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ABSTRACT: Analog neuromorphic computing systems emulate the parallelism and
connectivity of the human brain, promising greater expressivity and energy efliciency
compared to those of digital systems. Though many devices have emerged as candidates for
artificial neurons and artificial synapses, there have been few device candidates for artificial
dendrites. In this work, we report on biocompatible graphene-based artificial dendrites
(GrADs) that can implement dendritic processing. By using a dual side-gate configuration,
current applied through a Nafion membrane can be used to control device conductance across
a trilayer graphene channel, showing spatiotemporal responses of leaky recurrent, alpha, and
Gaussian dendritic potentials. The devices can be variably connected to enable higher-order
neuronal responses, and we show through data-driven spiking neural network simulations that
spiking activity is reduced by <15% without accuracy loss while low-frequency operation is
stabilized. This positions the GrADs as strong candidates for energy efficient bio-interfaced

spiking neural networks.
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Artiﬁcial neural networks (ANNs) are rapidly proliferating
as a useful tool for processing large amounts of data that
cannot easily be analyzed with other methods."”> However, due
to the separation of computing and memory in von Neumann
architecture, the speed and energy demands of state-of-the-art
ANNs require new devices and architectures for further
development.”* Neuromorphic computing draws inspiration
from the brain, combining artificial neurons and synapses to
implement ANNs in hardware.”™® Spiking neural networks
(SNNs) process information in time- and location-dependent
spikes for biomimetic computation.” The requirements for
ANN and SNN devices depend on their intended use, e.g,
CMOS-compatible devices for state-of-the-art electronics and
biocompatible devices for use in health. Many devices have
been proposed for building these systems;”~>* however, only a
subset meets the performance requirements,”®*’ few are
biocompatible,**™** and fewer leverage advanced biological
behavior such as that of dendrites.**™>° In biological systems,
dendrites branch out from the neuronal body and process
incoming spikes into nonspiking spatiotemporal signals. For
example, the leaky integrate-and-fire model of neuronal
behavior is composed of one leaky recurrent dendrite and a
soma for an activation threshold. Each neuron can have
multiple sets of dendrites independently processing incoming
spikes, allowing neuronal configurations such as the multipolar
neuron shown in the left panel of Figure 1a.*” Figure 1b shows
leaky recurrent, alpha, and Gaussian waveform responses that
are commonly observed in biological dendrites as stated in ref
34. These dendritic responses are useful in implementing
spiking systems if the dendrites are processing spike
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information that occurs near the order of magnitude of the
time constant of the waveform.”® We can use these waveform
responses as a baseline to model dendritic behavior, while
noting that the actual response of an artificial dendrite does not
need to match exactly. Previous work on analog neuromorphic
devices for artificial dendrites has focused on using CMOS,
requiring circuit overhead when designing a neuronal
configuration with multiple dendrites.***” Other works have
proposed the use of emerging memories as artificial dendrites.
For example, PEDOT has been shown to electropolymerize
and form synaptic connections between dendritic branches
that can be controlled through unsupervised learning methods,
though the potentiation of the dendritic branches was not
characterized.** Silicon nanowire,*' ionic nanomemristor,"”
and starch-based transistor”’ artificial synapses have been
shown to benefit from the dendrite-like physical dynamics of
the ion-gated devices. Another work has proposed a volatile
memristor with simulation results showing that dendrite-like
behavior provides performance enhancement in nonspiking
neural networks."* The same group showed a combination of
two different memristors to represent both dendrite and soma
functionality.*> See Table S1 for a comparison of our work to
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Figure 1. GrAD design and single-gate operation. (a) Diagram of a neuron depicting three dendritic branches (purple), each of which is
implemented by a GrAD (left). Picture of a mGrAD along with a diagram of the GrAD structure (middle), where the dynamics are controlled using
the input gate and tuning gate and readout is through the voltage applied across the graphene channel (purple) through terminals D and S. The
Nafion-117 gating material is colored light blue, and Au contacts are colored gold. Circuit schematic symbol of the GrAD (right). (b) Leaky
recurrent, alpha, and Gaussian dendritic kernel waveforms commonly recorded in biological dendrites. (c) Transfer characteristics of a yGrAD with
two forward and backward sweeps of —1 to 1 V. The D—S current is colored blue, and the InG—S current is colored red. (d) Single-gate current

operation of a f#fGrAD showing synaptic characteristics.

previous works. These works indicate that an artificial dendrite
device candidate tailored for SNNs could greatly enhance the
functionality of analog neuromorphic systems.

In this work, we emulate dendrite dynamics by designing
and measuring a graphene-based artificial dendrite (GrAD) for
use in biocompatible neuromorphic computing, and we show
the device can aid in processing low-spiking activity data. We
have previously shown that transistors formed using biocom-
patible materials, ie., graphene as the channel material and
Nafion-117 as an ionic gate, can be operated as artificial
synapses for online Iearning.46 In contrast with previous work,
we have described the characteristics of GrADs with dendritic
behaviors described by computational neuroscience. By
designing dual-gate operation, we determine that fabricated
macroscale GrADs (mGrADs) and microscale GrADs
(uGrADs) can transform incoming spiking signals from the
previous layer of neurons into three different dendritic
spatiotemporal signals: leaky recurrent, alpha, and Gaussian.
Using data-driven simulations, we show that dendrites can
enhance SNNs by increasing stability when training at low
energy and that they reduce energy dissipation by lowering
overall spiking activity by 15% without accuracy loss.

The goal of this work is to emulate dendritic behavior in a
single dendritic branch, as shown by the dashed-line box in
Figure la. A diagram of the GrAD is shown in the middle panel
of Figure la. Trilayer graphene functions as a channel material
between the source (S) and drain (D) contacts, and Nafion-
117 is used as a gate insulator. Trilayer graphene was chosen to
maximize the yield of the fabricated devices. Two gates
denoted as the input gate (IG) and tuning gate (TG) are
placed to the sides of the channel underneath the Nafion, on
the same layer as the S/D contacts to provide side gating.
Current signals I and Ipg control the conductance of the
channel, which is read by applying a read voltage V.4 between

the D and grounded S terminals. For this work, two types of
GrAD devices were fabricated: macroscale (mGrAD, ~50
mm?) and microscale (4GrAD, 40 ym X 40 um). The uGrADs
are fabricated using a wafer-scale method that results in an
~25% vyield with large device-to-device variation, most likely
due to the processing of the Nafion membrane. The same
fabrication method without the incorporation of Nafion has
been shown to result in yields of >90%," indicating that a
further optimization of the processing of Nafion can help
realize large-scale integration. Figure lc shows the transfer
curve of a #GrAD operated as an electrolytic transistor, where
the gate voltage is swept twice between —1 and 1 V at a ramp
rate of 50 mV/s across the input gate and source, with a fixed
drain voltage of 0.1 V. The transfer hysteresis indicates that
there is a memory effect on the time scale of the ramp rate.
Due to the size of the device and Nafion gating material, a high
leakage current is observed, reaching 10 nA at an applied
voltage of 1.0 V. When the GrAD is operated using current
operation through the input gate with a floating tuning gate,
the device shows artificial synapse characteristics (Figure 1d),
where positive and negative pulse trains are applied for several
cycles showing distinct synaptic weight levels, indicated by the
stable conductance values after a pulse is applied. This long-
term potentiation was analyzed in our previous work,
facilitated by the shifting of the ionic distribution within the
dry Nafion-117 membrane.** Because the artificial dendrite
presented in this work is fabricated using the same material
system, the biocompatible artificial synapse shown in our
previous work and the presented artificial dendrites can be
combined as a monolithic analog system.

This material system and larger device sizing were chosen
due to the possibility of application in bio-interfaces. The
fabrication of the mGrADs detailed in Methods follows the
tattoo-based fabrication of graphene electrodes in ref 48, where
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Figure 2. mGrAD time-dependent response. (a) Square current pulse applied to the input gate and constant current applied at the tuning gate that
generate the leaky recurrent response. (b) Leaky recurrent mGrAD device response to the input pulse trains of varying frequency (blue for 1 Hz,
green for 2 Hz, and orange for S Hz). The time taken to reach the threshold is denoted with the red dashed line. (c) Activation function of a leaky
recurrent dendrite with a varying dc current applied to the tuning gate (blue triangles for 0 nA, green squares for 100 nA, and orange circles for 200
nA). (d) Triangular input current pulse applied with a constant current applied at the tuning gate that generates the alpha response. (e) Alpha
mGrAD device response for varying I;; amplitudes (solid lines) compared to an ideal alpha kernel response (dotted lines). (f) Alpha and Gaussian
waveform generation at varying Irg values (blue for 100 nA, green for 200 nA, orange for 300 nA, red for 400 nA, and purple for 500 nA).

the tattoos were used to monitor blood pressure in humans*’
and applied on heart tissue to diagnose and monitor cardiac
arrhythmia.®® Nafion has also been established as a
biocompatible substrate and used for in vivo sensing
coatings.”** As shown in the middle panel of Figure la, the
GrADs are transparent and flexible. The biocompatibility of
the material system is a motivating factor for operating the
devices in frequency ranges of biological neural systems,
between 0.1 and 100 Hz.

First, three time-dependent waveforms, the leaky recurrent,
alpha, and Gaussian kernels, are chosen from a set identified in
ref 34 as target dendrite behaviors. To introduce conductance
inhibition, a constant bias current, I, is applied to the tuning
gate, shown in Figure 2a. The spiking signals entering the
dendrite are represented as square wave current pulses applied
to the input gate to stimulate a leaky recurrent response. In
Figure 2b, Ir¢ is 100 nA and I is 1 ms long, with a —10 A
amplitude, applied to a mGrAD at input frequencies of 1, 2,
and S Hz. A threshold conductance is set at 1 mS to emulate
the effect of a soma. A simple circuit implementation of the
soma as well as a simulation demonstration is shown in Figure
S1. We observed that the GrAD conductance integrates when
I is on and leaks back to a lower conductance when Ijg is off.
By taking the inverse of thresholding times t,—t;, we can infer
the output spiking frequency. The frequency-based activation
function of the leaky recurrent model is in the form of a
rectified linear unit (ReLU), where the slope of the ReLU
function is mediated by the leak strength. This is reflected in
mGrAD, where the output spiking frequency is further
inhibited by an increase in Ipg, shown in Figure 2c. This

shows that GrADs can have LIF artificial neuron function and
the response can be controlled using the tuning gate.

To emulate the other two dendrite responses, alpha and
Gaussian, the input spikes are represented as triangular wave
current pulses and Ipg is applied as in the previous case
(depicted in Figure 2d). Figure 2e shows the resulting
waveform for I amplitudes of —1 to —4 pA with a half-
maximum pulse duration of 500 ms and an It¢ of 200 nA. The
GrAD response is qualitatively similar to the alpha function.
There is an additional delay of 0.3 s between the start of the
triangular pulse applied to the input gate and the beginning of
the alpha waveform resulting from the device, which is the
point at which the potentiating signal from the input gate
overcomes the depressive signal at the tuning gate. We
observed that as I;g becomes larger, the deviation from an ideal
alpha function also becomes larger. In particular, the locations
of the conductance peak and a hump during the decay are the
places with the largest deviation. However, when they are
limited to small values, the waveforms match the alpha
response.

The mGrAD can be tuned to show a Gaussian response by
applying different Ig values. Figure 2f shows a series of five
triangular pulses at the input gate applied with an amplitude of
—1 pA and a half-maximum duration of 500 ms (colored
black). Iy values from 100 to S00 nA were applied, and the
conductance of the channel was tracked. As Iy is increased,
both time constant and conductance change decrease. Between
300 and 500 nA of bias, the output of the GrAD was measured
to be symmetric, matching the shape of a Gaussian function
over that of an alpha function. An analysis of the fit to
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Figure 3. Multiple GrAD and uGrAD time-dependent responses. (a) Symbolic representation of a dendritic unit. (b) Circuit diagram of the
dendritic unit. (c) Experimental output (blue) of a dendritic unit consisting of two dendrites with separate inputs (purple and red). (d) Optical
microscope image of yGrAD dual side-gate device layout. (e) Alpha waveform generation at varying I ; values. (f) Alpha and Gaussian waveform

generation at varying Irg values.
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Figure 4. Dendritic spiking neural network simulations. (a) Symbolic representation of a dendritic multilayer perceptron. The circuit representation
of the analog crossbar is shown in the inset. (b) Maximum accuracy after training for 20 epochs as a function of sample time per image. The drop-
off settles at an accuracy of 10% below the indicated point. (c) Total spike activity of the network as a function of sample time per image. Faded
coloring indicates accuracy of 10% for the corresponding sample time per image. (d) Maximum accuracy after training for 20 epochs as a function
of the maximum input frequency. (e) Total spike activity of the network as a function of maximum input frequency.

characteristic equations of alpha and Gaussian responses is
presented in section S.3 of the Supporting Information.
While mGrAD shows an emulation of dendritic kernels, the
ability to combine separate branches of dendritic signals is
necessary for implementation of bio-inspired neuron structure
(shown in Figure 1a). Figure 3a depicts how GrADs can be
connected to form a full dendritic unit, where the dendrite
branch potentials are summed to describe the overall neuronal

potential. A demonstration of this dendritic unit was
implemented using two parallel connected GrADs as shown
in Figure 3b. Two different signals are applied to the input
gates, while an I of 200 nA was applied to both tuning gates.
Figure 3¢ shows the two input signals in purple and red in the
top panel. The input signals consist of triangular wave inputs of
varying amplitude and duration, where each triangular wave
peak can be considered as a spike from the previous layer of
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neurons. As shown, the alpha response can be generalized to
triangular wave inputs. The resulting waveform shown in the
bottom panel is the combined output current of the two
mGrADs that represents the effective membrane potential of
the dendritic unit. The results demonstrate that multiple
GrADs can be flexibly connected to implement the desired
dendritic unit configuration.

To demonstrate the potential for large-scale implementation
of dendritic devices, yGrADs, shown in Figure 3d, were
fabricated. The same dendrite characterization performed
previously for the mGrADs was applied to the uGrADs.
Figure 3e shows the output waveform for repeated triangular
pulses applied to the input gate with varying amplitudes
between —0.5 and —2.5 pA with a half-maximum pulse
duration of 10 ms, with an Iy of 200 nA. A low pass filter with
a cutoff frequency of 25 Hz was used to eliminate noise
introduced by the measurement setup. The unfiltered data can
be found in Figure S3. The measured data from the yGrADs
show behavior similar to that of the mGrAD device, where the
change in conductance increased as the pulse amplitude
increased. Additionally, smaller amplitude and shorter pulses
were required to change the conductance of the device,
indicating favorable scaling. Figure 3f shows that It can tune
the time constant of the dendritic response. While the Iy for
the uGrAD is similar in magnitude to that applied to the
mGrAD, the results indicate that 50-fold faster operation of the
device is enabled due to microscaling, along with a similar
improvement in energy. A description of the energy calculation
is provided in section S.5. The resulting 6.2 yW of peak power
dissipation for the yGrADs is ~1/58 compared to the peak
power dissipation of a previous memristor-based device.”

After the mGrADs and uGrADs were characterized, the
experimental conductance response was used to simulate a
SNN by representing the behavior using a model described in
section S.6. Supervised learning was chosen as the application
because it is the nearest-term application for analog
accelerators due to high accuracy compared to that of training
using unsupervised methods. It is important to note that
dendritic behavior has been shown to have benefits when
applied to bio-inspired learning algorithms shown in refs 35,
36, 39, and 40 and it is an important building block for
biological systems. The Fashion-MNIST clothing article
classification task was chosen as the benchmark. Training is
simulated using custom modules in the Norse framework™
based in PyTorch.>* The network architecture used for this
simulation is a multilayer perceptron with one 200-unit hidden
layer, as shown in Figure 4a. The neurons in the hidden layer
and output layer are replaced with dendritic units. Additionally,
inspiration is drawn from an architecture devised in ref 44 that
is explained as follows. For the X dendrites per unit in the
hidden layer, the neurons of the input layer are split into X
groups. Each group is then connected to their corresponding
dendrite; e.g., neurons of the first group are connected to the
first dendrite in each unit. The notation XH:YO describes the
network configuration, where X and Y are the numbers of
dendrites per dendritic unit in the hidden and output layers,
respectively. The inset of Figure 4a shows the analog
implementation of the network, where the synapses are
represented using graphene/Nafion transistor devices.** The
summed currents along the columns (green) then feed into the
input gate of a GrAD. To evaluate the impact of the
introduction of dendrites into an SNN, a baseline network
consisting of ideal LIF neurons described in section S.6 was

evaluated alongside the dendritic networks. An additional
baseline of a nonspiking network with the same parameters can
be found in section S.7.

To characterize the learning performance, the sampling time
per image and maximum input frequency are swept. Panels b
and c of Figure 4 show the maximum accuracy after 20 epochs
of two configurations of dendritic networks, 2H:20 and
4H:20, respectively, compared to the LIF network for varying
sampling times per image. The maximum input spiking
frequency is fixed at 50 Hz. The maximum accuracy of the
network is consistent among the different configurations.
However, the LIF network and the 2H:20 network both have
a point at which the network does not train and decreases to
10% accuracy, the equivalent of a random guess. This occurs at
100 ms for the LIF network and 50 ms for the 2H:20 network.
The 4H:20 network can be trained for the full range of
sampling time per image, indicating that performance for an
optimal configuration of dendritic network can have enhanced
stability with a shorter sampling time. Additionally, in Figure
4c, the spike number characterizes energy efficiency because
the spiking activity within the network is directly correlated to
energy dissipation. For the sampling time per image where the
networks are successfully trained, the 4H:20 and 2H:20
networks have 15% and 9% average reduced spiking activity,
respectively, compared to the LIF network, indicating that
increased energy efficiency is another benefit of a dendritic
network. A sweep of the maximum input frequency in panels d
and e of Figure 4 yields similar observations. The LIF network
fails to train when the maximum input frequency decreases
below 40 Hz in contrast to the dendritic network, which
successfully trained for all of the input frequencies that were
evaluated. The accuracy drop occurs when the spikes of the
previous layer of neurons no longer stimulate the last layer of
neurons sufficiently to allow for accurate application of the
error gradient. The failure of the LIF network to train at a
lower input frequency and sampling time for the same time
constant indicates that more careful design of the time
constant is necessary for LIF neurons than for the alpha
dendrites due to the more sustained tail that alpha dendrites
have at the same time constant. A comparison of the two
waveforms for the same input is shown in Figure SS. For the
dendritic network, the spiking activity for frequencies that
resulted in successful training was again 15% lower than the
spiking activity for the LIF network, corroborating the previous
result. Though this result is promising, each neuron had more
than one dendrite, adding an area overhead to spike the
activity reduction. The result of 15% lower spiking activity is
also likely not optimized, and many other hyperparameters of
the network can be adjusted to enhance the results, such as
network size, connectivity, and spike encoding method.

In conclusion, we have demonstrated dendritic behavior in
graphene/Nafion devices with a dual-gate structure at time
scales compatible with biological signals. The device is
biocompatible and heavily informed by dendritic behavior
modeled in computational neuroscience, contrasting it with
previous works. We have shown that there is a high degree of
tunability of the time-dependent conductance signal, which can
be used to represent how a dendrite responds in time to a train
of spiking input signals. We show that microdevice scaling can
increase the speed of operation and reduce the current
requirements. Through neural network simulations driven by
this experimental behavior, we show that SNNs can benefit
greatly from a dendritic configuration, showing significantly
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higher training stability at low power operation and lower
spiking activity. Though the current devices operate
independently, a possibility for integrating competitive
behaviors between dendrites is to engineer devices with
multiple side gates and channels underneath the same Nafion
membrane. These characteristics make the GrAD a promising
building block for networks bridging bioelectronics and
neuromorphic computing.

B METHODS

mGrAD Device Fabrication. The graphene was prepared
by first mounting it on a piece of tattoo paper for transfer.
Monolayer CVD grown on large-scale graphene on copper
(Grolltex) was taped onto a silicon wafer and spin-coated with
PMMA at a rate of 2500 rpm for 60 s, resulting in an ~200 nm
thick layer. The sample was then hard-baked at 200 °C for 15—
20 min. The copper was then etched away by placing the
sample in 0.1 M ammonium persulfate. The PMMA/graphene
film was then wet transferred onto temporary tattoo paper.
The gate contacts were prepared by evaporating gold onto an
EVA/PET film. The two gates were then placed in contact
with a Nafion-117 preprocessed film and heated at 150 °C to
adhere. Adhesive gold contacts were then attached to the
Nafion-117 film to form the source and drain contacts and
prepare for graphene transfer. The graphene tattoo paper was
then soaked in deionized water and transferred once the edges
began to delaminate, forming a channel across the Nafion.

HGrAD Device Fabrication. CVD-grown graphene was
prepared by spin-coating PMMA and etching away copper
using the method described in the previous section. The
graphene was then transferred onto Au/Cr (90 nm/10 nm
thick) contacts patterned on a Si/SiO, wafer. The graphene
channel was then patterned, and excess graphene was etched
away using oxygen plasma. Photostructurable polyimide
HD8820 was used in the last step to form the passivation.
The devices were diced from the wafer, drop coated with a
Nafion-117 solution (Sigma-Aldrich), and hard-baked at 150
°C.

Device Measurement Setup. The devices were measured
using two high-precision source/measure units (Agilent
2902B). One of the SMUs was used to apply 0.1 V of the
drain—source potential, while the gate was used in the current-
pulsing mode with various pulse shapes to induce conductance
changes. A third SMU was used to apply a small constant
positive current to tune the dendritic behavior.
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