexity.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 19,2024 at 15:13:48 UTC from |EEE Xplore. Restrictions apply.

6656 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 5, MAY 2024
(" state (dim(s)]) (Action [dim{a))) (State (dim(s))) (Action (dim(a)})
[State ?dimlzls??) concatenate concatenate
Deres Laver (Tensor [dim(s) + dim(a)) | [Tensor (dim(lsj +dim(a)))
RelU Dense Layer Dense Layer
—l—\\
Dense Layer (M'r_[m)_)
RelU Dense Layer Dense Layer
% RelU RelU
Tensor(m))
Tensor (m) Tensor (m)
| Dense Layer | | Dense Layer | Dense Layer
("Mean (dim{a))) (Log Std (dim(a})) (Qualue1{1)) (Qualue2{1))
Actor Netwaork Twin Critic Networks
Fig. 1. Actor and twin critic networks in the SAC algorithm. The width of each network layer is shown in parentheses. State and action dimensions are

denoted with dim(s) and dim(a), respectively.

(state (dim(s))) ((Action (dim(a)))
¥ ¥

Action
Encoder

State
Encoder

v
(Tensor (m))

(Tensor {m))

Internal -
Actor Network Critic
Tensor (2°m))
Action Q value
Decoder Decoder

¥ ¥ ¥ ¥
(Mean (dim[a],‘l) (Log Std {dim[a})) (Q value 1 {1]) (Clvalue 2 {1})

Fig. 2. IAC network. The green and pink colored regions represent the actor
and critic networks, respectively. The intersection of two regions represents
the shared parameters between the actor and the critic. The internal network
takes an input tensor of width m and outputs a tensor of width 2“m, where
L is the number of layers in the DenseNet-like internal network.

III. INTEGRATED NETWORK ARCHITECTURE

The proposed integrated network (see Fig. 2) consists of
five main building blocks: state encoder, action encoder, action
decoder, Q value decoder, and an internal network connected
to all the encoders and decoders. This architecture is designed
to share the network between the actor and the critic that
have different inputs, namely, the state input for the actor,
and state and action inputs for the critic. In the previous deep
RL algorithms with shared parameters, the actor and the critic
have the same state input (see PPO [10] and asynchronous
advantage actor-critic (A3C)/A2C [11]).

The action encoder outputs the mean and logarithm of the
standard deviation of the Gaussian policy. Moreover, the Q
value decoder outputs two Q values as twin critics [8] against
overestimation of the Q value. The integrated network acts as
the actor when the green area is activated, and as the critic
when the pink area is activated. The actor and critic share the

state encoder and the internal network. The whole network is
kept active during the training procedure and only the green
area (i.e., actor) is activated after training is done.

In the integrated network, each building block is a neural
network (see Fig. 3). While combining the outputs of the state
encoder and action encoder to obtain the internal network’s
input, either concatenation or addition operation can be used.
According to our experiments, the addition works better to
reduce the network size and speed up learning without perfor-
mance loss. In this case, the encoder outputs have the same
width, say m.

We design the internal network by modifying the dense
convolutional network (DenseNet) [5] such that all the con-
volutional layers in the original DenseNet are replaced with
the fully connected (i.e., dense) layers. Hence, the integrated
network has an encoders—DenseNet—decoders architecture.
In deep RL, to obtain a larger capacity neural network, simply
increasing the width or the depth of the network is subject to
overfitting, training instability, and performance loss [14]. The
DenseNet architecture is particularly useful for the RL since
the shortcut connections in the DenseNet improve the network
capacity with fewer parameters. In particular, the DenseNet
contains shallow and deep networks at the same time (see
Fig. 3) and combine their advantages. Shallow networks help
agent to learn faster while deep networks help agent to learn
more complex feature mappings.

In our solution, the DenseNet-like internal network takes
an input tensor of width m and outputs a tensor of width
2Lm, where L is the number of layers in the DenseNet. The
integrated network can be tuned with the variables m and L
depending on the task complexity. In Fig. 3, we have L = 2.
The output of the internal network is given as the input to the
action decoder and the Q value decoder.

Thanks to the shared internal network and the state encoder,
the integrated network has, in general, fewer parameters
compared with the overall parameters of separate actor and
critic networks. This can speed up learning especially in high-
dimensional settings, for example, when video frames form
the state input (see Appendix C for a quantitative comparison
between SAC and SIAC networks in terms of the overall

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 19,2024 at 15:13:48 UTC from |EEE Xplore. Restrictions apply.

ZHENG et al.: SIAC FOR DEEP REINFORCEMENT LEARNING

(State [dimi(s])) (" Action (dim(a)))

6657

14—

concatenate

| Dense Layer | [Dense Layer | : =
RelU RQ[U (Tensor (2m) Dense Layer
:
Tensor (m) — Tensor (2m))|
State Encoder Action Encoder C Tensor (4m)]

Tensor (4m)}

DenseNet-like Internal Network

Tensor (4m)

Dense Layer
Hard-swish Hard-swish
Tensor {m) Tensor (m)
.
FAR N
[Dense layer | [Dense Layer | | Denselayer | [Denselayer |

|
(Mean (dim(a))) (Log 5td (dim(a)))

(Qualue1(1) J(Qualue2 (1))

Action Decoder

Fig. 3.
dim(s) and dim(a), respectively.

number of parameters). Moreover, it can help mitigate the
overfitting both because of having fewer parameters and mul-
titask learning [15]. However, the shared parameters bring an
additional challenge on the training stability. The next section
addresses this challenge.

IV. ADAPTIVE OBJECTIVE FUNCTION

Let ¢ denote the parameters of the integrated network,
which is the union of the actor and critic parameters: ¢ =
U w. In our algorithm, we also keep a separate target
network (despite additional memory usage) with parameters
¢’ to provide stable targets to the critic during training. For
convenience, let the policy and the value function be written
in terms of ¢ by m,4(s) and Qu(s, a), respectively. Moreover,
let the expected return and the critic’s loss be written by
J(¢) [see (6)] and L(¢) [see (3)], respectively, additionally
with the following £; smoothing [16] on the critic’s loss:
L(¢) = Ep,a[g(:)], where

0.5x2
g(x)z{ :

it |x|-< 1;

x| — 0.5, if x| > 1.

We use the £; smoothing since it enables a more stable
training compared with using the mean squared error given
in (3). In particular, the £ smoothing provides steady gradients
for large &, which helps avoid exploding gradients. Moreover,
it is more robust to outliers.

We aim to design an objective function to train the
parameter-sharing integrated network in a stable manner. In the
policy gradient algorithms, the policy cannot be improved
if the value function estimation is inaccurate [8]. Hence,
we introduce an adaptive variable 4 e [0, 1] that reflects the

() value Decoder

Building blocks of the integrated network. The width of each network layer is shown in parentheses. State and action dimensions are denoted with

critic’s reliability level. After an initialization, we propose to
update A depending on the critic’s loss such that

T2
L<—et

where

L<tL@+Q—-17)L 7

where 7 € (0, 1) is a hyperparameter, and L(¢) is computed
over a batch of samples. We perform the soft update on L in
(7) to keep 4 stable during the training procedure.

Note that as the critic’s loss L(¢) gets larger, A gets closer
to 0, and as the critic’s loss gets smaller, 4 gets closer to 1.
A larger A thus implies a more reliable critic. As the value
estimation by the critic becomes more reliable, the policy
parameters of the actor network can be updated with a larger
learning rate. Based on this idea and using the adaptive
variable A, we integrate J(¢) and L(¢) into the following
adaptive objective function:

Z(¢) = L(¢p) — 4J(9)- ®)

According to the adaptive objective, when the critic is less
reliable (i.e., smaller 1), the share of the actor’s objective gets
relatively smaller compared with the critic’s loss. Specifically,
as A — 0, the objective function approximates to

Z(¢) = L(@) ©)

including only the critic’s loss while the critic makes large
errors. In this case, effectively only the critic is updated toward
minimizing its loss. On the other hand, when the critic is more
reliable (i.e., larger 4), the actor’s objective has a larger share
in the adaptive objective. In this case, the actor and the critic
are updated together.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 19,2024 at 15:13:48 UTC from |EEE Xplore. Restrictions apply.

6658

The two-time-scale update rule (TTUR) [17], [18] was
shown to be useful for the convergence of the actor—critic
algorithms. The TTUR suggests updating the policy with
a smaller learning rate and less frequently than the value
function. Note that with the proposed adaptive objective Z(¢)
in (8), we update the policy with a smaller learning rate
compared with the value function as 4 < 1, and the learning
rate gets smaller when the critic is less reliable. Moreover,
we update the policy less frequently than the value function,
as we effectively update only the critic for small 4; see (9).
Hence, the proposed adaptive objective function enables an
adaptive TTUR.

A. Smaller Learning Rate for the Shared Parameters

To further improve the training stability, we propose to use
a smaller learning rate for the shared parameters between the
actor and the critic, and hence update the shared parameters
more slowly. To justify this idea, consider an extreme case
where the learning rate for the shared parameters is set to
zero. In this case, stochastic gradient updates based on the
actor’s objective do not alter the critic’s loss, and vice versa.
That means that the actor and critic networks are optimized
separately (while the shared parameters are not updated at
all), and the issue of training instability due to the bilevel
optimization no longer exists. Hence, using a smaller learning
rate for the shared parameters can lower the level of training
instability caused by the bilevel optimization.

In SIAC, the learning rate of the shared parameters is set
as half of the global learning rate. Hence, the integrated net-
work parameters are updated toward minimizing the adaptive
objective via the stochastic gradient descent as follows:

¢ —¢—BVsZ(@)

where the learning rate g is set as

ﬂz[;/z, if ¢ € (0N w)

& else

and (denotes the global learning rate (i.e., learning rate for
the nonshared parameters).

V. MixeED ON—OFF PoLICY EXPLORATION

Sample collection follows a behavior policy during explo-
ration, whereas target policy means the policy being learned
by an RL agent. An off-policy algorithm can be trained
with samples collected from any behavior policy, whereas an
on-policy algorithm is trained with samples collected from
a similar behavior policy with the target policy [2]. As an
example, an on-policy algorithm can search new actions within
a trust region of the target policy during exploration (see
e.g., the trust region policy optimization (TRPO) [19] and
PPO [10] algorithms). Hence, it is likely that the trust region
is sufficiently explored to find the best action within this
region. From this perspective, the on-policy algorithms have
a conservative exploration strategy. This also implies that the
on-policy algorithms can get stuck around a locally bad policy,
which slows down learning. Moreover, on-policy learning,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 5, MAY 2024

Off-Policy

On-Policy

Fig. 4. [Illustration of the off-policy versus on-policy learning via the Ms.
Pac-Man Atari game.

in general, suffers from sample inefficiency as it requires new
training samples after each policy update. On the other hand,
the off-policy algorithms can effectively learn from the past
experience through a replay buffer. With that, the off-policy
algorithms can learn from more diverse samples, both from
good and bad actions. Fig. 4 illustrates via Ms. Pac-Man Atari
game example that the off-policy algorithms can learn from
diverse trajectories, whereas the on-policy algorithms can learn
from similar trajectories.

We aim to combine the advantages of on-policy and off-
policy learning to obtain a better overall exploration strategy.
The main idea is to learn from diverse samples with better
sample efficiency (i.e., off-policy learning) and also search
new actions more densely around the best policy learned thus
far (i.e., on-policy learning). When off-policy learning gets
worse, the on-policy agent resumes exploration from the best
policy thus far until a better policy is learned. We keep a shared
experience replay buffer that saves all the collected samples
(up to the buffer capacity), which is used to train our off-policy
SIAC algorithm. In this framework, the main functionality of
the on-policy agent is to contribute to the shared experience
replay buffer with good-quality samples.

The proposed mixed on—off policy exploration can be sum-
marized in three steps as follows.

1) Let the off-policy agent explore. Save the collected
samples into the shared experience replay buffer. Update
the off-policy agent. If the exploration reward of the
off-policy agent decreases compared with the highest
exploration reward obtained previously, save the para-
meters with the highest exploration reward and go to
step 2.

2) Fit (via regression) the on-policy agent’s parameters to
the best off-policy learned thus far in step 1. Go to step 3.

3) Let both the off-policy and on-policy agents explore.
Save all the collected samples into the shared experience
replay buffer. In addition, save the samples collected
by the on-policy agent to its separate experience replay
buffer. Update both the off-policy and on-policy agents.
Empty the replay buffer of on-policy agent after each
update. If the exploration reward of the off-policy agent

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 19,2024 at 15:13:48 UTC from |EEE Xplore. Restrictions apply.

ZHENG et al.: SIAC FOR DEEP REINFORCEMENT LEARNING

TABLE I

SIMULATION ENVIRONMENTS

6659

samples

Fig. 5. Mixed on—off policy exploration. The best policy learned by the
off-policy agent is transferred to the on-policy agent (step 2). The samples
collected by the on-policy are transferred to the shared experience replay
buffer of the off-policy agent (step 3).

is greater than the highest exploration reward obtained
previously, go to step 1.

In the mixed on-off policy exploration, the relationship
between the on-policy and off-policy agents is illustrated in
Fig. 5. The on-policy agent is used only if the policy learned
by the off-policy agent gets worse. Note that the on-policy
agent is trained with samples from its separate replay buffer,
whereas the off-policy agent is trained via the shared replay
buffer. In our implementation, the off-policy agent is SIAC and
the on-policy agent is PPO [10]. Finally, note that the proposed
mixed on—off policy exploration needs more computational
resources since an on-policy agent is trained in addition to the
off-policy SIAC agent.

V1. FURTHER DEEP LEARNING TECHNIQUES

In this section, we discuss the hard-swish nonlinearity and
adjustment batch size and iteration number during training to
further improve the performance of SIAC.

A. Hard-Swish

In neural networks, the nonlinear activation functions enable
learning complex mappings from the inputs to the outputs,
which is useful to deal with complex and high-dimensional
data. Hard-swish [6] is a computationally simplified version
of the swish nonlinearity [20]. Hard-swish is better to learn
complex mappings especially in deep neural networks [6]
despite consuming more computational resources than the
rectified linear unit (RelLU) activation function. In our network
design, we use the hard-swish as the activation function in the
internal network and the decoders (see Fig. 3).

B. Adjustment of Batch Size and Iterafion Number

In [7], it is shown that increasing the batch size enables
training a model with fewer parameter updates compared with

Environment Engine State dim Action dim Target reward
LunarLander Box2D 8 2 200
BipedalWalker Box2D 24 4 300
BipedalWalkerHardCore Box2D 24 4 300
Ant PyBullet3D 28 8 2500
Minitaur PyBullet3D 28 8 10
LunarLander (pixel-level) Box2D 112 x112x9 2 200
BipedalWalker (pixel-level) Box2D 112 x112x9 4 300
CarRacing (pixel-level) Box2D 112x112x9 3 800
best policy reducing the learning rate in the stochastic gradient descent
Off-policy On-policy optimization. Based on thl.S pnflmple, we increase the batch
agent agent size and the number of iterations during training as new
[samples are collected and stored in the experience replay

buffer, until the buffer is full.

In our algorithm (see Algorithm 1), at each training episode,
first the actor explores the environment, collects new samples,
and saves them into the replay buffer. Next, the network
parameters are updated via the stochastic gradient descent
with a mini-batch of samples chosen uniformly from the
buffer. In this process, let the parameters be updated over K
iterations and the batch size be N. Moreover, let Ky > 1 and
Ny = 1 be the initial iteration number and the initial batch size,
respectively. Furthermore, let the buffer capacity be M > 1
and the current size of the buffer be 0 < B < M. We keep and
update a parameter p while the buffer size gradually increases
as more samples are collected: p = 14 B/M. We then update
the number of iterations and the batch size as K = pKj and
N = pNj, respectively. In our algorithm, the batch size and
the number of iterations are updated once at each training
episode right after the exploration phase is over (see line 27 of
Algorithm 1).

VII. EXPERIMENTS

In this section, we first evaluate the performance of SIAC
compared with the state-of-the-art deep RL algorithms. Next,
we perform a self-comparison study to evaluate the contri-
bution of various SIAC components on the overall algorithm
performance.

A. Comparison With Benchmark Algorithms

We evaluate SIAC (see Algorithm 1) over five
low-dimensional and three high-dimensional (i.e., pixel-
level) continuous control tasks in the OpenAl Gym [21] (see
Table I). For comparisons, we use the IAC [13], TD3 [§],
SAC [9], A2C [11], PPO [10], and IPG [12] algorithms. Fig. 6
illustrates the learning curves of all the algorithms. We observe
that for most of the tasks, SIAC learns significantly faster and
more stable compared with the benchmark algorithms. Only
in some simpler tasks (i.e., low-dimensional LunarLander
and BipedalWalker tasks), the deterministic IAC algorithm
learns faster than SIAC. In Fig. 6, the x-axis represents the
number of environment samplings, that is, the number of
steps the RL agent interacts with the environment during the

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 19,2024 at 15:13:48 UTC from |EEE Xplore. Restrictions apply.

6660

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 5, MAY 2024

Algorithm 1 SIAC

1: Initialize the integrated network with random parameters ¢, the target network with ¢’ < ¢, and the network with the best

policy with ¢* < ¢.
2: Initialize the shared replay buffer D with size B <« 0.

3: Initialize the average loss of critic: L <— 1 and the adaptive parameter: 1 < 1/e.

IS

with R* < R.
5: Disable the on-policy agent: enable-on-policy <— False.
6: for episode = 1: E do
7: L. Exploration
8 Observe the initial state s;.
9: if enable-on-policy then

: Perform a random exploration to initialize both the exploration reward R and the best exploration reward of the SIAC agent

10: Initialize/empty the replay buffer D" with capacity M”" of the on-policy PPO agent and observe the initial state

L
11: fort=1:T do

12: Select action a; ~ m4(s;), receive reward r(s;, a;), and observe the next state §;4,.

13: Save the sample (s, a;, r(st, ar), s;41) into D and update the buffer size: B < min{B + 1, M}.

14: if enable-on-policy then

15: Let the on-policy agent select an action a;", receive reward r(s{", af"), and observe s;7 ;.

16: Save the sample (sy", a/", r (s{",a™), s7},) into D and update the buffer size: B < min{B + 1, M}.
17: Save the sample (s7", a/", r (s{", ai"), s{t,) into D",

18: Update the exploration reward: R <« % ST (s, a)+ (1 —x)R

19: if R < R* then

20: Enable the on-policy agent: enable-on-policy < True.

21: Fit the on-policy agent’s parameters to the best SIAC policy ¢* learned so far.
22: else

23: Disable the on-policy agent: enable-on-policy <— False.

24: Update the best exploration reward of the SIAC agent: R* < R.

25: Save the parameters of the best SIAC policy learned so far: ¢* <« ¢.

26: II. Network Update

27: Update the number of iterations and the batch size: p <~ 14+ B/M, K < pKjp, and N < pNj.

28: fork=1:K do

29: Sample a mini-batch of N samples (s;, a;, r (s;, a;), 5i+1) from D and compute the next action a; 1 = fy (€, 5i+1).
30: Compute the targets y; = r(s;,a;) +y (minjzl,z Q. (Siy1,ai1) —alog(my (@i |s;+|))).

31: Compute the critic’s loss: L(¢) :ﬁ Z.N=| g(yi — Qqu(si, ai)).

32: Update the average loss of critic: L <= tL(¢)+ (1 — 7)L.

33: Update the adaptive variable: 4 < "l

34: Compute the actor’s objective: J(¢) = # ZL min;_i2 Q;4(si, fs(€, 5:)) — alog(my(f4(€, 5i)s:)).

3s: Update the integrated network: ¢ <— ¢ — f V4 (L(¢) — AJ(9)).

36: Update the target network: ¢’ < ¢ + (1 — n)¢’.

37: if enable-on-policy then

38: Update the on-policy agent via a mini-batch of N samples (s;, a;, r(si, a;), Si+1) from D",

training procedure. Furthermore, to illustrate the convergence
of SIAC, in Fig. 7, we present the standard deviation of the
return versus the number of environment samplings.

We measure the sample complexity of each algorithm until
reaching the default target reward (see Table I) at each
simulation environment, which can be seen as a measure
of the learning speed. Fig. 8 illustrates the average number
of environment samplings until achieving the target reward.
Note that we do not present the bar charts for algorithms
that could not reach the target rewards within a reasonable
training period. Fig. 8 shows that in most of the cases, SIAC
outperforms the benchmark algorithms in terms of achieving a

lower sample complexity (and equivalently a higher learning
speed). In fact, based on the mean values in Fig. 8, SIAC
reduces the sample complexity by 50%-93% compared with
the benchmark deep RL algorithms considering all the tasks.
We obtain both the learning curves and the bar charts by
averaging the results over 50 random seeds. We present further
the experiment details, including the hyperparameters of SIAC
and the benchmark algorithms, in Appendix A. Moreover,
we present more details on the network architectures in the
pixel-level tasks in Appendix B. Finally, we provide compar-
isons between the number of parameters of SIAC and SAC in
Appendix C.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 19,2024 at 15:13:48 UTC from |EEE Xplore. Restrictions apply.

ZHENG et al.: SIAC FOR DEEP REINFORCEMENT LEARNING

LunarLander

BipedalWalker

6661

BipedalWalkerHardCore

3001

200

1004

=100

=200

0.0 05 1.0 15 20 25 30 35 40

Ant (PyBullet)

3500

3000

2500 4 —

2000 - — A2C
— TD3

1500 - — PPO

1000 — sac
—-- SlaC

500 -

BipedalWalker(pixel)

CarRacing(pixel)

300 4
3004

P e

200+

100+

—100

=200

800+

600

400

200

es

30 40 50 60 0 25 50 75 100 125 150 175 200

Fig. 6. Learning curves. Expected return versus number of environment sampling.
LunarLander BipedalWalker BipedalWalkerHardCore
— 250
4 w0
200 2004
150+ g 150
100 0 tond
50 30 504
a5 es e5
T T T T T T T T T o - - - - - - - -
0.0 05 1.0 15 2.0 25 3.0 35 40 o 1 2 3 4 5 6 7 8 ° 6 ?IO lllﬁ EIB 8‘0 160
Ant(PyBullet) Minitaur
1200
12 1
1000
10
B0D - ol
600 6]
400 4 44
200 2
e5 es
o T T o T T
o 0 20 30 40 50 €0 70 80 o 20 40 &0 Bo 100
Fig. 7. Standard deviation of the return versus number of environment samplings for SIAC algorithm.

B. Self-Comparisons

We specify five levels of SIAC such that new components
are incorporated at each level and level 5 (L5) corresponds
to the full SIAC algorithm (see Table II). In level 1 (L1),
the internal network of the IAC network (see Section III) is
an MLP with two layers. In level 2 (L2), the MLP in L1 is
replaced by the proposed DenseNet-like internal network (see
Fig. 3). In both L1 and L2, the proposed adaptive objective

function (see Section IV) is used together with the integrated
network. We note that without the adaptive objective, training
of the integrated network gets destabilized (see Section IV
for further explanation). In level 3 (L3), the mixed on—off
policy exploration is used during the training procedure (see
Section V). In level 4 (L4), the hard-swish nonlinearity is
used in the internal network, action decoder, and the Q value
decoder of the integrated network (see Fig. 3). In L1-L3,
ReLU nonlinearity is used instead of the hard-swish. Finally,

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 19,2024 at 15:13:48 UTC from |EEE Xplore. Restrictions apply.

6662

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 5, MAY 2024

%108 LunarLander x108 BipedalWalker x107 BipedalWalkerHardCore
1.5 4 E 2.0
- 2 1.5
1.0
&) ! 05
0,0 0 0.0

SIAC IAC SAC TD3 PPO A2C IPG

SIAC IAC SAC TD3 PPO A2C IPG

SIAC IAC SAC TD3 PPO A2C IPG

x107 Ant (pybullet) x107 Minitaur
1.5 il
1.0 4 0.6 A
0.4
0.5
02
0.0- 0.0-

SIAC JAC SAC TD3 PPO A2C IPG

x10% LunarLander (Pixel-level)

SIAC IAC SAC TD3 PPO A2C IPG

%10’ BipedalWalker (Pixel-level)

x107 CarRacing (Pixel-level)

1.00
34 0.75 -
24 0.50 -
19 0.25 4
0 0.00 -

SIAC IAC SAC TD3 PPO A2C IPG

SIAC IAC SAC TD3 PPO A2C IPG

SIAC IAC SAC TD3 PPO A2C IPG

Fig. 8. Comparisons with the benchmark algorithms. The bar charts illustrate the mean and standard deviation of the number of environment samplings until

achieving the target rewards.

TABLE II
LEVELS OF SIAC FOR SELF-COMPARISONS

Level Description
L1 Integrated network w/ MLP + Adaptive objective
L2 Integrated network w/ DenseNet + Adaptive objective

L3 L2 + Mixed on-off policy exploration
L4 L3 + Hard-swish
L5 L4 + Adjusting batch size and iteration number

in L5, adjustment of batch size and iteration number (see
Section VI) is incorporated to the algorithm.

Fig. 9 illustrates the mean and standard deviation of the
number of environment samplings (over 50 random seeds)
until achieving the target reward for all the SIAC levels.
Fig. 9 shows that the learning speed and stability progressively
improve from L1 to L5, implying that all the STAC compo-
nents are useful to achieve the best overall performance for the
given tasks in Table 1. Based on the mean values in Fig. 9,
for the SIAC levels from L1 to L5 consecutively as follows.

1) DenseNet-like network architecture decreases the sam-
ple complexity by 21%—-35%.

2) Mixed on—off policy exploration decreases the sample
complexity by 13%—44%.

3) Hard-swish nonlinearity decreases the sample complex-
ity by 16%—36%.

4) Adjustment of batch size and iteration number decreases
the sample complexity by 11%—26%.

considering all the tasks.

VIII. RELATED WORK

Parameter-sharing is used for multitask learning in neural
networks [22]. In [15], it is shown that as more tasks
are shared, the risk of overfitting reduces. In deep RL,
sharing parameters between the actor and the critic have
been discussed for A3C/A2C [11] and PPO [10] (although
PPO implementation does not share parameters) such that
the network is shared except for the output layers and
the objective function directly adds the actor’s and critic’s
objectives.

In the parameter-sharing versions of both A3C/A2C and
PPO, the actor and the critic have the same state input,
and hence the critic approximates the state-value function.
In SIAC, we propose a new shared network architecture where
the actor and the critic have different inputs (state input for
the actor, and state and action inputs for the critic), and the
critic estimates the action-value function. This is achieved via
the proposed encoders—internal network—decoders architecture
(see Fig. 2). Moreover, the adaptive objective function as
well as using a smaller learning rate for the shared parame-
ters are specifically designed for stable training of the IAC
network (see Section IV). Using different learning rates for
network parameters have been also considered in multitask
learning [22] and meta learning [23].

The policy gradient algorithms commonly have high sample
complexity [9], [24]. Off-policy learning with experience
replay enables reusing the past experience and reduces the
sample complexity [24]. SIAC further reduces the sample
complexity via the techniques presented in Sections II-VL

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 19,2024 at 15:13:48 UTC from |EEE Xplore. Restrictions apply.

ZHENG et al.: SIAC FOR DEEP REINFORCEMENT LEARNING

6663

%105 LunarLander x106 BipedalWalker
1.0
2 -
‘ 0-5 | |
1 -
0- 0.0-
L1 L2 L3 L4 L5 L1 L2 L3 L4 L5
%105 Ant(PyBullet) %107 Minitaur
4 1.0
2 | 0.5 |
0- 0.0

L1 L2 L3 L4 L5

L1 L2 L3 L4 L5

Fig. 9. Self-comparisons. The bar charts illustrate the mean and standard deviation of the number of environment samplings until achieving the target rewards.

TABLE I
HYPERPARAMETERS OF SIAC

Hyperparameter ~ Value
¥ 0.99

T 0.5

¢ le—4
M 220
Man 214
No 128
Ky 1000
T 1000
m 256

n be —4
K be—3

TD3 [8] addresses the overestimation of the value func-
tion via the clipped double Q learning, delayed updates on
the policy and target networks, and target policy smoothing
regularization. Our objective function enables an adaptive
version of the delayed policy updates in addition to adaptive
TTUR [17], [18] (see the relevant discussion in Section IV).

In RL, reward-maximizing actions can be learned more
quickly with a better exploration strategy. SAC [9], PPO [10],
and TRPO [19] use entropy regularization to encourage more
exploration. In the deterministic policy gradient algorithms
such as DDPG [24] and TD3 [8], a stochastic behavior policy
is used to ensure sufficient exploration. In A3C/A2C [11],
multiple actors explore environment in parallel, each with
a possibly different behavior policy for better exploration.
In Ape-X deep Q network (DQN) [25], there are multiple
actors, each executing a different policy, and the resulting
experience is accumulated to obtain a more diverse training
dataset. In SIAC, we combine the advantages of on- and
off-policy exploration and achieve a better overall exploration
strategy via a shared experience replay buffer (see Section V).

IPG [12] combines the on-policy and off-policy policy
gradient algorithms via a mixed likelihood ratio gradient.
In particular, it interpolates between unbiased high-variance

policy gradient estimation based on TRPO [19] with biased
low-variance policy gradient estimation based on DDPG [24].
In SIAC, we train an off-policy agent while exploring via both
the on-policy and off-policy agents.

IX. CONCLUDING REMARKS

We have proposed a new off-policy deep SIAC algorithm
based on an integrated network architecture and an adaptive
objective function. Sharing the network between the actor and
the critic has reduced the overall number of parameters but also
brought an additional challenge on the training stability. Using
an adaptive objective to the errors in the value estimation
and a smaller learning rate for the shared parameters have
enabled a stable training of the integrated network. We have
proposed a novel exploration strategy via mixing on-policy
and off-policy exploration. Moreover, we have proposed to
incorporate a DenseNet-like network, the hard-swish nonlin-
earity, and adjustment of the batch size and iteration number
to further improve the performance of our algorithm. The
experiments have shown that SIAC significantly speeds up the
learning and reduces the sample complexity over the state-of-
the-art deep RL algorithms.

The techniques presented in this work are applicable beyond
SIAC. In particular, the proposed encoders—internal network—
decoders architecture can be used in multitask learning and
multiagent learning, in general. Moreover, the adaptive objec-
tive to the error in the value estimation and using smaller
learning rate for shared parameters can be used in the existing
parameter-sharing actor—critic algorithms. Furthermore, the
mixed on—off policy exploration strategy can be used in
the other off-policy policy gradient algorithms. Finally, the
DenseNet-like network structure, the hard-swish nonlinearity,
and adjustment of the batch size and iteration number can
improve the performance of the existing deep RL algorithms.

APPENDIX
A. Experiment Details

We conduct our experiments on a PC with Intel Xeon
Gold 5118 CPU at 2.30 GHz, 128-GB RAM, and NVIDIA

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 19,2024 at 15:13:48 UTC from |EEE Xplore. Restrictions apply.

6664

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 5, MAY 2024

TABLE IV
HYPERPARAMETERS OF THE BENCHMARK ALGORITHMS

Algorithm Network (MLP) Replay buffer size Batch size Exploration step Learning rate
SAC (a) 256+256+256 2%° 128 1024 le — 4
TD3 (a) 256+256+256 2%0 128 1024 le—4
PPO (a) 51245124256 - 512 4096 2e — 4
A2C (a) 512+512+256 - 512 4096 2e—4
IPG (a) 512+5124256 2 1024 8192 le—4
SAC (b) 2564256 917 128 1024 2e—4
TD3 (b) 2564256 217 128 1024 2e —4
PPO (b) 256+256 - 256 2048 de — 4
A2C (b) 256+256 - 256 2048 de — 4
IPG (b) 256+256 213 512 4096 2¢ —4
2080Ti GPU. Table III presents the hyperparameters of SIAC.
We use the same SIAC hyperparameters in all the simulation G
environments given in Table 1. There is a room for further screenshot Stack State
. . " (RGB based) (112x112x9}
improvement with the hyperparameter tuning for SIAC. 112511253

For the benchmark IAC, we use the integrated network
presented in [13]. For the other benchmark algorithms,
TD3, SAC, A2C, PPO, and IPG, starting from their default
hyperparameters (i.e., author’s implementation), we perform
hyperparameter tuning via grid search to achieve better perfor-
mance (i.e., lower sample complexity until achieving the target
rewards). For these benchmarks, we use the MLP network
architecture for both the actor and the critic (e.g., see Fig. 1
for the SAC algorithm) and the ReLU activation function.
For SAC, we set the target entropy as log(dim(a)), where
dim(a) denotes the dimension of action space. For TD3,
we set the standard deviation of exploration noise and policy
noise as 0.1 and 0.2, respectively. For PPO and A2C, we set
the entropy coefficient as 0.01. See Table IV for the other
hyperparameters of the benchmark algorithms. Note that in
Table IV, for low-dimensional tasks, each benchmark can have
two different network architectures (a) and (b) depending on
the task difficulty. For all the deep RL algorithms in our
experiments, we use the Adam optimizer with its default
parameters.

For each algorithm and each simulation environment,
we repeat our experiments with 50 random seeds and present
the average results. For the learning curves presented in
Fig. 6, at each random seed, we periodically evaluate the
algorithms and compute the average return over 100 trials
for all the environments except for the BipedalWalkerHard-
Core. We compute the average return over 500 trials for the
BipedalWalkerHardCore as it has more randomness compared
with the other environments. Moreover, for the off-policy
algorithms that use a replay buffer (i.e., SIAC, TD3, SAC, and
IPG), we perform an initial random exploration via uniformly
random actions for 1024 steps before the training procedure
begins. The samples collected during this period are used to
initialize the replay buffer.

B. Design of CNN State Encoder

We design a six-layer convolutional neural network (CNN)
state encoder for deep RL from pixel-level data (see Fig. 10).

Conv2D + Rell!
kernel=5x5, stride={2, 2)

Tensor (54x54x24)

Conv2D + Rell)
kernel=3x3, stride={2, 2}

Tensor [26x26x32)

Conv2D + RelU
kernel=3x3, stride=(2, 2)

Tensor (12x12x64)

Conv2D + RelU
kernel=3x3, stride=(2, 2)

Tensor (95x5x96)

Conv2D + Rel U
kernel=5x5, stride=(1, 1)

Tensor [1x1x128)

Orthogonal initialization ——~| Dense layer |

Tensor (128)

Fig. 10. Six-layer CNN designed for deep RL from pixel-level data.

In standard CNNs designed for supervised learning tasks
(e.g., residual neural network (ResNet) [26]), batch normal-
ization [27], pooling, and padding are common operations.
In our design for deep RL, however, we find it more advan-
tageous not using any of these three techniques because of
the following reasons. First, in supervised learning, mini-
batches extracted from a training dataset are more likely to
be independent and identically distributed (i.i.d.). However,
in RL, the batches may not be i.i.d. since the training dataset
of RL (i.e., replay buffer) constantly changes, and hence it
becomes more difficult to calculate a stable variance and a
stable mean for batch normalization using moving averages.
Second, when the precise object location is not important
(e.g., in object detection tasks), the pooling operation can be
useful to enhance translation invariance of CNNs. However,
in many pixel-level deep RL tasks, object location information
is critical. For example, positions (and also relative positions
between adjacent frames) of the lander, walker, and car are
useful in the pixel-level LunarLander, BipedalWalker, and

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 19,2024 at 15:13:48 UTC from |EEE Xplore. Restrictions apply.

ZHENG et al.: SIAC FOR DEEP REINFORCEMENT LEARNING

6665

TABLE V
NUMBER OF TRAINABLE NETWORK PARAMETERS IN SIAC, SAC, AND PPO IN VARIOUS LEARNING TASKS

Environment State dim Action dim # SIAC params # SAC params # PPO params
LunarLander 8 2 676, 352 814,080 809,984
BipedalWalker 24 4 681,472 832,512 824,320
BipedalWalkerHardCore 24 4 681,472 832,512 824,320
Ant 28 8 684, 544 840, 704 838,624
Minitaur 28 8 684, 544 840, 704 838,624
LunarLander (pixel-level) 112 x112x9 2 1,073,840 1,415,440 1,411,344
BipedalWalker (pixel-level) 112 x112x9 4 1,074,096 1,415,952 1,407,248
CarRacing (pixel-level) 112x112x9 3 1,074, 352 1,416,464 1,409,296
State State
State 2
(RGB image) (RGB image) (RGB image)
6 layer CNN GlayerCNN | (Action (dim(a))) 6 layer CNN Action (dim(a
Y E concatenate 1 concatenate
Den_st: G [Tensor 1ml+ dim(a)) | [Tensor {ml+ dim(a))]
RelU Dense Layer Dense Layer
Dense Layer (__Tensor (m))
RelU Dense Layer Dense Layer
RelU RelU
Tensor (m]
[emse Gayr] [Donse Layer |

(Mean (dim(2))) (Log Std (dim(a)})

Actor Network

Fig. 11.

CarRacing tasks, respectively. Third, since padded data carry
redundant information, CNNs usually need to learn how to
ignore padded data. Hence, we prefer not using the padding
operation in our CNN design.

Orthogonal initialization [28] makes the weight matrix of
a neural network a random orthogonal matrix before the
training procedure, which is shown to be useful to speed up
learning, especially in deep neural networks. In pixel-level
high-dimensional tasks, it is usually inevitable to use deeper
networks for training. Particularly, in our experiments, the use
of the six-layer CNN state encoder (see Fig. 10) makes the
integrated network a deep neural network. In this case, we use
orthogonal initialization to improve the learning speed of SIAC
and also the benchmark algorithms (for a fair comparison),
where we apply orthogonal initialization on the output layer
of the CNN state encoder. Note that in the low-dimensional
(i.e., non-pixel-level) tasks, we use a two-layer MLP as the
state encoder (see Fig. 3). and hence, we do not use orthogonal
initialization. In this case, we initialize the network parameters
with values from standard normal distribution.

C. SIAC Versus SAC on the Number of Network Parameters

In deep RL, the number of network layers and the width
of each layer are adjusted depending on the difficulty of the

(Qualuel (1] }

Twin Critic Networks

Actor and twin critic networks in the SAC algorithm for learning from pixel-level data. The six-layer CNN is as shown in Fig. 10.

learning task. In general, a more complex task requires a larger
network. The size of the SAC network is adjusted with the
number of layers in the MLP and the width of each layer
(see Fig. 1). Furthermore, the size of the integrated network
of SIAC is adjusted with m and L variables (see Fig. 3). For
the pixel-level tasks, Fig. 11 illustrates the actor and critic
networks of SAC, where the six-layer CNN is as given in
Fig. 10. Table V presents the overall number of trainable
parameters of SIAC and SAC for all the learning tasks in
our experiments and shows the advantage of SIAC over SAC,
especially in high-dimensional tasks.

REFERENCES

[1] R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and
J. Pineau, “An introduction to deep reinforcement leamning,” Found.
Trends Mach. Learn., vol. 11, nos. 34, pp. 219-354, Dec. 2018.

A. Church, J. Lloyd, R. Hadsell, and N. E. Lepora, “Deep reinforcement
learning for tactile robotics: Learning to type on a Braille keyboard,”
IEEE Robot. Autom. Leit., vol. 5, no. 4, pp. 6145-6152, Oct. 2020.
M. N. Kurt, O. Ogundijo, C. Li, and X. Wang, “Online cyber-attack
detection in smart grid: A reinforcement learning approach,” IEEE Trans.
Smart Grid, vol. 10, no. 5, pp. 5174-5185, Sep. 2019.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks.” in Proc. IEEE Conf. Comput. Vis.
Fattern Recognit. (CVPR), Jul. 2017, pp. 4700-4708.

(21

(31

[41

(51

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 19,2024 at 15:13:48 UTC from |EEE Xplore. Restrictions apply.

6666

[6] A. Howard et al, “Searching for MobileNetV3,”™ 2019,
arXiv:1905.02244.

[7] S. L. Smith, P.-J. Kindermans, and Q. V. Le, “Don’t decay the learning
rate, increase the batch size.” in Proc. Int. Conf. Learn. Represent., 2018,
pp- 1-11.

[8] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approx-
imation error in actor-critic methods,” 2018, arXiv: 1802.09477.

[9] T. Haarmoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” 2018, arXiv:1801.01290.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,

“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[11] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”

in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928-1937.

[12] S. Gu. T. Lillicrap, Z. Ghahramani. R. E. Tumer, B. Schélkopf, and

S. Levine, “Interpolated policy gradient: Merging on-policy and off-
policy gradient estimation for deep reinforcement learning,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 2017, pp. 3849-3858.

[13] I. Zheng, M. N. Kurt, and X. Wang, “Integrated actor-critic for deep rein-

forcement learning,” in Proc. Int. Conf. Artif. Neural Netw. Switzerland:
Springer, 2021, pp. 505-518.

[14] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,

“Deep reinforcement learning that matters.” in Proc. AAAT Conf. Artif.
Intell., 2018, pp. 3207-3214.

[15] I. Baxter, “A Bayesian/information theoretic model of learning to learn

via multiple task sampling,” Mach. Learn., vol. 28, no. 1, pp. 7-39,
Jul. 1997.

[16] P. I. Huber, “Robust estimation of a location parameter.” in Break-

throughs in Statistics. New York, NY, USA: Springer-Verlag, 1992,
pp- 492-518.

[17] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,

“GANs trained by a two time-scale update rule converge to a local
nash equilibrium,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 6626-6637.

[18] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,” SIAM

J. Control Optim., vol. 42, no. 4, pp. 1143-1166, Apr. 2003.

[19] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust

region policy optimization,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889-1897.

[20] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation

functions,” 2017, arXiv:1710.05941.

[21] (2021). OpenAl Gym. [Online]. Available: https://gym.openai.com/
[22] S. Ruder, “An overview of multi-task learning in deep neural networks,”

2017, arXiv:1706.05098.

[23] K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman, “Meta learn-

ing shared hierarchies.” in Proc. Int. Conf. Learn. Represent., 2017,
pp. 1-11.

[24] T. P. Lillicrap et al., “Continuous control with deep reinforcement

learning,” 2015, arXiv:1509.02971.

[25] D. Horgan et al., “Distributed prioritized experience replay.” in Proc.

Int. Conf. Learn. Represent., 2018, pp. 1-19.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778.

[27] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift.” in Proc. Int. Conf.
Mach. Learn., vol. 1, 2015, pp. 448-456.

[28] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks,” in Proc.
Int. Conf. Learn. Represent., 2014, pp. 1-22.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 5, MAY 2024

Jiaohao Zheng received the bachelor’s degree
from the South China Agricultural University,
Guangzhou, China, in 2018.

He is currently working with the Shenzhen Insti-
tutes of Advanced Technology, Chinese Academy
of Sciences, Shenzhen, China. His current research
interests include remote sensing, image processing,
and reinforcement learning.

Mehmet Necip Kurt (Member, IEEE) received
the B.S. and M.S. degrees in electrical and
electronics engineering from Bilkent University,
Ankara, Turkey, in 2014 and 2016, respectively,
and the Ph.D. degree in electrical engineering from
Columbia University, New York, NY, USA, in 2020.

He is currently a Research Scientist with Amazon,
Seattle, WA, USA. His research interests include
sequential analysis, statistical signal processing, and
machine learning with applications to cybersecurity,
cyber-physical systems, and networks.

Dr. Kurt received the Eli Jury Award from Columbia University in 2020 for
his doctoral studies.

Xiaodong Wang (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from Princeton Uni-
versity, Princeton, NJ, USA, in 1998.

He is currently a Professor of electrical engi-
neering with Columbia University, New York, NY,
USA. His current research interests include wireless
communications, statistical signal processing, and
genomic signal processing. His research interests
include computing, signal processing, and commu-
nications. He has published extensively in these
areas. Among his publications is a book Wireless
Communication Systems: Advanced Techniques for Signal Reception (Prentice
Hall, 2003).

Dr. Wang received the 1999 NSF CAREER Award, the 2001 IEEE Com-
munications Society and Information Theory Society Joint Paper Award, and
the 2011 IEEE Communication Society Award for Outstanding Paper on
New Communication Topics. He has served as an Associate Editor for the
IEEE TRANSACTIONS ON COMMUNICATIONS, the IEEE TRANSACTIONS
ON WIRELESS COMMUNICATIONS, the IEEE TRANSACTIONS ON SIGNAL
PROCESSING, and the TEEE TRANSACTIONS ON INFORMATION THEORY.
He is listed as an Institute for Scientific Information (ISI) highly cited author.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 19,2024 at 15:13:48 UTC from |EEE Xplore. Restrictions apply.

