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ABSTRACT

We address some of the limitations of coverage-based search re-
sult diversification models, which often consist of separate compo-
nents and rely on external systems for query aspects. To overcome
these challenges, we introduce an end-to-end learning framework
called DUB. Our approach preserves the intrinsic interpretability
of coverage-based methods while enhancing diversification per-
formance. Drawing inspiration from the information bottleneck
method, we propose an aspect extractor that generates query aspect
embeddings optimized as information bottlenecks for the task of
diversified document re-ranking. Experimental results demonstrate
that DUB outperforms state-of-the-art diversification models.
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1 INTRODUCTION

Search result diversification (SRD) has long been studied to increase
the chance of addressing user information needs [80] in response
to their often under-specified search queries [46]. As Sparck Jones
et al. [83] suggested, search engines should take into account the
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relevance of a document in relation to the various potential infor-
mation needs, also known as query aspects or subtopics, that may
be associated with a given query.

There are two broad categories of SRD approaches based on
their diversification strategy: coverage-based and novelty-based [80].
Coverage-based approaches focus on measuring how well a given
document covers various aspects of the query. In contrast, novelty-
based approaches compare retrieved documents with each other
to promote novel information. One advantage of coverage-based
approaches over novelty-based approaches is the higher degree of
model interpretability and transparency they offer to users [62],
because the aspects and how documents cover them can be eas-
ily understood. Conversely, novelty-based approaches often rely
on measurements such as dissimilarity between document embed-
dings [84, 85, 97, 98], which are difficult for humans to interpret.

While coverage-based approaches are generally acknowledged
for their interpretability, they often rely on external systems for
query aspect acquisition, such as (proprietary) Google query sug-
gestion [44, 48, 69, 70] or query completion models trained with
query logs [62]. The reliance on such external systems presents
several drawbacks. Firstly, the availability of these query aspect
acquisition systems cannot be assumed at all times due to factors
like high training and/or inference costs, as well as restrictions on
extensive usage. Secondly, the acquisition of query aspects is not
grounded in the actual documents to be re-ranked, but rather relies
on query logs and click data used during the training of the systems.
Consequently, there is no guarantee that the provided query aspects
are relevant to the candidate documents, which could potentially
hinder the re-ranking process. Lastly, query aspect acquisition sys-
tems cannot be optimized to align with the downstream objective
of search result diversification. Even in the case of IntenT5 [62],
which can be considered an open-source alternative to proprietary
Google query suggestion, query aspects are represented in plain
text, preventing the back-propagation of the diversity-oriented loss
to the query suggestion model itself. This lack of joint optimization
hinders the simultaneous improvement of query aspect acquisition
and diversified re-ranking.

In this research, our main objective is to develop an SRD frame-
work that integrates intrinsic interpretability and effectiveness
through end-to-end learning. To achieve this goal, we draw inspira-
tion from the Information Bottleneck Method [86], which focuses
on producing a summary of information X that is optimized to pre-
dict some other relevant information Y. Motivated by this approach,
we introduce DUB (short for Diversification Using Bottlenecks),
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a coverage-based diversification framework. In DUB, we design a
differentiable aspect extraction component that can “summarize”
relevant information from candidate documents into latent aspect
embeddings, which are optimized to enhance the downstream di-
versified re-ranking task. This component addresses the need for
simultaneous optimization of query aspect acquisition and doc-
ument re-ranking. We propose two implementations for query
aspect extraction. The first approach employs multi-head atten-
tion [89], where each head learns the representation of a specific
query aspect [19]. The second approach involves clustering docu-
ment segments (passages), where each cluster represents a distinct
query aspect.

We introduce a novel pretraining task termed aspect matching.
This task involves the development of a dataset construction ap-
proach along with two pretraining objectives. By integrating aspect
matching into DUB, we empower it with the capability to effectively
use abundant query-aspect relationships found within Wikipedia.
This significantly mitigates the issue of data scarcity that commonly
hinders advances in search result diversification.

We perform extensive evaluations of DUB in terms of search re-
sult diversification. Notably, DUB is able to outperform approaches
which get explicit query aspects from Google query suggestions [44]
and large language models (e.g., GPT-3.5 [12]). Specifically, DUB
demonstrates a significant improvement of 4.3% in a-nDCG@20
performance for the diversity task in the TREC Web tracks [21-24]
when compared to the strongest baseline. Furthermore, extrinsic
evaluations using latent aspects represented as unigram language
models demonstrate that DUB generates aspects that exhibit higher
relevance to labeled relevant documents, rendering them more
suitable for the purpose of diversified reranking.

2 RELATED WORK AND BACKGROUND

DUB is a search result diversification framework using explicit ex-
traction of latent query aspects from search results. Our work is thus
related to query aspect acquisition and search result diversification.

2.1 Query Aspect Acquisition

Obtaining query aspects (alternatively referred to as subtopics,
facets, or intents) for ambiguous queries has proven beneficial
in various information retrieval tasks, including query sugges-
tion [3, 8], search result diversification [80], and asking clarifying
questions [4, 102]. Query aspects can be acquired from diverse re-
sources include query logs [7, 49, 72, 91, 103], anchor text [27, 54],
knowledge bases [10, 47], the entire corpus [8], top-retrieved results,
or a combination thereof [34, 42]. Regarding the extraction of query
aspects from search results specifically, Dou et al. 35, 36] propose
QDMiner that automatically mines query facets by extracting and
grouping frequent lists from free text, HTML tags, and repeated
regions within top search results. Kong and Allan [52] introduce a
learnable graphical model for query facet extraction.

More recently, Transformer based language models [50, 57, 74]
have been used to generate query aspects. IntenT5 [62] is trained on
query logs [26] to predict succeeding terms of a given query as its
intents. Samarinas et al. [77] propose to generate query facets by
prompting large language models using a few examples of query-
facets pairs as prompts. Their findings suggest that when evaluated
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using a dedicated facet generation dataset, this method is not as
effective as facet generation models that rely on documents [36, 40].
However, when assessed through manual evaluations conducted
by humans, it performs equally well. We present an evaluation of
using aspects generated by GPT-3.5 for the purpose of search result
diversification in Section 5. Rahimi et al. [75] and Yu et al. [100]
design text generation models to generate query aspects per docu-
ment. NMIR [40] and its permutation-invariant version PINMIR [41]
employ a language generation model to output multiple query in-
tents given a query and its top-retrieved documents. However, their
configurations impose a constraint where the combined length of
the query and a cluster of documents (for NMIR) or all candidate
documents (for PINMIR) must not exceed the maximum input limit
of the generation model, such as 1024 tokens of BART [57]. This
limitation becomes impractical when extracting query aspects from
a larger collection of lengthier documents.

2.2 Search Result Diversification

Approaches for search result diversification (SRD) can be classi-
fied into three categories based on their diversification strategy:
coverage-based (estimating document coverage of query aspects),
novelty-based (comparing retrieved documents to each other), or a
combination of both (also known as hybrid) [58, 69, 70, 79]. Novelty
and coverage are related to the notions of extrinsic and intrinsic
diversity, respectively, as discussed by Radlinski et al. [71]. Addition-
ally, an alternative categorization that is commonly used in recent
literature is the distinction between implicit and explicit approaches,
depending on whether or not the approach uses explicit aspect rep-
resentations. Explicit approaches are typically considered to be
coverage-based or hybrid, as they require explicit query aspects to
estimate coverage, while implicit approaches can be thought of as
novelty-based. Regarding how documents are scored, SRD methods
can also be classified into two main paradigms: score-and-sort and
next-document. In the score-and-sort paradigm [69, 97, 98], candi-
date documents are scored collectively and subsequently re-ranked.
Conversely, the next-document paradigm [14, 48, 70, 78, 81, 84, 85]
adopts an iterative strategy where at each step a document is greed-
ily selected to maximize a combination of its relevance to the query
and its novelty in relation to previously selected documents.
Recent neural network-based approaches for search result di-
versification tend to adopt implicit methods and do not rely on
explicit aspect representations [84, 85, 93, 94, 97, 98, 105]. Instead
of directly comparing document representations to compute nov-
elty [14], some of these approaches leverage graph neural net-
works [51] or document interaction networks [67] for document
interactions and representation updates. The updated document
representations are then utilized to infer novelty scores [84, 85] or
final ranking scores [97, 98]. Some implicit approaches also have
the capability to incorporate external knowledge, such as document
relation classifiers [84] and entity-related information [85]. On the
other hand, explicit and hybrid diversification approaches typically
rely on query aspect representations obtained from external sources.
Diversified query expansion (DQE) [88] employs multiple exter-
nal sources, including knowledge bases[10], word embeddings [66],
and query logs [59], in addition to the top-retrieved documents [11],
to expand the original query. This expansion introduces more di-
verse terms into the query, resulting in the retrieval of a broader
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range of diverse documents. Unsupervised explicit approaches like
xQuAD [78], PM2 [29] and HxQuAD/HPM2 [44] use query reformula-
tions or suggestions [44]. Supervised explicit approaches DSSA [48],
DESA [69], and GDESA [70] employ similar information as query as-
pects but can be trained using subtopic-level relevance judgments.

Numerous studies have explored the use of clustering for subtopic
mining [90], subtopic retrieval [15, 16] and search result diversi-
fication [43, 64, 81] in the context of unsupervised methods. In
line with the concept of “query-specific clustering” [43], our pro-
posed framework distinguishes itself by integrating clustering as a
fundamental component of an end-to-end learning model.

Note that we do not claim DUB to be more interpretable than
other coverage-based approaches. While interpretability is a pri-
mary motivation for developing coverage-based SRD models, the
evaluation of interpretability involves several factors, such as aspect
description readability, aspect diversity, aspect faithfulness, and
the trade-off with diversification effectiveness. The examination of
interpretability is beyond the scope of our current study, and we
leave it to future investigations.

2.3 Background

We briefly introduce Multi-Head Attention and Differentiable K-
Means that are required for describing DUB in Section 3.

2.3.1 Multi-Head Attention. Given query, key, and value matrices
0O, K, and V, the attention (Attn) and the multi-head attention
(MHA) functions [89] are defined as follows:

T
Attn(Q, K, V) = Softmax( oK

Vd

MHA(Q, K, V) = Concat(heady, - - - ,headh)WO, (2)

)V, 1)

head; = Attm(QW 2, KWK, vw), 3)

where h is the number of attention heads, and d is the embedding
dimension. Intuitively, attention calculation is performed in h sub-
spaces of dimension d/h in parallel, and then aggregated back into

the main space of dimension d. Projection matrices WlQ WIK WlV ,
and WO are learnable parameters.

2.3.2 Differentiable K-means. DKM [20] is an attention-based clus-
tering layer that enables end-to-end training through backpropaga-
tion, optimizing the loss function of the overall task. In our context,
end-to-end training offers the advantage of learning representa-
tions that are well-suited for aspect extraction and, consequently,
diversified re-ranking. DKM achieves differentiability by replacing
the hard clustering assignment of K-means [63], where each in-
stance can only belong to one cluster, with an attention-based soft
assignment. This allows each instance to have membership in all
clusters with different attention weights. However, DKM converges
to a trivial solution, resulting in the same K clusters, as all clusters
comprise the same set of instances (i.e., all instances). Cho et al. [20]
apply early stopping by setting a maximum of five clustering itera-
tions to avoid this undesirable convergence behavior. Although a
pre-defined number of clustering iterations can work for clustering
similar sets of instances, it is not suitable for clustering dynami-
cally changing sets of passages for different queries. A desirable
number of clustering iterations can vary from one query to another.
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Figure 1: An overview of the DUB framework.

In Section 3.3, we introduce Generalized DKM, which addresses
those limitations of DKM when applied to our specific task.

3 METHODOLOGY

3.1 Task Formulation and Framework Overview

Our proposed method is compatible with both sort-and-score and
next-document ranking paradigms (Section 2.2). We focus on the
score-and-sort approach, primarily due to its efficiency. Formally,
consider a search query denoted as g and a ranked list of candidate
documents represented as R. An SRD model, denoted as ¥, gen-
erates a list of ranking scores, S = 7 (g, R). The goal is to obtain
a re-ranked list 7(R) according to S, which is expected to exhibit
higher diversity compared to the original ranked list R.

The DUB framework 7 in our study consists of three learnable
components, as depicted in Figure 1: the text encoder & (@), the
aspect extractor A (@), and the diversified ranker P (@). The text
encoder & is responsible for obtaining the query embedding q and
passage embeddings P. These embeddings are further utilized to
select candidate passage embeddings P* and to build query-biased
document embeddings D. Subsequently, the aspect extractor A
leverages the candidate passages embeddings P* and query embed-
dings q to produce aspect embeddings A, which serve as informa-
tion bottlenecks for the diversification task. Lastly, the diversified
ranker P takes the aspect embeddings A and the query-biased
document embeddings D, calculates document-aspect coverage as
document features, and outputs scalar ranking scores S. We now
introduce each component in detail.

3.2 Text Encoder

Most recent works on search result diversification [37, 48, 69, 70,
84, 85, 95, 97, 98] use unsupervised Doc2Vec embeddings [56] to
represent queries, aspects, and documents. Instead, inspired by the
effective use of contextualized representations across various NLP
and IR tasks, we use a shared Transformer language model as the
query and document encoder, which allows DUB to be optimized
end-to-end with respect to input texts.
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We segment long documents into overlapping passages and per-
form passage-level encoding. This approach is motivated by three
key factors: (1) the length of documents often exceeds the input
limit length of the encoder, such as the 512-token limit of BERT [50];
(2) it may be that only a small portion of a long document is relevant
to the query [87]; and (3) a long document may cover multiple query
aspects, leading to potential information loss if a single embedding
represents the entire document [61].

We take the mean of token embeddings from the last encoder
layer to obtain the query embedding (q) and passage embeddings
(P). After encoding all passages from all documents to be re-ranked,
we filter out less related passages and derive two types of repre-
sentations - candidate passage embeddings for aspect extraction
and query-biased document embeddings for document scoring. For
candidate passage embeddings, passages whose similarity to the
query is greater than a preset threshold 6 are selected. The embed-
dings of the retained passages from all candidate documents are
denoted as P* = {p|cos(q, p) = 0, p € P} and are used for aspect
extraction. For query-biased document embedding from its passage
representations, we select the top-n passages from the document
that are most similar to the query embedding and average them to
construct a query-biased embedding for the document, denoted by
d. Query-biased document embeddings for all candidate documents
with respect to a query is denoted as D.

Both selection methods aim to filter out irrelevant contexts from
the model. The adoption of two different selection criteria is mainly
for handling irrelevant documents in the candidate set, some of
which may lack suitable passages for building the query-biased
document embedding D if threshold-based selection alone is used.

3.3 Aspect Extractor

After obtaining the query embedding q and candidate passage
embeddings P*, the aspect extractor A is employed to generate
a fixed number (K) of aspect embeddings A = A(q, P*), where
A € RE%d_Each aspect embedding aims to capture one specific
aspect of the query-relevant information that is covered by the
retrieved documents. We investigate two different approaches for
extracting query aspects.

Aspect Extractor Using Multi-Head Attention. The first de-
sign of the DUB aspect extractor is based on multi-head attention
(MHA) to construct query aspects from similar passages. However,
we introduce a modification to the original MHA [89] and its appli-
cation in aspect-based dense retrieval [53]. Specifically, we consider
the output of each attention head as the latent representation of a
query aspect, akin to the intent modeling approach proposed by
Chen et al. [19]. In this aspect extractor, the outputs of h = K atten-
tion heads are not combined into a single output, as expressed in
Eq. 2, but are preserved separately as K aspect embeddings. Hence,
the formal implementation of A can be defined as follows:

A=A(q, P*) = MHA(q, P*, P*) = {heady,- - - ,headg}, (4)
a; = head; = Atin(qW 2, PWK, P*W}), ()

In this formulation, the query embedding q serves as the query
matrix of the self-attention module, while the candidate passage
embeddings P* are treated as the key and value matrices. Notably,

the input projection matrices W,Q WlK and WlV in DUB’s aspect
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Algorithm 1: GDKM algorithm

Input: Passage embeddings P*, minimum moving distance €,
number of clusters K, temperature 7, degree of freedom v,
and mask attention value &.

Output: Cluster assignments & and centroids
1 Function GDKM(P*, ¢, K, 7, v, 1):

2 p — K-means++(P*, K) // Initialization; |u|==

3 while True do

4 8 — {Sij=cos(pipj)}, 1 <i <|P*,1<j< |l

5 a%{aij:%},1§i$|P*|,1§jS|y|
6 fori=1,2,---,|P*| do

7 t « sort-desc(a[i])[v] // v-largest in «ali]
8 forj=1,2,---,|u| do

9 if ajj =2t then

10 ‘ aijj «— aij

1 else

12 ‘ ajj — 1

13 end

14 end

15 end

1 Ao = HE 1 <i< PP < < Jul

17 if ||t — p|| < € then

18 & — {djj}, 1 <i<|P*|,1<j< |yl

19 return &, fi // converge and exit
20 else

21 ‘ ue—pu // go to the next iteration
22 end

23 end

extractor have dimensions of R%*9, differing from the matrices in
Eq. 3 with dimensions of R¥*4/%_ This modification ensures that
the output of each head in the aspect extractor has a dimension of
d to represent one query aspect.

Aspect Extractor using GDKM-based Clustering. An alter-
native intuition for query aspect extraction is that passages covering
the same query aspect have more similar embeddings compared to
those covering different aspects [84]. Based on this intuition, we
perform clustering on candidate passage embeddings P* to derive
representations of aspects. In the clustering-based aspect extractor
component, we directly incorporate passage interactions. This is
in contrast to the MHA-based approach, where passage interac-
tions are indirectly captured through their similarity to the query
embedding. Clustering-based aspect extraction involves two steps.

Step 1: Clustering passages with Generalized Differentiable K-
means. The clustering component for aspect extraction should be
differentiable so that the encoder (&) parameters can be optimized
through gradients from the loss function. To address the limitations
of DKM [20] for query-specific passage clustering (Section 2.3.2),
we propose GDKM, a generalization of DKM, by limiting the num-
ber of clusters that each instance (passage) can be assigned to. A
passage can belong to multiple, but not all, clusters in a probabilistic
way. For this purpose, we introduce a hyper-parameter degree of
freedom, denoted by v, that represents the maximum number of
clusters an instance can be assigned to. GDKM is generalized be-
cause it reduces to the original K-means algorithm [63] by setting
v=1, and on the other hand, to DKM by setting v to K. Setting v
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Organize clusters into padded

Clustering Assignment &
From GDKM (v = 2.K = 3)

Figure 2: Aspect extraction using GDKM clustering (K=3, v=2).
Each cluster contains passages that are inside its border and
passages that point to its border. E.g., both py and p4 are
part of the yellow cluster, with the former having a higher
probability, whereas p3 does not belong to this cluster.

to an integer between 1 and K, GDKM allows modeling passages
covering multiple aspects of the query without having the conver-
gence issue of DKM (Section 2.3.2). The pseudocode of GDKM is
presented in Algorithm 1. Highlighted lines indicate the extension
to DKM. For each passage embedding, the clustering layer first
estimates the probability of its membership in each latent cluster,
resulting in an attention matrix denoted by « in line 5. Instead of
using this attention matrix to compute new centroids as in DKM,
we only keep the highest v attention weights per passage (line
10) and mask the rest with a small constant value : (line 12). New
cluster centroids are then calculated based on the masked attention
matrix &. After convergence, GDKM outputs cluster assignments
& and cluster centroids fi from the final iteration.

Step 2: Generating aspect embeddings from clusters. A passage
belonging to at most v clusters means that the passage can be rep-
resented in at most v ways. DUB thus represents each passage with
v embeddings, each corresponding to one of the query aspects it
might cover. For this, DUB includes a multi-layer Transformer, de-
noted by 7~ (different from text encoder &), to learn aspect-specific
representations of passages P from initial embeddings P* and their
cluster assignments &, i.e., P, a’ = 7(P*, &). This process is il-
lustrated in Figure 2. We use clustering assignment & to organize
P* into K sequences of passage embeddings P’, in which a pas-
sage embedding from P* is copied v times. We pad the shorter
sequence(s) with zero vectors for batching, and denote the padded
sequence length as L. We reformat & into &’ by removing entries
with masked value i (as they are not represented in P’) and adding
entries for padded embeddings with 1, resulting in &’ € RKXL,
Then, the multi-layer Transformer 7~ updates passage embeddings
with in-sequence (in-cluster) self-attention. Each passage embed-
ding is thus updated based on other passages in the same clus-
ter, covering the same query aspect. The obtained aspect-specific
passage embeddings P are less ambiguous compared to P* and
can lead to more accurate aspect embeddings. Finally, aspect em-
beddings A are obtained by averaging aspect-specific embeddings
P e RKXIxd weighted by their degree of membership &’ € RKXL,
ie., A = Softmax(a’)PT, where PT represents transposing the first
two dimensions of P. In Section 5.7, we demonstrate the efficacy
of 7~ in contrast to the direct use of clustering centroids fi from
GDKM as aspect representations.
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3.4 Diversified Ranker

Explicitly modeling the possible query aspects covered by candidate
documents allows us to estimate their relevance to those aspects
and provide a diversified ranking of retrieved results, similar to
explicit models [28, 30, 44, 48, 58, 69, 70, 78, 79, 82]. For this pur-
pose, we first estimate document-aspect coverage by simply taking
the cosine similarity of query-biased document embeddings D and
aspect embeddings A. In addition, we also use the cosine similarity
between document embeddings D and the original query embed-
ding q to represent documents’ overall relevance to the query. Thus,
a document is represented with K + 1 features (K for aspects and
1 for query). In the score-and-sort re-ranking paradigm, we adopt
a multi-layer feed-forward neural network £ with batch normal-
ization, following the approach of previous studies [97, 98], as the
diversified ranker. The formal definition of the diversified ranker
P can then be represented as follows:

S = P(Concat(cos(D, A); cos(D, q))), (6)

4 TRAINING

DUB has three learnable components ¥ = {&, A, P}. It can be
trained end-to-end with search result diversification (SRD) dataset
such that the text encoder & and the aspect extractor A can be
optimized towards the final goal of diversified re-ranking. However,
a data scarcity challenge arises due to the limited number of queries
available for training in the largest publicly accessible SRD dataset,
TREC Web Tracks [21-24], which contain less than 200 queries.

To address this challenge, we propose the use of optional pre-
training and end-to-end SRD training. Specifically, the parameter-
heavy components {&, A} of the model ¥ can be first trained on a
related task with a larger amount of weak-supervision data. Sub-
sequently, the entire model ¥ = {&, A, P} is trained end-to-end
for SRD. We emphasize that the pretraining step is optional. As
shown in later experiments, training DUB on a larger SRD dataset
(automatically generated, more than 8K queries) is viable without
pretraining.

4.1 Optional Pretraining Using Aspect Matching

Drawing inspiration from previous studies that utilized the large
amount of entity-heading-section structured data from Wikipedia
to replicate the query-aspect-passage structure in information re-
trieval tasks [33, 75, 100], we use an automatic annotation approach
to generate weak training data. The details of this approach are
explained in Section 5.1. Each training sample comprises a query g,
K reference aspects denoted as A,, and passages that are relevant
to both the query and a specific reference aspect. The embeddings
of the reference aspects are represented by A, = E(A;), where
A, € REXd In order to align the predicted aspects (A) with the ref-
erence aspects (A,) in the embedding space, it is necessary to adopt
an objective that quantifies the difference between them. However,
due to the lack of clear alignments between the two sets of as-
pect embeddings, minimizing their pairwise differences becomes a
challenging task. We introduce two solutions.
Optimal-Transport Based Objective. We cast the alignment
of predicted and reference aspect embeddings as an instance of the
optimal transport (OT) problem and solve it with an existing OT
solver. This is inspired by works on aligning token embeddings
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from different languages [5, 45, 65]. In this OT formulation, a cost
matrix M needs to be defined, where m;; reflects the distance be-
tween the i-th predicted aspect embedding a; and the j-th reference
aspect embedding ajr. We choose as this cost the cosine distance:
m;ij =1 - cos(a;, ajr). The total transportation cost from A to A,

is defined as v - M, where, y € RKXK js called the transportation

matrix. The y, that minimizes the transportation cost is called the
optimal transport matrix, which intuitively represents the optimal
alignment between A and A,.. To overcome the intractability of
the linear programming solutions for finding y,, we use the IPOT
algorithm [96] to compute this OT matrix. Finally, we define the
objective for aspect matching as the optimal transportation cost:

LOT(A>AV) =Y M, (7)

Teacher-Forcing Based Objective. The clustering-based as-
pect extractor can be trained with an alternate objective. Note that
this aspect extractor comprises an GDKM clustering layer (without
trainable parameters) and a multi-layer Transformer 7~ (with train-
able parameters). Only GDKM causes nondeterministic matching
between predicted and reference aspect embeddings. Therefore,
during the pretraining step, we can skip GDKM and directly give
true “clustering” assignment & as input of 7. This is similar to
teacher-forcing training [92] used for training sequence generation
models [73]. This approach provides training stability by eliminat-
ing potential misalignment of embedding sets from the OT solver.
The loss function of this training method is defined based on the
cosine distance of matching embeddings as:

K
L1e(A Ar) = ) (1= cos(a,a})), ®)
i=1
We observe slightly better performance of DUB-GDKM using this
loss for pretraining compared with the OT-based loss (Eq. 7).

4.2 End-to-end SRD Training

As described in Section 3.4, a multi-layer feed-forward neural net-
work P predicts ranking scores S for documents in R based on
(K + 1)-dimensional features of aspect coverage and query similar-
ity. We use the a-DCG loss [97] to optimize the entire DUB model
F = {&, A, P} using training data with aspect-level relevance
judgements. Due to space limitations, the formal definition of the
a-DCG loss is not repeated here.

5 EXPERIMENTS
5.1 Datasets

We introduce two evaluation datasets and one pretraining dataset.

TREC-Web. The TREC Web track datasets from 2009 to 2012 [21-
24] are used for evaluating search result diversification [37, 48, 69,
70, 84, 85, 93, 97]. The combined dataset, referred to as TREC-
Web, consists of 198 topics after excluding two topics without
subtopic judgments, and documents from the ClueWeb’09-Category
B collection [13]. Five-fold cross-validation is conducted using the
same data folds as previous works [48, 70].

MIMICS-Div. The MIMICS-Div dataset is constructed based
on the “ClickExplore” version of the MIMICS datasets [103], which
originate from real search queries obtained from the Bing query
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logs. Initially developed for search clarification [102, 103], MIM-
ICS has been adapted for intent representation learning [40] and
search result explanation [100]. We repurpose it to evaluate search
result diversification, particularly to simulate a scenario with (rel-
atively) abundant real queries and investigate the effects of op-
tional pretraining. Specifically, each candidate answer for a query-
clarification pair is considered as a query aspect. The MIMICS
datasets do not provide full document contents or relevance labels.
Following prior studies [40, 100], we consider the concatenation of
a document’s heading and snippet as its content, and a document is
deemed relevant to a query aspect if it contains all the aspect terms.
MIMICS-Div contains 8,166 queries, with an average of 3.17 aspects
per query. It is important to note that the relevance assessments in
MIMICS-Div are inferred rather than manually verified.

Aspect pretraining data. To pretrain the text encoder & and
aspect extractor A (Section 4.1), we construct a weakly supervised
dataset from Wikipedia, referred to as Wiki. This is mostly in line
with previous uses of Wikipedia for related tasks [33, 75, 99-101].
For each Wikipedia article, its title is used as the query, its section
headings are treated as query aspects, and its sections (excluding
the introductory paragraph) are divided into multiple passages that
are relevant to the corresponding aspect. We select Wiki articles
with 8 or more sections from the pre-processed data released by Yu
etal. [100] and obtain 203,751 training samples. During pre-training
DUB on Wiki, we randomly sample K aspects per query (which
differs depending on evaluation dataset, Section 5.5). The reference
aspect embeddings A, are obtained by encoding the concatenation
of the title and the section heading with the same text encoder &
used for the queries and passages.

5.2 Competing Models

We categorize competing models into three groups.

(1) Explicit models by extracting aspects from search re-
sults. We develop two baselines based on topic modeling [17].
They align with the setting of DUB (i.e., explicit diversification
based on finding aspects from candidate documents) but employ
unsupervised aspect extraction and diversification components.
Given documents, topic models extract latent topics (query aspects
in our task) and represent each topic as a probability distribution
over vocabulary (a unigram language model). The probability of
a document covering a query aspect can then be approximated by
Pr(di|a;j) = [1Pr(v|aj,v € d;). This probability is computed for
each document and each aspect. We then use xQuAD [81], an un-
supervised explicit diversification algorithm, to re-rank candidate
documents. Specifically in xQuAD, we use uniform aspect impor-
tance distributions, and tune parameter A (for balancing relevance
and diversity) with cross-validation. We compute aspect models
using statistical model LDA [9] and neural topic model BERTopic [39],
resulting in LDA-xQUAD and BERTopic-xQuAD.

(2) Neural implicit models. We focus on recent implicit SRD
models, namely Graph4DIV [84], DALETOR [97], and KEDIV [85]. Like
DUB, these models do not rely on provided query aspects. Graph4DIV
and KEDIV are also knowledge-enhanced, similar to how DUB can
be pretrained on Wikipedia. As we cannot reproduce KEDIV, we
directly cite their reported numbers.

(3) Explicit models by using aspects from external sources.
xQuAD [78], PM2 [29] and HxQuAD/HPM2 [44] are unsupervised
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explicit SRD approaches relying on query aspects from external
sources. DSSA [48], DESA [69], and GDESA [70] also use Google
query suggestions, but they are supervised neural models that
can be optimized with aspect-level judgements. In addition, we
consider large language models (LLMs) as a source of query aspects.
Specifically, for TREC-Web queries, we use OpenAI GPT-3.5 [12] to
generate query aspects using instruction “list 10 potential aspects
about the search query: {query}”. Each generated aspect contains a
short aspect name followed by a descriptive sentence. We only keep
the aspect name to be consistent with GQS. We then use xQuAD to
re-rank candidate documents using GPT aspects.

5.3 Experimental Settings on TREC-Web

Comparing SRD approaches on TREC-Web presents challenges. We
provide clarity on the experimental settings.

Candidate documents can be categorized into two types on
TREC-Web. Original involves reranking documents specifically la-
beled for a given query [95, 97, 98], while Lemur refers to reranking
the top-50 documents retrieved by the Lemur Indri system [44, 48,
69, 70, 84]. We follow most approaches in the literature and use the
Lemur candidate set as it represents a plausible web search setting.

Text embeddings used in DALETOR, Graph4DIV, KEDIV, DSSA,
DESA, and GDESA are static Doc2Vec embeddings. We also conduct
experiments by substituting these embeddings with Transformer-
based embeddings used in DUB, and report corresponding results
(except for KEDIV, since we cannot reproduce their model). Specif-
ically, for document embeddings, we use the query-biased docu-
ment embeddings D derived from &. We find the optimal hyper-
parameter n for each model individually using cross-validation. For
DSSA, DESA, and GDESA, which also require subtopic embeddings,
we use & to encode the first-level query suggestions released by
Hu et al. [44]. We also explored the use of pseudo document em-
beddings as subtopic embeddings, as suggested by Jiang et al. [48],
but found it to yield inferior performance.

Relevance features play a crucial role in Graph4DIV, KEDIV,
DSSA, DESA, and GDESA. These include 18 query-level static hand-
crafted document features, including BM25, TF-IDF, PageRank
scores, and number of links [48]. The latter three models also incor-
porate aspect-level features, resulting in 18 X (K+1) features in total
(assuming K aspects per query). To study the effect of these rele-
vance features, we introduce a variant of DUB, denoted as DUB-+-RF,
that takes query-level features (in addition to features introduced
in Section 3.4) in the diversified ranker #. Note that we do not
use aspect-level relevance features in DUB-RF, as we do not acquire
aspects from anywhere but the candidate documents.

5.4 Evaluation Metrics

We adopt the official TREC evaluation methodology for the diver-
sity task. On TREC-Web, we report the following evaluation metrics
with a cut-off set to 20, as done in previous studies [48, 69, 70, 84]:
a-nDCG [25], ERR-IA [18], NRBP [6], Pre-IA [2], and S-rec [104].
We set the parameter « to 0.5, the default setting in the official TREC
evaluation program. On MIMICS-Div, we report a-nDCG@{5,10}
and ERR-IA@{5,10} since the candidate set contains at most 10
documents. For conducting statistical significance tests, we employ
the t-test with Bonferroni correction at the 95% confidence level.
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Table 1: Search result diversification on TREC-Web.

# | Metric | a-nDCG ERR-IA NRBP Pre-IA  S-rec
' Term-level Representations
" 1] (1) LDAxQuAD | 0335 0224 0183 0127 0.608
2 | (3) GPT-xQuAD 0.400 0307 0271 0159  0.616
3 | (3) GQS-xQuAD 0.413 0317 0284 0161  0.622
4 | (3) GQs-PM2 0411 0306 0267 0169  0.643
5 | (3) GQS-HxQUAD 0.421 0326 0294 0158  0.629
6 | (3) GQs-HPM2 0.420 0317 0279 0172  0.645
Doc2Vec as Text Encoder
"7 (2DALETOR | 0399 0308 0270 0149  0.608
8 | (2) GraphaDIV 0.468 0370 0338 0186  0.666
9 | (2) KEDIV (from [85]) 0.485 0390  0.362 . 0.671
10 | (3) DSSA 0.452 0350 0318  0.184  0.645
11 | (3) DESA 0.464 0363 0332 0184  0.653
12 | (3) GDESA 0.469 0369 0337 0185  0.662
SBERT as Text Encoder
" 137 (1) BERTopic-xQuAD |~ 0330 0232 0.199 0140  0.555
14 | (2) DALETOR 0411 0317 0278 0151  0.614
15 | (2) Graph4DIV 0.475 0375 0343 0187  0.669
16 | (3) DSSA 0.461 0357 0324 0185  0.649
17 | (3) DESA 0.473 0370 0338 0185  0.657
18 | (3) GDESA 0.478 0376 0344 0186  0.666
19 | DUB-MHA 04907 038" 03587 0188  0.672
20 | DUB-MHA-RF 04977 03917 03637 0188  0.674
21 | DUB-GDKM 0502 0393t 03687 0189 o0.677
22 | DUB-GDKM-RF 0.508"  0.3997 03747 0.190 0.680"
Ablations
"237| DUB-MHA-RF(nP) |~ 0473 ~ 0372 0336 0185  0.663
24 | DUB-GDKM-RF (nP, v=2) | 0.461 0360 0320 0184  0.658
25 | DUB-GDKM-RF (v=1) 04937 0387F 03587 0188  0.673
26 | DUB-GDKM-RF (v=3) 05067 03977 03717 0.190 0.6797
27 | DUB-GDKM-RF (v=8) 0.437 0343 0293 0181  0.647

Statistical improvements that are significant over all baseline mod-
els (expect KEDIV, as metrics per query are unknown) are indicated
with a 1 symbol in the result tables.

5.5 Model Specifications of DUB

To initialize the text encoder &, we use the “all-mpnet-base-v2”
Sentence-BERT (SBERT) [76]. Each ClueWeb document is segmented
into overlapping passages of 96 tokens, with a stride of 32 tokens.
We use 6 = 0.6 to select candidate passage embeddings and set
n = 20 for building query-biased document embeddings. For DUB-
GDKM, we employ a randomly initialized two-layer Transformer
as 7. The specific model settings for (pre)training depend on the
evaluation dataset. On TREC-Web, the number of aspects per query
K (also the number of heads h for DUB-MHA) is set to 8, which
corresponds to the maximum number of subtopics per query in
TREC-Web. On MIMICS-Diy, K is set to 3. The default parameter
values for GDKM (Algorithm 1) are: € = 1073,:=10"%, v =2, and
7 = 1. The diversified ranker # is implemented as a three-layer
MLP with hidden sizes of 256, 64 and 8. The input size of P is
K +1 for DUB and K + 19 for DUB-+RF. DUB-MHA is pretrained with
optimal transport objective (Eq. 7) and DUB-GDKM is pretrained
with teacher forcing objective (Eq. 8).

Training hyper-parameters. For optional pretraining on Wiki,
we conduct training for 1 epoch with a batch size of 8 and a learning
rate of 10™% using AdamW [60] as the optimizer. During end-to-end
SRD training, DUB is trained for 100 epochs using a batch size of 4
and a learning rate of 1074,

5.6 Diversification Performance

The performance of the compared approaches on TREC-Web is pre-
sented in Table 1, where the results are categorized into three groups
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Table 2: Search result diversification on MIMICS-Div.

Metric a-nDCG@5 a-nDCG@10 ERR-IA@5 ERR-IA@10
GraphaDIV 0.614 0.701 0.420 0.459
DALETOR 0.678 0.759 0.484 0.512
DUB-MHA 0.699" 0.790" 0.512" 0.543"
DUB-GDKM 0.705" 0.797" 0.514" 0.549"
Ablations
"DUB-MHA nP) | 06877 o780t " 05037 7 o3t
DUB-GDKM (nP) 0.682" 0.773" 0.498" 0.524"

based on the representation of queries and documents. Baselines are
also categorized according to their characteristics (Section 5.2). Re-
markably, DUB-GDKM-RF outperforms all three groups of baselines,
providing strong evidence of its effectiveness. The improvements
are statistically significant (marked by ) across all metrics except
Pre-TIA. We also discuss the following observations.

Effect of contextualized representations. To facilitate a di-
rect comparison, we conduct experiments by replacing the 100-
dimensional Doc2Vec embeddings with 768-dimensional SBERT em-
beddings in both supervised implicit and explicit models (Sec-
tion 5.3). Notably, we observed improvements in the diversification
effectiveness across all models we investigated (rows #7-8,10-12 vs.
#14-18 in Table 1). This highlights the effectiveness of contextual-
ized representations offered by SBERT. We also note a significant
performance advantage of DUB over the strong baselines employ-
ing the same SBERT encoder (#19-22 vs. #13-18). This observation
suggests that the superior performance of DUB cannot be solely
attributed to the improved effectiveness of text encoder.

Effect of relevance features. To fairly compare with Graph4DIV,
KEDIV, DSSA, DESA and GDESA which use query-level (and aspect-
level, if applicable) relevance features for modeling relevance, we
implement variants of DUB (marked with -RF) that integrate those
query-level features into document features in the diversified ranker
P (Section 5.3). We first observe that DUB without resorting to
relevance features (#19,21) already achieve significant improvement
over baselines using relevance features (#15-18). We also observe
that using these features in DUB-RF leads to further improvement
(#19 vs. #20, #21 vs. #22). This finding demonstrates that these
relevance features continue to be effective in providing crucial
relevance signals that cannot be captured solely through query-
document matching in the embedding space.

Importance of supervised aspect extraction. Results in Ta-
ble 1 show that all explicit baselines using aspects from external
sources (marked with category (3)) outperform those explicit base-
lines extracting aspects from top-retrieved documents using topic
modeling (marked with category (1)). Despite this trend in existing
works, our proposed DUB that extracts aspects from top-retrieved
documents surpasses the performance of supervised explicit mod-
els (DSSA, DESA, and GDESA) using Google query suggestions as
aspects (#19-22 vs. #16-18). This finding demonstrates that with an
appropriate aspect extractor component, obtaining query aspects
from top-retrieved documents is more effective for search result
diversification compared to relying on external systems to provide
aspects solely based on the query.

Utility of pretraining. As reported in Table 1, ablated variants
of DUB without pretraining on Wiki (marked by “nP”) exhibit infe-
rior performance on TREC-Web (#20,22 vs. #23,24). The decrease in
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effectiveness is more pronounced in the GDKM-based model com-
pared to the MHA-based model. This observation can be attributed
to the GDKM-based model having a larger number of parameters,
thus requiring more training data. For a comprehensive analysis of
the role of pretraining, we study the performance of our models and
applicable baselines on the MIMICS-Div dataset, that in contrast to
TREC-Web, contains numerous training queries.

Diversification on MIMICS-Div. Considering the superior per-
formance of SBERT representations on TREC-Web, we exclusively
present approaches using the SBERT encoder on MIMICS-Div in Ta-
ble 2. Due to the high costs for acquiring query suggestions for over
8,000 queries, we exclude explicit models from this experiment. We
observe that DUB significantly outperforms strong baselines, even
without pretraining on Wiki. This finding suggests that pretraining
on Wiki is not essential for DUB if a sufficient number of search
result diversification training queries are available. Furthermore,
the additional improvement observed with pretraining on Wiki
highlights the effectiveness of this pretraining approach.

5.7 Clustering-based Aspect Extractor

We discuss two key design choices of the clustering-based aspect
extractor, using experiments conducted on TREC-Web.
Parameter v of GDKM (Section 3.3) is the maximum number
of clusters that a passage can be assigned to. Table 1 reports the
performance of DUB-GDKM when v is set to {1, 2, 3, 8}. We observe
that setting v to 2 or 3 yields the best performance for DUB-GDKM.
The obtained results demonstrate the effectiveness of the proposed
GDKM clustering for aspect extraction compared to the original
K-means [63] (v=1) and differentiable K-means [20] (v=8).
Multi-layer Transformer 7~ in DUB-GDKM. We examine an
ablated version of DUB-GDKM that removes the Transformer layers
7 responsible for building aspect-specific passage embeddings, re-
ferred to as DUB-GDKM—T. It directly uses clustering centroids fi
from the last GDKM iteration as aspect embeddings A. To control
the level of noise input into the aspect extractor A, we experi-
ment with different values of 6={0.5, 0.6}. Additionally, we conduct
an oracle experiment where only passages from labeled relevant
documents are fed into A. The results of DUB and DUB-GDKM—-7~
are presented in Table 3. We observe that the two models per-
form comparably when the aspect extractor receives input solely
from passages of documents labeled as relevant. However, when
re-ranking the results of a first-stage retriever where a threshold 0
is used to select input passages, the performance of both models
significantly deteriorates. Furthermore, the performance gap be-
tween the two models increases as the noise level increases with a
lower 6. This trend is likely because irrelevant passages exhibit less
similarity to other relevant passages within a cluster. By contextual-
izing passage embeddings within clusters using 7, the embeddings
of irrelevant passages receive lower attention weights, effectively
reducing their contribution to the aspect embeddings being gener-
ated per cluster. Consequently, this leads to improved estimation
of aspect embeddings and enhances diversification effectiveness.

5.8 Discussion: MHA vs. GDKM

We discuss the strengths and weaknesses of the two implemen-
tations of the aspect extraction component A (Section 3.3). DUB-
GDKM demonstrates the best diversification performance on both
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Table 3: The a-nDCG@20 performance of DUB-GDKM with
and without the Transformer 7 in the aspect extractor A.

6=0.5 6=0.6 Oracle
DUB-GDKM—7" | 0.427  0.443  0.560
DUB-GDKM 0.492" 05007 0.562

evaluation datasets. Additionally, it offers a higher degree of at-
tributability, as it allows for easy tracking of an extracted aspect
back to a cluster of passages. On the other hand, DUB-MHA, while
less effective than DUB-GDKM, still outperforms all baseline models.
It has fewer parameters and does not use a clustering layer. This
brings two advantages: (1) DUB-MHA requires less training data and
performs better without pretraining, as evidenced by the results in
Tables 1 and 2; and (2) DUB-MHA is more efficient.

5.9 Evaluation of Latent Aspects

We have established the effectiveness of the latent aspects (em-
beddings) extracted by DUB in terms of their utility for diversified
reranking. In this section, we directly evaluate the generated query
aspect representations in terms of diversity and relevance.
Compared methods. We compare aspects from LDA, BERTopic,
Google query suggestions (referred to as GQS) [44], GPT-3.5 [12],
and aspect embeddings from DUB-GDKM on TREC-Web. For GQS
and GPT, we consider the first 8 aspects per query. It is impor-
tant to note that aspects from LDA, GQS, and GPT are represented
in textual form, whereas aspects from BERTopic and DUB-GDKM
are represented using SBERT embeddings. To enable comparisons,
we employ the same encoder & to map GQS and GPT query as-
pects into aspect embeddings. However, when aggregating token
embeddings, we exclude embeddings corresponding to the query
terms. This is done to avoid aspect embeddings for the same query
becoming overly similar and resulting in low diversity scores. Si-
multaneously, we “translate” the aspect embeddings of BERTopic
and DUB-GDKM into tokens by selecting the top-5 tokens whose
embeddings from & are most similar to the aspect embedding. This
approach aligns with common practices for interpreting Trans-
former embeddings [31, 38]. We adopt the same approach for GQS
and GPT aspect embeddings, ensuring that each aspect is “expanded”
and represented with 5 tokens (majority of them originally have 1
token per aspect). Consequently, we compare extracted aspects in
terms of their textual form and their latent representations.
Measuring Diversity. We measure the diversity of aspects in
two ways. First, we compute average dissimilarity of aspect em-
beddings (averaged across all pairs of aspects of the query, then
averaged over all queries). We use cosine distance for measuring em-
bedding dissimilarity. The second metric is token diversity, which
is defined to be the percentage of unique tokens in the top 5 tokens
of all aspect models. This metric is originally proposed to evaluate
the diversity of topic models [32]. Table 4 shows the diversity of dif-
ferent aspect models. In terms of both token- and embedding-level
diversity, DUB-GDKM outperforms the topic model baselines LDA
and BERTopic. However, the most diverse aspects are derived from
GPT. It is noteworthy that DUB-GDKM extracts 8 aspects for each
query, even though the majority of queries, as indicated by TREC
labels, contain fewer than 8 aspects. Consequently, it is reasonable
to observe overlaps among the aspects generated by DUB-GDKM.
On the other hand, aspects from GQS and GPT tend to cover more
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Table 4: Evaluating the quality of extracted aspects.

Metric Diversity Relevance
token embedding | A-MAP A-nDCG
RM3 - - +0.020 +0.011
LDA 0.287 - -0.007 -0.005
BERTopic 0.661 0.272 +0.006 +0.004
GQs 0.887 0.533 +0.008 +0.005
GPT 0.917 0.673 +0.003 +0.001
DUB-GDKM | 0.862 0.404 +0.0267  +0.0177

unique query intents, although these aspects are not guaranteed to
be relevant to any document in the corpus.

Measuring relevance. Query expansion with language model-
ing [68] is used as an extrinsic evaluation of aspect models. The intu-
ition of this extrinsic evaluation is that the higher the quality of the
extracted aspects for a query, the higher the improvements in the
retrieval performance using the expanded query with those aspects.
We use the extracted aspects to estimate an expanded language
model for the query as Pri(t|q) = fPrmr(tlg) + (1 — ) Pr(t|A),
where Pryyp (t|g) is the maximume-likelihood language model of
the original query, Pr(t|A) is the aspect language model, and S
is a hyperparameter. Aspect language models are estimated as:

_ N Pr(tla)
Pr(t|A) h 2iev Z?:l Pr(t|a;)
tain the top 40 terms (5 terms each for 8 aspects) from each aspect
model, using top 50 documents as the source of aspect extraction
(expect GQS and GPT, which do not need documents). Additionally,
we include the results of RM3 [1, 55] as a strong query expansion
baseline. We set the parameters of RM3 as 40 expansion terms being
selected from the top 50 documents. The interpolation parameter f§
is set to its default value of 0.6. The retrieval index is constructed
using all documents from TREC-Web (Section 5.1), rather than the
entire ClueWeb’09 Category B. We report in Table 4 the performance
difference between using the maximum-likelihood estimate of the
query language model and using the expanded query language
model, in terms of MAP and nDCG. Notably, the aspect models
derived from DUB-GDKM significantly outperform all other meth-
ods. This indicates that DUB-GDKM is capable of generating query
aspects that are most helpful in retrieving relevant documents, offer-
ing an explanation for its superior effectiveness in diversification.

6 CONCLUSIONS AND FUTURE WORK

We described DUB, an end-to-end learnable framework for search
result diversification. This framework integrates latent aspect em-
beddings that facilitate the joint optimization of a text encoder,
query aspect extractor, and diversified document ranker. Addi-
tionally, DUB offers the capability to leverage knowledge from
Wikipedia through optional pretraining, addressing the challenge
of data scarcity in search result diversification. In future studies,
we are interested in conducting formal evaluations to assess the
interpretability of search result diversification models.

. To perform query expansion, we re-
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