2022 IEEE 30th International Conference on Network Protocols (ICNP) | 978-1-6654-8234-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICNP55882.2022.9940376

Two Families of Optimal Multipath Congestion
Control Protocols

Akshit Singhal, Xuan Wang, Zhijun Wang, Hao Che and Hong Jiang
Computer Science and Engineering, The University of Texas at Arlington, Arlington, U.S.A.
{akshit.singhal2, xuan.wang2}@mavs.uta.edu, hche@cse.uta.edu, {zhijun.wang, hong.jiang}@uta.edu

Abstract—Multiple Path Transmission Control Protocols
(MPTCPs) allow flows to explore path diversity of datacenter net-
works and multihoming to improve throughput, reliability, and
network resource utilization. However, the existing MPTCPs are
largely empirical by design and fall short of achieving satisfactory
tradeoffs among responsiveness, TCP fairness and throughput.
By leveraging the TCP utility and a network-utility-maximization
(NUM) solution for concave utilities, in this paper, we derive and
implement in Linux kernels two distinct families of NUM-optimal
MPTCEP protocols, EUTCP(~), a function of a rate-scaling vector
of the sub-flow rate-scaling coefficients, v, and WUTCP(w), a
function of a utility weight vector of the sub-flow weights, w,
respectively. While the former allows resource pooling, the latter
does not. We then show that the Semicoupled algorithm and
EWTCP are in fact EUTCP(1) and WUTCP(1/ m2), where m is
the number of sub-flow paths, and hence, are NUM-optimal. The
performance of the two families with equal weight and equal rate-
scaling coefficient for all sub-flows when coexisting with TCP is
also analyzed based on experiments in a testbed. In particular, the
test results demonstrate that the family members of EUTCP(~)
with rate-scaling coefficient in the range of [1, 1.1] outperform
three well-known MPTCPs with resource pooling capability,
including LIA, OLIA and Balia, in terms of achieving satisfactory
tradeoffs among responsiveness, fairness and throughput. Finally,
the effectiveness of the proposed algorithms compared to the
existing ones is further confirmed by simulation in a fat-tree
datacenter network topology running both long and short flows.

I. INTRODUCTION

Multiple Path Transmission Control Protocols (MPTCPs)
split a flow into multiple subflows to be sent via different paths
towards a destination exploring path diversity to improve flow
throughput, network reliability and utilization for datacenter
networks and multihomed users. Just like end-to-end TCP,
most prevalent MPTCPs, such as LIA [1], OLIA [4] and Balia
[3], are end to end, involving two endpoints only. This paper
exclusively focuses on the design of end-to-end MPTCPs.

However, despite significant effort made in the past two
decades in an attempt to develop optimal MPTCPs [6], the
existing MPTCPs are largely empirical by design. In their
seminal work on LIA [1], which is standardized by IETF [7],
Wischik, et. al. acknowledge that due to the lack of theoretical
underpinning, LIA can only be designed empirically. Khalili,
et. al. [4] further show that LIA is not even Pareto optimal
and propose a Pareto-optimal MPTCP, known as OLIA, which

This work was supported by the US NSF under Grant No. CCF SHF-
2008835 and CCF SHF-2226117.

978-1-6654-8234-9/22/$31.00 ©2022 IEEE

WUTCP (@) Family

EUTCP(p) Family

{ emicoupled
(EUTCP(1))

Responsiveness

OLIA

Fairness

Figure 1: TCP Fairness vs Responsiveness

however, is again designed with no global optimization ob-
jective in mind. Peng, et. al. [3] classify and study major
MPTCP algorithms with respect to some necessary conditions
to achieve optimal traffic control in terms of network utility
maximization (NUM), hence, taking another step towards
the design of an optimal MPTCP. However, the algorithm
proposed by the authors, known as Balia [3], that seeks to
improve responsiveness and TCP friendliness over LIA and
OLIA, is again, designed empirically. Interesting enough, the
Semicoupled algorithm studied in [3] turns out to be NUM-
optimal, as we shall show in this paper. Although EWTCP [2]
also turns out to be NUM-optimal, as we shall also prove in
this paper, it is again originally designed empirically without
a global objective in mind.

Another challenge facing the existing MPTCPs is that
although most of them are designed with TCP friendliness in
mind, they fall short of achieving satisfactory tradeoffs among
responsiveness to network condition changes [9], TCP fairness
and throughput. Fig. 1. illustrates the whereabouts for some
well-known MPTCPs as well as EUTCP(v) and WUTCP(w)
(to be defined shortly) in the responsiveness-and-TCP-fairness
design space.! Without resource pooling, the WUTCP(w)
family including EWTCP (i.e., WUTCP({1/m?}), as we shall
show later, are highly responsive to network dynamics but
cannot guarantee fairness with respect to TCP. Here resource
pooling refers to the ability to dynamically allocate sub-flow
rates based on the overall resource availability among all sub-
flow paths. All the rest of MPTCPs allow resource pooling
and hence can achieve better fairness with respect to TCP,
at the cost of reduced responsiveness in general. As one can

'As we shall show, the throughput differences among different MPTCPs
are relatively minor and hence is not considered here.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore. Restrictions apply.

see, as a family of NUM-optimal MPTCPs, the EUTCP(~)
family including Semicoupled (i.e., EUTCP(1), as we shall
prove later) covers a relatively large design space (i.e., the
area covered by the oval) on the upper-right corner and hence,
allowing better exploration of the design tradeoffs between
responsiveness and TCP fairness than the existing ones.

This paper makes three major contributions. First by lever-
aging the NUM-optimal solution for concave utilities given in
[13] and the concave TCP utility given in [12], for the first
time, two families of NUM-optimal MPTCPs are derived, i.e.,
EUTCP(7), based on a sub-flow rate-scaled TCP utility with
rate scaling vector, v = {1, ..., ¥m } and WUTCP(w), based
on a weighted sum of sub-flow TCP utilities, with sub-flow
weight vector, w = {w1, ..., wn, }, where m is the number of
sub-flow paths. EUTCP(y) allows resource pooling whereas
WUTCP(w) does not. With proper parameter settings, both
families are TCP friendly by design because both are based
on the TCP utility.

Second, we show that two empirically designed MPTCPs,
i.e., the Semicoupled algorithm [3] and EWTCP [2] are in fact
EUTCP(1) and WUTCP({1/m?}), respectively. Namely they
are NUM-optimal and family members of the NUM-optimal
families derived in this paper.

Third, the two families are implemented in both Linux and
NS3 simulator and their performance are tested against some
well-known MPTCPs. Specifically, for EUTCP(v), compara-
tive performance analyses are carried out between its fam-
ily members and some well-known resource-pooling-capable
MPTCPs, including LIA [1], OLIA [4] and Balia [3]. The test
results demonstrate that the family members in EUTCP(y)
with + in the range of [1,1.1] outperform the other three
MPTCPs in terms of responsiveness and fairness and is on
par with the other three in terms of overall throughput perfor-
mance. For WUTCP(w), we compare three family members
at w = 1/m?,1/m, and 1/\/m. We conclude that for the
TCP fairness criterion defined in [2], w = 1/m should be
used, instead of w = 1/m?, as suggested in [2]. Finally,
the effectiveness of the proposed algorithms compared to the
existing ones is further verified by simulation in a fat-tree
datacenter network.

II. BACKGROUND AND RELATED WORK

The existing MPTCPs can be broadly classified into two
categories, with and without resource pooling capability.

For the category without resource pooling capability, a
straightforward but naive solution is to simply run subflows
as independent TCP flows. This approach, however, is too
aggressive and unfair to single-path TCP flows, and without
resource pooling, cannot balance the loads among subflow
paths. This leads to the design of EWTCP [2], an equally
weighted MPTCP. EWTCP attempts to achieve TCP fairness
by modifying the previous solution, i.e., reducing the TCP
window increase rate by a factor of 1/m? for all m TCP-
based subflows. However, besides the lack of load balancing
capability inherited from the previous approach, EWTCP may

lead to a flow rate lower than the best case single-path TCP.2,
discouraging users to use it.

For the other category, i.e., the one with resource pooling
capability, there has been a great effort made in the last two
decades in an attempt to develop MPTCP algorithms that
are proven to be globally optimal in terms of network utility
maximization (NUM), which in the form of a fluid-flow model,
can be formally stated as follows:

n
maz Y Ui(2i1, 2 o Tiom,); (D

i=1
subject to link bandwidth constraints,

Z x5 — ¢ < 0;

i,j:l€L;

lel,)

where n, m;, L and L;; are the number of active flows,
the number of subflows in flow i, the set of links in the
network, and the set of links that lie in the path of subflow j
in flow i, respectively; ¢; is the link bandwidth for link [€ L;
and U; (i1, %2, .- Ti,m,) 1 the user utility for flow 4 as a
function of flow rates, x; ;, for subflow j, j = 1,2,...,m,.

The design goal is to find distributed solutions to the above
NUM problem in the form of distributed flow rate control
laws for individual subflows, using only binary congestion
information feedback for control, i.e., whether a sub-flow/flow
path is congested or not, which is essential to facilitate the
development of end-to-end protocols including MPTCPs. Such
control laws can then serve as the theoretical underpinning
for the design of optimal rate or window-based MPTCP
algorithms for any given user utilities that dictate the fairness
criterion for resource allocation.

Kelly, et. al. [6] and Han, et. al. [22] convert the NUM
problem into its Lagrange dual problem and then solves a
relaxation of the dual problem by closely approximating it
by incorporating a price function in the utility function. This
approach is Pareto optimal, but it is not strictly NUM-optimal
and it only selects one subflow path at a time and hence,
suffers from flappiness and slow responsiveness [1]. Inspired
by this approach, LIA [1], [7], [14] is proposed by modifying
the previous approach to allow flow rate load balancing among
multiple paths to avoid flappiness and improve response time,
at the cost of losing the Pareto optimality. OLIA [4], an
improved version of LIA, possesses the Pareto optimality.
Using a duality model [17], [18], Balia [3] is developed to
attempt to slove the above NUM. On the basis of the work
in [17], [18], Peng, et. al. [3] further classify and study major
MPTCP algorithms with respect to some necessary conditions
to attain the NUM objectives, taking another step towards the
design of an optimal MPTCP. However, the proposed Balia
that seeks to improve responsiveness and TCP friendliness
over LIA and OLIA, is again, heuristic by design. Polishchuk
et. al. [15], [16] proposed mHIP, a TCP-friendly congestion
control protocol for multipath host identity protocol to increase

2The best case single-path TCP is defined as the maximum flow rate the
single-path TCP can achieve on any of the sub-flow paths available to MPTCP.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore. Restrictions apply.

the resource utilization and improve fault tolerance, which
however, is not an NUM-based solution.

Recently, Tabassum et.al. [24], [25] propose two more elab-
orate variations of LIA and OLIA to improve the throughput
performance of LIA and OLIA. However, the solutions are
complex and empirical, requiring dynamic adjustment of a
decreasing parameter of the congestion window based on
measured round trip time (RTT) and/or packet loss rate.

Meanwhile, in a series of works, Lagoa, et. al. [8], [10],
[11], [13] directly solve a generalized version of the above
NUM that permits sub-flow rate constraints by means of Slid-
ing Mode Control in control theory [23]. The resulting control
laws enable multiple classes of service and require only binary
congestion information feedback for control, and hence are
particularly suitable to serve as the theoretical underpinning
for the design of MPTCPs. Wang, et. al. [12], [20] successfully
apply this solution to reverse engineer TCP to arrive at the
TCP utility function corresponding to the TCP Reno conges-
tion control® and subsequently, design a TCP-friendly, end-
to-end, single-path soft-minimum-rate-guaranteed congestion
control protocol. Wang, et. al. [19] also successfully apply
this solution to the development of an integrated congestion
control and load balancing framework for datacenter networks,
including a toy example demonstrating the viability of the
solution for the development of MPTCP algorithms. Our work
is motivated by these results. In particular, by leveraging the
results given by Lagoa, et. al. [13] and Wang, et. al. [20], and
with proper selection of user utility functions for multipath
flows, we are able to derive two families of NUM-optimal
MPTCPs, covering both MPTCP categories.

III. Two FAMILIES OF NUM-OPTIMAL MPTCPS

In this section, we first introduce the NUM-optimal mul-
tipath congestion control solution given in [10], the TCP
utility function derived in [12], and then derive EUTCP(~y)
and WUTCP(w), in separate subsections.

A. NUM-optimal multipath congestion control laws

According to [10], with respect to the NUM problem given
in Eq. (1) (i.e., without minimum flow rate requirements),
optimal control law for subflow j in flow ¢ can be written
as,

;5 = 2,5t @i 3, c95) [f (i,5) — (1 —<g5)] 3)

with

flwig) =1 — e 0lrinmizmmin)[00is = (4)
where U;(x; 1, T 2, ..., Tim,) can be any concave and strictly
increasing function of =z;;’s; z; ;(t,x;;,cg;) can be any
positive and piece-wise continuous scalar function and cg;
is the binary congestion indicator, cg; =1 if the path the
subflow j takes is congested and O otherwise; cg; is the
logical negation of cg;. For a given concave utility function,
a multipath congestion control law can be derived. For flows

3Note that this TCP utility function is the first one that captures both the
slow start and congestion avoidance phases of TCP Reno.

with non-concave user utility functions, the method proposed
in [19] can be applied to derive the control laws.

B. Utility function of a single path TCP

It has long been recognized [5] that the utility function of
logarithmic form leads to NUM-optimal control law that re-
sembles the TCP behaviors in its congestion avoidance phase.
This motivated the researchers to look for utility functions that
can better match the TCP behaviors, notably, the ones given in
[17] and [12]. While the one given in [17] is tied to a specific
active queuing mechanism in the routers and hence is not end-
to-end, the one given in TERSE [12] is end-to-end and by far
the most accurate one that matches the TCP behaviors in both
the slow start and congestion avoidance phases. Hence in this
paper, we adopt the one in TERSE [12], which is described
below.

Consider a fluid-flow version of the generic single path
TCP congestion control algorithm with a slow start phase
(SSP) and congestion avoidance phase (CAP), where ax is the
multiplicative increase rate in SSP, p is the additive increase
rate in CAP, and Sz is the multiplicative decrease rate in both
SSP and CAP, meaning that retransmission timeout is treated
the same way as three duplicated ACKs. Consequently, once
the system enters CAP after the initial SSP, it will stay in
CAP, implying that the congestion control algorithm in CAP
will determine the steady state flow rate allocation. To limit
the exposure, hereafter, we skip the subscription ¢ for flow <.
Then applying this generic TCP control algorithm to match
Eq. (3), TCP utility, U,.p, and the corresponding z; ;(t, x, cg)
function can be reverse engineered and given as follows:

For the slow start phase (SSP)

Utep(x) = zlog(1 + %) (5)
and
z(t,x,cq9) = (o + B)x. (6)

For the congestion avoidance phase (CAP)

Urep(@) = <g +)[log(u + Bz) — 1] — z[log(Bx) — 1] (7)

and
z(t,x) = p+ Bz (8)

It can be easily verified that by plugging Egs. (5), (6), (7),
and (8) into (3) and (4), and by considering the fact that
multiplicative increase rate is much larger than the additive
increase rate, i.e., Sx; > u, and Sx > u, we arrive at the
following SSP and CAP control laws:

. ar if cg=0

ro= { —Bx if cg=1, ©)
for SSP, and

. I3 if cg=0

vz { —Br if cg=1 (10)

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore. Restrictions apply.

for CAP.

These control laws are fluid-flow based, and can be ap-
proximately converted to window based control protocols. In
the context of TCP Reno, which is window based, the flow
rate is considered as a constant during each Round Trip Time
(RTT), 7, and adjusted every RTT. Let W and AW be the
congestion control window size and change of W at each
RTT epoch, respectively. As the congestion window size is
doubled or halved in SSP and increased by one MSS (i.e., the
maximum segment size) or halved in CAP, without or with
congestion, respectively, «, 8 and p can be approximated as,

w=MSS/T (11)

With these parameter settings, it can be easily shown that the
SSP and CAP in Egs. (9) and Eqgs.(10) recover the TCP reno.
Namely,

a~28=1/T,

In SSP:
N/ ifeg=0 (12)
-W/2 if cg=1.
In CAP:
1 if cg =
AW = ifeg=0 (13)
-W/2 ifeg=1.

Finally, we note that o, 8 and p in Eq. (11) are functions
of RTT, 7. For a multipath flow, different subflows may see
different RTTs, 7, for i = 1,2, ..., m. So for multipath flows,
we define 7 to be the average RTT among all RTTs, i.e., 7 =

ity Ti/m.
C. The EUTCP(~) Family

Utility function of an MPTCP flow: Theoretically, to
ensure that a NUM-optimal MPTCP is friendly to TCP Reno
by design, one can simply apply the TCP Reno utility function
to the total flow rate of a multipath flow as follows,

U1, 02, @m) = Urep(Y_), (14)
j=1

In other words, the NUM-optimal solution is to equalize user
utilities by balancing the sub-flow rates among sub-flow paths
(hence, is resource pooling capable), which equalizes the rate
allocation among both MPTCP and TCP flows, and hence,
achieve TCP-friendly resource allocation.

However, our experiment results (see Table II) show that,
just like LIA, OLIA and Balia, the resulting MPTCP cor-
responding to the above utility leads to skewed flow rate
allocation with MPTCP flow rates higher than TCP flow rates.
The reason is that, just like TCP, to allow sub-flow windows
to increase when network resources become available, an
MPTCP flow must maintain a positive minimum rate/window
for each of its sub-flow, despite the fact that the optimal control
law that underpins the MPTCP algorithm may require that the
sub-flow rates be allowed to drop to zero when congestion
occurs. Since TCP Reno uses 2xMSS as its minimum window
size, most existing MPTCPs set the minimum window size

for each sub-flow to be 2xMSS. This effectively makes the
minimum window for the entire MPTCP flow to be 2m xMSS,
leading to skewed flow rate allocation in favor of MPTCP
flows over TCP flows in practice, and the higher the number
of sub-flows, m, the more skewed the flow rate allocation is.

One possible approach to remedying the above problem
is to set the minimum window for each sub-flow to be one
MSS instead of 2xMSS, as is the case for Balia. While
our experiment shows that using one MSS in the MPTCP
corresponding to the above utility can lead to almost perfect
equal flow rate allocation in most cases, for some corner cases,
it may cause unstable flow rate allocation. Namely, a sub-flow
competing with TCP flows may not be able to grow its window
back once the window reaches its minimum.

In this paper, we tackle the above challenge by using the
following family of rate-scaled user utility functions instead,

U($1,$2,...7,’Em) = Utcp(zpijj)a (15)
j=1

where 7, is a rate-scaling coefficient for sub-flow, j, for
7 =1,...,m. By setting some or all of the coefficients to be
slightly larger than one, the NUM-optimal rate allocation that
attempts to equalize user utilities is expected to allocate less
rates to MPTCP flows than TCP flows, compensating for the
skewed resource allocation.

EUTCP(v): Let z(t,z;,cg;) for each subflow [take
the same format as its single-path counterpart given in Egs.
(6) and (8) with rate scaling, i.e.,

in SSP
zi(t, x,cq1) = {(O‘ + B)viry in

16
in CAP. (16)

p+ By

Then substitute Eqs. (15) and (16) into Egs. (3) and (4), we
arrive at EUTCP(~;) as follows:

In SSP:
i) = {a’ylacg %f cg=0 17
—Byx; if cg=1.
In CAP: »
R P S
— Bz Pz if cg =1.

Again, considering the fact that the multiplicative increase
rate is much larger than the additive increase rate, i.e., Sx; >
u, and Bz > u, Eq.(18) can be approximated as

.
:L"l ~ aH
—Bnz

EUTCP(+;) above simply states that the subflow increase
rate is proportional to the ratio of the subflow rate and the
overall flow rate, i.e., 2;/x, while its decrease rate is that of
TCP Reno scaled by +;. It degenerates to TCP Reno at m = 1
and v = 1.

if cg=0
Y (19)
if cg = 1.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore. Restrictions apply.

Now we transform the above EUTCP(y) to a window
based one. Let . = W x MSS/7 and ; = W; x MSS/7.
Then the congestion window size change for subflow [in
each RTT, AW, according to Egs. (17) and (19), are,

In SSP:

|74 if cg1 =0
AW, ~ ’Yl’”é[/l 1 cqi (20)
-5t ifegr =1
In CAP:
M if g =0
AWQz{”gg?W”” n 1)
— =t if cg=1.

D. The WUTCP(w) Family
Utility function of an MPTCP flow: Now we consider the

following family of utility functions,

m
U(x1,22, .., Tm) = ijUth(ajj), (22)
j=1

where w; is the utility weight for sub-flow j. Clearly, this
family of utility functions will lead to optimal rate allocation
without resource pooling. For example, at w; = 1 for Vj, each
sub-flow in a multipath flow is then treated the same way as a
single path TCP flow, the most naive MPTCP solution in the
category without resource pooling as mentioned in Section II.

WUTCP(w): Let,

in SSP
in CAP.

(a+B)x
wy + By

Here p; = M SS/7 is the additive increase rate for subflow
l. Similarly, we can easily get WUTCP(w) as follows:

zi(t,xy, cq1) = { (23)

In SSP, we have,

3 — .
(1 =37 feg =0

=L 24)
_3 _WZ/B'TI lf Ccg; = 1.

In CAP, we have,
1— Bz wy + if —0
,j[:'l = [ég;+ﬁfj)](/’(‘l 6xl) : Cqp (25)
_(M-&-sz) L(W + ﬁﬂjl) if cg; = 1.

Similarly, considering Sx; > py, then Eq. (25) can be
approximated as
. Wit
T~
{ﬁm

From Eq. (26), we know that the rate increase for a subflow
l is proportional to the utility weight w;. If w; < 1, the subflow
increase rate is smaller than that in a single path TCP flow
(.e.wipy vs pp). If we set w; < 1 for any subflow [, then
each subflow obtains no more flow rate than that of a single
path TCP in a shared link. WUTCP(w) can allocate more

if =0
o (26)
if cg = 1.

bandwidth to a multipath flow than the best case single path
TCP in some cases, but it may also allocate less bandwidth to
a multipath flow than the best case single path TCP in other
cases, as we shall see later.

Now we convert WUTCP(w) into a window based one.
In SSP, we have,

3(1—=3"“OW, ifeg=0
AW, = igl,wl W " _ 27
5 l i cgr = 1,
and in CAP, we have,
L Jwi if cg =0
N%N{@ ifeg=1. %)

Now we have derived two families of congestion control
protocols, EUTCP(vy) and WUTCP(w). Different values
of v and w result in different multipath congestion control
protocols in their respective families.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of EUTCP(~y)
and WUTCP(w) against some well-known MPTCPs, including
EWTCP [2], LIA [1], OLIA [4] and Balia [3]. We first analyze
these protocols, then we implement and perform experimental
testing of them focusing on the fairness, responsiveness and
throughput performance metrics. Finally, we test the perfor-
mance of them in the presence of both short and long flows
in a datacenter network by simulation.

A. Protocol Analysis

In the following protocol analysis, we only analyze CAP for
all the MPTCPs for two reasons. First, the existing MPTCPs
are mainly focused on the design and analysis of CAP,
assuming that SSP for individual sub-flows follows that of
TCP. Second, as aforementioned, the retransmission timeout
is treated the same way as three duplicated ACKs in our
solutions, meaning that once entering CAP after initial SSP,
the system will stay in CAP and hence, the long-run flow rate
allocation is determined by CAP only.

Table I lists the congestion control protocols in CAP for
all the MPTCPs to be studied in this section. The protocols
are classified into two distinct categories, i.e., with or without
resource pooling capability, are listed separately. Note that the
increasing part of each protocol is given on a per ACK bases
not per RTT. As a result, the per-RTT-based window increase
formula in Eq. (21) and Eq. (28) must be divided by W; to
arrive at the corresponding increase parts in Table I.

For the category with resource pooling capability, we first
observe that the Semicoupled protocol is indeed a family
member of EUTCP(v), i.e., EUTCP ({1}), meaning that it
is NUM-optimal, achieving the global objective given in Eq.
(15) at vy = 1, VI. Second, we note that, compared with
all the other protocols in the category, the EUTCP(v) family
including the Semicoupled are the least complex and hence,
most computationally efficient ones. This also implies that if
some other solutions also turn out to be NUM optimal, the
corresponding utility functions are likely to be substantially

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore. Restrictions apply.

Table I: Congestion control protocols in CAP

Solution Increase (per Ack) Decrease (per loss) | Comments
With Resource Pooling
w, 2
LIA (Coupled) [1], [6], [21] % w
. . 1 wy
Semicoupled [3] (optimal) Y P ey e -5
2
OLIA [4] % + Wil % 4 is modulation factor
. (Wi /73) Ity 44a W 3 A)
Balia [3] m (=9 (1) | Frmin{ag, 5 ap = %f?z{xj}/xl
EUTCP(vy) (optimal) W '”;/V L v, is the scaling coefficient
Without Resource Pooling
EWTCP [2] (optimal) V% % « is weight for each route
WUTCP(w) (optimal) ;JV—LZ % wy is the subflow utility weight

more complex and hence, harder to interpret, particularly with
respect to the fairness to TCP.

For the category without resource pooling, it becomes clear
that EWTCP is indeed a family member of WUTCP(w) with
w; = «, VI, and hence, is NUM optimal as well. In fact, in the
original paper on EWTCP [2], it is suggested that o = 1/m?
should be used. By doing so, the paper shows that each sub-
flow of an EWTCP flow sharing a bottleneck link with a TCP
flow will then be allocated one mth of the TCP flow rate and
hence is TCP fair, in the sense that the overall EWTCP flow
rate is equal to the TCP flow rate if each and every sub-flow
shares a bottleneck link with a TCP flow. The proof, however,
is based on a TCP throughput model given in [27] that assumes
that the retransmission timeout is a more frequent event than
the three duplicated ACKs, and the TCP goes back to slow
start phase after the retransimission timeout happens.

In fact, since we now know that EWTCP is NUM-optimal
and its utility function is given by Eq. (22) with w; = «a for [=
1,...,m, we can prove that to satisfy the above TCP fairness
criterion, o should be set at 1/m, instead of 1/m?. First, we
note that since Sz > u, Uy, in Eq. (22) can be approximately
written as Uy, ~ %log(ﬂx), i.e., a log function of x. Then it
can be easily shown [19] that for any given number of sub-
flows, each having the weighted utility, aUy,, which share
a bottleneck link with any given number of TCP flows, the
sum of the utilities for all the flows/sub-flows sharing this
link is maximized, if each sub-flow is allocated « times of the
rate allocated to each TCP flow. This means that to meet the
above TCP fairness criterion for EWTCP, « should be 1/m,
not 1/m?. This is also confirmed by the experiment results
presented in the following section.

Nevertheless, the work in this paper is not meant to give
a definitive answer as to what fairness criteria and hence,
what parameters, w and =, or equivalently, which family
members of the two families, should be adopted in practice.
Instead, the objective of this work is to reveal the performance
tradeoffs among the members of the two families as well

TCP flow X2

b
N2 S2O c2 c2

MP-TCP subflow X12

(O Host(source/destination) N\ Router/Switch

Figure 2: The network topology used in Linux implementation

as the other MPTCPs in the list so that users can make an
informed decision as to which MPTCP should be adopted to
best serve their application needs. For example, in a multi-
homing scenario, different paths may charge different usage
fees and/or offer different service qualities. In this case, a user
may want to assign different w;’s or ;’s for different sub-flows
to explore the tradeoffs between the performance and cost.

B. Testbed Testing Result Analysis

For the ease of comparison with Balia [3], the state-of-the-
art solution, we adopt the same network topology as the one
used in [3]. Namely, all the test cases are performed based on
the topology shown in Fig. 2. It involves two source hosts, 51,
sending N; MPTCP flows with two sub-flows (i.e., m = 2),
11 and x19, and So, sending No TCP flows, to the same
destination host D. Nodes, b and a, provide a single path from
S1 to D via b and two sub-flow paths from S; to D, via a
(i.e., sub-flow x12) and b (i.e., sub-flow x11), respectively.

The hosts (i.e., S1, So and D) are Dell Poweredge servers,
each equipped with 8-core processors with 10GB memory
and running Linux 16.04. Nodes a and b are Dell N4032F
switches, each with multiple 1 Gbps Ethernet interfaces run-
ning Ubuntu 16.04.1 LTS (Linux kernel 4.19.98). The link
bandwidth for all the links can be configured at any rate lower

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore. Restrictions apply.

than or equal to 1 Gbps through the networking interface
traffic control command ?c, allowing for the testing of the
MPTCP responsiveness to sudden link bandwidth changes.
Both MPTCP families are implemented by modifying the open
source Linux kernel codes of LIA and Balia [26]. For both the
EUTCP(v) and WUTCP(w) families, we only test the single
parameter cases, i.e., the cases where v; = v and w; = w,
VI. Hence, they can be simply written in terms of a single
parameter, i.e., EUTCP(v) and WUTCP(w). We present the
testbed results for the two families and the related MPTCPs
in the two categories, separately, focusing on the fairness,
throughput and responsiveness performance metrics.

1) EUTCP(): In this section, we study the performance
of three family members, EUTCP(1), EUTCP(1.05) and
EUTCP(1.1), together with LIA, OLIA and Balia in the
testbed.

TCP Fairness and Throughput: First we test the
performance of these MPTCPs in a balanced network
by setting C; = Cs = 1024 Mbps (i.e. 1 Gbps link) and
N; = Ny = 1, i.e, one multipath flow and one TCP flow
(the TCP Reno in the Linux kernel is applied without
modification). With this setup, all the MPTCPs will strive to
equalize and maximize the flow rates for the two flows, i.e., all
targeting at the optimal flow rate allocation: x; = x2 = 1024
Mbps, 211 = 1024 Mbps and z12 = 0 Mbps.

In this experiment, we consider the protocol performance in
the steady state. The two flows are long lived, meaning that
each flow has unlimited amount of data to send and hence, lasts
throughout the entire measurement window. The performance
of EUTCP(1), EUTCP(1.05) and EUTCP(1.1) against with
LIA, OLIA, Balia, are shown in 3 (a)-(f), respectively.

First, we note that for all MPTCPs, z1; (green) and zo
(yellow) are below their respective optimal flow rate targets,
i.e., the link bandwidths, whereas xio (blue) are above its
optimal flow rate target that is zero. This is inevitable. The
former is due to the discrete-time (once every RTT) window-
based adaptive flow control with delay, which guarantees that
the achievable flow rate cannot saturate the link bandwidth.
The latter is caused by the need to set a non-zero minimum
window for a sub-flow as explained earlier, which prevents it
from being allocated zero bandwidth. This also contributes to
the reduction of the flow rate, xo. Moreover, all the MPTCPs
are able to achieve almost the same flow rate allocation for
x11. This is easy to understand as the entire sub-flow path is
dedicated to this sub-flow without congestion.

Second, we note that in terms of flow rate allocation for x2
and x19, LIA offers the lowest rates, OLIA and Balia perform
almost equally well, but not as good as the three members in
the EUTCP(vy) family, all of which perform equally well.

In our next experiment, we study the average throughput
and TCP fairness performance for long-lived MPTCP flows in
steady state. The experiment setup is the same as the previous
one, except now we have, N; = Ny = 5. To quantify the TCP
fairness, we define the TCP unfairness as in Eq. (29). The
smaller the TCP unfairness is, the fairer the MPTCP is with

= X11(Th = =X12(X2(T ==X11(X12(X2(Ti
2 900 Bow
2 2
s H
£ £
5 600 3 600
T ®
L3 L3
H 3
2300 9300
0 --- 0
1 4 7 10 1 7 10
Time (in Seconds) Time (in Seconds)
(a) LIA (b) OLIA
1200 —X11 —X12 x2 1200 —X11 —x12 X2
-X11(- -X12(X2(Ti - X11(X12(eIy
2 %00 Bow
2 a2
H H
£ <
g 600 3 600
4 ®
3 [
H 3
S 300 9300
0 == 0
1 4 7 10 1 7
Time (in Seconds) Time (in Seconds)
(c) Balia (d) EUTCP(1)

1200 —X11 -X12 X2
==X11(Theoretical) = -X12(Theoretical)- - X2(Theoretical)

1200 —X11 —X12 X2
==X11(Theoretical) = -X12(Theoretical)- - X2(Theoretical)

bps)

P
©
8

1t
Flow Rate (in M
=
8

g

o
o

1 4 7 10 1 4 7 10
Time (in Seconds) Time (in Seconds)

(e) EUTCP(1.05) (f) EUTCP(1.1)
Figure 3: Steady state performance of the EUTCP(y) family

respect to TCP.

TPy precp — TPrcop
TPrcp

Here, T Py;prcp and TPrcp are the per MPTCP and
per TCP flow throughput, respectively. For each MPTCP,
we repeat the experiment three times and take the average
throughput. The results are shown in Table II, including
average flow throughput for both multipath flows and TCP
flows, the TCP unfairness, and the aggregate throughput, i.e.,
the throughput for TCP and multipath flows combined. As
one can see, LIA is the least fair to TCP with TCP unfairness
of 14.56%. OLIA and Balia significantly improve the TCP
fairness over LIA, with TCP unfairness of 8.11% and 6.29%,
respectively, at the cost of almost negligible deduction of the
aggregate throughput, consistent with the results given in [3].

Moreover, EUTCP(v) reaches the smallest TCP unfairness
at about v = 1.05 and then grows back up as ~ further
increases, as evidenced by the results for EUTCP(1.05) and
EUTCP(1.1). The reason is that increasing v from one makes
the sub-flow window for x1o drop faster as the congestion
occurs (see the decreasing part of the algorithm in Table
I), reducing the skewed flow rate allocation and hence,
improving TCP fairness. However, as the sub-flow window

TCP Unfairness = x 100 (29)

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore. Restrictions apply.

Table II: Average flow throughput (Mbps), TCP unfairness, and aggregate throughput (Multiple flows of MPTCP flows and

single path TCP flows combined) (Mbps) at Ny = Ny = 5.

LIA OLIA Balia EUTCP(1) | EUTCP(1.05) | EUTCP(1.1)
Average MPTCP throughput 1061.92 1032.78 1022.01 1023.54 1022.07 1034.19
Average TCP throughput 926.99 955.33 961.48 963.92 965.69 953.87
unfairness (%) 14.56 8.11 6.29 6.18 5.83 8.42
Aggregate Throughput 198801 | 1988.11 | 198349 | 198746 1987.75 1988.06
Table III: Convergence times (seconds) of MPTCP flows
during bandwidth changes
i 1200 —X11 —X12 X2 1200 —X11 —X12 X2
LIA | Balia | EUTCP(1) | EUTCP(1.05) | EUTCP(1.1) -=X11(Th 12(xa(mi - =X11(Theoretical) = -X12(xa(T
T | 2 2 2 2 2 === ==
T2 | 25 | 25 2 15 2 0 0

decreases faster, it also increases faster in the absence of
congestion, simply because the sub-flow window increase
rate is inversely proportional to the sum of sub-flow window
sizes (see the increasing part of the protocol in Table I).
These two competing effects result in the existence of a
value around 1.05, where the TCP unfairness is minimized,
i.e., about 5.83%, the smallest among all MPTCPs studied,
without scarifying the throughput performance. In fact,
the differences of the aggregate throughput among all the
MPTCPs in Table II are extremely small and can be largely
neglected. Furthermore, we note that EUTCP(1.05) improves
EUTCP(1) in the TCP fairness performance by about 6%,
implying that EUTCP(7) is not too sensitive to « and setting
~ anywhere close to 1.05 should be good.

Responsiveness: Next, we test the performance of these
MPTCPs in terms of responsiveness in a dynamically changing
environment. To this end, we consider Ny = Ny = 1 and
set the link bandwidth C; = Cs = 1024 Mbps in the initial
first 5 seconds; then suddenly change C5 from 1024 Mbps to
Cy = 8 Mbps for the next 7 seconds (i.e., from second 6 to
second 12); and finally switch it back to Co = 1024 Mbps.
With this setup, all the MPTCPs will strive to arrive at the
following flow rate allocation that equalizes and maximizes
the flow rates for the two flows: x1; = x9 = 1024 Mbps and
z19 = 0 Mbps, before the 6th second and after 12th second,
and z;; = 8 Mbps, z12 = 508 Mbps and x93 = 516 Mbps
from the 6th second to 12th second.

The throughput of the flows is given in Fig. 4 and the flow
rate convergence times for all the MPTCPs except OLIA upon
the bandwidth changes are given in Table III. First, we note
that among all of them, OLIA is the least responsive, even
though it outperforms LIA in terms of TCP fairness. It does
not even come close to the new optimal flow rate allocation,
compared with all the others, which is the reason why it is
excluded from Table IIT for convergence comparison. LIA,
Balia, EUTCP(1.1) and EUTCP(1) (or semicoupled algorithm)
are on par with one another. Clearly, EUTCP(1.05) performs
the best among all of them with the smallest convergence time.

However, one may notice that for all the MPTCPs, x;2
(z2) converges to a flow rate lower (higher) than the optimal
one, similar to the experimental results given in [3]. We find
that this skewed flow rate allocation in favor of the single-

Flow Rate (in Mbps)
@
3
3

Flow Rate (in Mbps)
@
3
3

1 4 7 10 13 16 1 4 7 10 13 16
Time (in Seconds) Time (in Seconds)

(a) LIA (b) OLIA

—x12 X2
ical) = -X12(Th

—X11 —X12 X2
==X11(Theoritical) ==X12(Theoritical) — X2(Theoritical)

1200 1200

Flow Rate (in Mbps)
Flow Rate (in Mbps)
3
8

1 4 7 10 13 16 1 4 7 10 13 16
Time (in Seconds) Time (in Seconds)

(c) Balia (d) EUTCP(1)

—X11 —X12 X2
==X11(Theoretical)=-X12(Theoretical) ~ X2(Theoretical)

1200

o
8

............

Flow Rate (in Mbps)
=
=4

g

1 4

Ti7me (in Seclgnds) Ti7me (in Se:gnds)

(e) EUTCP(1.05) (f) EUTCP(1.1)
Figure 4: Responsiveness with dynamic link bandwidths for
MPTCPs in the resource-pooling-capable category

path TCP is largely caused by the way such protocols are
normally implemented. A TCP flow, whether it is single path
or multipath, is normally run by a single thread. As a result, the
processing resource allocated to the window control for each
sub-flow in a multipath flow reduces and hence, the processing
delay for each sub-flow increases, as the number of sub-flow
paths increases. For a sub-flow shares its sub-flow path with
a TCP flow (e.g., 12 and x5 in our case), it sees a larger
RTT than the TCP flow as it incurs larger processing delay,
hence, receiving lower flow rate allocation. This is particularly
problematic in an experimental environment of ours, where the
entire testbed is hosted in a single rack, where the end-to-end
propagation delay is negligible, making the RTT and hence,
the performance highly sensitive to the processing delay. The
following experiment results will further confirm that this is
indeed the case. A possible way to fix this problem is to

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore. Restrictions apply.

1200 —X11 =X12 X2 1200

—X11

—X12

X2

1200

—X11

—X12

X2

©
-1
=3

Flow Rate (in Mbps)
@
]
5]

Flow Rate (in Mbps)
@ ©
8 8

g

)
°

Time (in Seconds)

a4 7
Time (in Seconds)

(b) WUTCP(1/m)

10

Flow Rate (in Mbps)
w @ ©
=1 =] =1
3 S 3

)

7
Time (in Seconds)

10

(a) WUTCP(1/+/m)

(c) WUTCP(1/m?)

Figure 5: Performance of WUTCP(w) Family.

assign more processing resources to MPTCP flows than TCP
flows. How much more should be assigned to it, however, is
an implementation issue to be addressed in the future.

Based on the above performance analysis, we conclude that
the family members in EUTCP(~) with ~ taking values in the
range of [1,1.1] offer the best tradeoffs among TCP fairness,
responsiveness and throughput in the resource-pooling-capable
category.

2) WUTCP(w): Now we study the performance of
WUTCP(w) family in terms of TCP fairness, throughput, and
responsiveness. We choose w = 1/m* with k = 1/2, 1 and
2, to study the impact of weights on the flow rate allocation.

TCP fairness and Throughput: Again, we first consider
the following network setup: C; = Cy = 1024 Mbps and
N; = Ny = 1. As aforementioned, the optimal rate allocation
for a WUTCP(w) sub-flow is approximately w times that of
a TCP flow sharing the same bottleneck link. Hence with this
setup, the optimal flow rate allocation is: x1; = 1024 Mbps,
212 = 1024 X 7% Mbps and 5 = 1024 X 17 Mbps.

Fig. 5(a), (b) and (c) plot the results for the EUTCP(w)
members at w = \/—%, w = L and w = 15, respectively.
Again, without experiencing any congestion, the sub-flow rate,
x11 (green), is almost the same for all the three cases. Also
for all the cases, the flow rate allocated to, x5 (212), is always
slightly higher (lower) than the corresponding optimal one,
for the same reason discussed in the previous case. The results
clearly demonstrate that the case with w = 1/m = 1/2 indeed
gives flow rate allocation much closer to the desired ratio,
% = % than the case with w = 1/m? = 1/4, which instead
gives the ratio, f}; = 1 with pretty high accuracy as our
model predicts. These results further support our earlier claim
that to satisfy the TCP fairness criterion given in the paper
on EWTCP [2], the weight o should be set at o« = L not #

m’

Responsiveness: As discussed above, MPTCPs without
resource pooling capability, including WUTCP(w), cannot
respond to network dynamics effectively, especially in terms
of maintaining TCP fairness. In what follows, we only give
the experiment results on WUTCP(%) to demonstrate this.

Consider the same experiment setup as the previous respon-
siveness testing case for EUTCP(v). The only difference is that
now the MPTCP flow, z1, is run by WUTCP(%).

As shown in Fig. 6 (a), as C drops from 1024 Mbps to

7 10
Time (in Seconds)

7 10

Time (in Seconds)
(a) WUTCP(1/m) (b) EUTCP(1.05)

Figure 6: Responsiveness of WUTCP(%) vs EUTCP(1.05)

with dynamic link bandwidth.

8 Mbps, z12 and zo change slightly. In fact, in theory, they
should not change at all because without resource pooling
capability, EUTCP(y) controls the send windows for individ-
ual sub-flows independently, as evidenced by the EUTCP(v)
algorithm given in Table I. The fact that both x5 and xzq
moved closer to their respective optimal values during the
time period where C; = 8 Mbps further confirms that the
actual processing resources allocated to individual sub-flows
have an impact on the flow rate allocation. When C; drops
from 1024 Mbps to 8 Mbps, the transmission delay for packets
in the sub-flow x1; increases substantially, resulting in more
than 10X increase of its RTT, as the measured statistics show.
This means that the processing resource demand for sub-flow,
11, 1s also reduced by that many times, yielding much of the
processing resource to sub-flow, z;5. This effectively reduces
the RTT for x15 and hence, the competitiveness of x1o with
respect to TCP flow, zo, resulting in reduced skew for flow
rate allocation during the time period when C; = 8 Mbps.
Similar behaviors are also observed for other family members
in EUTCP(v). This case study also confirms the earlier claim
that MPTCP without resource pooling may perform worse than
the best case single path TCP.

In contrast, as plotted in Fig. 6 (b) again for the
case of EUTCP(1.05), the resource pooling capability of
EUTCP(1.05) helps to rebalance the flow rate allocation to
maintain equal share of the flow rate allocation, or to meet
the same fairness criterion, in response to C; changes.

C. Performance Analysis by Simulation

So far we have focused on the performance evaluation of
the two families of the NUM-optimal MPTCPs in terms of

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore. Restrictions apply.

Table IV: Performance Comparison in Datacenter Network

Solutions Short Flow Finish Time | Completed Long Flow Goodput Completed Core Layer
Short Flows Long Flows | Utilization
(mean/stdev) (mean/stdev) (mean)
MMPTCP 121.502/+ 139.077 ms 5265 59.129/+ 17.473 Mbps | 168 71.329 %
LIA 85.422/4 98.638 ms 4961 61.665/4+ 18.590 Mbps | 168 74.871 %
EUTCP(1) 102.48/+ 143.722 ms 5085 61.472/+ 19.109 Mbps | 168 75.461 %
EUTCP(1.05) 105.008/+ 159.195 ms 5113 61.775/+ 18.994 Mbps | 168 75.572 %
EUTCP(1.1) 103.475/+ 150.486 ms 4953 61.842/4+ 19.170 Mbps | 168 75.576 %
Balia 85.550/+ 78.843 ms 5023 62.146/+ 18.574 Mbps | 168 75.773 %
WUTCP(1/m?) 80.269/4 82.717 4993 62.065/+ 18.829 Mbps | 168 75.612 %
WUTCP(1/m) 106.75/+ 155.709 4988 61.780/+ 19.055 Mbps | 168 75.764 %
WUTCP(1//m) | 85.55/% 78.843 5066 59.429/4+ 19.711 Mbps | 168 73.679 %

responsiveness, fairness and throughput for long flows in a
small testbed. In this section, we focus on the performance
evaluation of the two families in supporting a mix of short
and long flows in a datacenter network by simulation. The per-
formance of the two families are compared against MMPTCP
[28], in addition to LIA and BALIA. Unlike other MPTCPs
that behave much like TCP in the slow start phase, MMPTCP
randomizes the packet distribution to sub-flow paths in the
slow start phase, aiming at reducing the short flow completion
time. Without an open source Linux kernel implementation,
we did not compare against this solution in the testbed.

Here we use the same simulation setup and the open
source code as that in [28] to ensure that MMPTCP achieves
the intended performance as that in the original paper. The
datacenter network is a 4:1 oversubscribed FatTree topology
consisting of 512 servers. Each MPTCP flow has eight sub-
flows. One third of the servers run long (background) flows
and the rest run short flows (70KB each) which are scheduled
by a central scheduler following the Poisson arrival process.

The results are presented in Table IV. We observe that
even though LIA and BALIA provide smaller short flow
completion times, compared with the other MPTCPs with
resource pooling, they do not perform well in terms of the
number of completed flows. This is because there are some
short flows that don’t finish due to frequent timeouts or
retransmission. On the other hand, as expected, MMPTCP
offers the highest number of short flows completion, 5265 to
be exact, but it suffers from the worst performance in terms of
long flow goodput among all MPTCPs with resource pooling.

It is clear that EUTCP(1) and EUTCP(1.05) outperform
MMPTCP in terms of the short flow finish times. In the
meantime, EUTCP(1.05) attains a high number of short flow
completions that is within 3% of that for MMPTCP. Moreover,
it also achieves relatively high performance in terms of both
goodput for long flows and core layer utilization, compared
with the other MPTCPs. Therefore, it strikes the best balance
among all MPTCPs. Note that even though WUTCP family
also perform well, they are inherently incapable of resource
pooling and hence, cannot effectively respond to network
condition changes.

Based on the above performance analysis, we summarize
the performance in terms of fairness and responsiveness on
long flow workload and mixed workload in Table V. Note that
the aggregate throughputs for different MPTCPs are close to

Table V: Performance comparison of MPTCPs (poor:1-3,
fair/medium: 4-6 and good/fast: 7-10).

Solutions TCP Responsiveness | Mixed
fairness Workload
With Resource Pooling
LIA (Coupled) poor(3) medium(6) fair(6)
OLIA fair(6) poor(1) N.A.
Balia good(8) medium(6) good(7)
EUTCP(1) good(8) medium(8) good(7)
EUTCP(1.05) good(10) | fast(10) good(9)
EUTCP(1.1) fair(6) fast(8) fair(6)
Without Resource Pooling
EWTCP or WUTCP(#) poor(1) fast(10) good(7)
WUTCP(%) fair(4) fast(10) good(7)

one another as shown in Table II and hence the throughput is
not included as a performance metric in the table. From the
summary given in this table, we conclude that EUTCP(vy) with
~ in the range of [1,1.1] offer the best overall performance
among all the MPTCPs tested in this paper.

V. CONCLUSIONS

In this paper, we derive and implement in Linux two distinct
families of Network Utility Maximization (NUM)-optimal
Multiple Path Transmission Control Protocol (MPTCP) pro-
tocols, EUTCP(«) and WUTCP(w), by leveraging the TCP
utility function and the NUM solution for concave utilities.
EUTCP(«) is a function of a rate-scaling vector of the sub-
flow rate-scaling coefficients, v and WUTCP(w) is a function
of a utility weight vector of the sub-flow weights, w. We
also show that the Semicoupled algorithm is a protocol in the
family of EUTCP() with v = 1 and EWTCP is a protocol
in the family of WUTCP(w) with w = 1 /m2, where m is
the number of sub-flow paths, and hence, are NUM-optimal.
The performance of the two families is also analyzed based
on experiment in a testbed and simulations on a datacenter
FatTree topology. The test results demonstrate that the family
members with equal sub-flow rate-scaling coefficient setting
in the range of [1,1.1] in EUTCP(«y) outperform three well-
known MPTCPs with resource pooling capability, including
LIA, OLIA and Balia, in terms of responsiveness and fairness
and are on par with the three MPTCPs in terms of the
throughput performance.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore. Restrictions apply.

[1

—

[2

—

[3]

[4

[l

[5

=

[6

—

[7

—

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

Wischik Damon, Costin Raiciu, Adam Greenhalgh, and Mark Handley.
“Design, Implementation and Evaluation of Congestion Control for
Multipath TCP.” In NSDI, vol. 11, pp. 8-8. 2011.

Honda, Michio, Yoshifumi Nishida, Lars Eggert, Pasi Sarolahti, and
Hideyuki Tokuda. ”Multipath congestion control for shared bottleneck.”
In Proc. PELDNeT workshop, vol. 357, p. 378. 2009.

Peng Qiuyu, Anwar Walid, Jachyun Hwang, and Steven H. Low.
“Multipath TCP: Analysis, design, and implementation.” IEEE/ACM
Transactions on networking 24, no. 1 (2014): 596-609.

Khalili Ramin, Nicolas Gast, Miroslav Popovic, and Jean-Yves Le
Boudec. "MPTCP is not Pareto-optimal: Performance issues and a
possible solution.” IEEE/ACM Transactions On Networking 21, no. 5
(2013): 1651-1665.

F. Kelly, A.K. Maulloo and D. K. Tan. “Rate control for communication
networks: shadow prices, proportional fairness and stability.” Journal of
the Operational Research Society, v49(1), (1998): 237-252.

Kelly Frank, and Thomas Voice. ”Stability of end-to-end algorithms for
joint routing and rate control.” ACM SIGCOMM Computer Communi-
cation Review 35, no. 2 (2005): 5-12.

Raiciu Costin, Mark Handley, and Damon Wischik. ”Coupled congestion
control for multipath transport protocols.” (2011).

Constantino M. Lagoa , Hao Che, and Bernardo A. Movsichoff. ”Adap-
tive control algorithms for decentralized optimal traffic engineering in
the Internet.” IEEE/ACM Transactions on Networking 12, no. 3 (2004):
415-428.

Mehdi Kalantari and Mark Shayman. ”Quantifying Responsiveness of
TCP Aggregates by Using Direct Sequence Spread Spectrum CDMA
and Its Application in Congestion Control.”, In Proceedings of IEEE
Globecom, 2004.

Wenjing Sun, Chunyu Liu, Constantino Lagoa, Hao Che, Ke Xu, and
Yong Cui. A family of optimal, distributed traffic control laws in
a multidomain environment.” IEEE Transactions on Control System
Technology 23, no. 4 (2015): 1373-1386.

Movsichoff Bernardo A., Constantino M. Lagoa, and Hao Che. “End-
to-end optimal algorithms for integrated QoS, traffic engineering, and
failure recovery.” IEEE/ACM Transactions on networking 15, no. 4
(2007): 813-823.

Lei Ye, Zhijun Wang, Hao Che, and Constantino M. Lagoa. "TERSE:
A unified end-to-end traffic control mechanism to enable elastic, delay
adaptive, and rate adaptive services.” IEEE Journal on Selected Areas
in Communications 29, no. 5 (2011): 938-950.

Constantino Lagoa , and Hao Che. "Decentralized optimal traffic engi-
neering in the Internet.” ACM SIGCOMM Computer Communication
Review v30, no. 5 (2000): 39-47.

Raiciu, Costin, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh,
Damon Wischik, and Mark Handley. “Improving datacenter performance
and robustness with multipath TCP” ACM SIGCOMM Computer Com-
munication Review 41, no. 4 (2011): 266-277.

Polishchuck Tatiana and Andrei Gurtov. “Improving TCP-friendliness
and Fairness for mHIP.” Infocommunications Journal, v11, 2011: 26-
34.

Andrei Gurtov and Polishchuck Tatiana, ”Secure multipath transport for
legacy Internet applications.” In Proceedings of BROADNETS, 2009.
Steven H. Low, and David E. Lapsley. "Optimization flow control. I. Ba-
sic algorithm and convergence.” IEEE/ACM Transactions on networking
7, no. 6 (1999): 861-874.

Steven H. Low. ”A duality model of TCP and queue management
algorithms.” IEEE/ACM Transactions On Networking 11, no. 4 (2003):
525-536.

Zhijun Wang, Akshit Singhal, Yunxiang Wu, Chuwen Zhang, Hao Che,
Hong Jiang, Bin Liu, and Constantino Lagoa. "HOLNET: A Holistic
Traffic Control Framework for Datacenter Networks.” In 2020 IEEE
28th International Conference on Network Protocols (ICNP), pp. 1-12.
IEEE, 2020.

Lei Ye, Zhijun Wang, Hao Che, Henry BC Chan, and Constantino M.
Lagoa. “Utility function of TCP.” Computer communications 32, no. 5
(2009): 800-805. Harvard

H. Han, Srinivas Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley.
”Overlay TCP for multi-path routing and congestion control.” In IMA
Workshop on Measurements and Modeling of the Internet. 2004.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Dongsu Han, Robert Grandl, Aditya Akella, and Srinivasan Seshan.
“Fcp: a flexible transport framework for accommodating diversity.” In
Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM,
pp. 135-146. 2013.

S. K. Korovin and V. I. Utkin. "Using sliding modes in static opti-
mization and nonlinear programming.” Automatica 10, no. 5 (1974):
525-532.

Tabassum Lubna, Imtiaz Mahmud and You-Ze Cho. ”D-LIA: Dynamic
congestion control algorithm for MPTCP.” ICT Express 6, no. 4 (2020):
263-268.

Tabassum Lubna, Imtiaz Mahmud, Geon-Hwan Kim, and You-Ze Cho.
”D-OLIA: A Hybrid MPTCP Congestion Control Algorithm with Net-
work Delay Estimation.” Sensors 21, no. 17 (2021): 5764.

C. Paasch, S. Barre et al., Multipath TCP in the Linux Kernel, available
from http://www.multipath-tcp.org/

Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. "Modeling
TCP throughput: A simple model and its empirical validation.” In
Proceedings of the ACM SIGCOMM’98 conference on Applications,
technologies, architectures, and protocols for computer communication,
pp. 303-314. 1998.

Morteza Kheirkhah and Wakeman, Ian and Parisis, George. "MMPTCP:
A multipath transport protocol for data centers.” In IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer
Communications, 2016.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore. Restrictions apply.

