84

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

A Curriculum Learning Approach to Optimization
with Application to Downlink Beamforming

Jeremy Johnston ©, Xiao-Yang Liu

Xiaodong Wang

Abstract—We investigate neural networks’ ability to approx-
imate the solution map of certain classes of beamforming op-
timization problems. The model is trained in an unsupervised
manner to map a given channel realization to a near-optimal
point of the corresponding optimization problem instance. Train-
ing is offline so that online optimization requires only the
feedforward computation, the complexity of which is orders of
magnitude less than state-of-the-art optimization algorithms. In
order to obtain a near-optimal channel-beamformer mapping,
either of two curriculum learning strategies is required: The
reward curriculum employs a sequence of learning objectives
of increasing complexity. The subspace curriculum employs a
sequence of training data distributions restricting the data to
linear subspaces of increasing dimension. For the MISO beam-
forming problem, the learned optimizer achieves near-optimal
objective value (sum rate or minimum rate) across a wide range
of signal-to-noise ratios. In the MIMO and relay scenarios, the
learned optimizer is on par with and in some cases far exceeds
performance of suboptimal beamforming strategies.

Index Terms—Deep learning, downlink beamforming, noncon-
vex optimization, curriculum learning.

1. INTRODUCTION

EAL-time applications in communications and control

require an agent/controller to solve optimization problem
instances generated by an environment over time. For example,
in MIMO communications a base station must repeatedly up-
date its transmit beamformers as the user channels vary, which
occurs typically in intervals on the order of milliseconds. There-
fore computational cost must play a central role in the algorithm
design. In principle, there exists a deterministic mapping from
the problem data space to the solution space; iterative convex
optimization algorithms approximate this mapping to desired
accuracy via recursive application of an analytically-derived
operator. The thrust of learning to optimize (L20) [1], [2], [3]
and amortized optimization [4] is to replace such operator with

Manuscript received 12 May 2023; revised 15 September 2023 and
1 November 2023; accepted 3 November 2023. Date of current version
6 December 2023. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Xiao Fu. (Corresponding
author: Jeremy Johnston.)

Jeremy Johnston, Xiao-Yang Liu, and Xiaodong Wang are with the
Department of Electrical Engineering, Columbia University, New York,
NY 10027 USA (e-mail: j.johnston@columbia.edu; x12427 @columbia.edu;
xw2008 @columbia.edu).

Shixun Wu is with the Department of Computer Science and En-
gineering, University of California, Riverside, CA 92507 USA (e-mail:
sw3511@columbia.edu).

Digital Object Identifier 10.1109/TSP.2023.3334396

, Graduate Student Member, IEEE, Shixun Wu

, and
, Fellow, IEEE

a neural network and learn its parameters through data, with
the goal of obtaining near-optimal solutions with much lower
computational complexity.

A. Learning to Optimize and Amortized Optimization

The L20O/amortized optimization framework introduces no-
tions of an optimizee and optimizer. The optimizee is an opti-
mization objective family, each member of which is uniquely
specified by problem data. The optimizer is a parametric func-
tion (e.g., neural network) to be trained to produce an approxi-
mate optimum for each instance of the optimizee. The optimizer
may be trained in either a supervised or unsupervised fashion
with a suitable loss function such as the mean-squared error
if supervised, or the average optimizee value if unsupervised.
Thus the cost of optimization is “amortized” over the train-
ing distribution, shifting the computational burden from online
optimization to offline learning [4]. At the inference stage,
feedforward computations of the learned optimizer are used to
obtain an approximate solution to any sample instance of the
optimizee, offering orders of magnitude speed-ups compared
to state-of-the-art optimization algorithms.

As originally presented in [1] and [2], L20 was used
for learning an optimizer for training neural networks. Their
method adopts the algorithmic structure of vanilla gradient
descent, but uses a recurrent neural network (RNN) to process
the gradient and output the next step direction. For example,
the optimizee could be the classification error of some neural
network classifier, and the optimizer is an RNN trained such that
it can optimize the classification error over the classifier’s pa-
rameters. The optimizer’s training objective is to minimize the
expected cumulative classification (training set) error incurred
over the optimizer’s trajectory. Even though the optimizer may
be trained for a classifier with a certain model architecture,
the optimizer was shown to generalize to previously unseen
model architectures.

See [3] and [4] for thorough surveys of prior work and appli-
cations. Towards a theoretical foundation, the statistical com-
plexity of optimal solution mappings for linear and quadratic
programs is analyzed in [5]. L20-like methods can also be
applied to combinatorial optimization problems where the deci-
sion variable belongs to a large but finite set. An optimizer may
be trained to iteratively construct and/or modify a candidate
decision until convergence to an optimum [6]. Learning-based
methods can be also used to augment rather than supplant

1053-587X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

JOHNSTON et al.: A CURRICULUM LEARNING APPROACH TO OPTIMIZATION WITH APPLICATION TO DOWNLINK BEAMFORMING 85

conventional optimization methods. For example, in mixed
integer linear programming, a learnable function aids conven-
tional heuristics to determine which variables to branch at
each iteration [7].

B. Curriculum Learning

Curriculum learning is an umbrella term for neural network
training techniques that rely on the assumption that learning is
more efficient when simple concepts are learned before more
complex ones. The term was coined in [8] where “the basic
idea is to start small, learn easier aspects of the task or easier
sub-tasks, and then gradually increase the difficulty level.” For
example, a curriculum may involve modification of the training
objective over the course of training, such that the objective
becomes more complex as the training progresses. Similarly,
training may begin with easier (e.g., noiseless) examples and
proceed to harder (e.g. noisy) examples. In sequential learning
tasks, one may gradually increase the sequence length; in L20,
for example, the optimizer trajectory length may be increased
over the course of training [9].

C. Downlink Beamforming

In this paper, we consider three classes of optimization
problems arising from downlink beamforming, a fundamental
technology in multiuser wireless communication that allows
simultaneous transmission of multiple data streams from a base
station (BS) to multiple users using the same time-frequency
resource [10], [11]. The BS is equipped with an antenna ar-
ray whose complex amplitudes are to be configured so that
the transmitted signals add constructively in certain spatial di-
rections and destructively in others, thereby enabling spatial
multiplexing of user data streams. A particular configuration of
amplitudes is called a beamformer. Each beamformer has side-
lobes that interfere with other users, therefore the beamformers
should be optimized jointly so as to maximize a performance
function that quantifies desired system behavior. For example,
the minimum user rate is an objective that promotes fairness
among users; to achieve the best overall system performance,
we may consider the weighted sum of the user rates. Most
functions of interest (e.g., sum rate), however, lead to opti-
mization problems that cannot be solved in real time, thus
suboptimal heuristic beamformers (e.g., based on mean-squared
error criterion) prevail in practice [10].

D. Contribution and Outline

As far as we know, prior work has neither sought nor achieved
sum rate optimal beamformers via deep learning; suboptimal
heuristics are the only benchmarks considered therein. The
major contributions of this work are as follows:

« We develop two curriculum learning techniques for learn-
ing to optimize beamformers: The reward curriculum pre-
scribes a sequence of training objectives of increasing
complexity, employing the mean-squared error (MSE) cri-
terion. The subspace curriculum prescribes a sequence of

training data distributions by restricting the training data
to a linear subspace of increasing dimension.

o Our learning approach accommodates various beamform-
ing problem scenarios with different optimization objec-
tives. For MISO beamforming we consider sum rate and
min rate maximization. In addition, we consider sum
rate maximization for MIMO beamforming and relay
beamforming.

o With the proposed curriculum learning techniques, the
learned optimizers obtain nearly optimal beamformers
for MISO sum rate and MISO min rate scenarios. For
MIMO, our learned optimizer far outperforms the block
diagonalization and MMSE methods, particularly in the
overloaded case.

o For the relay scenario we jointly learn two optimizers
mimicking block coordinate optimization. This divide-
and-conquer strategy breaks the learning problem into two
smaller subproblems which yields better performance than
if we had attempted to learn a single mapping for the full
problem. The learned optimizers are on par with baseline
methods but require significantly less computation.

The remainder of the paper is organized as follows. First,
Section II formalizes our learning approach. Section III presents
two curriculum learning methods which are key to learning
the optimal solution mapping. In Sections IV and V we intro-
duce three beamforming scenarios, MISO, MIMO, and relay,
to which we will apply the L20 approach. Of the three, an
optimal solution is known only for the MISO case, therefore
for MIMO and relay our goal is to achieve user performance
as high as possible beyond the baseline heuristic methods. Fi-
nally, in Section VI we present simulation results and compare
and contrast existing methods that employ deep learning for
beamforming design.

II. LEARNING TO OPTIMIZE
Consider a family of optimization problems
P = {maximize R(s,x) | s € R™}
TER"

where R:R™ x R™ — R is the objective, s € R™ is a pa-
rameter that specifies the problem instance and z € R” is the
decision variable. We are interested in applications in which
instances of problems in P must be rapidly solved in order to
enable some real-time application, such as communication or
control. In this regime, iterative algorithms are often preferred
owing to their low complexity. Iterative optimization entails
application of a sequence of functions h; : R™ x R™ — R™,
t=1,2,..., where each h; maps s and a candidate point x;
to a new point ;41 := ht(s, x¢) and is designed such that the
sequence {z;} converges to a maximizer of R(s,) for all s.
The recurrence is a composite mapping designed to approach
or approximate a solution mapping,

x*(s) = argmax R(s,x). (1)
In learning to optimize (L20), the goal is to learn an operator

Fp:R™ x R™ — R"”, referred to as an optimizer, that approxi-
mates the optimal mapping (1) for all s, thereby embedding in

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

86

1 i)
zo — Fp >| Fy > Fy a3
S S S
Fig. 1. Block diagram for learning iterative optimization. Shown here is an

example with T" = 3 iterations. At each iteration ¢, the learnable mapping Fp
is applied to the input (s,2z;—1) to produce x¢.

Fy the set of all solutions of the problem family P. Typically,
Fy is a neural network with learnable parameters 0. We seek to
approximate the mapping (1) through recursive application of
Fy. Given s and a starting point zo, we apply Fy for T' steps,
yielding x; := Fy(s,x1—1),t =1,2,...,T. Ablock diagram of
this scheme is shown in Fig. 1 for 7" = 3 iterations. To measure
the performance of a given trajectory {z; }, we consider the sum
of the objective value over the trajectory, Zthl R(s,xy). If s
has distribution p,, we consider

J(0):=E 2)

and the learning problem
maxiemize J(0)

to which we may apply gradient ascent. Training samples (i.e.,
problem instances specified by s that belong to P) may be
obtained through simulation or measurement. If pg is known,
then we may generate arbitrarily many samples. The starting
point xg is chosen either heuristically or randomly for each s.
Although the quantity of interest is the final objective value,
R(s,xr), such a metric would ignore the intermediate values;
summation over the entire trajectory, on the other hand, encour-
ages each step to improve the objective.

Learning 6 in effect “amortizes” the computational cost of
optimization across all problem instances, shifting the compu-
tational burden from online optimization to offline learning [4].
In deployment of the learned model, an optimization problem is
instantiated by s, then s is fed to the model which outputs a near-
optimal solution for that problem instance. Since the model
execution entails just feedforward computation of the model,
optimization can be done repeatedly and rapidly.

The overall procedure is summarized in Algorithm 1. The
target family P is specified by an objective function R with pa-
rameter s € R™. In each epoch, the iteration x; = Fy(s, x1—1)
is carried out for t =1,2,...,T and the cumulative objec-
tive value J is computed. Finally, a gradient step updates 6.
At test time, for a given problem instantiated by s, we sim-
ply apply z; = Fy(s,z,—1) for t =1,2,...,T and return the
final iterate x .

Analogous to the common practice of varying the hyperpa-
rameters of an iterative optimization algorithm as the iterations
progress, the parameter # may in general be allowed to vary
with . When 0 is free to vary with respect to ¢, we refer to the
optimizer as “untied”; the above presentation considers a “tied”
optimizer [12]. Intuitively, the optimal parameters at t = 1 need

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Algorithm 1: Learning to Optimize

1 Input:
2 R, objective function

3 s, problem instance parameter
4 x, decision variable

5 T, number of steps

6 7, learning rate

7 Ny, batch size.

3 Fy, learnable optimizer

9 Train:

10 for epoch [=1,2,... do

1 Obtain batch of samples {s*) [i=1,..., N},}
12 fori=1,..., Ny do

13 Choose x(()i) (heuristically or randomly)

14 for t = 1 2,...,T do

15 t x; = Fy(8(7) J;()1)

6 | J(0)=3, 30, R(sW, ")

17 0 0+nVeJ(0)

18 Evaluate on test set S:
19 for s € S do

20 Choose xg

21 fort=1,2,...,T do
22 L T = F.g S, T¢— 1)

23 Output zp

not be the same as some later step, say ¢ =5, and further-
more, allowing the parameters to vary grants more expressive
capacity. For an untied optimizer, Algorithm 1, we replace Fp
with a sequence of optimizers Fy,,t =1,...,T, hence step 15
becomes i) = Fy, (s, 2\7,).

A. Block Coordinate Optimization

L20 can be extended to problems where block coordinate
optimization is appropriate. The block coordinate method splits
the optimization variable to subsets and iteratively optimizes
over each subset while holding the others fixed. If = (y, z)
is a partition of the optimization variable, the subproblems at
iteration ¢ have the form

Yy = argmax R(87 Y, thl) (3)
y
2y = argmax R(s, yt, 2).)

This approach is employed by ADMM [13] to efficiently solve
convex problems. Even if R is nonconvex, the subproblems may
be tractable or admit closed-form solutions, thus providing an
efficient means of finding a local optimum.

Inspired by block coordinate optimization, we may learn
two optimizers to learn the optimal mappings in (3) and (4).
The rationale is twofold: a nonconvex objective may become
simplified when certain coordinates are held constant; and split-
ting the optimization variable reduces the dimension of the
output space of each optimizer which, by mitigating the curse
of dimensionality, reduces the desired mapping’s complexity.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

JOHNSTON et al.: A CURRICULUM LEARNING APPROACH TO OPTIMIZATION WITH APPLICATION TO DOWNLINK BEAMFORMING 87

Algorithm 2: Learning a Block Coordinate Optimizer

1 Input:
2 R, objective function

3 s, problem instance parameter
4 = (y, z), decision variable

5 T, number of steps

6 7, learning rate

7 Ny, batch size.

8 Fy, G4, learnable optimizers
9 Train:

10 for epoch [=1,2,... do

1 Obtain batch of samples {s(*) | i=1,..., Ny}
12 fori=1,..., N, do

13 Choose y((f), P

14 fort=1,...,7 do

15 yt(Z) = Fy(s, ngz)lv 251)1)

16 2 =Gl 22

17 end

18 end

R(s, ¢y 20y

19 J (8,)ZZtl

20 if [mod 2 =0 then

21 | 0 0+1VeJ(0,0)
22 else

23 | p o +nVyJ(0,0)
24 end

25 end

26 Evaluate on test set S:
27 for s € S do

28 Choose yo, 29

29 fort=1,...,T do

30 ye = Fo(s,yt-1,2-1)
31 2t =Go(s, Y1, 21-1)
32 end

33 Output = = (yr, 27)

34 end

The procedure is summarized in Algorithm 2. Let Fjy and
G4 denote optimizers which output candidate points y and z,
respectively. We consider the following alternating scheme that

iteratively computes y; and z; fort =1,...,T"
Ye = Fo(s,y1-1, 2t-1) Q)
=Go(s,yt,21-1). (6)

A block diagram of this scheme is shown in Fig. 2 for T" = 3 it-
erations. As in the single-variable case, we consider the average
sum of the objective values obtained over the iterations,

ZRsyhzt]. (7)

We employ (7) as a training objective function in order to learn
the optimizer parameters ¢ and ¢, which may be optimized via
block coordinate optimization as well. That is, at epoch 1 we
perform a gradient step for ¢, at epoch 2 we update 6, at epoch
3 we update ¢, and so on. To obtain a warm start for each

J(0,9) =

Esp,

Y3

Yo F0

z3

) Gq')

Fig. 2. Block diagram for learning block coordinate optimization. Shown
here is an example with 7" = 3 iterations. At each iteration ¢, the learnable
mapping Fy is applied to the input (s,yt—1,2¢—1) to obtain y: and G is
applied to the input (s, y¢, 2¢—1) to obtain z.

optimizer, Fy (or G ;) may be separately pretrained via (3) (or
(4)) by fixing z (or y).

B. Iterative Optimization as a Markov Decision Process

Iterative optimization may be viewed as a Markov Decision
Process [2] where the policy is Fy, the state at iteration ¢ =
0,1,... is the pair (s, z;), the action is x4+1 = Fy(s, z;), and
the reward for action z is R(s, ;). Reinforcement learning (RL)
[14] seeks to maximize with respect to the policy parameter 6
the discounted cumulative episode reward E [> .~ | v* R(s, z¢)],
0 < 7y < 1, where expectation is over the start state (s, z() and
all possible trajectories. In the case where the policy, transi-
tion dynamics, and x(are all deterministic, every trajectory
is determined by the start state, so the RL objective becomes
Esp, [> o1 V' R(s,2;)] where p, is the start state distribu-
tion. Setting v =1 and keeping only the first 7' terms of the
summation yields the aforementioned training objective J. In
principle, off-the-shelf RL algorithms may be applied in L20
[2]. However, in L20O we assume that the reward function R is
perfectly known, which is generally not the case in RL; indeed,
much of the effort in the development of RL algorithms goes to-
ward approximating the value function since the reward is either
unknown or computationally costly to compute. Similarly, there
is a correspondence between block coordinate optimizers and
multi-agent reinforcement learning (MARL) [15]. In the fore-
going presentation, we may view Fy and G as the policies of
two agents acting in an environment. Equation (7) corresponds
to the expected cumulative reward of the agents’ actions.

C. Relation To Existing Methods

Several optimization-inspired deep learning methods can be
obtained as particular cases of the above framework, depending
on the architecture of the optimizer network (Fy), the training
objective function (J(6)), and the particular training algorithm.
Deep unfolding [16] is strategy for designing Fp drawing upon
pre-existing iterative optimization algorithms for inspiration. A
given optimization algorithm is viewed as a function whose
learnable parameters correspond to the tunable hyperparameters
of the given algorithm; for example, when the target optimiza-
tion family is ¢-regularized linear regression, ADMM [17]
and ISTA [18] consist of a sequence of linear and nonlinear
operations and thus are readily converted to neural networks.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

88

A
A\ 4

elo 92 él 0‘3 (4

Fig. 3. Reward curriculum intuition. The primary task has loss surface Ja
and the subordinate task has Jp. Starting from initial point g, training with
Jy converges to local optimum 61; training with J2 converges to 62. Starting
from 61, training continues with Jo and converges to 63, a local optimum
better than 6s.

A related set of approaches exploits the algorithmic structure
of gradient descent [1], [2]. Here the optimizer has the form
Fo(s,xt, Hy) := x4 + Go(s, Hy), where here Gy is a learnable
function that outputs a step direction based on a history H;
containing previous values of z; and gradients V, R(s, ©)|y—z, -
Although this method exploits the structure of vanilla gradient
descent, the architecture of Gy(s, H;) is a generic network
architecture (e.g. MLP) and thus imposes a weaker prior than
typical of deep unfolding. Furthermore, the trajectory of x; may
be viewed as an MDP with state H; and the optimizer Fy is
trained via deep reinforcement learning algorithms [2].

From a theoretical perspective, the universal approximation
theorem [19] suggests there exists a single-layer neural network
can approximate certain iterative algorithms arbitrarily well.
Neural networks can approximate multiplication and division
arbitrarily well, therefore a neural network can in principle
approximate arbitrarily well any algorithm that is a composi-
tion of multiplications and divisions [20]. In special cases it
can be shown, again by invoking the universal approximation
theorem, that a neural network can achieve zero duality gap
as the network size approaches infinity [21]. A more precise
characterization of L20 must overcome the inherent difficulties
of neural network analysis and is an active area of research [4].

III. CURRICULUM LEARNING

The ethos of curriculum learning is to train a model on a se-
quence of tasks of increasing difficulty. Each task is defined by
a particular training objective function and a particular training
data distribution. The sequence of tasks should increase in diffi-
culty [8], in that the loss functions should become successively
more complex, and the entropy of the data distributions should
increase as the curriculum progresses. Doing so may encourage
exploration and act as a sort of regularization, as illustrated in
Fig. 3. Rather than solely learn the primary task we first learn an
easier subordinate task, and resuming training from such point,

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

training may converge to a point in parameter space unreachable
had we trained solely on the primary task.

Most curriculum learning strategies are based on intuition
or justified by analogy to the way humans learn. There have
been attempts to precisely define and rigorously analyze the
concept in simplified settings, for instance in the case of convex
loss functions [22]. The import of such analyses is questionable
since neural network loss functions have many local minima. It
is an open question whether we can rigorously characterize the
mechanism by which a given curriculum allows the network to
avoid traps and reach favorable regions of parameter space.

We found that a straightforward implementation of Algo-
rithm 1 may be insufficient to learn the optimal mapping.
Curriculum learning techniques are required. We propose two
curricula that can be used within Algorithms 1 and 2. The
first, subspace curriculum, uses a fixed training objective and
prescribes a sequence of training data distributions of increasing
complexity. The second, reward curriculum, uses a fixed train-
ing distribution and prescribes a sequence of training objectives
of increasing complexity.

A. Subspace Curriculum

This curriculum curates the training data (problem instances)
seen by the optimizer over the course of training. At each
stage we sample from distributions of increasing entropy and
therefore learn tasks of increasing difficulty [8, §3]. Observe
that the distribution p, affects the difficulty of maximizing (2).
For a zero-entropy distribution p4(s) = (s — sp) where sg €
R™ is known, we only have to learn a single output, namely
argmax, R(so,z).

The subspace curriculum prescribes that during each stage of
the curriculum the training data is restricted to a linear subspace
of the state space R™. That is, we train the optimizer on a
sequence of tasks corresponding to the problem families

Py = {maxiﬂénize R(s,z) | s € Sq}
zeR™

for d=1,2,...,m where S; CR"™ is a d-dimensional sub-
space. Since S7 C So C--- CR™, we have P1 C Py C -+ C
P, so intuitively the complexity of the problem family in-
creases with d. The entropy of the distribution increases with
d, since the dimension of the sample space increases with
d; for example, with p, ¢ =N (0, I), the entropy is given by
d(1+log2m)/2 + (logd)/2, which is increasing in d. The
subspaces are generated via a particular orthonormal basis
{by,...,b,;,} CR™ chosen prior to training, such that S, :=
span({by,...,bg}). If the subspace dimension is d, training
samples are generated via s = Zle o gb;, where the coeffi-
cients «; 4 € R are sampled from a chosen distribution p, 4.
Algorithm 3 demonstrates the application of the subspace
curriculum in a general learning environment. We are given a
training objective J(f) where 6 denotes the learnable model
parameters. Before training begins, we generate a random or-
thonormal basis {bq,...,b,,} which induces the subspaces
of R™ in which training samples will reside. We initialize
the subspace dimension d = 1 and we increment the subspace
dimension every N epochs. Thus, for the first N epochs all

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

JOHNSTON et al.: A CURRICULUM LEARNING APPROACH TO OPTIMIZATION WITH APPLICATION TO DOWNLINK BEAMFORMING

89

Algorithm 3: Subspace Curriculum

Algorithm 4: Reward Curriculum

1 Input:

2 Ad: subspace dimension increment

3 N: number of epochs in each stage of curriculum

4 {b1,..., b, }: orthonormal basis

5 {Pa,a | d=1,...,m}: coefficients distributions

6 Ny: batch size

7 J(0): training objective

8 Initialize d =1

9 for epoch [=1,2,... do

10 Generate batch {s(") = ZZ:1 0‘1(:.)(1bk | ozl(;)d ~
pa’d,izl,...,Nb} /

11 Compute J(6) and update 6

12 if d<n and [=0 mod N then

13 | update d < d + Ad

training samples lie on the line induced by basis vector by,
i.e., the samples are generated according to s = a,1b; where
Q1,1 ~ Pa,1. After NV epochs, we increase the subspace dimen-
sion to d = 2, so that in the following N epochs training sam-
ples are generated via s = oy 2b1 + a2 obo where o 2, g 2 ~
Da,2- After N (m — 1) epochs the subspace dimension is d = m,
at which point the training samples span R™. Since the subspace
curriculum affects only the training data, it can in principle be
incorporated into various learning algorithms. For example, in
Algorithm 1, one would only need to modify the training sample
generation (step 11).

B. Reward Curriculum

Suppose we have two objective functions R : R™ x R™ —
R and Ry : R™ x R™ — R corresponding to two distinct tasks
such that the point argmax R (s,) obtains a reasonably good

objective value R for all 5. We may first learn 6 for the family
of problems

Py = {maximize Ry (s,z) | s € R™},
TER™

using the training objective J1 (0) := Eqp. [S/, Ri(s,24)].
If the optimizer converges to a point 61, then starting from
01 we continue training with primary task objective J5(0) :=
Esvp, [S1_) Ra(s,2)] until convergence. Generally, ; will
be suboptimal with respect to Ps, but nonetheless may provide
a warm start that ultimately leads to a point superior to that
which would be obtained via training solely with .Jo. Moreover,
if Ry is a relatively simple function (e.g., quadratic in x),
then it stands to reason that the mapping argmax, Rj(s,x)
will be simpler and 6 will converge quickly. This intuition is
illustrated in Fig. 3 and supported by the experimental results in
Section VI. The idea of using a sequence of objective func-
tions for nonconvex optimization traces back to continuation
methods: a nonsmooth objective is replaced by a surrogate
objective that is relatively smooth (i.e., easier to optimize)
and parameterized by a scalar such that, as the scalar in-
creases, the surrogate becomes less smooth and converges to the
desired objective [8].

1 Input:
{Jk}kl,(zcl: task objective functions
0: model parameters
N: number of epochs in each stage of curriculum
Initialize k =1
for epoch [=1,2,... do
Generate batch {s(")}
Compute J;(6) and update ¢
if k< K.and =0 mod N then

N-TN-CIEEN S Y R]

10 | update kK +1
TABLE I
SYMBOL CORRESPONDENCE BETWEEN SECTION II AND VARIOUS
BEAMFORMING SCENARIOS
[MIsO | MIMO \ Relay \
s H {Hy} (H,G)
x W {W¢} (F,W)
R || RH,W) | R({H},{W}) | B(H, G, F, W)

Algorithm 4 demonstrates the application of a reward cur-
riculum in a general learning environment. It is assumed that
there are K. task objective functions {.J; } 1+, such that the task
difficulty increases with k& and the desired task is represented
by the final objective function J . Training begins with k£ =1
and thus J; serves as the training objective. In each epoch, we
obtain a batch of samples and then perform a gradient update
using J;. After N epochs, the task index is incremented to
k=2 and Js is used as the training objective function. After
N(K. — 1) epochs we have k = K and the final task objective
JK, is used for the remainder of training. The reward curricu-
lum is readily applied to Algorithm 1; the training objective
in step 16 is modified according to the curriculum over the
course of training.

Next we apply the proposed methods to three beamforming
scenarios: MISO, MIMO and relay. This requires four main
steps: (1) design the optimizer neural network architecture,
(2) define a problem family with objective function R cor-
responding to a system performance criterion, (3) formulate
an iterative scheme that outputs beamformers for given chan-
nels where the iterative operator is a learnable optimizer, (4)
devise a training procedure to learn the optimizer parameters
such that the iterative scheme approaches the optimal channel-
beamformer mapping. For reference, Table I contains the sym-
bol mapping for each application scenario.

IV. APPLICATION TO MISO DOWNLINK BEAMFORMING
A. System Model

Consider an N-antenna BS that communicates with K
single-antenna users. The BS applies transmit beamformer
w; € CY to the ith user data stream, so that, if z; € C is the
symbol intended for user ¢, the transmitted signal is Zfil TiW;.
Let h;, denote the channel between the BS and user &, so that

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

90

user k receives the signal

ye=h Y wwit g, k=1,... K ®)
i=1
where 1y ~ CN(0,0?%) is additive noise. User k’s signal-to-
interference-plus-noise ratio is
by wy|?
o*+ > i |hHw, |2
The MISO beamforming problem is formulated as

SINRy, =

maximize f(ry, ..., rg)
Wi,...y WK K
subject to Z w3 < P)
k=1

where f:RX — R is the system performance function and
), :=log, (1 + SINRy,) is the achievable information rate of
user k. For many common choices of f, (9) can be solved via
specialized algorithms. However, the computational complex-
ity is often prohibitive; in practice sub-optimal linear beam-
formers prevail.

1) Sum-Rate Maximization: For sum-rate maximization we
define f(r1,...,7x) = Zszl . In this case (9) is noncon-
cave and has many local maxima, hence general purpose solvers
are not guaranteed to obtain the global optimum. Nonetheless,
a global optimum can be found via the branch-reduce-bound
(BRB) algorithm [23]. BRB iteratively refines a set of bounding
boxes that contain the Pareto frontier. At each iteration the
bounds are improved by solving a sequence of convex pro-
grams. Arbitrary small solution error can be achieved in a finite
number of iterations, at the cost of solving an exponential (in
K) number of convex programs.

2) Min-Rate Maximization: For min-rate maximization we

define f(ry,...,rgx):= mkin r. In this case (9) is equivalent to
maximize r
W1 ,enns Wi, T
subject to 1 >, Vk
K

(10)

k=1

which is quasiconvex and solvable via the bisection method [23,
Theorem 2.10].
3) Linear MMSE Beamformers: The well-known linear
MMSE beamformers [10] are given by
(0%Iy + 38, bt 'hy,
(02Ty + XK | Zh;ht) 1th
2

sz\/]TkH (11

where {py} are transmit powers. We assume equal power allo-
cation, pr, = P/K.

B. Proposed Learning Algorithm
We apply Algorithm 1 as follows. Let s = [h; --- hg]H :=

HeCKNand 2 =[w; - - wg]:=W € CV*E_ The opti-
mization problem class is

P =< maximize R(H, W) » |
WGCNXK

IWII%=

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

where R: CN*K »x CN*K 5 R is the performance criterion
(f in (9)). The learnable optimizer is denoted F, : CV*K x
CN*K 5 CNXK with learnable parameters 6. The beamform-
ers are iteratively computed via

W1 :=Fy(H, Wy). (12)
and the training objective is
T
J(0) = Ettnpy Z (H, W)] (13)

where pyg is the channel distribution. Algorithm 1 essentially
performs stochastic gradient ascent with objective J(6). In each
epoch, a batch of channels is generated with SNR o (the
SNR cam be made to vary from sample to sample so that the
optimizer is trained on a range of SNRs; see Section VI for
details). For each sample in the batch, we carry out the iteration
(12) for T steps, compute the corresponding cumulative loss
(13) and perform a gradient step for 6.

As previously mentioned, we found that Algorithm 1 by
itself is insufficient. At least one of the following curriculum
learning techniques is required in order to obtain near-optimal
beamformers.

1) Reward Curriculum Learning: The MMSE problem is
well-suited for the role of a subordinate task in a reward curricu-
lum: the MMSE beamformers achieve a reasonably good sum
rate and min rate, and the MSE objective is simply quadratic in
‘W. The MSE is defined as

MSE(H, W) :=E [[|[HWx +n — x|}3] , (14)

where expectation is with respect to the noise n ~ CN(0, o°T)
and data vector x~CN(0,I). The MMSE optimization
problem is

minimize MSE(H W).
WeCN XK
IWII%=

To compute the MSE, we may either empirically evaluate
the objective via sampling i.i.d. vectors x and n, or we
may use the analytical expression MSE(H, W) = |[HW||% —
2Re{trace(HW)}. In terms of Algorithm 4, our proposed
reward curriculum defines the task loss R; := MSE and Rj is
the desired performance criterion (e.g., sum rate, min rate).

2) Subspace Curriculum Learning: Assuming pg ~
CN(0,1), we can generate arbitrarily many training samples
and curate the training data according to the subspace
curriculum. To implement subspace curriculum learning, we
must specify the orthonormal basis {by,...,b,} of R™ and
the distributions {pn.q | d=1,...,m} which are used to
generate samples in a given subspace. For the MISO problem,
the full channel space is R2NK hence n = 2N K. The basis
vectors are randomly generated. We set p,q=CN(0,1)
for all d.

C. Toy Example

Each beamforming method can be written as a function

Wi(H) = ar%vnax f(W,H),

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

JOHNSTON et al.: A CURRICULUM LEARNING APPROACH TO OPTIMIZATION WITH APPLICATION TO DOWNLINK BEAMFORMING 91

H, () Hj(a)
w11 Wa1 10 w11 Wo1
10
—101, : ; —10
w w
10 12 22 10 W12 Wy
—— Optimal
—— Learned Optimizer
— MMSE
4 = A O\ i
\J N T<< W-QLVA%
—10 - ~ —10 L .
0 2 0 2m 0 2 0 2m
() (6] « «

Fig. 4.

Solution mapping for optimal (green), learned optimizer (blue), and MMSE (red) beamformers. On the left, the user channels are 2-dimensional, on

the right they are 3-dimensional. The optimal solution map for the 2-dimensional channels is relatively more complex than that of the 3-dimensional channels.
Also, the MMSE solution map is a smoothed version of the optimal solution map. Since the solution map is the function we wish to approximate, these
observations suggest that the subspace and reward curricula reduce the difficulty of the learning task. The learned optimizer approximates the optimal map.

referred to as the solution map corresponding to the objective f.
For sum-rate maximization, f is the sum rate; for linear MMSE,
f is the negative MSE. Our learning approach in essence at-
tempts to approximate the mapping W} (H) for a specified
f. Therefore the difficulty of the learning task is tied to the
complexity of W7 (H).

The following toy example is meant to elucidate how the two
proposed curriculum strategies (reward and subspace) deform
the target solution map W (H). To facilitate visualization, we
consider the case N = K =2, so that W}(H) € R2%2 and
channels of the form

Hl(a):{ } € R¥*2, Hg(a):[

parameterized by « € [0,27]. It can be verified that the set
{vec(H;(«0)) : « € [0, 2]} spans a 2-dimensional subspace of
R%, while {vec(Hz(t)) : « € [0,27]} spans a 3-dimensional
subspace of R*. In Fig. 4, each set of plots shows the entries of
Wi(Hi(a)), i=1,2, a € [0,27], for the cases: (a) f is the
sum rate (green), computed via the optimal BRB algorithm,
(b) when f is the negative MSE (red) given by equation (11)
in the manuscript. Also shown are the beamformer entries
output by a neural network trained (via the proposed frame-
work) to approximate the sum rate solution map. We make the
following observations:

o The MSE solution map is simpler than the sum rate
solution map: In all plots, the red curve is a smoothed
version of the green curves. This suggests that the W} (H)
is simpler when f is the MSE, relative to when f is the
sum rate. We conclude that learning the MMSE solution
map will be easier than learning the sum rate solution map.

o Solution map complexity increases with channel subspace
dimension: The solution maps for the channels H; («) are

cosa 1
sinae 0.5

cosae 0
sinaw 0

:| c R2X2

qualitatively smoother than those for Hs (). This suggests
that the training objective becomes simpler when the chan-
nels lie on a low-dimensional subspace. As the subspace
dimension increases, the desired solution map becomes
more complex.

V. APPLICATION TO MIMO AND RELAY BEAMFORMING
A. MIMO Beamforming

In the MIMO case, each user is equipped with a receive an-
tenna array capable of receive beamforming, or spatially filter-
ing the impinging waveform, and hence may perform additional
interference cancellation, thereby relaxing the transmit beam-
forming requirements. Suppose the BS has [V transmit antennas
and user k£ has my receive antennas. The symbol x; € C™*
is intended for user k£ and the BS applies the beamformers
W), € CNX™k 5o that the transmitted signal is Zszl Wixg.
If H, € CV*™* is user k’s channel matrix, then user k’s ar-
ray measurement y = [yg,1 - - yk,mk]T € C™*~ has the form
yr = HH ZZK:1 W,x; + ng, or

K
yi = HiW,x; + HY Z W,x; + ny, (15)
i#k
Define X, € C™+x*™k_ the covariance matrix of the
interference-plus-noise term,
K
¥, =0T+ HY | Y W,W! | Hy. (16)
i#k
Then the rate of user & is
ri, = log, [T+ 3 "H} W, W} H, 17)

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

92

and the beamformer design problem becomes

flri,...,1K)
K
subject to Z W% < P.

i=1

maximize
Wi,..., Wk

(18)

(18) is nonconvex and no known method guarantees a solution.

The block diagonalization beamforming (BDBF) [24]
method uses the singular value decomposition to choose trans-
mit beamformers that lie in the null space of the matrix

H] 2[H;, - -Hp_ Hyyy - Hg]T e Cmmm)x N

thereby guaranteeing zero inter-user interference. We refer the
reader to [24, §4.1] for more details.

1) Proposed Learning Algorithm: The class of resource
allocation problems under consideration is

P =< maximize R{Hg}, {Wi}) ¢,

W eCNXmp

>k IWell7=P
where R : CNx(mitmattm) o CNx(mitmat-tmi) _y R
is the performance criterion and Hj, € CNV*™*_ In this case
we may straightforwardly apply Algorithm 1 by defining s :=
(Hy,...,Hg), 2:=(Wy,...,Wg). We consider only the
sum rate

K
R({H}, {W;}) = log, [T+ 3, 'HY W, W} Hy| .
k=1

B. Relay Beamforming

We consider a scenario where there is an M-antenna re-
lay station (RS) between the N-antenna BS and the single-
antenna users. Let G € CM*¥ be the MIMO channel matrix
between the BS and the RS and let h;, € CM be the channel
vector between the RS and user k. The transmitted signal from
the BS is Zszl T Wg. Denote the BS beamformers W =
[wy - wy] € CV*E_ The received signal at the RS is given
by z=G Zszl rrwi, + v € CM where v ~ CN(0,02). The
RS then employs a transmit beamforming matrix F € CM*M
and forwards the signal Fz € CM to the users. The received
signal at user k can be written as y; = h,';'Fz + nyg, or

vk = hi{FGwiai + Y hiFGwz; + hi{Fv + ny,
Ik
where 1y ~ CN(0,0?%). The SINR of user k is
IhYFGwy|?

SINR, = .
F Y I FGw 2 + W F[302 + o

19)

and the user rates are given by 7 :=log,(1 4+ SINRy). The
goal is to choose beamformers W and F to maximize a perfor-
mance function f subject to transmit power constraints at the
BS and RS:

ma‘)}c\;%lizc flry, .. k)
subject to ||W||% < P,
IFI- < P o)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

To obtain a suboptimal solution, we may plug (20) into a
generic solver (e.g., sequential least-squares quadratic program-
ming), or we may attempt to find a suboptimal point of the
MMSE problem

K

> Ik x|] st W% = By, B[= Pr.
k=1

min E
W.F

ey

via block coordinate descent. If F' is fixed, then (21) reduces to
a MISO MMSE problem and we may use (11) with the channel
replaced with the effective channel HFG. If W is fixed, then
we may compute the unconstrained MMSE estimate for F
in closed form via F = (HH")"'HWHGH(GWWH"GH +
02I)~! and then normalize such that ||F||% = P,..

1) Proposed Learning Algorithm: The class of resource
allocation problems under consideration is

P = maximize
FeCM*XM WeCNxK
WI|%.=Py,|F|%=P-

RH,G,F, W) 3,

where H € CE*M G € CM*N and R is the performance
criterion. We consider the sum rate R(H,G,F, W)=
Zszl log, (1 + SINRy,) where SINRy, is given by (19).

Applying Algorithm 2, we define two optimizers Fy and
G4 and alternate between selection of variables y := W and
z:=F given s := (H, G). Observe that when F is fixed, the
task of selecting W is equivalent to that of the MISO downlink
beamforming problem in Section IV with the channel matrix
set equal to the effective channel H:= HFG. When W is
fixed, the task is to choose relay beamformers F given the
BS-relay channel H and the relay-user effective channel GW.
The beamformers are computed by alternating between the two
optimizers fort =1,...,7T":

Wio=W;_11, (22)
Fio=F 17, (23)
H, = HF, (G (24)
Wip=Fy(H, W 1),k=1,...,Tw (25)
Fip=Gy(GWip, ,HF 1), k=1,...,Tp, (26)

where we have unrolled Fy and G, for T and T¢; steps, respec-
tively. We set Fo 7, =I/v/M and Wy 1, = HG/|HG|| .
The input to Fy is analogous to that of the MISO optimizer
defined in Section IV, where ﬁt serves as the BS-user channel,
but a key difference is that here the channel varies with ¢ since it
depends on the choice of F;. The inputs of G include GW,
(the effective channel between the relay and the users) along
with H and F,. The training objective is defined as

T Tw
J(0,0)=E|> Y RH,G,Fr o, W) (27)
t=1 k=1
Tr
+Y R(H,G,F;, W, 1,)|. (28)

=1

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

JOHNSTON et al.: A CURRICULUM LEARNING APPROACH TO OPTIMIZATION WITH APPLICATION TO DOWNLINK BEAMFORMING 93

Fy
W, P
HW,_, BiCNN HDens eNet Normalization W,
Fig. 5. Block diagram of our proposed optimizer network architecture for

the MISO beamforming problem. An arbitrary iteration ¢ is depicted. The
input is the state (H, W;_1). The output of the DenseNet module is W
which is normalized to produce the output W, with [[W||%, satisfying the
transmit power constraint.

Since for fixed F' the problem has the same structure has the
MISO scenario, Fy may be pre-trained as a MISO beamforming
optimizer (Section I'V) so that it outputs the optimal W for any
given H. Having initialized Fp, we then apply Algorithm 2.

VI. RESULTS

The following experiments show that the learned optimiz-
ers significantly outperform the baseline state-of-the-art beam-
forming methods and in some scenarios achieve optimality.
A combination of several training techniques are required in
order to do so. These techniques are especially important for
larger problem sizes and higher SNRs, where the learning task
becomes more challenging and simple training methods fail.
The first set of results show the performance of our best learned
optimizer trained using the full set of training techniques. Then
we perform an ablation study to probe the influence of each
training technique.

A. Neural Network Architecture

The algorithms in Section II are valid for an optimizer with
arbitrary neural network architecture. For the beamforming ap-
plications, we hand-designed a model architecture that exploits
the structure of the state and action. The proposed neural net-
work architecture consists of three modules (Fig. 5): biconvolu-
tional neural network (BiCNN), DenseNet, and normalization
layer. This model is used in all experiments. For N = 4 there
are approximately 5 x 10° learnable parameters overall and for
N =8, approximately 4 x 10% learnable parameters.

1) BIiCNN Module: The first module is a bilateral con-
volutional neural network (BiCNN) which performs feature
extraction on the network input, lifting the input to a high
dimensional space. Convolution exploits the translation invari-
ance of the input along both user and antenna dimensions,
since for any ordering of input channel vectors the optimal
beamformers are the same (up to a permutation of the user
indices) and vice versa. For the MISO optimizer, the input is
an array with shape (4, K, N) comprising the concatenation
of the real and imaginary parts of H and W. The module
consists of two subnetworks each with two 2-D convolution
layers. One subnetwork filters over the user axis while the other
filters over the antenna axis. The overall output is the sum of
the subnetwork outputs.

2) DenseNet Module: The DenseNet module consists of
two linear layers with shortcut connections as in [25]. The
DenseNet’s shortcut connections allow for more sophisticated

TABLE II
WALL CLOCK RUN TIMES FOR MISO BEAMFORMING
METHODS. ‘‘OURS’ IS THE PER-STEP FEEDFORWARD
INFERENCE TIME ON AN A100 GPU (E.G., FOR
T =5 TOTAL STEPS IN THE CASE N = K = 4, THE
TOTAL INFERENCE TIME IS AROUND 14
MILLISECONDS). THE OPTIMAL METHODS ARE
DESCRIBED IN SECTION IV AND IMPLEMENTED ON A
3.7 GHz CPU. THE RUN TIMES OF ‘‘OURS” AND
MMSE ARE INDEPENDENT OF THE CHANNEL
REALIZATION. THE OPTIMAL METHOD RUN TIME IS
GENERALLY DIFFERENT FOR EACH REALIZATION;
WE REPORT THE AVERAGE OVER 100 SAMPLES

N=K=4 | N=K=38
Ours (per step) 2.8 ms 4.0 ms
Optimal (sum rate) 20 minutes 6 hours
Optimal (min rate) 4 seconds 6 seconds
MMSE 0.6 ms 0.8 ms

features using fewer parameters [25]. This module transforms
the high-dimensional BiCNN output to a vector of 2N K real
numbers which form the beamformer matrix in CV <X,

3) Normalization Layer: Each beamforming scenario in-
cludes a constraint on the transmit power. This constraint is eas-
ily enforced by appending a normalization layer. In particular,
suppose W e CN*K is the beamformer matrix produced by
the DenseNet module. Then, for a given transmit power P, the
normalization layer outputs W = /PW /|[W||r so that the
output satisfies ||[W||% = P.

B. MISO Downlink Beamforming

Here we present results for the MISO beamforming sce-
nario of Section IV. Training samples are generated [H],; -

CN(0, 5% 0%). The SNR is

_E[[HYW3] _ okP
2

SNR: 5

g

where we have used the constraint |[W|% = P. Without
loss of generality, we fix P=1 and 0?=1 so that
SNR = 0. For each sample of; is drawn uniformly from
{10 dB, 15 dB, 20 dB}, so that the network is trained on a
variety of samples. In Section VI.LE.4 we further investigate
the effect of the training distribution properties.

Fig. 6 shows the results for sum rate (left) and min rate
(right) versus SNR, including the cases N = K = 4 (solid) and
N = K =8 (dashed). The L20 policies were trained using
Algorithm 1 combined with the MSE reward curriculum (Sec-
tion IV.B.1). The true optimal beamformers are computed as
described in Section IV.A.1. For each SNR test case, the learned
optimizer achieves a significantly higher objective value than
MMSE, and in the NV = K = 4 case achieves virtually optimal
sum rate. The single step optimizer without curriculum learn-
ing (green), on the other hand, performs worse than MMSE,
showing that the naive implementation is inadequate.

The wall clock run times of each method are reported in
Table II. We report the per-step execution time of the learned
optimizer (i.e., for the case 7' = 1). Compared to the optimal
sum rate and min rate methods, the learned optimizer run time

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

94 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024
MISO Sum Rate vs. SNR MISO Min Rate vs. SNR
e Optimal A 4.0
351« wmMse
+ L20, T=5 with CL paly 35
301 ¢ L20,T=1noCL o
— N=Kk=14 e 3.0
251 -=--- N=K=8 //’:" ’/" ‘,z‘“
3 2.5
© -
°EC 20 2
£20
a =
15
1.5
10 1.0
> 05
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
SNR [dB] SNR [dB]
Fig. 6. MISO sum rate (left) and min rate (right) versus SNR. Three learned optimizers are trained with different training distributions: variable SNR

€ {10, 15,20}, SNR = 10 dB, and SNR = 20 dB. The variable SNR net obtains optimal beamformers within at most 1% and 7% for N = K = 4 (solid)

and N = K = 8 (dashed), respectively.

MIMO Beamforming

254 ——= N=4,K=4,mc=2 .
— N=4,K=2,mg=2 7
e 1207T=5 L
e 1207T=1 et

207 ¢ BD/MMSE e

Sum Rate

125 150 175 20.0

10.0
SNR (dB)

7.5

Fig. 7. MIMO sum rate versus SNR. Three learned optimizers are trained
with different training distributions: variable SNR € {10, 15,20}, SNR = 10
dB, and SNR = 20 dB. For N =4, K =2, mj, = 2, the learned optimizers
outperform the block diagonalization (BD) beamformers. For the overloaded
case N =K =4 and mj =2, the learned optimizers perform far better
than MMSE.

is several orders of magnitude lower. Essentially, the computa-
tional burden has been amortized during the training process—
when the model is deployed, for each new channel realization
we only need to execute 1" forward passes of the trained model
in order to obtain near-optimal beamformers. We emphasize
that the same network architecture is used for all beamforming
scenarios, therefore the per-step execution times of “Ours” also
hold for the MIMO and relay scenarios.

C. MIMO Downlink Beamforming

Fig. 7 shows the sum rate versus SNR curve of the learned
optimizers trained as described in Section V.A.l. We fix the
number of BS antennas N = 4 and the number of antennas per

user my, = 2 for each user k =1,..., K, and consider K = 2.
In the MIMO case there is no known optimal solution, so
we compare with the block-diagonalization beamformers for
K =2 and the MMSE beamformers for K = 4. The block-
diagonalization beamforming method is not applicable when
Zk my, > N, so for K =4 we treat each antenna as a single
user and compute the corresponding MMSE beamformers as in
the MISO case. Algorithm 1 is used with the MIMO sum rate
formula as the reward function and subspace curriculum learn-
ing (Algorithm 3). The learned optimizers achieve a substan-
tially higher sum rate than the BD and MMSE beamformers,
particularly for the overloaded case K = 4.

D. Relay Beamforming

For the relay problem we apply Algorithm 2 as described
in Section V.B.1. The W-optimizer, Fy, is pretrained as if it
were a MISO beamforming optimizer, so that upon initializa-
tion it outputs the optimal beamformers for any given effec-
tive channel H = HFG. We set T = Tw=Tr = 6 Assum-
ing a Gaussian channel we have [H];; N (0 (0, ¥ 0%) and

[Gli; K eN (0 (0, 717 0&). The relay and BS transmit powers
are P, = P, =1, weassume 0 = 02 and 02 := 0y = 0&. The
SNR is defined as SNR := g—z Without loss of generality, we
fix 02 = 1 so that SNR = o2. As baselines, we use the SciPy se-
quential least-squares quadratic programming (SLSQP) solver,
as well as the alternating least squares mentioned in the dis-
cussion following (21). We consider two scenarios, N = M =
K =4 and N =M = K =8. The resulting sum rate versus
SNR performance is shown in Fig. 8. The learned optimizers
perform well above Alternating MMSE and are on par with the
generic solver. The generic solver run time is approximately
4 seconds per sample, alternating MMSE is approximately 500
milliseconds per sample, and the learned optimizers with 7' =5
require approximately 30 milliseconds per sample.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

JOHNSTON et al.: A CURRICULUM LEARNING APPROACH TO OPTIMIZATION WITH APPLICATION TO DOWNLINK BEAMFORMING 95

Relay Beamforming

a0l N=K=M=8 o~
— N=Kk=M=4 o
e SLSQP
« 120T=5 o~ P
30 e 120T7T=1 .,/ //’/.
e Alternating MMSE L //’ /,’/
g
©
o
€20
>
[%)]
10
0
0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0
SNR (dB)

Fig. 8. Relay sum rate versus SNR. Three learned optimizers are trained
with different training distributions: variable SNR € {10, 15,20}, SNR = 10
dB, and SNR = 20 dB. For N = K =4, the learned optimizers are on par
with the generic solver, but require an order of magnitude less run time to
obtain the beamformers during testing.

E. Ablation Study

As seen in the previous set of experiments, the naive imple-
mentation performs worse than the baseline MMSE beamform-
ers. The following techniques are required

o Curriculum learning (training objective or training data)

o Multi-step optimizer

o Untied parameters (neural network parameters may vary

across steps)

o Variable SNR training data

To illuminate the impact of each technique, we perform an
ablation study for the MISO scenario.

1) Curriculum Learning: Fig. 9 includes a set of training
curves for a variety of training procedures labeled as follows:

o Reward Curriculum: Algorithm 1 with reward curriculum

(Section IV) using the MSE and sum rate objective as the
two tasks. First the optimizer is trained using the MSE
objective for 4000 epochs, then training continues with the
sum rate objective until convergence.

o Subspace Curriculum: Algorithm 1 with subspace curricu-

lum learning with the sum rate objective.

« MSE Objective: Algorithm 1 with MSE objective (14), no

curriculum learning.

« Sum Rate Objective: Algorithm 1 with sum rate objective,

no curriculum learning.

We find that Reward Curriculum and Subspace Curriculum
yield an optimizer that approaches optimality. To achieve a
target sum rate of 95% of the optimal, the Reward Curriculum
method requires about half the epochs for N = K =4 and
about a third of the epochs for N = K =8 relative to that
required by the Subspace Curriculum.

2) Tied vs. Untied Parameters: Fig. 10 illustrates the effect
of the number of steps 7', as well as the effect of untying the
parameters across time steps (Section II). In the first stage of
training, the optimizer parameters are untied (shared across

steps), and after convergence, the parameters are untied (al-
lowed to vary across steps) and training resumes until conver-
gence. Each data point represents an optimizer that was trained
with T" equal to the abscissa. We find that the untied optimizer
achieves higher reward than the tied optimizer.

3) Multiple Steps: Moreover, from Fig. 10 it is also seen
that multi-step policies perform much better than the single step
optimizer. Since action ¢ depends on action ¢ — 1, the input data
distribution changes at each step; therefore, for 7" > 1, at each
step the optimizer observes higher quality inputs and further
refines them toward the optimum. Furthermore, unrolling the
optimizer for multiple steps allows it to explore the action space
and escape local minima.

4) Training Data SNR: Fig. 11 investigates how perfor-
mance varies as the test SNR deviates from the training SNR.
The variable SNR optimizer (blue) was trained on sample chan-
nels with SNR drawn uniformly between 10 dB and 20 dB,
while the green and yellow curves correspond to policies trained
exclusively at 20 dB and 10 dB. The single SNR optimizers
(green and yellow) achieve near-optimal sum rate when tested
on sample channels with the same SNR on which they were
trained, while performance slightly worsens for SNRs outside
of the training SNR. The variable SNR optimizer, on the other
hand, is robust across the entire SNR range.

F. Discussion

The experiments reveal the challenges of scaling neural net-
works to larger input dimensions. Doubling the problem size
from N = K =4to N = K = 8 required a sixfold increase in
training epochs and tenfold increase in the number of learn-
able parameters. Beyond N = K = 8, we attempted to further
increase the network size but the curriculum strategies yielded
diminishing returns and the training converged to a suboptimal
point. Future work may investigate different network architec-
tures and weight compression techniques to reduce the size of
the parameter space.

VII. RELATED WORK: DEEP LEARNING FOR
BEAMFORMING DESIGN

Here we give a brief survey of prior work applying deep
learning techniques for beamforming design so as to situate our
proposed method. [20] considers a multiuser communication
setup with K SISO channels and designs learning-based ap-
proach to optimize only the power allocation; there is no beam-
former design because the channels are scalar. The network is
trained in a supervised manner based on a training set of optimal
power allocations obtained via the WMMSE algorithm, result-
ing in a learned model whose output power allocations obtain
near-optimal sum rate. A similar approach is applied to a system
of K MIMO channels in [26] to optimize both transmit and
receive beamformers, except training proceeds in two stages:
first, supervised learning based on training samples obtained
via WMMSE, followed by unsupervised learning using the sum
rate as the training objective. In [27], the WMMSE algorithm
is modified and unfolded into a neural network trained with
the WMMSE objective as the unsupervised learning objective.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

96

MISO N =K =4 Training

Sum Rate

Optimal
MMSE
Reward Curriculum
Subspace Curriculum
MSE objective

Sum rate objective

0 20000 40000 60000

Epoch

80000 100000

Fig. 9.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

MISO N =K =4 Test

20.0

17.5

15.0

Sum Rate
= =
~ o N
w o w

U
o

N
s

0 50000 100000

Epoch

150000 200000

Training (left) and test (right) sum rate versus training epoch for MISO Variable SNR optimizer. The training data is a uniform mixture of 10, 15

and 20 dB channels (the optimal and MMSE are computed for a subset of 100 samples, for reference). The test set consists of 100 samples with SNR = 20
dB. Either reward curriculum (RC) or subspace curriculum (SC) is required in order to attain optimality; without curriculum learning the optimizer networks
converge below the MMSE sum rate. For RC, the tasks are switched at 4000 epochs; hence the sudden drop in sum rate, followed by a steady increase. To
attain 95% of the optimal sum rate, RC requires half the number of epochs than SC.

MISON=K=8
S D n—— o
» ---- Optimal
2 —-—- Untied
T .
< — Tied
g MMSE
o # e SNR=20dB
e SNR=10dB
20
i e e e ToTITITIT=T=e
15
1 2 3 2 c
T
Fig. 10. Sum rate versus 7" for tied and untied policies in the N = K =8

MISO beamforming scenario. Each point with abscissa 1" corresponds to a
T-step optimizer. The sum rate increases with 7" and the untied optimizer
achieves higher sum rate.

Similar to [26], we consider a multi-stage training approach
under the rubric of curriculum learning [8]. For the scenarios
considered in this paper, supervised learning is not feasible
because computing the optimal solution is too time consuming,
therefore our approach is unsupervised.

A fully unsupervised learning approach is applied to jointly
optimize beamformers and the reflective pattern of a reflective
intelligent surface (RIS) in [28], where a graphical neural net-
work architecture is chosen in order to exploit the permutation
invariant property of the beamformers with respect to the user
ordering and also allow the model to support a variable number

35

---- N=K=8 L2
— N=K=4 e
30/ « Variable SNR
SNR = 20 dB
55/ *+ SNR=10dB o
]
&£ 20
IS
@
15
10
5
0.0 25 50 7.5 10.0 12,5 15.0 17.5 20.0
SNR [dB]
Fig. 11. Sum rate versus test set SNR in the MISO beamforming scenario,

N = K =4 (solid) and N = K = 8 (dashed). The variable SNR optimizer
is trained with data drawn uniformly between 10 and 20 dB, while the
other two policies are trained exclusively on data with a single SNR. The
variable SNR optimizer is robust across the entire SNR range, while the per-
formance of single-SNR policies degrades as the test SNR deviates from the
training SNR.

of users. Our proposed architecture also seeks to exploit the
permutation invariance, however we assume a fixed number of
users. In [29], the NN takes as input a measurement obtained
during the uplink pilot transmission phase and directly outputs
the beamformer and RIS weights, hence bypassing the channel
estimation task. Similarly, in [28] channel state information at
the transmitter (CSIT) is not present, but the beamforming-RIS
design is instead formulated as a Markov Decision Process.
Without CSIT, the reward (e.g., sum rate) cannot be directly
computed and therefore must be estimated based on sample

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

JOHNSTON et al.: A CURRICULUM LEARNING APPROACH TO OPTIMIZATION WITH APPLICATION TO DOWNLINK BEAMFORMING 97

observations; the authors propose an augmented version DDPG
that incorporates aspects of the system model. In our approach,
we assume perfect CSIT and therefore the quality of candidate
beamformers and gradients can be directly calculated for train-
ing. If CSIT is known, then the learning algorithm in [29], in
the context of our presentation, is equivalent to training with
the sum rate reward without curriculum learning and 7" = 1.

VIII. CONCLUSION

We have demonstrated that neural networks can closely ap-
proximate the optimal solution map for MISO sum rate max-
imization and min rate maximization problems. Curriculum
learning proved essential to learning the optimizer; without a
curriculum, the optimizer network converged to a suboptimal
point. For the MIMO and relay case, our learned optimizers
are at least on par with baseline methods and in some cases
far outperform them in terms of sum rate. The learning task
becomes quite difficult as the number of users and antennas
grow. In future work, the network architecture may be fine tuned
and implemented with more computing resources in order to
accommodate larger systems. Having demonstrated that it is
possible to approximate the optimal solution mapping of the
MISO problem, we expect that there are other problem families
out there that can be solved via our approach that would sig-
nificantly improve existing real-time optimization applications
and foster new ones.

REFERENCES

[1] M. Andrychowicz et al., “Learning to learn by gradient descent by
gradient descent,” in Proc. Adv. Neural Inf. Process. Syst., D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29.,
Red Hook, NY, USA: Curran Associates, 2016.

[2] K. Liand]J. Malik, “Learning to optimize,” in Proc. 5th Int. Conf. Learn.
Representations (ICLR), Toulon, France, Apr. 24-26, 2017.

[3] T. Chen et al., “Learning to optimize: A primer and a benchmark,” J.
Mach. Learn. Res., vol. 23, no. 1, pp. 8562-8620, 2022.

[4] B. Amos, “Tutorial on amortized optimization for learning to optimize
over continuous domains,” 2022, arXiv:2202.00665.

[5] M. Jin, V. Khattar, H. Kaushik, B. Sel, and R. Jia, “On solution functions
of optimization: Universal approximation and covering number bounds,”
Proc. AAAI Conf. Artif. Intell., vol. 37, no. 7, pp. 8123-8131, 2023.

[6] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement
learning for combinatorial optimization: A survey,” Comput. Oper. Res.,
vol. 134, Oct. 2021, Art. no. 105400.

[7]1 Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinato-
rial optimization: A methodological tour d’horizon,” Eur. J. Oper. Res.,
vol. 290, no. 2, pp. 405-421, Apr. 2021.

[8] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proc. 26th Annu. Int. Conf. Mach. Learn. (ICML), New
York, NY, USA: ACM, 2009, pp. 41-48.

[9] T. Chen et al., “Training stronger baselines for learning to optimize,”

in Proc. Adv. Neural Inf. Process. Syst., H. Larochelle, M. Ranzato,

R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33., Red Hook, NY, USA:

Curran Associates, 2020, pp. 7332-7343.

E. Bjornson, M. Bengtsson, and B. Ottersten, “Optimal multiuser trans-

mit beamforming: A difficult problem with a simple solution structure

[Lecture Notes],” IEEE Signal Process. Mag., vol. 31, no. 4, pp. 142—

148, Jul. 2014.

A. B. Gershman, N. D. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson,

and B. Ottersten, “Convex optimization-based beamforming,” /EEE

Signal Process. Mag., vol. 27, no. 3, pp. 62-75, May 2010.

M. Borgerding, P. Schniter, and S. Rangan, “AMP-inspired deep net-

works for sparse linear inverse problems,” IEEE Trans. Signal Process.,

vol. 65, no. 16, pp. 4293-4308, Aug. 2017.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed

optimization and statistical learning via the alternating direction method

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-
122, 2011.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

P. Hernandez-Leal, B. Kartal, and M. Taylor, “A survey and critique
of multiagent deep reinforcement learning,” Auton. Agent Multi-Agent
Syst., vol. 33, pp. 750-797, Nov. 2019.

J. R. Hershey, J. L. Roux, and F. Weninger, “Deep unfolding: Model-
based inspiration of novel deep architectures,” 2014. [Online]. Available:
https://arxiv.org/abs/1409.2574

Y. Yang, J. Sun, H. Li, and Z. Xu, “Deep ADMM-Net for compres-
sive sensing MRI,” in Proc. Adv. Neural Inf. Process. Syst., vol. 29,
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
Eds., Red Hook, NY, USA: Curran Associates, 2016, pp. 10-18.

K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in Proc. 27th Int. Conf. Mach. Learn. (ICML), 2010,
pp- 399-406.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp- 359-366, 1989.

H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for interference
management,” IEEE Trans. Signal Process., vol. 66, no. 20, pp. 5438—
5453, Oct. 2018.

M. Eisen, C. Zhang, L. F. O. Chamon, D. D. Lee, and A. Ribeiro,
“Learning optimal resource allocations in wireless systems,” I[EEE Trans.
Signal Process., vol. 67, no. 10, pp. 2775-2790, May 2019.

D. Weinshall and D. Amir, “Theory of curriculum learning, with
convex loss functions,” J. Mach. Learn. Res., vol. 21, no. 1, pp. 9184—
9202, 2020.

E. Bjornson and E. Jorswieck, “Optimal resource allocation in coordi-
nated multi-cell systems,” Found. Trend® Commun. Inf. Theory, vol. 9,
nos. 2-3, pp. 113-381, 2013, doi: 10.1561/0100000069.

C. Peel, Q. Spencer, A. Swindlehurst, and B. Hochwald, “Downlink
transmit beamforming in multi-user MIMO systems,” in Proc. Process.
Workshop, Sensor Array Multichannel Signal, 2004, pp. 43-51.

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” presented at the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2261-2269,
Los Alamitos, CA, USA: IEEE Computer Society, Jul. 2017. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.243
H. Huang, Y. Peng, J. Yang, W. Xia, and G. Gui, “Fast beamforming
design via deep learning,” IEEE Trans. Veh. Technol., vol. 69, no. 1,
pp. 1065-1069, Jan. 2020.

L. Pellaco, M. Bengtsson, and J. Jaldén, “Matrix-inverse-free deep
unfolding of the weighted MMSE beamforming algorithm,” IEEE Open
J. Commun. Soc., vol. 3, pp. 65-81, 2022.

X. Jia and X. Zhou, “IRS-assisted ambient backscatter communications
utilizing deep reinforcement learning,” IEEE Wireless Commun. Lett.,
vol. 10, no. 11, pp. 2374-2378, Nov. 2021.

T. Jiang, H. V. Cheng, and W. Yu, “Learning to reflect and to beamform
for intelligent reflecting surface with implicit channel estimation,” /EEE
J. Sel. Areas Commun., vol. 39, no. 7, pp. 1931-1945, Jul. 2021.

Jeremy Johnston received the B.S. in electrical
engineering from the University of Florida, in 2018.
He is currently working toward the Ph.D. degree in
electrical engineering with Columbia University.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

98

Xiao-Yang Liu (Graduate Student Member, IEEE)
received the B.Eng. degree in computer science
from Huazhong University of Science and Technol-
ogy, China, in 2010, and the M.S. degree in electri-
cal engineering from Columbia University, USA, in
2018, and the Ph.D. degree from the Department
of Computer Science and Engineering, Shanghai
Jiao Tong University, in 2017. He is now working
toward the Ph.D. degree with the Department of
Electrical Engineering, Columbia University. His re-
search interests include deep learning, optimization

algorithms, high-performance tensor computing, and big data analysis.

Shi-Xun Wu received the B.S. degree in com-
puter science from Peking University, China, in
2020, and the M.S. degree in electrical engineering
from Columbia University, USA, in 2022. He is
now working toward the Ph.D. degree with the
Department of Computer Science and Engineering,
University of California, Riverside. His research
interests include high-performance computing and
deep learning.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Xiaodong Wang (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from Princeton Uni-
versity, Princeton, NJ, USA. He is a Professor
in electrical engineering with Columbia University,
New York, NY, USA. Among his publications is
a book entitled Wireless Communication Systems:
Advanced Techniques for Signal Reception (Prentice
Hall, 2003). His current research interests include
wireless communications, statistical signal process-
ing, genomic signal processing, general areas of
computing, and signal processing and communica-
tions, and has published extensively in these areas. He received the 1999 NSF
CAREER Award, the 2001 IEEE Communications Society and Information
Theory Society Joint Paper Award, and the 2011 IEEE Communication
Society Award for Outstanding Paper on New Communication Topics. He was
an Associate Editor for IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS, IEEE TRANSACTIONS ON
SIGNAL PROCESSING, and IEEE TRANSACTIONS ON INFORMATION THEORY.
He is listed as an ISI highly cited author.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:54:31 UTC from IEEE Xplore. Restrictions apply.

