
Two Families of Optimal Multipath Congestion
Control Protocols

Akshit Singhal, Xuan Wang, Zhijun Wang, Hao Che and Hong Jiang
Computer Science and Engineering, The University of Texas at Arlington, Arlington, U.S.A.

{akshit.singhal2, xuan.wang2}@mavs.uta.edu, hche@cse.uta.edu, {zhijun.wang, hong.jiang}@uta.edu

AbstractÐMultiple Path Transmission Control Protocols
(MPTCPs) allow flows to explore path diversity of datacenter net-
works and multihoming to improve throughput, reliability, and
network resource utilization. However, the existing MPTCPs are
largely empirical by design and fall short of achieving satisfactory
tradeoffs among responsiveness, TCP fairness and throughput.
By leveraging the TCP utility and a network-utility-maximization
(NUM) solution for concave utilities, in this paper, we derive and
implement in Linux kernels two distinct families of NUM-optimal
MPTCP protocols, EUTCP(γ), a function of a rate-scaling vector
of the sub-flow rate-scaling coefficients, γ, and WUTCP(ω), a
function of a utility weight vector of the sub-flow weights, ω,
respectively. While the former allows resource pooling, the latter
does not. We then show that the Semicoupled algorithm and
EWTCP are in fact EUTCP(1) and WUTCP(1/m2), where m is
the number of sub-flow paths, and hence, are NUM-optimal. The
performance of the two families with equal weight and equal rate-
scaling coefficient for all sub-flows when coexisting with TCP is
also analyzed based on experiments in a testbed. In particular, the
test results demonstrate that the family members of EUTCP(γ)
with rate-scaling coefficient in the range of [1, 1.1] outperform
three well-known MPTCPs with resource pooling capability,
including LIA, OLIA and Balia, in terms of achieving satisfactory
tradeoffs among responsiveness, fairness and throughput. Finally,
the effectiveness of the proposed algorithms compared to the
existing ones is further confirmed by simulation in a fat-tree
datacenter network topology running both long and short flows.

I. INTRODUCTION

Multiple Path Transmission Control Protocols (MPTCPs)

split a flow into multiple subflows to be sent via different paths

towards a destination exploring path diversity to improve flow

throughput, network reliability and utilization for datacenter

networks and multihomed users. Just like end-to-end TCP,

most prevalent MPTCPs, such as LIA [1], OLIA [4] and Balia

[3], are end to end, involving two endpoints only. This paper

exclusively focuses on the design of end-to-end MPTCPs.

However, despite significant effort made in the past two

decades in an attempt to develop optimal MPTCPs [6], the

existing MPTCPs are largely empirical by design. In their

seminal work on LIA [1], which is standardized by IETF [7],

Wischik, et. al. acknowledge that due to the lack of theoretical

underpinning, LIA can only be designed empirically. Khalili,

et. al. [4] further show that LIA is not even Pareto optimal

and propose a Pareto-optimal MPTCP, known as OLIA, which

This work was supported by the US NSF under Grant No. CCF SHF-
2008835 and CCF SHF-2226117.

Figure 1: TCP Fairness vs Responsiveness

however, is again designed with no global optimization ob-

jective in mind. Peng, et. al. [3] classify and study major

MPTCP algorithms with respect to some necessary conditions

to achieve optimal traffic control in terms of network utility

maximization (NUM), hence, taking another step towards

the design of an optimal MPTCP. However, the algorithm

proposed by the authors, known as Balia [3], that seeks to

improve responsiveness and TCP friendliness over LIA and

OLIA, is again, designed empirically. Interesting enough, the

Semicoupled algorithm studied in [3] turns out to be NUM-

optimal, as we shall show in this paper. Although EWTCP [2]

also turns out to be NUM-optimal, as we shall also prove in

this paper, it is again originally designed empirically without

a global objective in mind.

Another challenge facing the existing MPTCPs is that

although most of them are designed with TCP friendliness in

mind, they fall short of achieving satisfactory tradeoffs among

responsiveness to network condition changes [9], TCP fairness

and throughput. Fig. 1. illustrates the whereabouts for some

well-known MPTCPs as well as EUTCP(γ) and WUTCP(ω)

(to be defined shortly) in the responsiveness-and-TCP-fairness

design space.1 Without resource pooling, the WUTCP(ω)

family including EWTCP (i.e., WUTCP({1/m2}), as we shall

show later, are highly responsive to network dynamics but

cannot guarantee fairness with respect to TCP. Here resource

pooling refers to the ability to dynamically allocate sub-flow

rates based on the overall resource availability among all sub-

flow paths. All the rest of MPTCPs allow resource pooling

and hence can achieve better fairness with respect to TCP,

at the cost of reduced responsiveness in general. As one can

1As we shall show, the throughput differences among different MPTCPs
are relatively minor and hence is not considered here.978-1-6654-8234-9/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 3
0t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 N
et

w
or

k 
Pr

ot
oc

ol
s (

IC
NP

) |
 9

78
-1

-6
65

4-
82

34
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IC

NP
55

88
2.

20
22

.9
94

03
76

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore.  Restrictions apply. 



see, as a family of NUM-optimal MPTCPs, the EUTCP(γ)

family including Semicoupled (i.e., EUTCP(1), as we shall

prove later) covers a relatively large design space (i.e., the

area covered by the oval) on the upper-right corner and hence,

allowing better exploration of the design tradeoffs between

responsiveness and TCP fairness than the existing ones.

This paper makes three major contributions. First by lever-

aging the NUM-optimal solution for concave utilities given in

[13] and the concave TCP utility given in [12], for the first

time, two families of NUM-optimal MPTCPs are derived, i.e.,

EUTCP(γ), based on a sub-flow rate-scaled TCP utility with

rate scaling vector, γ = {γ1, ..., γm} and WUTCP(ω), based

on a weighted sum of sub-flow TCP utilities, with sub-flow

weight vector, ω = {ω1, ..., ωm}, where m is the number of

sub-flow paths. EUTCP(γ) allows resource pooling whereas

WUTCP(ω) does not. With proper parameter settings, both

families are TCP friendly by design because both are based

on the TCP utility.

Second, we show that two empirically designed MPTCPs,

i.e., the Semicoupled algorithm [3] and EWTCP [2] are in fact

EUTCP(1) and WUTCP({1/m2}), respectively. Namely they

are NUM-optimal and family members of the NUM-optimal

families derived in this paper.

Third, the two families are implemented in both Linux and

NS3 simulator and their performance are tested against some

well-known MPTCPs. Specifically, for EUTCP(γ), compara-

tive performance analyses are carried out between its fam-

ily members and some well-known resource-pooling-capable

MPTCPs, including LIA [1], OLIA [4] and Balia [3]. The test

results demonstrate that the family members in EUTCP(γ)

with γ in the range of [1, 1.1] outperform the other three

MPTCPs in terms of responsiveness and fairness and is on

par with the other three in terms of overall throughput perfor-

mance. For WUTCP(ω), we compare three family members

at ω = 1/m2, 1/m, and 1/
√
m. We conclude that for the

TCP fairness criterion defined in [2], ω = 1/m should be

used, instead of ω = 1/m2, as suggested in [2]. Finally,

the effectiveness of the proposed algorithms compared to the

existing ones is further verified by simulation in a fat-tree

datacenter network.

II. BACKGROUND AND RELATED WORK

The existing MPTCPs can be broadly classified into two

categories, with and without resource pooling capability.

For the category without resource pooling capability, a

straightforward but naive solution is to simply run subflows

as independent TCP flows. This approach, however, is too

aggressive and unfair to single-path TCP flows, and without

resource pooling, cannot balance the loads among subflow

paths. This leads to the design of EWTCP [2], an equally

weighted MPTCP. EWTCP attempts to achieve TCP fairness

by modifying the previous solution, i.e., reducing the TCP

window increase rate by a factor of 1/m2 for all m TCP-

based subflows. However, besides the lack of load balancing

capability inherited from the previous approach, EWTCP may

lead to a flow rate lower than the best case single-path TCP.2,

discouraging users to use it.

For the other category, i.e., the one with resource pooling

capability, there has been a great effort made in the last two

decades in an attempt to develop MPTCP algorithms that

are proven to be globally optimal in terms of network utility

maximization (NUM), which in the form of a fluid-flow model,

can be formally stated as follows:

max
n
∑

i=1

Ui(xi,1, xi,2, ..., xi,mi
), (1)

subject to link bandwidth constraints,
∑

i,j:l∈Li,j

xi,j − cl ≤ 0; l ∈ L, (2)

where n, mi, L and Li,j are the number of active flows,

the number of subflows in flow i, the set of links in the

network, and the set of links that lie in the path of subflow j
in flow i, respectively; cl is the link bandwidth for link l ∈ L;

and Ui(xi,1, xi,2, ..., xi,mi
) is the user utility for flow i as a

function of flow rates, xi,j , for subflow j, j = 1, 2, ...,mi.

The design goal is to find distributed solutions to the above

NUM problem in the form of distributed flow rate control

laws for individual subflows, using only binary congestion

information feedback for control, i.e., whether a sub-flow/flow

path is congested or not, which is essential to facilitate the

development of end-to-end protocols including MPTCPs. Such

control laws can then serve as the theoretical underpinning

for the design of optimal rate or window-based MPTCP

algorithms for any given user utilities that dictate the fairness

criterion for resource allocation.

Kelly, et. al. [6] and Han, et. al. [22] convert the NUM

problem into its Lagrange dual problem and then solves a

relaxation of the dual problem by closely approximating it

by incorporating a price function in the utility function. This

approach is Pareto optimal, but it is not strictly NUM-optimal

and it only selects one subflow path at a time and hence,

suffers from flappiness and slow responsiveness [1]. Inspired

by this approach, LIA [1], [7], [14] is proposed by modifying

the previous approach to allow flow rate load balancing among

multiple paths to avoid flappiness and improve response time,

at the cost of losing the Pareto optimality. OLIA [4], an

improved version of LIA, possesses the Pareto optimality.

Using a duality model [17], [18], Balia [3] is developed to

attempt to slove the above NUM. On the basis of the work

in [17], [18], Peng, et. al. [3] further classify and study major

MPTCP algorithms with respect to some necessary conditions

to attain the NUM objectives, taking another step towards the

design of an optimal MPTCP. However, the proposed Balia

that seeks to improve responsiveness and TCP friendliness

over LIA and OLIA, is again, heuristic by design. Polishchuk

et. al. [15], [16] proposed mHIP, a TCP-friendly congestion

control protocol for multipath host identity protocol to increase

2The best case single-path TCP is defined as the maximum flow rate the
single-path TCP can achieve on any of the sub-flow paths available to MPTCP.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore.  Restrictions apply. 



the resource utilization and improve fault tolerance, which

however, is not an NUM-based solution.

Recently, Tabassum et.al. [24], [25] propose two more elab-

orate variations of LIA and OLIA to improve the throughput

performance of LIA and OLIA. However, the solutions are

complex and empirical, requiring dynamic adjustment of a

decreasing parameter of the congestion window based on

measured round trip time (RTT) and/or packet loss rate.

Meanwhile, in a series of works, Lagoa, et. al. [8], [10],

[11], [13] directly solve a generalized version of the above

NUM that permits sub-flow rate constraints by means of Slid-

ing Mode Control in control theory [23]. The resulting control

laws enable multiple classes of service and require only binary

congestion information feedback for control, and hence are

particularly suitable to serve as the theoretical underpinning

for the design of MPTCPs. Wang, et. al. [12], [20] successfully

apply this solution to reverse engineer TCP to arrive at the

TCP utility function corresponding to the TCP Reno conges-

tion control3 and subsequently, design a TCP-friendly, end-

to-end, single-path soft-minimum-rate-guaranteed congestion

control protocol. Wang, et. al. [19] also successfully apply

this solution to the development of an integrated congestion

control and load balancing framework for datacenter networks,

including a toy example demonstrating the viability of the

solution for the development of MPTCP algorithms. Our work

is motivated by these results. In particular, by leveraging the

results given by Lagoa, et. al. [13] and Wang, et. al. [20], and

with proper selection of user utility functions for multipath

flows, we are able to derive two families of NUM-optimal

MPTCPs, covering both MPTCP categories.

III. TWO FAMILIES OF NUM-OPTIMAL MPTCPS

In this section, we first introduce the NUM-optimal mul-

tipath congestion control solution given in [10], the TCP

utility function derived in [12], and then derive EUTCP(γ)

and WUTCP(ω), in separate subsections.

A. NUM-optimal multipath congestion control laws

According to [10], with respect to the NUM problem given

in Eq. (1) (i.e., without minimum flow rate requirements),

optimal control law for subflow j in flow i can be written

as,

ẋi,j = zi,j(t, xi,j , cgj)[f(xi,j)− (1− cgj)] (3)

with

f(xi,j) = 1− e−∂Ui(xi,1,xi,2,...,xi,mi
)/∂xi,j , (4)

where Ui(xi,1, xi,2, ..., xi,mi
) can be any concave and strictly

increasing function of xi,j’s; zi,j(t, xi,j , cgj) can be any

positive and piece-wise continuous scalar function and cgj
is the binary congestion indicator, cgj =1 if the path the

subflow j takes is congested and 0 otherwise; cgj is the

logical negation of cgj . For a given concave utility function,

a multipath congestion control law can be derived. For flows

3Note that this TCP utility function is the first one that captures both the
slow start and congestion avoidance phases of TCP Reno.

with non-concave user utility functions, the method proposed

in [19] can be applied to derive the control laws.

B. Utility function of a single path TCP

It has long been recognized [5] that the utility function of

logarithmic form leads to NUM-optimal control law that re-

sembles the TCP behaviors in its congestion avoidance phase.

This motivated the researchers to look for utility functions that

can better match the TCP behaviors, notably, the ones given in

[17] and [12]. While the one given in [17] is tied to a specific

active queuing mechanism in the routers and hence is not end-

to-end, the one given in TERSE [12] is end-to-end and by far

the most accurate one that matches the TCP behaviors in both

the slow start and congestion avoidance phases. Hence in this

paper, we adopt the one in TERSE [12], which is described

below.

Consider a fluid-flow version of the generic single path

TCP congestion control algorithm with a slow start phase

(SSP) and congestion avoidance phase (CAP), where αx is the

multiplicative increase rate in SSP, µ is the additive increase

rate in CAP, and βx is the multiplicative decrease rate in both

SSP and CAP, meaning that retransmission timeout is treated

the same way as three duplicated ACKs. Consequently, once

the system enters CAP after the initial SSP, it will stay in

CAP, implying that the congestion control algorithm in CAP

will determine the steady state flow rate allocation. To limit

the exposure, hereafter, we skip the subscription i for flow i.
Then applying this generic TCP control algorithm to match

Eq. (3), TCP utility, Utcp, and the corresponding zi,j(t, x, cg)
function can be reverse engineered and given as follows:

For the slow start phase (SSP)

Utcp(x) = xlog(1 +
α

β
) (5)

and

z(t, x, cg) = (α+ β)x. (6)

For the congestion avoidance phase (CAP)

Utcp(x) = (
µ

β
+ x)[log(µ+ βx)− 1]− x[log(βx)− 1] (7)

and

z(t, x) = µ+ βx (8)

It can be easily verified that by plugging Eqs. (5), (6), (7),

and (8) into (3) and (4), and by considering the fact that

multiplicative increase rate is much larger than the additive

increase rate, i.e., βxl ≫ µ, and βx ≫ µ, we arrive at the

following SSP and CAP control laws:

ẋ =

{

αx if cg = 0
−βx if cg = 1,

(9)

for SSP, and

ẋ =

{

µ if cg = 0
−βx if cg = 1

(10)

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore.  Restrictions apply. 



for CAP.

These control laws are fluid-flow based, and can be ap-

proximately converted to window based control protocols. In

the context of TCP Reno, which is window based, the flow

rate is considered as a constant during each Round Trip Time

(RTT), τ , and adjusted every RTT. Let W and ∆W be the

congestion control window size and change of W at each

RTT epoch, respectively. As the congestion window size is

doubled or halved in SSP and increased by one MSS (i.e., the

maximum segment size) or halved in CAP, without or with

congestion, respectively, α, β and µ can be approximated as,

α ≈ 2β ≈ 1/τ, µ = MSS/τ (11)

With these parameter settings, it can be easily shown that the

SSP and CAP in Eqs. (9) and Eqs.(10) recover the TCP reno.

Namely,

In SSP:

∆W =

{

W if cg = 0

−W/2 if cg = 1.
(12)

In CAP:

∆W =

{

1 if cg = 0

−W/2 if cg = 1.
(13)

Finally, we note that α, β and µ in Eq. (11) are functions

of RTT, τ . For a multipath flow, different subflows may see

different RTTs, τi, for i = 1, 2, ...,m. So for multipath flows,

we define τ to be the average RTT among all RTTs, i.e., τ =
∑m

i=1 τi/m.

C. The EUTCP(γ) Family

Utility function of an MPTCP flow: Theoretically, to

ensure that a NUM-optimal MPTCP is friendly to TCP Reno

by design, one can simply apply the TCP Reno utility function

to the total flow rate of a multipath flow as follows,

U(x1, x2, ..., xm) = Utcp(
m
∑

j=1

xj), (14)

In other words, the NUM-optimal solution is to equalize user

utilities by balancing the sub-flow rates among sub-flow paths

(hence, is resource pooling capable), which equalizes the rate

allocation among both MPTCP and TCP flows, and hence,

achieve TCP-friendly resource allocation.

However, our experiment results (see Table II) show that,

just like LIA, OLIA and Balia, the resulting MPTCP cor-

responding to the above utility leads to skewed flow rate

allocation with MPTCP flow rates higher than TCP flow rates.

The reason is that, just like TCP, to allow sub-flow windows

to increase when network resources become available, an

MPTCP flow must maintain a positive minimum rate/window

for each of its sub-flow, despite the fact that the optimal control

law that underpins the MPTCP algorithm may require that the

sub-flow rates be allowed to drop to zero when congestion

occurs. Since TCP Reno uses 2×MSS as its minimum window

size, most existing MPTCPs set the minimum window size

for each sub-flow to be 2×MSS. This effectively makes the

minimum window for the entire MPTCP flow to be 2m×MSS,

leading to skewed flow rate allocation in favor of MPTCP

flows over TCP flows in practice, and the higher the number

of sub-flows, m, the more skewed the flow rate allocation is.

One possible approach to remedying the above problem

is to set the minimum window for each sub-flow to be one

MSS instead of 2×MSS, as is the case for Balia. While

our experiment shows that using one MSS in the MPTCP

corresponding to the above utility can lead to almost perfect

equal flow rate allocation in most cases, for some corner cases,

it may cause unstable flow rate allocation. Namely, a sub-flow

competing with TCP flows may not be able to grow its window

back once the window reaches its minimum.

In this paper, we tackle the above challenge by using the

following family of rate-scaled user utility functions instead,

U(x1, x2, ..., xm) = Utcp(
m
∑

j=1

γjxj), (15)

where γj is a rate-scaling coefficient for sub-flow, j, for

j = 1, ...,m. By setting some or all of the coefficients to be

slightly larger than one, the NUM-optimal rate allocation that

attempts to equalize user utilities is expected to allocate less

rates to MPTCP flows than TCP flows, compensating for the

skewed resource allocation.

EUTCP(γ): Let zl(t, xl, cgl) for each subflow l take

the same format as its single-path counterpart given in Eqs.

(6) and (8) with rate scaling, i.e.,

zl(t, xl, cgl) =

{

(α+ β)γlxl in SSP

µ+ βγlxl in CAP.
(16)

Then substitute Eqs. (15) and (16) into Eqs. (3) and (4), we

arrive at EUTCP(γl) as follows:

In SSP:

ẋl =

{

αγlxl if cg = 0

−βγlxl if cg = 1.
(17)

In CAP:

ẋl =

{

µ+βγlxl

µ+βγlx
µ if cg = 0

−µ+βγlxl

µ+βγlx
βγlx if cg = 1.

(18)

Again, considering the fact that the multiplicative increase

rate is much larger than the additive increase rate, i.e., βxl ≫
µ, and βx ≫ µ, Eq.(18) can be approximated as

ẋl ≈
{

xl

x µ if cg = 0

−βγlx if cg = 1.
(19)

EUTCP(γl) above simply states that the subflow increase

rate is proportional to the ratio of the subflow rate and the

overall flow rate, i.e., xl/x, while its decrease rate is that of

TCP Reno scaled by γl. It degenerates to TCP Reno at m = 1
and γ = 1.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore.  Restrictions apply. 



Now we transform the above EUTCP(γ) to a window

based one. Let x = W × MSS/τ and xl = Wl × MSS/τ .

Then the congestion window size change for subflow l in

each RTT, ∆Wl, according to Eqs. (17) and (19), are,

In SSP:

∆Wl ≈
{

γlWl if cgl = 0

−γlWl

2 if cg1 = 1.
(20)

In CAP:

∆Wl ≈
{

Wl

τl
∑

m
j=1

Wj/τj
if cg = 0

−γlWl

2 if cg = 1.
(21)

D. The WUTCP(ω) Family

Utility function of an MPTCP flow: Now we consider the

following family of utility functions,

U(x1, x2, ..., xm) =
m
∑

j=1

ωjUtcp(xj), (22)

where ωj is the utility weight for sub-flow j. Clearly, this

family of utility functions will lead to optimal rate allocation

without resource pooling. For example, at ωj = 1 for ∀j, each

sub-flow in a multipath flow is then treated the same way as a

single path TCP flow, the most naive MPTCP solution in the

category without resource pooling as mentioned in Section II.

WUTCP(ω): Let,

zl(t, xl, cgl) =

{

(α+ β)xl in SSP

µl + βxl in CAP.
(23)

Here µl = MSS/τl is the additive increase rate for subflow

l. Similarly, we can easily get WUTCP(ω) as follows:

In SSP, we have,

ẋl =

{

3
2 (1− 3−ωl)αxl if cgl = 0

−31−ωlβxl if cgl = 1.
(24)

In CAP, we have,

ẋl =

{

[1− ( βxl

µl+βxl
)ωl ](µl + βxl) if cgl = 0

−( βxl

µl+βxl
)ωl(µl + βxl) if cgl = 1.

(25)

Similarly, considering βxl ≫ µl, then Eq. (25) can be

approximated as

ẋl ≈
{

ωlµl if cg = 0

−βxl if cg = 1.
(26)

From Eq. (26), we know that the rate increase for a subflow

l is proportional to the utility weight ωl. If ωl < 1, the subflow

increase rate is smaller than that in a single path TCP flow

(i.e.,ωlµl vs µl). If we set ωl < 1 for any subflow l, then

each subflow obtains no more flow rate than that of a single

path TCP in a shared link. WUTCP(ω) can allocate more

bandwidth to a multipath flow than the best case single path

TCP in some cases, but it may also allocate less bandwidth to

a multipath flow than the best case single path TCP in other

cases, as we shall see later.

Now we convert WUTCP(ω) into a window based one.

In SSP, we have,

∆Wl =

{

3
2 (1− 3−ωl)Wl if cgl = 0

− 31−ωl

2 Wl if cgl = 1,
(27)

and in CAP, we have,

∆Wl ≈
{

ωl if cg = 0

−Wl

2 if cg = 1.
(28)

Now we have derived two families of congestion control

protocols, EUTCP (γ) and WUTCP (ω). Different values

of γ and ω result in different multipath congestion control

protocols in their respective families.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of EUTCP(γ)

and WUTCP(ω) against some well-known MPTCPs, including

EWTCP [2], LIA [1], OLIA [4] and Balia [3]. We first analyze

these protocols, then we implement and perform experimental

testing of them focusing on the fairness, responsiveness and

throughput performance metrics. Finally, we test the perfor-

mance of them in the presence of both short and long flows

in a datacenter network by simulation.

A. Protocol Analysis

In the following protocol analysis, we only analyze CAP for

all the MPTCPs for two reasons. First, the existing MPTCPs

are mainly focused on the design and analysis of CAP,

assuming that SSP for individual sub-flows follows that of

TCP. Second, as aforementioned, the retransmission timeout

is treated the same way as three duplicated ACKs in our

solutions, meaning that once entering CAP after initial SSP,

the system will stay in CAP and hence, the long-run flow rate

allocation is determined by CAP only.

Table I lists the congestion control protocols in CAP for

all the MPTCPs to be studied in this section. The protocols

are classified into two distinct categories, i.e., with or without

resource pooling capability, are listed separately. Note that the

increasing part of each protocol is given on a per ACK bases

not per RTT. As a result, the per-RTT-based window increase

formula in Eq. (21) and Eq. (28) must be divided by Wl to

arrive at the corresponding increase parts in Table I.

For the category with resource pooling capability, we first

observe that the Semicoupled protocol is indeed a family

member of EUTCP(γ), i.e., EUTCP ({1}), meaning that it

is NUM-optimal, achieving the global objective given in Eq.

(15) at γl = 1, ∀l. Second, we note that, compared with

all the other protocols in the category, the EUTCP(γ) family

including the Semicoupled are the least complex and hence,

most computationally efficient ones. This also implies that if

some other solutions also turn out to be NUM optimal, the

corresponding utility functions are likely to be substantially

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore.  Restrictions apply. 



Table I: Congestion control protocols in CAP

Solution Increase (per Ack) Decrease (per loss) Comments

With Resource Pooling

LIA (Coupled) [1], [6], [21]
(Wl/τ

2

l )

(ΣiϵRWi/τi)2
Wl

2

Semicoupled [3] (optimal) 1
τl(ΣiϵRWi/τi)

Wl

2

OLIA [4]
(Wl/τ

2

l )

(ΣiϵRWi/τi)2
+ δ

Wl

Wl

2
δ is modulation factor

Balia [3]

{

(Wl/τ
2

l )

(ΣiϵRWi/τi)2

}

( 1+αl

2
)( 4+αl

5
) Wl

2
min{αl,

3
2
} αl

∆
= max

jϵR
{xj}/xl

EUTCP(γ) (optimal) 1
τl(ΣiϵRWi/τi)

γlWl

2
γl is the scaling coefficient

Without Resource Pooling

EWTCP [2] (optimal) α
Wl

Wl

2
α is weight for each route

WUTCP(ω) (optimal)
ωl

Wl

Wl

2
ωl is the subflow utility weight

more complex and hence, harder to interpret, particularly with

respect to the fairness to TCP.

For the category without resource pooling, it becomes clear

that EWTCP is indeed a family member of WUTCP(ω) with

ωl = α, ∀l, and hence, is NUM optimal as well. In fact, in the

original paper on EWTCP [2], it is suggested that α = 1/m2

should be used. By doing so, the paper shows that each sub-

flow of an EWTCP flow sharing a bottleneck link with a TCP

flow will then be allocated one mth of the TCP flow rate and

hence is TCP fair, in the sense that the overall EWTCP flow

rate is equal to the TCP flow rate if each and every sub-flow

shares a bottleneck link with a TCP flow. The proof, however,

is based on a TCP throughput model given in [27] that assumes

that the retransmission timeout is a more frequent event than

the three duplicated ACKs, and the TCP goes back to slow

start phase after the retransimission timeout happens.

In fact, since we now know that EWTCP is NUM-optimal

and its utility function is given by Eq. (22) with ωl = α for l =
1, ...,m, we can prove that to satisfy the above TCP fairness

criterion, α should be set at 1/m, instead of 1/m2. First, we

note that since βx ≫ µ, Utcp in Eq. (22) can be approximately

written as Utcp ≈ µ
β log(βx), i.e., a log function of x. Then it

can be easily shown [19] that for any given number of sub-

flows, each having the weighted utility, αUtcp, which share

a bottleneck link with any given number of TCP flows, the

sum of the utilities for all the flows/sub-flows sharing this

link is maximized, if each sub-flow is allocated α times of the

rate allocated to each TCP flow. This means that to meet the

above TCP fairness criterion for EWTCP, α should be 1/m,

not 1/m2. This is also confirmed by the experiment results

presented in the following section.

Nevertheless, the work in this paper is not meant to give

a definitive answer as to what fairness criteria and hence,

what parameters, ω and γ, or equivalently, which family

members of the two families, should be adopted in practice.

Instead, the objective of this work is to reveal the performance

tradeoffs among the members of the two families as well

Figure 2: The network topology used in Linux implementation

as the other MPTCPs in the list so that users can make an

informed decision as to which MPTCP should be adopted to

best serve their application needs. For example, in a multi-

homing scenario, different paths may charge different usage

fees and/or offer different service qualities. In this case, a user

may want to assign different ωl’s or γl’s for different sub-flows

to explore the tradeoffs between the performance and cost.

B. Testbed Testing Result Analysis

For the ease of comparison with Balia [3], the state-of-the-

art solution, we adopt the same network topology as the one

used in [3]. Namely, all the test cases are performed based on

the topology shown in Fig. 2. It involves two source hosts, S1,

sending N1 MPTCP flows with two sub-flows (i.e., m = 2),

x11 and x12, and S2, sending N2 TCP flows, to the same

destination host D. Nodes, b and a, provide a single path from

S1 to D via b and two sub-flow paths from S2 to D, via a
(i.e., sub-flow x12) and b (i.e., sub-flow x11), respectively.

The hosts (i.e., S1, S2 and D) are Dell Poweredge servers,

each equipped with 8-core processors with 10GB memory

and running Linux 16.04. Nodes a and b are Dell N4032F

switches, each with multiple 1 Gbps Ethernet interfaces run-

ning Ubuntu 16.04.1 LTS (Linux kernel 4.19.98). The link

bandwidth for all the links can be configured at any rate lower

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore.  Restrictions apply. 









Table IV: Performance Comparison in Datacenter Network

Solutions Short Flow Finish Time Completed Long Flow Goodput Completed Core Layer

Short Flows Long Flows Utilization

(mean/stdev) (mean/stdev) (mean)

MMPTCP 121.502/± 139.077 ms 5265 59.129/± 17.473 Mbps 168 71.329 %
LIA 85.422/± 98.638 ms 4961 61.665/± 18.590 Mbps 168 74.871 %
EUTCP(1) 102.48/± 143.722 ms 5085 61.472/± 19.109 Mbps 168 75.461 %
EUTCP(1.05) 105.008/± 159.195 ms 5113 61.775/± 18.994 Mbps 168 75.572 %
EUTCP(1.1) 103.475/± 150.486 ms 4953 61.842/± 19.170 Mbps 168 75.576 %
Balia 85.550/± 78.843 ms 5023 62.146/± 18.574 Mbps 168 75.773 %
WUTCP(1/m2) 80.269/± 82.717 4993 62.065/± 18.829 Mbps 168 75.612 %
WUTCP(1/m) 106.75/± 155.709 4988 61.780/± 19.055 Mbps 168 75.764 %
WUTCP(1/

√
m) 85.55/± 78.843 5066 59.429/± 19.711 Mbps 168 73.679 %

responsiveness, fairness and throughput for long flows in a

small testbed. In this section, we focus on the performance

evaluation of the two families in supporting a mix of short

and long flows in a datacenter network by simulation. The per-

formance of the two families are compared against MMPTCP

[28], in addition to LIA and BALIA. Unlike other MPTCPs

that behave much like TCP in the slow start phase, MMPTCP

randomizes the packet distribution to sub-flow paths in the

slow start phase, aiming at reducing the short flow completion

time. Without an open source Linux kernel implementation,

we did not compare against this solution in the testbed.

Here we use the same simulation setup and the open

source code as that in [28] to ensure that MMPTCP achieves

the intended performance as that in the original paper. The

datacenter network is a 4:1 oversubscribed FatTree topology

consisting of 512 servers. Each MPTCP flow has eight sub-

flows. One third of the servers run long (background) flows

and the rest run short flows (70KB each) which are scheduled

by a central scheduler following the Poisson arrival process.

The results are presented in Table IV. We observe that

even though LIA and BALIA provide smaller short flow

completion times, compared with the other MPTCPs with

resource pooling, they do not perform well in terms of the

number of completed flows. This is because there are some

short flows that don’t finish due to frequent timeouts or

retransmission. On the other hand, as expected, MMPTCP

offers the highest number of short flows completion, 5265 to

be exact, but it suffers from the worst performance in terms of

long flow goodput among all MPTCPs with resource pooling.

It is clear that EUTCP(1) and EUTCP(1.05) outperform

MMPTCP in terms of the short flow finish times. In the

meantime, EUTCP(1.05) attains a high number of short flow

completions that is within 3% of that for MMPTCP. Moreover,

it also achieves relatively high performance in terms of both

goodput for long flows and core layer utilization, compared

with the other MPTCPs. Therefore, it strikes the best balance

among all MPTCPs. Note that even though WUTCP family

also perform well, they are inherently incapable of resource

pooling and hence, cannot effectively respond to network

condition changes.

Based on the above performance analysis, we summarize

the performance in terms of fairness and responsiveness on

long flow workload and mixed workload in Table V. Note that

the aggregate throughputs for different MPTCPs are close to

Table V: Performance comparison of MPTCPs (poor:1-3,

fair/medium: 4-6 and good/fast: 7-10).

Solutions TCP Responsiveness Mixed

fairness Workload

With Resource Pooling

LIA (Coupled) poor(3) medium(6) fair(6)
OLIA fair(6) poor(1) N.A.
Balia good(8) medium(6) good(7)
EUTCP(1) good(8) medium(8) good(7)
EUTCP(1.05) good(10) fast(10) good(9)
EUTCP(1.1) fair(6) fast(8) fair(6)

Without Resource Pooling

EWTCP or WUTCP( 1
m2

) poor(1) fast(10) good(7)

WUTCP( 1
m

) fair(4) fast(10) good(7)

one another as shown in Table II and hence the throughput is

not included as a performance metric in the table. From the

summary given in this table, we conclude that EUTCP(γ) with

γ in the range of [1, 1.1] offer the best overall performance

among all the MPTCPs tested in this paper.

V. CONCLUSIONS

In this paper, we derive and implement in Linux two distinct

families of Network Utility Maximization (NUM)-optimal

Multiple Path Transmission Control Protocol (MPTCP) pro-

tocols, EUTCP(γ) and WUTCP(ω), by leveraging the TCP

utility function and the NUM solution for concave utilities.

EUTCP(γ) is a function of a rate-scaling vector of the sub-

flow rate-scaling coefficients, γ and WUTCP(ω) is a function

of a utility weight vector of the sub-flow weights, ω. We

also show that the Semicoupled algorithm is a protocol in the

family of EUTCP(γ) with γ = 1 and EWTCP is a protocol

in the family of WUTCP(ω) with ω = 1/m2, where m is

the number of sub-flow paths, and hence, are NUM-optimal.

The performance of the two families is also analyzed based

on experiment in a testbed and simulations on a datacenter

FatTree topology. The test results demonstrate that the family

members with equal sub-flow rate-scaling coefficient setting

in the range of [1, 1.1] in EUTCP(γ) outperform three well-

known MPTCPs with resource pooling capability, including

LIA, OLIA and Balia, in terms of responsiveness and fairness

and are on par with the three MPTCPs in terms of the

throughput performance.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] Wischik Damon, Costin Raiciu, Adam Greenhalgh, and Mark Handley.
ºDesign, Implementation and Evaluation of Congestion Control for
Multipath TCP.º In NSDI, vol. 11, pp. 8-8. 2011.

[2] Honda, Michio, Yoshifumi Nishida, Lars Eggert, Pasi Sarolahti, and
Hideyuki Tokuda. ºMultipath congestion control for shared bottleneck.º
In Proc. PFLDNeT workshop, vol. 357, p. 378. 2009.

[3] Peng Qiuyu, Anwar Walid, Jaehyun Hwang, and Steven H. Low.
ºMultipath TCP: Analysis, design, and implementation.º IEEE/ACM
Transactions on networking 24, no. 1 (2014): 596-609.

[4] Khalili Ramin, Nicolas Gast, Miroslav Popovic, and Jean-Yves Le
Boudec. ºMPTCP is not Pareto-optimal: Performance issues and a
possible solution.º IEEE/ACM Transactions On Networking 21, no. 5
(2013): 1651-1665.

[5] F. Kelly, A.K. Maulloo and D. K. Tan. ºRate control for communication
networks: shadow prices, proportional fairness and stability.º Journal of
the Operational Research Society, v49(1), (1998): 237-252.

[6] Kelly Frank, and Thomas Voice. ºStability of end-to-end algorithms for
joint routing and rate control.º ACM SIGCOMM Computer Communi-
cation Review 35, no. 2 (2005): 5-12.

[7] Raiciu Costin, Mark Handley, and Damon Wischik. ºCoupled congestion
control for multipath transport protocols.º (2011).

[8] Constantino M. Lagoa , Hao Che, and Bernardo A. Movsichoff. ºAdap-
tive control algorithms for decentralized optimal traffic engineering in
the Internet.º IEEE/ACM Transactions on Networking 12, no. 3 (2004):
415-428.

[9] Mehdi Kalantari and Mark Shayman. ºQuantifying Responsiveness of
TCP Aggregates by Using Direct Sequence Spread Spectrum CDMA
and Its Application in Congestion Control.º, In Proceedings of IEEE
Globecom, 2004.

[10] Wenjing Sun, Chunyu Liu, Constantino Lagoa, Hao Che, Ke Xu, and
Yong Cui. ºA family of optimal, distributed traffic control laws in
a multidomain environment.º IEEE Transactions on Control System
Technology 23, no. 4 (2015): 1373-1386.

[11] Movsichoff Bernardo A., Constantino M. Lagoa, and Hao Che. ºEnd-
to-end optimal algorithms for integrated QoS, traffic engineering, and
failure recovery.º IEEE/ACM Transactions on networking 15, no. 4
(2007): 813-823.

[12] Lei Ye, Zhijun Wang, Hao Che, and Constantino M. Lagoa. ºTERSE:
A unified end-to-end traffic control mechanism to enable elastic, delay
adaptive, and rate adaptive services.º IEEE Journal on Selected Areas
in Communications 29, no. 5 (2011): 938-950.

[13] Constantino Lagoa , and Hao Che. ºDecentralized optimal traffic engi-
neering in the Internet.º ACM SIGCOMM Computer Communication
Review v30, no. 5 (2000): 39-47.

[14] Raiciu, Costin, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh,
Damon Wischik, and Mark Handley. ºImproving datacenter performance
and robustness with multipath TCP.º ACM SIGCOMM Computer Com-
munication Review 41, no. 4 (2011): 266-277.

[15] Polishchuck Tatiana and Andrei Gurtov. ºImproving TCP-friendliness
and Fairness for mHIP.º Infocommunications Journal, v11, 2011: 26-
34.

[16] Andrei Gurtov and Polishchuck Tatiana, ºSecure multipath transport for
legacy Internet applications.º In Proceedings of BROADNETs, 2009.

[17] Steven H. Low, and David E. Lapsley. ºOptimization flow control. I. Ba-
sic algorithm and convergence.º IEEE/ACM Transactions on networking
7, no. 6 (1999): 861-874.

[18] Steven H. Low. ºA duality model of TCP and queue management
algorithms.º IEEE/ACM Transactions On Networking 11, no. 4 (2003):
525-536.

[19] Zhijun Wang, Akshit Singhal, Yunxiang Wu, Chuwen Zhang, Hao Che,
Hong Jiang, Bin Liu, and Constantino Lagoa. ºHOLNET: A Holistic
Traffic Control Framework for Datacenter Networks.º In 2020 IEEE
28th International Conference on Network Protocols (ICNP), pp. 1-12.
IEEE, 2020.

[20] Lei Ye, Zhijun Wang, Hao Che, Henry BC Chan, and Constantino M.
Lagoa. ºUtility function of TCP.º Computer communications 32, no. 5
(2009): 800-805. Harvard

[21] H. Han, Srinivas Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley.
ºOverlay TCP for multi-path routing and congestion control.º In IMA
Workshop on Measurements and Modeling of the Internet. 2004.

[22] Dongsu Han, Robert Grandl, Aditya Akella, and Srinivasan Seshan.
ºFcp: a flexible transport framework for accommodating diversity.º In
Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM,
pp. 135-146. 2013.

[23] S. K. Korovin and V. I. Utkin. ºUsing sliding modes in static opti-
mization and nonlinear programming.º Automatica 10, no. 5 (1974):
525-532.

[24] Tabassum Lubna, Imtiaz Mahmud and You-Ze Cho. ºD-LIA: Dynamic
congestion control algorithm for MPTCP.º ICT Express 6, no. 4 (2020):
263-268.

[25] Tabassum Lubna, Imtiaz Mahmud, Geon-Hwan Kim, and You-Ze Cho.
ºD-OLIA: A Hybrid MPTCP Congestion Control Algorithm with Net-
work Delay Estimation.º Sensors 21, no. 17 (2021): 5764.

[26] C. Paasch, S. Barre et al., Multipath TCP in the Linux Kernel, available
from http://www.multipath-tcp.org/

[27] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. ºModeling
TCP throughput: A simple model and its empirical validation.º In
Proceedings of the ACM SIGCOMM’98 conference on Applications,
technologies, architectures, and protocols for computer communication,
pp. 303-314. 1998.

[28] Morteza Kheirkhah and Wakeman, Ian and Parisis, George. ºMMPTCP:
A multipath transport protocol for data centers.º In IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer
Communications, 2016.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:19:21 UTC from IEEE Xplore.  Restrictions apply. 


