
84 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

A Curriculum Learning Approach to Optimization

with Application to Downlink Beamforming
Jeremy Johnston , Xiao-Yang Liu , Graduate Student Member, IEEE, Shixun Wu , and

Xiaodong Wang , Fellow, IEEE

Abstract—We investigate neural networks’ ability to approx-
imate the solution map of certain classes of beamforming op-
timization problems. The model is trained in an unsupervised
manner to map a given channel realization to a near-optimal
point of the corresponding optimization problem instance. Train-
ing is offline so that online optimization requires only the
feedforward computation, the complexity of which is orders of
magnitude less than state-of-the-art optimization algorithms. In
order to obtain a near-optimal channel-beamformer mapping,
either of two curriculum learning strategies is required: The
reward curriculum employs a sequence of learning objectives
of increasing complexity. The subspace curriculum employs a
sequence of training data distributions restricting the data to
linear subspaces of increasing dimension. For the MISO beam-
forming problem, the learned optimizer achieves near-optimal
objective value (sum rate or minimum rate) across a wide range
of signal-to-noise ratios. In the MIMO and relay scenarios, the
learned optimizer is on par with and in some cases far exceeds
performance of suboptimal beamforming strategies.

Index Terms—Deep learning, downlink beamforming, noncon-
vex optimization, curriculum learning.

I. INTRODUCTION

R
EAL-time applications in communications and control

require an agent/controller to solve optimization problem

instances generated by an environment over time. For example,

in MIMO communications a base station must repeatedly up-

date its transmit beamformers as the user channels vary, which

occurs typically in intervals on the order of milliseconds. There-

fore computational cost must play a central role in the algorithm

design. In principle, there exists a deterministic mapping from

the problem data space to the solution space; iterative convex

optimization algorithms approximate this mapping to desired

accuracy via recursive application of an analytically-derived

operator. The thrust of learning to optimize (L2O) [1], [2], [3]

and amortized optimization [4] is to replace such operator with

Manuscript received 12 May 2023; revised 15 September 2023 and
1 November 2023; accepted 3 November 2023. Date of current version
6 December 2023. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Xiao Fu. (Corresponding

author: Jeremy Johnston.)

Jeremy Johnston, Xiao-Yang Liu, and Xiaodong Wang are with the
Department of Electrical Engineering, Columbia University, New York,
NY 10027 USA (e-mail: j.johnston@columbia.edu; xl2427@columbia.edu;
xw2008@columbia.edu).

Shixun Wu is with the Department of Computer Science and En-
gineering, University of California, Riverside, CA 92507 USA (e-mail:
sw3511@columbia.edu).

Digital Object Identifier 10.1109/TSP.2023.3334396

a neural network and learn its parameters through data, with

the goal of obtaining near-optimal solutions with much lower

computational complexity.

A. Learning to Optimize and Amortized Optimization

The L2O/amortized optimization framework introduces no-

tions of an optimizee and optimizer. The optimizee is an opti-

mization objective family, each member of which is uniquely

specified by problem data. The optimizer is a parametric func-

tion (e.g., neural network) to be trained to produce an approxi-

mate optimum for each instance of the optimizee. The optimizer

may be trained in either a supervised or unsupervised fashion

with a suitable loss function such as the mean-squared error

if supervised, or the average optimizee value if unsupervised.

Thus the cost of optimization is “amortized” over the train-

ing distribution, shifting the computational burden from online

optimization to offline learning [4]. At the inference stage,

feedforward computations of the learned optimizer are used to

obtain an approximate solution to any sample instance of the

optimizee, offering orders of magnitude speed-ups compared

to state-of-the-art optimization algorithms.

As originally presented in [1] and [2], L2O was used

for learning an optimizer for training neural networks. Their

method adopts the algorithmic structure of vanilla gradient

descent, but uses a recurrent neural network (RNN) to process

the gradient and output the next step direction. For example,

the optimizee could be the classification error of some neural

network classifier, and the optimizer is an RNN trained such that

it can optimize the classification error over the classifier’s pa-

rameters. The optimizer’s training objective is to minimize the

expected cumulative classification (training set) error incurred

over the optimizer’s trajectory. Even though the optimizer may

be trained for a classifier with a certain model architecture,

the optimizer was shown to generalize to previously unseen

model architectures.

See [3] and [4] for thorough surveys of prior work and appli-

cations. Towards a theoretical foundation, the statistical com-

plexity of optimal solution mappings for linear and quadratic

programs is analyzed in [5]. L2O-like methods can also be

applied to combinatorial optimization problems where the deci-

sion variable belongs to a large but finite set. An optimizer may

be trained to iteratively construct and/or modify a candidate

decision until convergence to an optimum [6]. Learning-based

methods can be also used to augment rather than supplant

1053-587X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

JOHNSTON et al.: A CURRICULUM LEARNING APPROACH TO OPTIMIZATION WITH APPLICATION TO DOWNLINK BEAMFORMING 85

conventional optimization methods. For example, in mixed

integer linear programming, a learnable function aids conven-

tional heuristics to determine which variables to branch at

each iteration [7].

B. Curriculum Learning

Curriculum learning is an umbrella term for neural network

training techniques that rely on the assumption that learning is

more efficient when simple concepts are learned before more

complex ones. The term was coined in [8] where “the basic

idea is to start small, learn easier aspects of the task or easier

sub-tasks, and then gradually increase the difficulty level.” For

example, a curriculum may involve modification of the training

objective over the course of training, such that the objective

becomes more complex as the training progresses. Similarly,

training may begin with easier (e.g., noiseless) examples and

proceed to harder (e.g. noisy) examples. In sequential learning

tasks, one may gradually increase the sequence length; in L2O,

for example, the optimizer trajectory length may be increased

over the course of training [9].

C. Downlink Beamforming

In this paper, we consider three classes of optimization

problems arising from downlink beamforming, a fundamental

technology in multiuser wireless communication that allows

simultaneous transmission of multiple data streams from a base

station (BS) to multiple users using the same time-frequency

resource [10], [11]. The BS is equipped with an antenna ar-

ray whose complex amplitudes are to be configured so that

the transmitted signals add constructively in certain spatial di-

rections and destructively in others, thereby enabling spatial

multiplexing of user data streams. A particular configuration of

amplitudes is called a beamformer. Each beamformer has side-

lobes that interfere with other users, therefore the beamformers

should be optimized jointly so as to maximize a performance

function that quantifies desired system behavior. For example,

the minimum user rate is an objective that promotes fairness

among users; to achieve the best overall system performance,

we may consider the weighted sum of the user rates. Most

functions of interest (e.g., sum rate), however, lead to opti-

mization problems that cannot be solved in real time, thus

suboptimal heuristic beamformers (e.g., based on mean-squared

error criterion) prevail in practice [10].

D. Contribution and Outline

As far as we know, prior work has neither sought nor achieved

sum rate optimal beamformers via deep learning; suboptimal

heuristics are the only benchmarks considered therein. The

major contributions of this work are as follows:

• We develop two curriculum learning techniques for learn-

ing to optimize beamformers: The reward curriculum pre-

scribes a sequence of training objectives of increasing

complexity, employing the mean-squared error (MSE) cri-

terion. The subspace curriculum prescribes a sequence of

training data distributions by restricting the training data

to a linear subspace of increasing dimension.

• Our learning approach accommodates various beamform-

ing problem scenarios with different optimization objec-

tives. For MISO beamforming we consider sum rate and

min rate maximization. In addition, we consider sum

rate maximization for MIMO beamforming and relay

beamforming.

• With the proposed curriculum learning techniques, the

learned optimizers obtain nearly optimal beamformers

for MISO sum rate and MISO min rate scenarios. For

MIMO, our learned optimizer far outperforms the block

diagonalization and MMSE methods, particularly in the

overloaded case.

• For the relay scenario we jointly learn two optimizers

mimicking block coordinate optimization. This divide-

and-conquer strategy breaks the learning problem into two

smaller subproblems which yields better performance than

if we had attempted to learn a single mapping for the full

problem. The learned optimizers are on par with baseline

methods but require significantly less computation.

The remainder of the paper is organized as follows. First,

Section II formalizes our learning approach. Section III presents

two curriculum learning methods which are key to learning

the optimal solution mapping. In Sections IV and V we intro-

duce three beamforming scenarios, MISO, MIMO, and relay,

to which we will apply the L2O approach. Of the three, an

optimal solution is known only for the MISO case, therefore

for MIMO and relay our goal is to achieve user performance

as high as possible beyond the baseline heuristic methods. Fi-

nally, in Section VI we present simulation results and compare

and contrast existing methods that employ deep learning for

beamforming design.

II. LEARNING TO OPTIMIZE

Consider a family of optimization problems

P = {maximize
x∈Rn

R(s, x) | s ∈ R
m}

where R : Rm × R
n → R is the objective, s ∈ R

m is a pa-

rameter that specifies the problem instance and x ∈ R
n is the

decision variable. We are interested in applications in which

instances of problems in P must be rapidly solved in order to

enable some real-time application, such as communication or

control. In this regime, iterative algorithms are often preferred

owing to their low complexity. Iterative optimization entails

application of a sequence of functions ht : R
m × R

n → R
m,

t= 1, 2, . . . , where each ht maps s and a candidate point xt

to a new point xt+1 := ht(s, xt) and is designed such that the

sequence {xt} converges to a maximizer of R(s, x) for all s.

The recurrence is a composite mapping designed to approach

or approximate a solution mapping,

x�(s) = argmax
x

R(s, x). (1)

In learning to optimize (L2O), the goal is to learn an operator

Fθ : R
m × R

n → R
n, referred to as an optimizer, that approxi-

mates the optimal mapping (1) for all s, thereby embedding in

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

86 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Fig. 1. Block diagram for learning iterative optimization. Shown here is an
example with T = 3 iterations. At each iteration t, the learnable mapping Fθ

is applied to the input (s, xt−1) to produce xt.

Fθ the set of all solutions of the problem family P . Typically,

Fθ is a neural network with learnable parameters θ. We seek to

approximate the mapping (1) through recursive application of

Fθ. Given s and a starting point x0, we apply Fθ for T steps,

yielding xt := Fθ(s, xt−1), t= 1, 2, . . . , T . A block diagram of

this scheme is shown in Fig. 1 for T = 3 iterations. To measure

the performance of a given trajectory {xt}, we consider the sum

of the objective value over the trajectory,
∑T

t=1 R(s, xt). If s
has distribution ps, we consider

J(θ) := Es∼ps

[

T
∑

t=1

R(s, xt)

]

(2)

and the learning problem

maximize
θ

J(θ)

to which we may apply gradient ascent. Training samples (i.e.,

problem instances specified by s that belong to P) may be

obtained through simulation or measurement. If ps is known,

then we may generate arbitrarily many samples. The starting

point x0 is chosen either heuristically or randomly for each s.

Although the quantity of interest is the final objective value,

R(s, xT), such a metric would ignore the intermediate values;

summation over the entire trajectory, on the other hand, encour-

ages each step to improve the objective.

Learning θ in effect “amortizes” the computational cost of

optimization across all problem instances, shifting the compu-

tational burden from online optimization to offline learning [4].

In deployment of the learned model, an optimization problem is

instantiated by s, then s is fed to the model which outputs a near-

optimal solution for that problem instance. Since the model

execution entails just feedforward computation of the model,

optimization can be done repeatedly and rapidly.

The overall procedure is summarized in Algorithm 1. The

target family P is specified by an objective function R with pa-

rameter s ∈ R
m. In each epoch, the iteration xt = Fθ(s, xt−1)

is carried out for t= 1, 2, . . . , T and the cumulative objec-

tive value J is computed. Finally, a gradient step updates θ.

At test time, for a given problem instantiated by s, we sim-

ply apply xt = Fθ(s, xt−1) for t= 1, 2, . . . , T and return the

final iterate xT .

Analogous to the common practice of varying the hyperpa-

rameters of an iterative optimization algorithm as the iterations

progress, the parameter θ may in general be allowed to vary

with t. When θ is free to vary with respect to t, we refer to the

optimizer as “untied”; the above presentation considers a “tied”

optimizer [12]. Intuitively, the optimal parameters at t= 1 need

Algorithm 1: Learning to Optimize

1 Input:

2 R, objective function

3 s, problem instance parameter

4 x, decision variable

5 T , number of steps

6 η, learning rate

7 Nb, batch size.

8 Fθ, learnable optimizer

9 Train:

10 for epoch l = 1, 2, . . . do

11 Obtain batch of samples {s(i) | i= 1, . . . , Nb}
12 for i= 1, . . . , Nb do

13 Choose x
(i)
0 (heuristically or randomly)

14 for t= 1, 2, . . . , T do

15 x
(i)
t = Fθ(s

(i), x
(i)
t−1)

16 J(θ) =
∑

i

∑T

t=1 R(s(i), x
(i)
t)

17 θ ← θ + η∇θJ(θ)

18 Evaluate on test set S:

19 for s ∈ S do

20 Choose x0

21 for t= 1, 2, . . . , T do

22 xt = Fθ(s, xt−1)

23 Output xT

not be the same as some later step, say t= 5, and further-

more, allowing the parameters to vary grants more expressive

capacity. For an untied optimizer, Algorithm 1, we replace Fθ

with a sequence of optimizers Fθt , t= 1, . . . , T , hence step 15

becomes x
(i)
t = Fθt(s

(i), x
(i)
t−1).

A. Block Coordinate Optimization

L2O can be extended to problems where block coordinate

optimization is appropriate. The block coordinate method splits

the optimization variable to subsets and iteratively optimizes

over each subset while holding the others fixed. If x= (y, z)
is a partition of the optimization variable, the subproblems at

iteration t have the form

yt = argmax
y

R(s, y, zt−1) (3)

zt = argmax
z

R(s, yt, z). (4)

This approach is employed by ADMM [13] to efficiently solve

convex problems. Even ifR is nonconvex, the subproblems may

be tractable or admit closed-form solutions, thus providing an

efficient means of finding a local optimum.

Inspired by block coordinate optimization, we may learn

two optimizers to learn the optimal mappings in (3) and (4).

The rationale is twofold: a nonconvex objective may become

simplified when certain coordinates are held constant; and split-

ting the optimization variable reduces the dimension of the

output space of each optimizer which, by mitigating the curse

of dimensionality, reduces the desired mapping’s complexity.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

JOHNSTON et al.: A CURRICULUM LEARNING APPROACH TO OPTIMIZATION WITH APPLICATION TO DOWNLINK BEAMFORMING 87

Algorithm 2: Learning a Block Coordinate Optimizer

1 Input:

2 R, objective function

3 s, problem instance parameter

4 x= (y, z), decision variable

5 T , number of steps

6 η, learning rate

7 Nb, batch size.

8 Fθ, Gφ, learnable optimizers

9 Train:

10 for epoch l = 1, 2, . . . do

11 Obtain batch of samples {s(i) | i= 1, . . . , Nb}
12 for i= 1, . . . , Nb do

13 Choose y
(i)
0 , z

(i)
0

14 for t= 1, . . . , T do

15 y
(i)
t = Fθ(s, y

(i)
t−1, z

(i)
t−1)

16 z
(i)
t =Gφ(s, y

(i)
t , z

(i)
t−1)

17 end

18 end

19 J(θ, φ) =
∑

i

∑T

t=1 R(s(i), y
(i)
t , z

(i)
t)

20 if l mod 2 = 0 then

21 θ ← θ + η∇θJ(θ, φ)
22 else

23 φ← φ+ η∇φJ(θ, φ)
24 end

25 end

26 Evaluate on test set S:

27 for s ∈ S do

28 Choose y0, z0
29 for t= 1, . . . , T do

30 yt = Fθ(s, yt−1, zt−1)
31 zt =Gφ(s, yt, zt−1)
32 end

33 Output x= (yT , zT)
34 end

The procedure is summarized in Algorithm 2. Let Fθ and

Gφ denote optimizers which output candidate points y and z,

respectively. We consider the following alternating scheme that

iteratively computes yt and zt for t= 1, . . . , T :

yt = Fθ(s, yt−1, zt−1) (5)

zt =Gφ(s, yt, zt−1). (6)

A block diagram of this scheme is shown in Fig. 2 for T = 3 it-

erations. As in the single-variable case, we consider the average

sum of the objective values obtained over the iterations,

J(θ, φ) := Es∼ps

[

T
∑

t=1

R(s, yt, zt)

]

. (7)

We employ (7) as a training objective function in order to learn

the optimizer parameters θ and φ, which may be optimized via

block coordinate optimization as well. That is, at epoch 1 we

perform a gradient step for φ, at epoch 2 we update θ, at epoch

3 we update φ, and so on. To obtain a warm start for each

Fig. 2. Block diagram for learning block coordinate optimization. Shown
here is an example with T = 3 iterations. At each iteration t, the learnable
mapping Fθ is applied to the input (s, yt−1, zt−1) to obtain yt and Gφ is
applied to the input (s, yt, zt−1) to obtain zt.

optimizer, Fθ (or Gφ) may be separately pretrained via (3) (or

(4)) by fixing z (or y).

B. Iterative Optimization as a Markov Decision Process

Iterative optimization may be viewed as a Markov Decision

Process [2] where the policy is Fθ, the state at iteration t=
0, 1, . . . is the pair (s, xt), the action is xt+1 = Fθ(s, xt), and

the reward for action x is R(s, x). Reinforcement learning (RL)

[14] seeks to maximize with respect to the policy parameter θ
the discounted cumulative episode rewardE [

∑∞
t=1 γ

tR(s, xt)],
0< γ < 1, where expectation is over the start state (s, x0) and

all possible trajectories. In the case where the policy, transi-

tion dynamics, and x0 are all deterministic, every trajectory

is determined by the start state, so the RL objective becomes

Es∼ps
[
∑∞

t=1 γ
tR(s, xt)] where ps is the start state distribu-

tion. Setting γ = 1 and keeping only the first T terms of the

summation yields the aforementioned training objective J . In

principle, off-the-shelf RL algorithms may be applied in L2O

[2]. However, in L2O we assume that the reward function R is

perfectly known, which is generally not the case in RL; indeed,

much of the effort in the development of RL algorithms goes to-

ward approximating the value function since the reward is either

unknown or computationally costly to compute. Similarly, there

is a correspondence between block coordinate optimizers and

multi-agent reinforcement learning (MARL) [15]. In the fore-

going presentation, we may view Fθ and Gφ as the policies of

two agents acting in an environment. Equation (7) corresponds

to the expected cumulative reward of the agents’ actions.

C. Relation To Existing Methods

Several optimization-inspired deep learning methods can be

obtained as particular cases of the above framework, depending

on the architecture of the optimizer network (Fθ), the training

objective function (J(θ)), and the particular training algorithm.

Deep unfolding [16] is strategy for designing Fθ drawing upon

pre-existing iterative optimization algorithms for inspiration. A

given optimization algorithm is viewed as a function whose

learnable parameters correspond to the tunable hyperparameters

of the given algorithm; for example, when the target optimiza-

tion family is �1-regularized linear regression, ADMM [17]

and ISTA [18] consist of a sequence of linear and nonlinear

operations and thus are readily converted to neural networks.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

88 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Fig. 3. Reward curriculum intuition. The primary task has loss surface J2
and the subordinate task has J1. Starting from initial point θ0, training with
J1 converges to local optimum θ1; training with J2 converges to θ2. Starting
from θ1, training continues with J2 and converges to θ3, a local optimum
better than θ2.

A related set of approaches exploits the algorithmic structure

of gradient descent [1], [2]. Here the optimizer has the form

Fθ(s, xt, Ht) := xt +Gθ(s,Ht), where here Gθ is a learnable

function that outputs a step direction based on a history Ht

containing previous values of xt and gradients ∇xR(s, x)|x=xt
.

Although this method exploits the structure of vanilla gradient

descent, the architecture of Gθ(s,Ht) is a generic network

architecture (e.g. MLP) and thus imposes a weaker prior than

typical of deep unfolding. Furthermore, the trajectory of xt may

be viewed as an MDP with state Ht and the optimizer Fθ is

trained via deep reinforcement learning algorithms [2].

From a theoretical perspective, the universal approximation

theorem [19] suggests there exists a single-layer neural network

can approximate certain iterative algorithms arbitrarily well.

Neural networks can approximate multiplication and division

arbitrarily well, therefore a neural network can in principle

approximate arbitrarily well any algorithm that is a composi-

tion of multiplications and divisions [20]. In special cases it

can be shown, again by invoking the universal approximation

theorem, that a neural network can achieve zero duality gap

as the network size approaches infinity [21]. A more precise

characterization of L2O must overcome the inherent difficulties

of neural network analysis and is an active area of research [4].

III. CURRICULUM LEARNING

The ethos of curriculum learning is to train a model on a se-

quence of tasks of increasing difficulty. Each task is defined by

a particular training objective function and a particular training

data distribution. The sequence of tasks should increase in diffi-

culty [8], in that the loss functions should become successively

more complex, and the entropy of the data distributions should

increase as the curriculum progresses. Doing so may encourage

exploration and act as a sort of regularization, as illustrated in

Fig. 3. Rather than solely learn the primary task we first learn an

easier subordinate task, and resuming training from such point,

training may converge to a point in parameter space unreachable

had we trained solely on the primary task.

Most curriculum learning strategies are based on intuition

or justified by analogy to the way humans learn. There have

been attempts to precisely define and rigorously analyze the

concept in simplified settings, for instance in the case of convex

loss functions [22]. The import of such analyses is questionable

since neural network loss functions have many local minima. It

is an open question whether we can rigorously characterize the

mechanism by which a given curriculum allows the network to

avoid traps and reach favorable regions of parameter space.

We found that a straightforward implementation of Algo-

rithm 1 may be insufficient to learn the optimal mapping.

Curriculum learning techniques are required. We propose two

curricula that can be used within Algorithms 1 and 2. The

first, subspace curriculum, uses a fixed training objective and

prescribes a sequence of training data distributions of increasing

complexity. The second, reward curriculum, uses a fixed train-

ing distribution and prescribes a sequence of training objectives

of increasing complexity.

A. Subspace Curriculum

This curriculum curates the training data (problem instances)

seen by the optimizer over the course of training. At each

stage we sample from distributions of increasing entropy and

therefore learn tasks of increasing difficulty [8, §3]. Observe

that the distribution ps affects the difficulty of maximizing (2).

For a zero-entropy distribution ps(s) = δ(s− s0) where s0 ∈
R

m is known, we only have to learn a single output, namely

argmaxx R(s0, x).
The subspace curriculum prescribes that during each stage of

the curriculum the training data is restricted to a linear subspace

of the state space R
m. That is, we train the optimizer on a

sequence of tasks corresponding to the problem families

Pd = {maximize
x∈Rm

R(s, x) | s ∈ Sd}

for d= 1, 2, . . . ,m where Sd ⊆ R
m is a d-dimensional sub-

space. Since S1 ⊂ S2 ⊂ · · · ⊂ R
m, we have P1 ⊂ P2 ⊂ · · · ⊂

Pm, so intuitively the complexity of the problem family in-

creases with d. The entropy of the distribution increases with

d, since the dimension of the sample space increases with

d; for example, with pα,d =N (0, I), the entropy is given by

d(1 + log 2π)/2 + (log d)/2, which is increasing in d. The

subspaces are generated via a particular orthonormal basis

{b1, . . . ,bm} ⊆ R
m chosen prior to training, such that Sd :=

span({b1, . . . ,bd}). If the subspace dimension is d, training

samples are generated via s=
∑d

i=1 αi,dbi, where the coeffi-

cients αi,d ∈ R are sampled from a chosen distribution pα,d.

Algorithm 3 demonstrates the application of the subspace

curriculum in a general learning environment. We are given a

training objective J(θ) where θ denotes the learnable model

parameters. Before training begins, we generate a random or-

thonormal basis {b1, . . . ,bm} which induces the subspaces

of R
m in which training samples will reside. We initialize

the subspace dimension d= 1 and we increment the subspace

dimension every N epochs. Thus, for the first N epochs all

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

JOHNSTON et al.: A CURRICULUM LEARNING APPROACH TO OPTIMIZATION WITH APPLICATION TO DOWNLINK BEAMFORMING 89

Algorithm 3: Subspace Curriculum

1 Input:

2 Δd: subspace dimension increment

3 N : number of epochs in each stage of curriculum

4 {b1, . . . ,bn}: orthonormal basis

5 {pα,d | d= 1, . . . ,m}: coefficients distributions

6 Nb: batch size

7 J(θ): training objective

8 Initialize d= 1
9 for epoch l = 1, 2, . . . do

10 Generate batch {s(i) =∑d

k=1 α
(i)
k,dbk | α(i)

k,d ∼
pα,d, i= 1, . . . , Nb}

11 Compute J(θ) and update θ
12 if d < n and l = 0 mod N then

13 update d← d+Δd

training samples lie on the line induced by basis vector b1,

i.e., the samples are generated according to s= α1,1b1 where

α1,1 ∼ pα,1. After N epochs, we increase the subspace dimen-

sion to d= 2, so that in the following N epochs training sam-

ples are generated via s= α1,2b1 + α2,2b2 where α1,2, α2,2 ∼
pα,2. After N(m− 1) epochs the subspace dimension is d=m,

at which point the training samples spanRm. Since the subspace

curriculum affects only the training data, it can in principle be

incorporated into various learning algorithms. For example, in

Algorithm 1, one would only need to modify the training sample

generation (step 11).

B. Reward Curriculum

Suppose we have two objective functions R1 : R
m × R

n →
R and R2 : R

m × R
n → R corresponding to two distinct tasks

such that the point argmax
x

R1(s, x) obtains a reasonably good

objective value R2 for all s. We may first learn θ for the family

of problems

P1 = {maximize
x∈Rm

R1(s, x) | s ∈ R
m},

using the training objective J1(θ) := Es∼ps

[
∑T

t=1 R1(s, xt)
]

.

If the optimizer converges to a point θ1, then starting from

θ1 we continue training with primary task objective J2(θ) :=
Es∼ps

[
∑T

t=1 R2(s, xt)
]

until convergence. Generally, θ1 will

be suboptimal with respect to P2, but nonetheless may provide

a warm start that ultimately leads to a point superior to that

which would be obtained via training solely with J2. Moreover,

if R1 is a relatively simple function (e.g., quadratic in x),

then it stands to reason that the mapping argmaxx R1(s, x)
will be simpler and θ will converge quickly. This intuition is

illustrated in Fig. 3 and supported by the experimental results in

Section VI. The idea of using a sequence of objective func-

tions for nonconvex optimization traces back to continuation

methods: a nonsmooth objective is replaced by a surrogate

objective that is relatively smooth (i.e., easier to optimize)

and parameterized by a scalar such that, as the scalar in-

creases, the surrogate becomes less smooth and converges to the

desired objective [8].

Algorithm 4: Reward Curriculum

1 Input:

2 {Jk}Kc

k=1: task objective functions

3 θ: model parameters

4 N : number of epochs in each stage of curriculum

5 Initialize k = 1
6 for epoch l = 1, 2, . . . do

7 Generate batch {s(i)}
8 Compute Jk(θ) and update θ
9 if k <Kc and l = 0 mod N then

10 update k ← k + 1

TABLE I
SYMBOL CORRESPONDENCE BETWEEN SECTION II AND VARIOUS

BEAMFORMING SCENARIOS

MISO MIMO Relay

s H {Hk} (H,G)
x W {Wk} (F,W)
R R(H,W) R({Hk}, {Wk}) R(H,G,F,W)

Algorithm 4 demonstrates the application of a reward cur-

riculum in a general learning environment. It is assumed that

there are Kc task objective functions {Jk}Kc

k=1 such that the task

difficulty increases with k and the desired task is represented

by the final objective function JKc
. Training begins with k = 1

and thus J1 serves as the training objective. In each epoch, we

obtain a batch of samples and then perform a gradient update

using J1. After N epochs, the task index is incremented to

k = 2 and J2 is used as the training objective function. After

N(Kc − 1) epochs we have k =Kc and the final task objective

JKc
is used for the remainder of training. The reward curricu-

lum is readily applied to Algorithm 1; the training objective

in step 16 is modified according to the curriculum over the

course of training.

Next we apply the proposed methods to three beamforming

scenarios: MISO, MIMO and relay. This requires four main

steps: (1) design the optimizer neural network architecture,

(2) define a problem family with objective function R cor-

responding to a system performance criterion, (3) formulate

an iterative scheme that outputs beamformers for given chan-

nels where the iterative operator is a learnable optimizer, (4)

devise a training procedure to learn the optimizer parameters

such that the iterative scheme approaches the optimal channel-

beamformer mapping. For reference, Table I contains the sym-

bol mapping for each application scenario.

IV. APPLICATION TO MISO DOWNLINK BEAMFORMING

A. System Model

Consider an N -antenna BS that communicates with K
single-antenna users. The BS applies transmit beamformer

wi ∈ C
N to the ith user data stream, so that, if xi ∈ C is the

symbol intended for user i, the transmitted signal is
∑K

i=1 xiwi.

Let hk denote the channel between the BS and user k, so that

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

90 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

user k receives the signal

yk = hH

k

K
∑

i=1

xiwi + nk, k = 1, . . . , K (8)

where nk ∼ CN (0, σ2) is additive noise. User k’s signal-to-

interference-plus-noise ratio is

SINRk =
|hH

kwk|2
σ2 +

∑

i�=k |hH

kwi|2
.

The MISO beamforming problem is formulated as

maximize
w1,...,wK

f(r1, . . . , rK)

subject to
K
∑

k=1

‖wk‖22 ≤ P (9)

where f : RK → R is the system performance function and

rk := log2(1 + SINRk) is the achievable information rate of

user k. For many common choices of f , (9) can be solved via

specialized algorithms. However, the computational complex-

ity is often prohibitive; in practice sub-optimal linear beam-

formers prevail.

1) Sum-Rate Maximization: For sum-rate maximization we

define f(r1, . . . , rK) :=
∑K

k=1 rk. In this case (9) is noncon-

cave and has many local maxima, hence general purpose solvers

are not guaranteed to obtain the global optimum. Nonetheless,

a global optimum can be found via the branch-reduce-bound

(BRB) algorithm [23]. BRB iteratively refines a set of bounding

boxes that contain the Pareto frontier. At each iteration the

bounds are improved by solving a sequence of convex pro-

grams. Arbitrary small solution error can be achieved in a finite

number of iterations, at the cost of solving an exponential (in

K) number of convex programs.

2) Min-Rate Maximization: For min-rate maximization we

define f(r1, . . . , rK) := min
k

rk. In this case (9) is equivalent to

maximize
w1,...,wK ,r

r

subject to rk ≥ r, ∀k
K
∑

k=1

‖wk‖22 ≤ P, (10)

which is quasiconvex and solvable via the bisection method [23,

Theorem 2.10].

3) Linear MMSE Beamformers: The well-known linear

MMSE beamformers [10] are given by

wk =
√
pk

(σ2IN +
∑K

i=1
P
K
hih

H

i)
−1hk

∥

∥

∥(σ2IN +
∑K

i=1
P
K
hih

H

i)
−1hk

∥

∥

∥

2

(11)

where {pk} are transmit powers. We assume equal power allo-

cation, pk = P/K.

B. Proposed Learning Algorithm

We apply Algorithm 1 as follows. Let s= [h1 · · · hK]H :=
H ∈ C

K×N and x= [w1 · · · wK] :=W ∈ C
N×K . The opti-

mization problem class is

P =

⎧

⎪

⎨

⎪

⎩

maximize
W∈CN×K

‖W‖2

F
=P

R(H,W)

⎫

⎪

⎬

⎪

⎭

,

where R : CN×K × C
N×K → R is the performance criterion

(f in (9)). The learnable optimizer is denoted Fθ : C
N×K ×

C
N×K → C

N×K with learnable parameters θ. The beamform-

ers are iteratively computed via

Wt+1 := Fθ(H,Wt). (12)

and the training objective is

J(θ) = EH∼pH

[

T
∑

t=1

R(H,Wt)

]

(13)

where pH is the channel distribution. Algorithm 1 essentially

performs stochastic gradient ascent with objective J(θ). In each

epoch, a batch of channels is generated with SNR σ2
H

(the

SNR cam be made to vary from sample to sample so that the

optimizer is trained on a range of SNRs; see Section VI for

details). For each sample in the batch, we carry out the iteration

(12) for T steps, compute the corresponding cumulative loss

(13) and perform a gradient step for θ.

As previously mentioned, we found that Algorithm 1 by

itself is insufficient. At least one of the following curriculum

learning techniques is required in order to obtain near-optimal

beamformers.

1) Reward Curriculum Learning: The MMSE problem is

well-suited for the role of a subordinate task in a reward curricu-

lum: the MMSE beamformers achieve a reasonably good sum

rate and min rate, and the MSE objective is simply quadratic in

W. The MSE is defined as

MSE(H,W) := E
[

‖HWx+ n− x‖22
]

, (14)

where expectation is with respect to the noise n∼ CN (0, σ2I)
and data vector x∼ CN (0, I). The MMSE optimization

problem is

minimize
W∈CN×K

‖W‖2

F
=P

MSE(H,W).

To compute the MSE, we may either empirically evaluate

the objective via sampling i.i.d. vectors x and n, or we

may use the analytical expression MSE(H,W) = ‖HW‖2F −
2Re{trace(HW)}. In terms of Algorithm 4, our proposed

reward curriculum defines the task loss R1 := MSE and R2 is

the desired performance criterion (e.g., sum rate, min rate).

2) Subspace Curriculum Learning: Assuming pH ∼
CN (0, 1), we can generate arbitrarily many training samples

and curate the training data according to the subspace

curriculum. To implement subspace curriculum learning, we

must specify the orthonormal basis {b1, . . . ,bn} of R
n and

the distributions {pα,d | d= 1, . . . ,m} which are used to

generate samples in a given subspace. For the MISO problem,

the full channel space is R
2NK , hence n= 2NK. The basis

vectors are randomly generated. We set pα,d = CN (0, 1)
for all d.

C. Toy Example

Each beamforming method can be written as a function

W�
f (H) := argmax

W

f(W,H),

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

JOHNSTON et al.: A CURRICULUM LEARNING APPROACH TO OPTIMIZATION WITH APPLICATION TO DOWNLINK BEAMFORMING 91

Fig. 4. Solution mapping for optimal (green), learned optimizer (blue), and MMSE (red) beamformers. On the left, the user channels are 2-dimensional, on
the right they are 3-dimensional. The optimal solution map for the 2-dimensional channels is relatively more complex than that of the 3-dimensional channels.
Also, the MMSE solution map is a smoothed version of the optimal solution map. Since the solution map is the function we wish to approximate, these
observations suggest that the subspace and reward curricula reduce the difficulty of the learning task. The learned optimizer approximates the optimal map.

referred to as the solution map corresponding to the objective f .

For sum-rate maximization, f is the sum rate; for linear MMSE,

f is the negative MSE. Our learning approach in essence at-

tempts to approximate the mapping W�
f (H) for a specified

f . Therefore the difficulty of the learning task is tied to the

complexity of W�
f (H).

The following toy example is meant to elucidate how the two

proposed curriculum strategies (reward and subspace) deform

the target solution map W�
f (H). To facilitate visualization, we

consider the case N =K = 2, so that W�
f (H) ∈ R

2×2, and

channels of the form

H1(α)=

[

cosα 0
sinα 0

]

∈ R
2×2, H2(α)=

[

cosα 1
sinα 0.5

]

∈ R
2×2

parameterized by α ∈ [0, 2π]. It can be verified that the set

{vec(H1(α)) : α ∈ [0, 2π]} spans a 2-dimensional subspace of

R
4, while {vec(H2(α)) : α ∈ [0, 2π]} spans a 3-dimensional

subspace of R4. In Fig. 4, each set of plots shows the entries of

W�
f (Hi(α)), i= 1, 2, α ∈ [0, 2π], for the cases: (a) f is the

sum rate (green), computed via the optimal BRB algorithm,

(b) when f is the negative MSE (red) given by equation (11)

in the manuscript. Also shown are the beamformer entries

output by a neural network trained (via the proposed frame-

work) to approximate the sum rate solution map. We make the

following observations:

• The MSE solution map is simpler than the sum rate

solution map: In all plots, the red curve is a smoothed

version of the green curves. This suggests that the W�
f (H)

is simpler when f is the MSE, relative to when f is the

sum rate. We conclude that learning the MMSE solution

map will be easier than learning the sum rate solution map.

• Solution map complexity increases with channel subspace

dimension: The solution maps for the channels H1(α) are

qualitatively smoother than those for H2(α). This suggests

that the training objective becomes simpler when the chan-

nels lie on a low-dimensional subspace. As the subspace

dimension increases, the desired solution map becomes

more complex.

V. APPLICATION TO MIMO AND RELAY BEAMFORMING

A. MIMO Beamforming

In the MIMO case, each user is equipped with a receive an-

tenna array capable of receive beamforming, or spatially filter-

ing the impinging waveform, and hence may perform additional

interference cancellation, thereby relaxing the transmit beam-

forming requirements. Suppose the BS has N transmit antennas

and user k has mk receive antennas. The symbol xk ∈ C
mk

is intended for user k and the BS applies the beamformers

Wk ∈ C
N×mk , so that the transmitted signal is

∑K

k=1 Wkxk.

If Hk ∈ C
N×mk is user k’s channel matrix, then user k’s ar-

ray measurement yk = [yk,1 · · · yk,mk
]T ∈ C

mk has the form

yk =HH

k

∑K

i=1 Wixi + nk, or

yk =HH

kWkxk +HH

k

K
∑

i �=k

Wixi + nk (15)

Define Σk ∈ C
mk×mk , the covariance matrix of the

interference-plus-noise term,

Σk = σ2I+HH

k

⎛

⎝

K
∑

i�=k

WiW
H

i

⎞

⎠Hk. (16)

Then the rate of user k is

rk = log2
∣

∣I+Σ−1
k HH

kWkW
H

kHk

∣

∣ (17)

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

92 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

and the beamformer design problem becomes

maximize
W1,...,WK

f(r1, . . . , rK)

subject to

K
∑

i=1

‖Wi‖2F ≤ P. (18)

(18) is nonconvex and no known method guarantees a solution.

The block diagonalization beamforming (BDBF) [24]

method uses the singular value decomposition to choose trans-

mit beamformers that lie in the null space of the matrix

H̃T

k � [H1 · · ·Hk−1 Hk+1 · · · HK]T ∈ C
(m−mk)×N ,

thereby guaranteeing zero inter-user interference. We refer the

reader to [24, §4.1] for more details.

1) Proposed Learning Algorithm: The class of resource

allocation problems under consideration is

P =

⎧

⎪

⎨

⎪

⎩

maximize
Wk∈CN×mk

∑
k
‖Wk‖2

F
=P

R({Hk}, {Wk})

⎫

⎪

⎬

⎪

⎭

,

whereR : CN×(m1+m2+···+mK) × C
N×(m1+m2+···+mK) → R

is the performance criterion and Hk ∈ C
N×mk . In this case

we may straightforwardly apply Algorithm 1 by defining s :=
(H1, . . . ,HK), x := (W1, . . . ,WK). We consider only the

sum rate

R({Hk}, {Wk}) =
K
∑

k=1

log2
∣

∣I+Σ−1
k HH

kWkW
H

kHk

∣

∣ .

B. Relay Beamforming

We consider a scenario where there is an M -antenna re-

lay station (RS) between the N -antenna BS and the single-

antenna users. Let G ∈ C
M×N be the MIMO channel matrix

between the BS and the RS and let hk ∈ C
M be the channel

vector between the RS and user k. The transmitted signal from

the BS is
∑K

k=1 xkwk. Denote the BS beamformers W =
[w1 · · · wk] ∈ C

N×K . The received signal at the RS is given

by z=G
∑K

k=1 xkwk + v ∈ C
M where v ∼ CN (0, σ2

r). The

RS then employs a transmit beamforming matrix F ∈ C
M×M

and forwards the signal Fz ∈ C
M to the users. The received

signal at user k can be written as yk = hH

kFz+ nk, or

yk = hH

kFGwkxk +
∑

l �=k

hH

kFGwlxl + hH

kFv + nk,

where nk ∼ CN (0, σ2). The SINR of user k is

SINRk =
|hH

kFGwk|2
∑

l �=k |hH

kFGwl|2 + ‖hH

kF‖22σ2
r + σ2

. (19)

and the user rates are given by rk := log2(1 + SINRk). The

goal is to choose beamformers W and F to maximize a perfor-

mance function f subject to transmit power constraints at the

BS and RS:

maximize
W,F

f(r1, . . . , rK)

subject to ‖W‖2F ≤ Pb

‖F‖2F ≤ Pr. (20)

To obtain a suboptimal solution, we may plug (20) into a

generic solver (e.g., sequential least-squares quadratic program-

ming), or we may attempt to find a suboptimal point of the

MMSE problem

min
W,F

E

[

K
∑

k=1

|yk − xk|2
]

s.t. ‖W‖2F = Pb, ‖F‖2F = Pr.

(21)

via block coordinate descent. If F is fixed, then (21) reduces to

a MISO MMSE problem and we may use (11) with the channel

replaced with the effective channel HFG. If W is fixed, then

we may compute the unconstrained MMSE estimate for F

in closed form via F= (HHH)−1HWHGH(GWWHGH +
σ2
rI)

−1 and then normalize such that ‖F‖2F = Pr.

1) Proposed Learning Algorithm: The class of resource

allocation problems under consideration is

P =

⎧

⎪

⎨

⎪

⎩

maximize
F∈CM×M ,W∈CN×K

‖W‖2

F
=Pb,‖F‖2

F
=Pr

R(H,G,F,W)

⎫

⎪

⎬

⎪

⎭

,

where H ∈ C
K×M ,G ∈ C

M×N and R is the performance

criterion. We consider the sum rate R(H,G,F,W) =
∑K

k=1 log2(1 + SINRk) where SINRk is given by (19).

Applying Algorithm 2, we define two optimizers Fθ and

Gφ and alternate between selection of variables y :=W and

z := F given s := (H,G). Observe that when F is fixed, the

task of selecting W is equivalent to that of the MISO downlink

beamforming problem in Section IV with the channel matrix

set equal to the effective channel H̃ :=HFG. When W is

fixed, the task is to choose relay beamformers F given the

BS-relay channel H and the relay-user effective channel GW.

The beamformers are computed by alternating between the two

optimizers for t= 1, . . . , T :

Wt,0 =Wt−1,TW
(22)

Ft,0 = Ft−1,TF
(23)

H̃t =HFt,0G (24)

Wt,k = Fθ(H̃t,Wt,k−1), k = 1, . . . , TW (25)

Ft,k =Gφ(GWt,TW
,H,Ft,k−1), k = 1, . . . , TF , (26)

where we have unrolled Fθ and Gφ for TF and TG steps, respec-

tively. We set F0,TF
= I/

√
M and W0,TW

=HG/‖HG‖F .

The input to Fθ is analogous to that of the MISO optimizer

defined in Section IV, where H̃t serves as the BS-user channel,

but a key difference is that here the channel varies with t since it

depends on the choice of Ft. The inputs of Gφ include GWt

(the effective channel between the relay and the users) along

with H and Ft. The training objective is defined as

J(θ, φ) = E

[

T
∑

t=1

TW
∑

k=1

R(H,G,Ft,0,Wt,k) (27)

+

TF
∑

l=1

R(H,G,Ft,l,Wt,TW
)

]

. (28)

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

JOHNSTON et al.: A CURRICULUM LEARNING APPROACH TO OPTIMIZATION WITH APPLICATION TO DOWNLINK BEAMFORMING 93

Fig. 5. Block diagram of our proposed optimizer network architecture for
the MISO beamforming problem. An arbitrary iteration t is depicted. The

input is the state (H,Wt−1). The output of the DenseNet module is W̃t

which is normalized to produce the output Wt with ‖W‖2F satisfying the
transmit power constraint.

Since for fixed F the problem has the same structure has the

MISO scenario, Fθ may be pre-trained as a MISO beamforming

optimizer (Section IV) so that it outputs the optimal W for any

given H̃. Having initialized Fθ, we then apply Algorithm 2.

VI. RESULTS

The following experiments show that the learned optimiz-

ers significantly outperform the baseline state-of-the-art beam-

forming methods and in some scenarios achieve optimality.

A combination of several training techniques are required in

order to do so. These techniques are especially important for

larger problem sizes and higher SNRs, where the learning task

becomes more challenging and simple training methods fail.

The first set of results show the performance of our best learned

optimizer trained using the full set of training techniques. Then

we perform an ablation study to probe the influence of each

training technique.

A. Neural Network Architecture

The algorithms in Section II are valid for an optimizer with

arbitrary neural network architecture. For the beamforming ap-

plications, we hand-designed a model architecture that exploits

the structure of the state and action. The proposed neural net-

work architecture consists of three modules (Fig. 5): biconvolu-

tional neural network (BiCNN), DenseNet, and normalization

layer. This model is used in all experiments. For N = 4 there

are approximately 5× 105 learnable parameters overall and for

N = 8, approximately 4× 106 learnable parameters.

1) BiCNN Module: The first module is a bilateral con-

volutional neural network (BiCNN) which performs feature

extraction on the network input, lifting the input to a high

dimensional space. Convolution exploits the translation invari-

ance of the input along both user and antenna dimensions,

since for any ordering of input channel vectors the optimal

beamformers are the same (up to a permutation of the user

indices) and vice versa. For the MISO optimizer, the input is

an array with shape (4,K,N) comprising the concatenation

of the real and imaginary parts of H and W. The module

consists of two subnetworks each with two 2-D convolution

layers. One subnetwork filters over the user axis while the other

filters over the antenna axis. The overall output is the sum of

the subnetwork outputs.

2) DenseNet Module: The DenseNet module consists of

two linear layers with shortcut connections as in [25]. The

DenseNet’s shortcut connections allow for more sophisticated

TABLE II
WALL CLOCK RUN TIMES FOR MISO BEAMFORMING

METHODS. ‘‘OURS’’ IS THE PER-STEP FEEDFORWARD

INFERENCE TIME ON AN A100 GPU (E.G., FOR

T = 5 TOTAL STEPS IN THE CASE N =K = 4, THE

TOTAL INFERENCE TIME IS AROUND 14
MILLISECONDS). THE OPTIMAL METHODS ARE

DESCRIBED IN SECTION IV AND IMPLEMENTED ON A

3.7 GHZ CPU. THE RUN TIMES OF ‘‘OURS’’ AND

MMSE ARE INDEPENDENT OF THE CHANNEL

REALIZATION. THE OPTIMAL METHOD RUN TIME IS

GENERALLY DIFFERENT FOR EACH REALIZATION;
WE REPORT THE AVERAGE OVER 100 SAMPLES

N =K = 4 N =K = 8
Ours (per step) 2.8 ms 4.0 ms

Optimal (sum rate) 20 minutes 6 hours

Optimal (min rate) 4 seconds 6 seconds

MMSE 0.6 ms 0.8 ms

features using fewer parameters [25]. This module transforms

the high-dimensional BiCNN output to a vector of 2NK real

numbers which form the beamformer matrix in C
N×K .

3) Normalization Layer: Each beamforming scenario in-

cludes a constraint on the transmit power. This constraint is eas-

ily enforced by appending a normalization layer. In particular,

suppose W̃ ∈ C
N×K is the beamformer matrix produced by

the DenseNet module. Then, for a given transmit power P , the

normalization layer outputs W =
√
PW̃/‖W̃‖F so that the

output satisfies ‖W‖2F = P .

B. MISO Downlink Beamforming

Here we present results for the MISO beamforming sce-

nario of Section IV. Training samples are generated [H]ij
i.i.d.∼

CN (0, 1
NK

σ2
H
). The SNR is

SNR :=
E[‖HHW‖2F]

σ2
=

σ2
H
P

σ2

where we have used the constraint ‖W‖2F = P . Without

loss of generality, we fix P = 1 and σ2 = 1 so that

SNR = σ2
H

. For each sample σ2
H

is drawn uniformly from

{10 dB, 15 dB, 20 dB}, so that the network is trained on a

variety of samples. In Section VI.E.4 we further investigate

the effect of the training distribution properties.

Fig. 6 shows the results for sum rate (left) and min rate

(right) versus SNR, including the cases N =K = 4 (solid) and

N =K = 8 (dashed). The L2O policies were trained using

Algorithm 1 combined with the MSE reward curriculum (Sec-

tion IV.B.1). The true optimal beamformers are computed as

described in Section IV.A.1. For each SNR test case, the learned

optimizer achieves a significantly higher objective value than

MMSE, and in the N =K = 4 case achieves virtually optimal

sum rate. The single step optimizer without curriculum learn-

ing (green), on the other hand, performs worse than MMSE,

showing that the naive implementation is inadequate.

The wall clock run times of each method are reported in

Table II. We report the per-step execution time of the learned

optimizer (i.e., for the case T = 1). Compared to the optimal

sum rate and min rate methods, the learned optimizer run time

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

94 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Fig. 6. MISO sum rate (left) and min rate (right) versus SNR. Three learned optimizers are trained with different training distributions: variable SNR
∈ {10, 15, 20}, SNR = 10 dB, and SNR = 20 dB. The variable SNR net obtains optimal beamformers within at most 1% and 7% for N =K = 4 (solid)
and N =K = 8 (dashed), respectively.

Fig. 7. MIMO sum rate versus SNR. Three learned optimizers are trained
with different training distributions: variable SNR ∈ {10, 15, 20}, SNR = 10
dB, and SNR = 20 dB. For N = 4, K = 2, mk = 2, the learned optimizers
outperform the block diagonalization (BD) beamformers. For the overloaded
case N =K = 4 and mk = 2, the learned optimizers perform far better
than MMSE.

is several orders of magnitude lower. Essentially, the computa-

tional burden has been amortized during the training process—

when the model is deployed, for each new channel realization

we only need to execute T forward passes of the trained model

in order to obtain near-optimal beamformers. We emphasize

that the same network architecture is used for all beamforming

scenarios, therefore the per-step execution times of “Ours” also

hold for the MIMO and relay scenarios.

C. MIMO Downlink Beamforming

Fig. 7 shows the sum rate versus SNR curve of the learned

optimizers trained as described in Section V.A.1. We fix the

number of BS antennas N = 4 and the number of antennas per

user mk = 2 for each user k = 1, . . . ,K, and consider K = 2.

In the MIMO case there is no known optimal solution, so

we compare with the block-diagonalization beamformers for

K = 2 and the MMSE beamformers for K = 4. The block-

diagonalization beamforming method is not applicable when
∑

k mk >N , so for K = 4 we treat each antenna as a single

user and compute the corresponding MMSE beamformers as in

the MISO case. Algorithm 1 is used with the MIMO sum rate

formula as the reward function and subspace curriculum learn-

ing (Algorithm 3). The learned optimizers achieve a substan-

tially higher sum rate than the BD and MMSE beamformers,

particularly for the overloaded case K = 4.

D. Relay Beamforming

For the relay problem we apply Algorithm 2 as described

in Section V.B.1. The W-optimizer, Fθ, is pretrained as if it

were a MISO beamforming optimizer, so that upon initializa-

tion it outputs the optimal beamformers for any given effec-

tive channel H̃=HFG. We set T = TW = TF = 6. Assum-

ing a Gaussian channel, we have [H]ij
i.i.d.∼ CN (0, 1

NK
σ2
H
) and

[G]ij
i.i.d.∼ CN (0, 1

MK
σ2
G
). The relay and BS transmit powers

are Pb = Pr = 1, we assume σ2 = σ2
r and σ2

s := σ2
H
= σ2

G
. The

SNR is defined as SNR :=
σ2

s

σ2 . Without loss of generality, we

fix σ2 = 1 so that SNR = σ2
s . As baselines, we use the SciPy se-

quential least-squares quadratic programming (SLSQP) solver,

as well as the alternating least squares mentioned in the dis-

cussion following (21). We consider two scenarios, N =M =
K = 4 and N =M =K = 8. The resulting sum rate versus

SNR performance is shown in Fig. 8. The learned optimizers

perform well above Alternating MMSE and are on par with the

generic solver. The generic solver run time is approximately

4 seconds per sample, alternating MMSE is approximately 500
milliseconds per sample, and the learned optimizers with T = 5
require approximately 30 milliseconds per sample.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

JOHNSTON et al.: A CURRICULUM LEARNING APPROACH TO OPTIMIZATION WITH APPLICATION TO DOWNLINK BEAMFORMING 95

Fig. 8. Relay sum rate versus SNR. Three learned optimizers are trained
with different training distributions: variable SNR ∈ {10, 15, 20}, SNR = 10
dB, and SNR = 20 dB. For N =K = 4, the learned optimizers are on par
with the generic solver, but require an order of magnitude less run time to
obtain the beamformers during testing.

E. Ablation Study

As seen in the previous set of experiments, the naive imple-

mentation performs worse than the baseline MMSE beamform-

ers. The following techniques are required

• Curriculum learning (training objective or training data)

• Multi-step optimizer

• Untied parameters (neural network parameters may vary

across steps)

• Variable SNR training data

To illuminate the impact of each technique, we perform an

ablation study for the MISO scenario.

1) Curriculum Learning: Fig. 9 includes a set of training

curves for a variety of training procedures labeled as follows:

• Reward Curriculum: Algorithm 1 with reward curriculum

(Section IV) using the MSE and sum rate objective as the

two tasks. First the optimizer is trained using the MSE

objective for 4000 epochs, then training continues with the

sum rate objective until convergence.

• Subspace Curriculum: Algorithm 1 with subspace curricu-

lum learning with the sum rate objective.

• MSE Objective: Algorithm 1 with MSE objective (14), no

curriculum learning.

• Sum Rate Objective: Algorithm 1 with sum rate objective,

no curriculum learning.

We find that Reward Curriculum and Subspace Curriculum

yield an optimizer that approaches optimality. To achieve a

target sum rate of 95% of the optimal, the Reward Curriculum

method requires about half the epochs for N =K = 4 and

about a third of the epochs for N =K = 8 relative to that

required by the Subspace Curriculum.

2) Tied vs. Untied Parameters: Fig. 10 illustrates the effect

of the number of steps T , as well as the effect of untying the

parameters across time steps (Section II). In the first stage of

training, the optimizer parameters are untied (shared across

steps), and after convergence, the parameters are untied (al-

lowed to vary across steps) and training resumes until conver-

gence. Each data point represents an optimizer that was trained

with T equal to the abscissa. We find that the untied optimizer

achieves higher reward than the tied optimizer.

3) Multiple Steps: Moreover, from Fig. 10 it is also seen

that multi-step policies perform much better than the single step

optimizer. Since action t depends on action t− 1, the input data

distribution changes at each step; therefore, for T > 1, at each

step the optimizer observes higher quality inputs and further

refines them toward the optimum. Furthermore, unrolling the

optimizer for multiple steps allows it to explore the action space

and escape local minima.

4) Training Data SNR: Fig. 11 investigates how perfor-

mance varies as the test SNR deviates from the training SNR.

The variable SNR optimizer (blue) was trained on sample chan-

nels with SNR drawn uniformly between 10 dB and 20 dB,

while the green and yellow curves correspond to policies trained

exclusively at 20 dB and 10 dB. The single SNR optimizers

(green and yellow) achieve near-optimal sum rate when tested

on sample channels with the same SNR on which they were

trained, while performance slightly worsens for SNRs outside

of the training SNR. The variable SNR optimizer, on the other

hand, is robust across the entire SNR range.

F. Discussion

The experiments reveal the challenges of scaling neural net-

works to larger input dimensions. Doubling the problem size

from N =K = 4 to N =K = 8 required a sixfold increase in

training epochs and tenfold increase in the number of learn-

able parameters. Beyond N =K = 8, we attempted to further

increase the network size but the curriculum strategies yielded

diminishing returns and the training converged to a suboptimal

point. Future work may investigate different network architec-

tures and weight compression techniques to reduce the size of

the parameter space.

VII. RELATED WORK: DEEP LEARNING FOR

BEAMFORMING DESIGN

Here we give a brief survey of prior work applying deep

learning techniques for beamforming design so as to situate our

proposed method. [20] considers a multiuser communication

setup with K SISO channels and designs learning-based ap-

proach to optimize only the power allocation; there is no beam-

former design because the channels are scalar. The network is

trained in a supervised manner based on a training set of optimal

power allocations obtained via the WMMSE algorithm, result-

ing in a learned model whose output power allocations obtain

near-optimal sum rate. A similar approach is applied to a system

of K MIMO channels in [26] to optimize both transmit and

receive beamformers, except training proceeds in two stages:

first, supervised learning based on training samples obtained

via WMMSE, followed by unsupervised learning using the sum

rate as the training objective. In [27], the WMMSE algorithm

is modified and unfolded into a neural network trained with

the WMMSE objective as the unsupervised learning objective.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

96 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Fig. 9. Training (left) and test (right) sum rate versus training epoch for MISO Variable SNR optimizer. The training data is a uniform mixture of 10, 15
and 20 dB channels (the optimal and MMSE are computed for a subset of 100 samples, for reference). The test set consists of 100 samples with SNR = 20
dB. Either reward curriculum (RC) or subspace curriculum (SC) is required in order to attain optimality; without curriculum learning the optimizer networks
converge below the MMSE sum rate. For RC, the tasks are switched at 4000 epochs; hence the sudden drop in sum rate, followed by a steady increase. To
attain 95% of the optimal sum rate, RC requires half the number of epochs than SC.

Fig. 10. Sum rate versus T for tied and untied policies in the N =K = 8
MISO beamforming scenario. Each point with abscissa T corresponds to a
T -step optimizer. The sum rate increases with T and the untied optimizer
achieves higher sum rate.

Similar to [26], we consider a multi-stage training approach

under the rubric of curriculum learning [8]. For the scenarios

considered in this paper, supervised learning is not feasible

because computing the optimal solution is too time consuming,

therefore our approach is unsupervised.

A fully unsupervised learning approach is applied to jointly

optimize beamformers and the reflective pattern of a reflective

intelligent surface (RIS) in [28], where a graphical neural net-

work architecture is chosen in order to exploit the permutation

invariant property of the beamformers with respect to the user

ordering and also allow the model to support a variable number

Fig. 11. Sum rate versus test set SNR in the MISO beamforming scenario,
N =K = 4 (solid) and N =K = 8 (dashed). The variable SNR optimizer
is trained with data drawn uniformly between 10 and 20 dB, while the
other two policies are trained exclusively on data with a single SNR. The
variable SNR optimizer is robust across the entire SNR range, while the per-
formance of single-SNR policies degrades as the test SNR deviates from the
training SNR.

of users. Our proposed architecture also seeks to exploit the

permutation invariance, however we assume a fixed number of

users. In [29], the NN takes as input a measurement obtained

during the uplink pilot transmission phase and directly outputs

the beamformer and RIS weights, hence bypassing the channel

estimation task. Similarly, in [28] channel state information at

the transmitter (CSIT) is not present, but the beamforming-RIS

design is instead formulated as a Markov Decision Process.

Without CSIT, the reward (e.g., sum rate) cannot be directly

computed and therefore must be estimated based on sample

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

JOHNSTON et al.: A CURRICULUM LEARNING APPROACH TO OPTIMIZATION WITH APPLICATION TO DOWNLINK BEAMFORMING 97

observations; the authors propose an augmented version DDPG

that incorporates aspects of the system model. In our approach,

we assume perfect CSIT and therefore the quality of candidate

beamformers and gradients can be directly calculated for train-

ing. If CSIT is known, then the learning algorithm in [29], in

the context of our presentation, is equivalent to training with

the sum rate reward without curriculum learning and T = 1.

VIII. CONCLUSION

We have demonstrated that neural networks can closely ap-

proximate the optimal solution map for MISO sum rate max-

imization and min rate maximization problems. Curriculum

learning proved essential to learning the optimizer; without a

curriculum, the optimizer network converged to a suboptimal

point. For the MIMO and relay case, our learned optimizers

are at least on par with baseline methods and in some cases

far outperform them in terms of sum rate. The learning task

becomes quite difficult as the number of users and antennas

grow. In future work, the network architecture may be fine tuned

and implemented with more computing resources in order to

accommodate larger systems. Having demonstrated that it is

possible to approximate the optimal solution mapping of the

MISO problem, we expect that there are other problem families

out there that can be solved via our approach that would sig-

nificantly improve existing real-time optimization applications

and foster new ones.

REFERENCES

[1] M. Andrychowicz et al., “Learning to learn by gradient descent by
gradient descent,” in Proc. Adv. Neural Inf. Process. Syst., D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29.,
Red Hook, NY, USA: Curran Associates, 2016.

[2] K. Li and J. Malik, “Learning to optimize,” in Proc. 5th Int. Conf. Learn.
Representations (ICLR), Toulon, France, Apr. 24–26, 2017.

[3] T. Chen et al., “Learning to optimize: A primer and a benchmark,” J.
Mach. Learn. Res., vol. 23, no. 1, pp. 8562–8620, 2022.

[4] B. Amos, “Tutorial on amortized optimization for learning to optimize
over continuous domains,” 2022, arXiv:2202.00665.

[5] M. Jin, V. Khattar, H. Kaushik, B. Sel, and R. Jia, “On solution functions
of optimization: Universal approximation and covering number bounds,”
Proc. AAAI Conf. Artif. Intell., vol. 37, no. 7, pp. 8123–8131, 2023.

[6] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement
learning for combinatorial optimization: A survey,” Comput. Oper. Res.,
vol. 134, Oct. 2021, Art. no. 105400.

[7] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinato-
rial optimization: A methodological tour d’horizon,” Eur. J. Oper. Res.,
vol. 290, no. 2, pp. 405–421, Apr. 2021.

[8] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proc. 26th Annu. Int. Conf. Mach. Learn. (ICML), New
York, NY, USA: ACM, 2009, pp. 41–48.

[9] T. Chen et al., “Training stronger baselines for learning to optimize,”
in Proc. Adv. Neural Inf. Process. Syst., H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33., Red Hook, NY, USA:
Curran Associates, 2020, pp. 7332–7343.

[10] E. Björnson, M. Bengtsson, and B. Ottersten, “Optimal multiuser trans-
mit beamforming: A difficult problem with a simple solution structure
[Lecture Notes],” IEEE Signal Process. Mag., vol. 31, no. 4, pp. 142–
148, Jul. 2014.

[11] A. B. Gershman, N. D. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson,
and B. Ottersten, “Convex optimization-based beamforming,” IEEE
Signal Process. Mag., vol. 27, no. 3, pp. 62–75, May 2010.

[12] M. Borgerding, P. Schniter, and S. Rangan, “AMP-inspired deep net-
works for sparse linear inverse problems,” IEEE Trans. Signal Process.,
vol. 65, no. 16, pp. 4293–4308, Aug. 2017.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method

of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–
122, 2011.

[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[15] P. Hernandez-Leal, B. Kartal, and M. Taylor, “A survey and critique
of multiagent deep reinforcement learning,” Auton. Agent Multi-Agent
Syst., vol. 33, pp. 750–797, Nov. 2019.

[16] J. R. Hershey, J. L. Roux, and F. Weninger, “Deep unfolding: Model-
based inspiration of novel deep architectures,” 2014. [Online]. Available:
https://arxiv.org/abs/1409.2574

[17] Y. Yang, J. Sun, H. Li, and Z. Xu, “Deep ADMM-Net for compres-
sive sensing MRI,” in Proc. Adv. Neural Inf. Process. Syst., vol. 29,
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
Eds., Red Hook, NY, USA: Curran Associates, 2016, pp. 10–18.

[18] K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in Proc. 27th Int. Conf. Mach. Learn. (ICML), 2010,
pp. 399–406.

[19] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp. 359–366, 1989.

[20] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for interference
management,” IEEE Trans. Signal Process., vol. 66, no. 20, pp. 5438–
5453, Oct. 2018.

[21] M. Eisen, C. Zhang, L. F. O. Chamon, D. D. Lee, and A. Ribeiro,
“Learning optimal resource allocations in wireless systems,” IEEE Trans.
Signal Process., vol. 67, no. 10, pp. 2775–2790, May 2019.

[22] D. Weinshall and D. Amir, “Theory of curriculum learning, with
convex loss functions,” J. Mach. Learn. Res., vol. 21, no. 1, pp. 9184–
9202, 2020.

[23] E. Björnson and E. Jorswieck, “Optimal resource allocation in coordi-
nated multi-cell systems,” Found. Trend® Commun. Inf. Theory, vol. 9,
nos. 2–3, pp. 113–381, 2013, doi: 10.1561/0100000069.

[24] C. Peel, Q. Spencer, A. Swindlehurst, and B. Hochwald, “Downlink
transmit beamforming in multi-user MIMO systems,” in Proc. Process.
Workshop, Sensor Array Multichannel Signal, 2004, pp. 43–51.

[25] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” presented at the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269,
Los Alamitos, CA, USA: IEEE Computer Society, Jul. 2017. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.243

[26] H. Huang, Y. Peng, J. Yang, W. Xia, and G. Gui, “Fast beamforming
design via deep learning,” IEEE Trans. Veh. Technol., vol. 69, no. 1,
pp. 1065–1069, Jan. 2020.

[27] L. Pellaco, M. Bengtsson, and J. Jaldén, “Matrix-inverse-free deep
unfolding of the weighted MMSE beamforming algorithm,” IEEE Open
J. Commun. Soc., vol. 3, pp. 65–81, 2022.

[28] X. Jia and X. Zhou, “IRS-assisted ambient backscatter communications
utilizing deep reinforcement learning,” IEEE Wireless Commun. Lett.,
vol. 10, no. 11, pp. 2374–2378, Nov. 2021.

[29] T. Jiang, H. V. Cheng, and W. Yu, “Learning to reflect and to beamform
for intelligent reflecting surface with implicit channel estimation,” IEEE
J. Sel. Areas Commun., vol. 39, no. 7, pp. 1931–1945, Jul. 2021.

Jeremy Johnston received the B.S. in electrical
engineering from the University of Florida, in 2018.
He is currently working toward the Ph.D. degree in
electrical engineering with Columbia University.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

98 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Xiao-Yang Liu (Graduate Student Member, IEEE)
received the B.Eng. degree in computer science
from Huazhong University of Science and Technol-
ogy, China, in 2010, and the M.S. degree in electri-
cal engineering from Columbia University, USA, in
2018, and the Ph.D. degree from the Department
of Computer Science and Engineering, Shanghai
Jiao Tong University, in 2017. He is now working
toward the Ph.D. degree with the Department of
Electrical Engineering, Columbia University. His re-
search interests include deep learning, optimization

algorithms, high-performance tensor computing, and big data analysis.

Shi-Xun Wu received the B.S. degree in com-
puter science from Peking University, China, in
2020, and the M.S. degree in electrical engineering
from Columbia University, USA, in 2022. He is
now working toward the Ph.D. degree with the
Department of Computer Science and Engineering,
University of California, Riverside. His research
interests include high-performance computing and
deep learning.

Xiaodong Wang (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from Princeton Uni-
versity, Princeton, NJ, USA. He is a Professor
in electrical engineering with Columbia University,
New York, NY, USA. Among his publications is
a book entitled Wireless Communication Systems:

Advanced Techniques for Signal Reception (Prentice
Hall, 2003). His current research interests include
wireless communications, statistical signal process-
ing, genomic signal processing, general areas of
computing, and signal processing and communica-

tions, and has published extensively in these areas. He received the 1999 NSF
CAREER Award, the 2001 IEEE Communications Society and Information
Theory Society Joint Paper Award, and the 2011 IEEE Communication
Society Award for Outstanding Paper on New Communication Topics. He was
an Associate Editor for IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS, IEEE TRANSACTIONS ON

SIGNAL PROCESSING, and IEEE TRANSACTIONS ON INFORMATION THEORY.
He is listed as an ISI highly cited author.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

