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Abstract

In this work, a novel discretization of the incompressible Navier-Stokes equations for a gas-
liquid flow is developed. Simulations of gas-liquid flows are often performed by discretizing
time with a predictor — pressure — corrector approach and the phase interface is represented
by a volume of fluid (VOF) method. Recently, unsplit, geometric VOF methods have been
developed that use a semi-Lagrangian discretization of the advection term within the predictor
step. A disadvantage of the current methods is that an alternative discretization (e.g. finite
volume or finite difference) is used for the divergence operator in the pressure equation. Due
to the inconsistency in discretizations, a flux-correction to the semi-Lagrangian advection
term is required to achieve mass conservation, which increases the computational cost and
reduces the accuracy. In this work, we explore the alternative of using a semi-Lagrangian
discretization for the divergence operators in both the advection term and the pressure
equation. The proposed discretization avoids the need to use a flux-correction to the
semi-Lagrangian advection term as mass conservation is achieved through consistent
discretization. Additionally, avoiding the flux-correction improves the accuracy while reducing
the computational cost of the advection term semi-Lagrangian discretization.
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Introduction

Atomizing sprays are prevalent in daily life, ranging from natural phenomena to industrial
processes. Gaining insight into the underlying physics that drives these sprays is difficult,
yet offers potential for more efficient and accurate utilization in various industries. Due to the
nature of atomization, a rapid transformation of liquid into an opaque cloud, properly visualizing
the dynamics present can be complicated. Experimental techniques have been employed
to investigate these flows yet require complex techniques and often times only offer a two-
dimensional representation of the spray [1, 2]. With the increase in computational power
over the last couple of decades it is advantageous to use these resources to investigate the
dynamics present in spray-type flows.

One characteristic of simulating atomizing, or gas-liquid, flows is the challenge of resolving
the interface between the two phases and addressing the resultant discontinuities along that
interface. This challenge has spurred a whole field of research deemed interface tracking and
interface capturing. Interface tracking explicitly represents the interface offering an accurate
yet computationally expensive solution, while, interface capturing represents the interface
implicitly, often with lower computational cost [3, 4]. However, implicit methods sacrifice
accuracy in representing the interface. This limitation has prompted much development within
the field of interface capturing to improve the accuracy of these methods. One method
considered state-of-the-art within interface capturing is the volume-of-fluid (VOF) method.

The volume-of-fluid (VOF) method uses a conserved scalar quantity to represent the ratio
of liquid volume to cell volume within a computational cell [5, 6, 7, 8]. This scalar, known as
the liquid volume fraction (VF), can be used to implicitly reconstruct the interface at each time
step throughout the domain. The VOF method offers conservation of mass in the presence of
the large density ratios and/or range of length scales that are present in atomizing sprays [9].
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There exist a couple of different advection schemes for transporting the VF through the domain.
The earliest methods used a split scheme, where the transport occurs in each dimension in
separate steps, requiring re-evaluation of the interface for each dimensional step [6]. Proper
implementation of these methods requires the handling of dilation terms to conserve liquid
volume, which is equivalent to mass conservation [10].

To avoid the hurdles present in split VOF advection schemes, the unsplit VOF advection
scheme was developed. In general unsplit methods differ from split methods by evaluating
the transport of each dimension in a single step. Within the category of unsplit VOF methods
there exist algebraic and geometric techniques, yet this work will focus on unsplit geometric
VOF methods, for a broader perspective on VOF methods see [4]. The premise of unsplit
geometric VOF schemes is to handle the transport of any conserved quantity by integrating
over volumes formed by characteristics in space-time. Many implementations of this idea have
been developed in two and three dimensions, notable examples include [11, 12, 13, 14]. By
interpolating cell velocities to the vertex of each cell and projecting them back in time, flux
regions can be computed that represent the flow into and out of that cell. We will be focused
on developing upon the method proposed by Owkes and Desjardins [15], which we will refer
to as the semi-Lagrangian method.

It can be computationally expensive to create the flux regions formed by the semi-
Lagrangian discretization. Therefore, using the semi-Lagrangian to handle the transport of
other conserved quantities would be advantageous, as the flux regions have already been
computed to transport the interface. One implementation of this idea was done in [16] which
utilized the flux regions to handle momentum transport offering accuracy and conservation of
mass and momentum.

While this method is considered state-of-the-art, it still suffers from the need for a flux
correction to ensure conservation of mass, which is a common issue for many of the
contemporary VOF methods. This lies in the discrepancy between the discretization used to
transport the interface and the discretization used to solve for a divergence-free velocity field.

Often these VOF methods to transport the interface are used in conjunction with a predictor
— pressure — corrector approach, or projection method, first developed by Chorin [17]. In
essence, the first step in this method is to solve for an intermediate velocity by solving the
momentum equation and ignoring the pressure term. From here the pressure can be found by
solving a Poisson equation using the intermediate velocity and enforcing the divergence-free
constraint. Finally, the intermediate velocity can be corrected by applying the pressure term,
creating a divergence-free flow field. Throughout the rest of this paper, we will refer to this
method as the predictor-corrector method.

The need for a flux correction in the semi-Lagrangian method arises due to the different
discretizations of the divergence operator used in the predictor-corrector method. Up to this
point in the literature, the semi-Lagrangian method has only been used to handle interface
transport and the calculation of the intermediate velocity, while a different finite volume or finite
difference (FV/FD) discretization is used to solve for the pressure term. Consequently, the
divergence-free constraint is upheld with respect to the FV/FD discretization and not the semi-
Lagrangian discretization that is used to create the intermediate velocity. This requires the flux
regions produced by the semi-Lagrangian to need a flux-correction to satisfy the divergence-
free constraint.

In this work, the proposed method employs the semi-Lagrangian to transport mass and
momentum and additionally to discretize the pressure term. The consistency obtained by
using the semi-Lagrangian throughout the predictor-corrector method offers the benefit that
the flux regions do not require a flux-correction to conserve mass. This implementation offers
an increase in computational efficiency and accuracy of the simulation as the flux-corrections
are computationally expensive and are non-physical in nature. Furthermore, the proposed
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method theoretically makes using the semi-Lagrangian method with unstructured meshes
or immersed boundary methods less complex. This optimization to the method proposed
in [16] has not been explored due to the calculation of the pressure term. Contemporary
pressure solvers within the predictor-corrector method solve the Poisson equation, which has
been solved with a multitude of numerical methods. Using the semi-Lagrangian to solve for
the pressure leads to a Laplace-like equation that has not been identified elsewhere in the
literature. Therefore, the main hurdle within this research is developing methods to solve for
the pressure within this Laplace-like equation.

Methodology
4.1 Governing Equations

To handle the conservation of mass and momentum for two fluids, the "one-fluid formulation"
will be used which is outlined by Tryggvason [18]. This method uses varying fluid properties to
account for liquid and gas phases and a delta function to represent the surface tension force
along the interface. Introducing varying fluid properties to the incompressible Navier-Stokes
equations leads to the following set of equations:

0
pie + V- (pruuT) = =Vp+ V- ui(Vu+ (Vo)) + pig + ornds (1)
V-u=0 (2)

where u is the fluid velocity, ¢ is time, p is pressure, g is gravity, o is the surface tension
coefficient, « is the local interface curvature, and n is the approximate interface normal vector,
and u; and p; are the varying fluid properties for viscosity and density, respectively. We now
have a form of the incompressible Navier-Stokes equations that define the whole flow field for
two phases using one set of equations, defined as the "one-fluid formulation".

Within each computational cell of the mesh, we need to define a liquid volume fraction (VF)
that represents the ratio of liquid to gas for that cell. Starting with a heaviside function, or liquid
distribution function:

3)

0 ifxisinthe gas attimet,
f(z,t) = e L )
1 if z is in the liquid at time t,

that offers a continuous representation of the liquid and gas within the domain. From here we
need to discretize the liquid distribution function with regard to the computational mesh. This
is defined as the volume integral of the heaviside function within the cell volume leading to:

%ZéAﬂ%WV 4)

where «,, is the VF at the pth computational cell, and V,, is the volume of the cell.

This liquid volume fraction is defined to represent interface location and fluid properties,
where a,, = 1 defines a cell containing only the liquid phase and «,, = 0 defines a cell containing
only the gaseous phase. From here we can use the VF to define our mixture density and
viscosity to handle the jump discontinuities that exist for these properties along the interface.
The mixture density and viscosity at the pth cell are defined as:

Pp = P1Op — Pg(l - ap) (5)
pp = iy — jig(1 — ap) (6)

where the subscript i = g or [ for gas and liquid variables, respectively.
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The advection of a conserved quantity, f, is defined as:

of B
5TV u)=0 7)

which comes from the material derivative of a conserved quantity for incompressible flows.

4.2 Semi-Lagrangian Discretization

As mentioned before, the semi-Lagrangian scheme uses cell vertex velocities to determine
the flux of a conserved quantity through a cell over a time step. The scheme was developed
with velocities stored along cell faces and any scalars such as pressure stored at cell centers.
These face velocities are then interpolated to the cell vertices and projected back in time.
Consequently, in two dimensions, a face will have two vertices, and thus, two velocities;
whereas in three dimensions, a face will have four vertices, and accordingly, four velocities.
Using these vertex velocities a flux region can be created which represents the flux coming
into or out of that face of the computational cell. Taking into account all the flux regions for a
given cell, the total flux through that cell can be determined.

One unique advantage of the semi-Lagrangian scheme is its ability to handle the disconti-
nuities present in gas-liquid flows. For example, when handling transport for a cell containing
an interface the corresponding flux region is recursively cut by the computational mesh. Once
sliced by the mesh the flux volume is similarly cut by the phase interface until regions local
to a single cell and phase are created. From here the conserved quantity to be transported
can be integrated within the cut flux volume effectively dealing with the discontinuities present
along the interface. Therefore, the semi-Lagrangian scheme allows for the evaluation of the
advection of any conserved quantity through a cell for a given time step even in the presence
of interface discontinuities.

For an in-depth derivation of the semi-Lagrangian see [15], in short, the discretization
develops a relationship between the material evolution of a conserved quantity applied to a
fixed control volume and the advection of the conserved quantity within a computational cell
due to flux regions. The material evolution of a conserved scalar quantity f(x,t) within a
solenoidal velocity field takes the form:

v (ruy =0 ®)
where x is the spatial coordinate, u is the velocity field, and ¢ is time. If we integrate over a
discrete time step and a fixed control volume, and then apply Gauss's theorem we can get a
relationship between the change in the conserved scalar f within the control volume and the
flux through the surface of the control volume (C'V') described by:

g+l

(x,t") — f(x, t")dV + / fu-ncydSdt =0 (9)
cv tn cs

At this point, the surface of the C'V (cell faces) needs to be partitioned into sub-surfaces
0C'S;. Each subsurface will get a flux volume, ©Q;(¢), which has a bounding surface, w;(t), where
positive and negative values represent flux coming into and out of the cell, respectively. Again,
this time integrating over the sub-surfaces and applying Gauss' theorem and Leibniz's rule we
can recast Eqg. 8. This equation gives a relationship between the change in our conserved
quantity within the C'V/, or cell face, and the fluxes coming into and out of the cell faces of the
CV. This equation when made compact takes the form:

3 |t (10)
Q 9
s=1 s
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where N, is the number of faces for the CV, and ; is the flux volume at each face ;. Now we
have a relationship between the transport of a conserved quantity through a cell and the flux
of that quantity through each face of the cell.

Essentially, the Semi-Lagrangian discretization allows for a novel way to deal with diver-
gence operators within our governing equations. In the next section, Sec. 4.3, we will expand
on how the Semi-Lagrangian can be used to discretize divergence operators elsewhere in the
computational algorithm.

4.3 Predictor-Corrector method/Projection method

Up to this point in the literature, a few different unsplit geometric VOF methods have been
developed that offer conservation of mass and momentum yet require some form of flux-
correction [14]. This requirement is caused by an inconsistency within the discretization
techniques used to handle the transport of conserved quantities. The crux of this issue
lies within how the predictor-corrector method is discretized, specifically, how the divergence
operator is discretized.

In this work, the predictor-corrector method is used to integrate over time and employs
the projection method developed by Chorin [17] to decouple the velocity and pressure fields
present in the conservation of momentum equation. Together these methods allow for iterative
solutions to the incompressible Navier-Stokes equations defined in Sec. 4.1. To illustrate the
predictor-corrector method and eventually the consistent discretization proposed in this work,
we start by discretizing time with the simplest Euler step. In practice, more accurate, iterative,
methods are used but the key parts are equivalent. Discretizing the momentum equation with
Euler's method leads to:

un+1 P )

1 i
TU+V~(uuT) :—EVp+%(Vu+(Vu)T)+g+ (11)
where the superscript indicates the time-step (t"*! = ¢ 4+ At). At this point the pressure
and velocity fields are still coupled, therefore an operator splitting technique that allows for the
decoupling of these two terms is applied resulting in:

K0

(3 7

¢ A_t“’ +V - (uuT) = L;:’ (Vau + (Va)T) + g + 025 (12)

u"t —u* 1 41
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where u* is the intermediate velocity and »"*! is the velocity at the next time step. Eq. 12
is considered the predictor step where an intermediate velocity is calculated that neglects
the pressure term and the second equation, Eq. 13, is known as the corrector step. The
pressure in Eq. 13 is found such that «"*! satisfies the continuity equation (Eq. 2). By solving
this equation in this step-wise manner an intermediate velocity is calculated and projected
onto the divergence-free subspace. This projection method results from ideas present in the
Hodge decomposition which says that any vector field on a simply connected domain can be
decomposed into divergence-free and curl-free components, see Bloomquist [19] for a more
in-depth discussion on the use of the Hodge decomposition in this application. Solving Eq. 13
for v+ and taking the divergence, and ensuring that »"*! is divergence-free leads to:

At

In summary, the predictor-corrector method solves the continuity and momentum equations
by first solving Eq. 12 for w*, then Eq. 14 is solved for p"*!, and finally Eq. 13 is used to
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compute u"! completing the time step. Note that any scalars, including the color function,
are transported at the same time Eq. 12 is solved using consistent fluxes between mass and
momentum.

4.3.1 Traditional Inconsistent Discretization

Current discretizations (see e.g., [15]) of the predictor corrector method use a semi-Lagrangian
method for advection terms (V - (uu')) and FV/FD discretizaton of Eq. 14. The FV/FD
discretization is linear and allows for the distribution of the divergence operator to the velocity
term and pressure leading to the traditional pressure Poisson equation V2p"+! = &V-u*. As
referenced earlier, using the semi-lagrangian for advection terms and to discretize Eq. 12 but
not Eq. 14 leads to the requirement of a flux-correction.

4.3.2 Proposed Consistent Discretization

In this work the divergence operators in both the advection term within Eq. 12 and Eq. 14
are discretized with a semi-Lagrangian formulation. However, the semi-Lagrangian operator
is non-linear, thus the divergence operator in Eq. 14 can not be distributed. Therefore,
Eq. 14 must be solved as is and can not be simplified to a Poisson equation. In its current
implementation, the proposed methodology uses a discrete Newton method, described by
Ortega [20], to solve Eq. 14.

The proposed method alleviates the need for a flux-correction by using a consistent
discretization for the divergence operators used in the advection terms and the pressure
equation. Removing the flux-correction will reduce the computational cost of evaluating the
advection terms and avoid the non-physical effects of adding the correction.

Results and Discussions

In this section, we present the initial findings of our computational algorithm, offering a
preliminary glimpse into its potential efficacy and performance. The test consists of a rising
bubble discretized on a 50 by 50 mesh and serves as a proof-of-concept of the proposed
methodology. Fig. 1 showcases the simulation results, a coarse rising bubble can be seen as
well as the expected deformation as the bubble is rising.

Not only does the initial result indicate the proposed methodology functions as expected,
but it also illustrates the difference in computational cost when compared to an algorithm similar
to what was proposed in [15]. The main difference between these two algorithms was how the
pressure term was calculated. In the proposed methodology the flux-correction is avoided
by the use of the semi-Lagrangian for the divergence operator in the pressure calculation
in conjunction with semi-Lagrangian advection of conserved quantities. On the other hand,
the contemporary method uses a FV/FD method to handle the pressure calculation while
dealing with advection of conserved quantities using the semi-Lagrangian. The downside of
the contemporary method has to do with the inconsistent discretizations of the divergence
operators present in the pressure calculation and advection steps. It was observed that the
computational cost of the proposed methodology, in its current implementation, was about 10%
more computationally expensive than [15].

The main avenue for increasing the computational efficiency of the algorithm deals with the
pressure calculation. The discretized Newton method requires a rather expensive Jacobian to
be created at each time step.
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(a) 50% mesh, t=0.0 (b) 50% mesh, t=0.5
Figure 1: Proof-of-concept results from a 50 simulation of a rising bubble.

Conclusions

In this paper, we have developed a novel computational algorithm that offers a consistent
discretization to handle interface advection and the predictor-corrector method. This work
builds off ideas present in [16] where the semi-Lagrangian method was employed to handle
advection of scalars (such as VF) and momentum. One potential downside of that imple-
mentation is the computationally expensive flux-corrections required to conserve mass and
momentum. The proposed computational algorithm not only employs the semi-Lagrangian
method to handle advection of scalars and momentum, but also to solve for the pressure
term within the predictor-corrector method. Using the semi-Lagrangian discretization to handle
the pressure calculation avoids the need for a computationally expensive flux-correction.
As flux-corrections are non-physical avoiding that step would improve the accuracy of the
simulation. Additionally, alleviating the need for flux-corrections allows for less complicated
implementations of unstructured meshes and immersed boundary methods. When using the
semi-Lagrangian discretization for an unstructured mesh many cases cause non-intersecting
fluxes or overlapping fluxes after flux-corrections have been applied leading to conservation
errors [14].

The main contribution to the community from this work is that we have developed a
computational algorithm that offers a consistent divergence discretization using the semi-
Lagrangian method and shown that it works. Not only have we tentatively demonstrated the
validity of the method but also described its potential for increased accuracy and computational
efficiency when compared to other contemporary unsplit geometric VOF methods. Future
work will focus on the development of a more computationally efficient method to solve for the
pressure term, while more thoroughly validating the method's accuracy.
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