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Abstract

Using a simplified two-stage ice sheet model, we explore the potential of statistical
data assimilation methods to improve predictions of glacier melt, which has signif-
icant implications for reducing uncertainty in projections of sea level rise. Through
twin experiments utilizing artificial data, we find that the ensemble Kalman filter
improves simulations of glacier evolution initialized with incorrect initial conditions
and parameters, providing us with better predictions of future glacier melt. We explore
the number of observations necessary to produce an accurate model run. We also
explore optimal observation assimilation schemes, and determine that deviations from
the true glacier response that stem from having few data points in the pre-satellite era
can be corrected with modern observation data. Our results show that statistical data
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assimilation methods have great potential to improve complex glacier models using
real-world observations.

Keywords Glacier modeling - Data assimilation - Kalman filter - Dynamical systems

1 Introduction

Climate change has and will continue to have a number of widespread impacts, includ-
ing sea level rise. Sea level rise results in increased coastal flooding, e.g. “sunny day
floods” and less frequent but more severe hurricane storm surges [6, 17]. Sea level
rise is due to a number of factors, one of which is glacier melt [21]. The future glacier
contribution to sea level rise is mainly explored through glacier modeling, and specifi-
cally through simulation of marine-terminating glaciers, which flow towards the ocean
and then melt or fracture [23]. By the year 2300, the Antarctic ice sheet could cause
2.4—5.8m of sea level rise globally assuming “business as usual,” i.e. if greenhouse
gas and/or aerosol emissions do not decrease [20]. Due to the severe impacts of glacial
melting, modeling changes in ice sheets is an important task.

Marine-terminating glaciers are susceptible to rapid retreat through a positive feed-
back process that can occur when the bed (solid earth) that they rest on decreases in
elevation towards the ice sheet interior. In such a scenario, initial retreat causes the
grounding line (the point where glacier ice starts floating in the ocean) to become
thicker and therefore discharge more ice. This increased sink of ice mass causes
further glacier retreat and a continuation of this feedback process [24]. Many marine-
terminating glaciers in Greenland have already undergone periods of rapid retreat due
to this feedback process [7], and much larger glaciers in Antarctica are thought to
be susceptible to this feedback as well [19]. Models of glacier flow and evolution
have been developed to simulate these processes and project potential future glacier
retreats that could contribute to sea level rise. However, large uncertainties in the ini-
tial state and parameters in such models exist due to both the inherent difficulty of
measuring glacier properties in remote field locations and the lack of observations of
ice sheets state prior to the modern satellite era, i.e. in the 1950s. Data assimilation
is one method that may provide a promising way forward to improve glacier models
using existing observations. The method may also provide insight into site selection
for future observational campaigns.

Data assimilation is a method to move numerical models closer to reality by using
real-world observations to readjust the model state at specified times [10]. Data assimi-
lation was initially developed for use in weather models in the 1960s in order to improve
weather forecast accuracy on short-range weather models [3]. These models would
typically have a run time of 1-6h, and during that process real-time observations were
assimilated to readjust the current model run. Since its introduction, data assimilation
has been incorporated into other geoscientific numerical models, including ocean and
land surface models [1, 5, 18].

Data assimilation can also play a factor in decision making when it comes to col-
lecting field data. In the field of glaciology, data is largely collected via satellite,
aircraft, or in-situ field missions. While these methods collect valuable data for mod-
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eling glaciers, they are expensive and time-consuming. Data assimilation can be used
to inform the locations and timing of data collection efforts. This can help researchers
more efficiently utilize funding and avoid unnecessarily expensive data collection that
does not significantly improve glacier models.

Recently, data assimilation has been used to improve glacier modeling. [12] devel-
oped methods for transient calibration of a glacier model state and parameters using
a model adjoint in conjunction with variational assimilation methods. The use of
ensemble-type data assimilation methods with glacier models has been explored in
studies with relatively simple models and idealized case studies. [13] and [4] used an
ensemble Kalman filter with highly idealized glacier models to show the utility of this
method for determining where observations need to be gathered to maximally reduce
projection uncertainty. A more recent study by [11] used an ensemble Kalman filter
to calibrate glacier state and parameters governing basal topography and friction in an
idealized marine-terminating glacier flowline model on the verge of undergoing the
marine ice sheet instability. In this work, we implement an ensemble Kalman filter
with a simplified marine-terminating glacier model. Our goal is to determine which
model parameters and state variables are optimal targets for data assimilation and
sufficient ensemble sizes and observation times for improving model accuracy and
reducing model uncertainty.

2 Methods
2.1 Glacier Model

We have chosen a simplified two-stage ice sheet model for our exploration (Fig. 1).
This model describes the changes in ice mass of a marine-terminating glacier, which
is a glacier that is fed by snowfall on land and then flows into the ocean where it
may begin to float. Marine-terminating glaciers may change over time due to climate
change through increasing melt at the glacier surface or interface with the ocean [22].

A marine-terminating glacier can be represented with a simplified two-box model
that introduces a nested box into the system to more accurately represent the grounding
line, i.e. the point at which the glacier first begins floating in seawater. In this model,
the grounding line position is L and the ice thickness at the grounding line is &g. The
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interior of the glacier has a thickness, H. The balance of mass inputs and outputs in
the glacier interior is described by the snowfall rate on the surface, P, and the ice flux
out of the interior box and across the grounding line, Q. The ice flux across (out of)
the grounding line is denoted Q. The change in length and height of the glacier with
respect to time, #, can then be described with the differential equations:

dH B O B H _

A A @
dL 1 5
T E(Q — Q). (2)

The following diagnostic equations are also used in this model:

hg = —Ab(L) 3
H2n+l

0=y )

0, = Qnf, )

where y and 2 are assumed to be constants describing ice flow rate for our purposes,

and A = 'O—w, where py, is seawater density and p; is glacial ice density. Further, b

is the depthl of the bed below sea level at the grounding line, 8 can be derived from
asymptotic boundary layer analysis of the grounding line, and n € N assumes the
value of Glen’s flow law exponent n = 3. Despite the simplicity of this model, it
offers a sufficiently good approximation of glacier flow using Q and Q,, and has been
shown to reproduce the behavior of a more complex glacier flow model [22]. We thus
expect that findings determined using this simplified model may be used to inform
applications of more complex models.

Important initial conditions and parameters used in the model are smb,, smb1, and
smb y, which are used to describe the surface mass balance at three distinct points in
time and define the spatially averaged surface mass balance, P, in Equation 1; H,
and L,, which define initial conditions for height and length at time (year) 0; b,,
which defines the slope of the Earth underneath the glacier; and sillgope, Silljyin, and
sill,,qx, which define the slope of the glacial sill (region of reverse slope) and its starting
(sillyin) and end (sill,; 4y ) points. For a more in-depth explanation and justification of
the model, see [22]. The differential equations describing glacier behavior, Equations
1-5, are solved using nominal values of these initial conditions and parameters and a
4th order Runge—Kutta method to advance the model in time.

2.2 Sensitivity Analysis

As our aim is to improve the model through data assimilation, we first conduct sensitiv-
ity analyses to explore which parameters most significantly affect the model output.
Sensitivity analyses allow exploration of how various sources of uncertainty in the
mathematical model may contribute to the model’s overall uncertainty [16]. We vary
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nominal values of the model parameters by +=10%, with the understanding that if the
outputs vary significantly as a result, the output is considered sensitive to the speci-
fication of the inputs. This provides insight into the most promising applications of
data assimilation. For this analysis, the parameters are grouped together into three
categories: initial conditions (initial height, length, and bed slope), sill parameters
(sill minimum, maximum, and slope), and surface mass balance parameters (initial,
mid, and final surface mass balance). The parameters in each category are perturbed
together, as they are related to one another. In section 3.1, we analyze the spread of the
glacier heights and lengths produced from the range of perturbed values for each of
the three categories and use our findings to direct the data assimilation experiments.

2.3 Data Assimilation

The Kalman filter is a data assimilation technique that uses a linear model, observa-
tions, and corresponding error covariance matrices to update model output to better
reflect reality [8, 9, 15]. Specifically, the goal of the Kalman filter is to compute an

optimal estimate (analysis) of the model state at time ¢, X}, as a combination of the

model output, xtf , and observations, y; (Equation 6). The key to this is the Kalman

Gain matrix, K¢, which decides the balance of how much this combination relies on
the model output vs. the observations, i.e. it is used to determine the optimal weight
of each based on the error covariance matrices. The linear observation operator, H;,
allows the model state to be compared to the observations by projecting it into the
observation space. In practice the observation operator can be an identity matrix, e.g.
when the locations of observations and model output are the same.

x¢ =x/ + Ky —Hx!) ©6)
2.3.1 Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) is a version of the Kalman filter better suited for
large, nonlinear models such as those used in glacier modeling. Here, the model state
is represented by an ensemble, and the model error covariance matrix is represented by
the sample covariance of this ensemble. An analysis is performed for each ensemble
member.

Consider the following state estimation system:

th,(i) :MX?’_(i)‘f—wl(i) %)
N
1 ) .
P/ = D = xl O =X/ ®)
i=0

. . 1 2 N
Here, M represents our nonlinear glacier model and xta’_(l), xta’_(l), el xf’_(l ), rep-

resent the ensemble of N model states at time ¢ — 1. Unknown model error is denoted
by w'”. We initialize the state ensemble by choosing values xf’_(i) normally distributed

around the estimated value of xfﬁl with a covariance chosen to reflect the uncertainty
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in the state. The forecast of each ensemble member, x,f @) , is output by the model at

time ¢, and used to compute the forecast error covariance, P;f , Where X;f is the mean

of the ensemble of forecasted states. o
1

Given y;, an observation of the state at time ¢, we add noise, v, ', i = 1,..., N,
to develop an ensemble of N observations, yt(l), yiz), ...,yiN). The noise on our

observations is assumed to be normally distributed around 0, and is chosen so that it
reflects the known measurement error covariance, R;.
The three equations that describe the analysis step are as follows:

X0 =x/0 4 K - Hx ) ©

K{ = P/H] (H,P/H] +R)"' (10)
1 N . .

Pr=~_1 g["?’m = x{ 0 =X (1n)

where x{' is the mean of the ensemble of analyzed states.
Algorithm 1 outlines the process we use for amodel at timet € Typs = {1, ..., T}
when data are available for a set of times, Tops. The algorithm is illustrated in Fig. 2.

Algorithm 1 Ensemble Kalman Filter

Generate xa‘(o), xg’(l)
fort =0,1,...,T do
if tin 7gpg then
Calculate P;
Calculate Ry
Calculate K¢ = P HY (H,P{ H + R,)"!
for i‘; 0, ],‘..,'N do
xif’(l) = /‘\/lxl@1

.....

0 U
Xta,(t) _ x*,f’(’) + K?(yt(l) _ HtX,f'(l))
end for )
Calculate x{ = % ZlN:o Xf‘(’)
Calculate P?p = ﬁ lNzo[xtf‘(’) — xg’][xtf‘(l) —x{7

else
for i.=0, 1,....,Nd0
Xgl) = Mxt(l—)l

end for .
Calculate x{ = % N X;l,(l)
Calculate Py = ﬁ Zl(\’zo[xt(i) _ Xf][xt(i) _ X?]/
end if
end for
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Initial Conditions

Observations at time tl IModol I—> Forecast at time ¢

Analysis

Fig. 2 The code structure diagram, showing the relationship between the aspects of the model, with the
arrows depicting the flow of data. The model takes initial conditions as input and outputs a forecast at time
t (green). There is a cyclic relationship between the modeling step (blue), the data assimilation and the
analysis (red), which allows for continuous refinement and improvement of the model based on the latest
observations and efficient use of observational data

2.3.2 Twin Experiments

Like many proof-of-concept data assimilation studies, we conduct observation system
simulation experiments (OSSEs), or twin experiments, to assess the potential of the
EnKF to improve glacier modeling. This has two main advantages, namely that we are
not required to acquire real-world data and can also isolate and address various sources
of model error. This provides a mechanism to directly assess the ability of the EnKF
to improve the model, serving as a foundational proof of concept for applications to
larger glacier models and real-world data.

The method is as follows: We first set initial conditions and parameters of the
model to specific values informed by the sensitivity analysis described above. We
run the model, and use the model output as synthetic measurements. We perturb the
synthetic measurements by adding noise drawn from a random normal distribution to
generate noisy “observations.” We then change the initial conditions and parameters of
the model to values different than those used in the “true” simulation, i.e. we define an
erroneous “initial guess” of the model parameters and state. We first execute this model
with no data assimilation to quantify the impact of the model errors. This is known as
the baseline case. We then execute the model again, using the EnKF to assimilate the
synthetic observations throughout the simulation. We compare the model output to that
obtained from the “true” simulation, allowing us to evaluate the performance of the
data assimilation method. This is a standard method for evaluating inverse problems
[2].

We design our experiments to take into account that more frequent and higher accu-
racy observations accompanied a significant shiftin the technology available for glacier
observation around 1980 with the start of the polar-observing satellite era. While mod-
ern satellite observations offer precise and timely data on glacier flow, earlier paleo
observations contribute essential context for understanding long-term trends and nat-
ural variability. Together, these observations offer complementary insights giving a
fuller picture of glacier dynamics over time. We thus assume data is initially sparsely
available and then available to be assimilated more frequently later in the simulations.
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2.3.3 EnKF Parameters

We explore two hyperparameters of the EnKF, the ensemble size and the times of
assimilation. For the ensemble size, we explore the impact of sizes ranging from 2
to 75 ensemble members. For the assimilation times, we explore the optimal number
and frequency of observations in both the pre-satellite and satellite eras. For the post-
satellite era, we simulated observational frequencies of 3 months, 6 months, yearly, 2
years, 4 years, 8 years and 16 years. For the pre-satellite era, we simulated observational
frequencies of 9.5 years, 19 years, 38 years, 76 years and 190 years.

In all of our analyses, we use the mean square difference, d = (x, — xl”)z, to
measure the distance of the analyzed state from the true state at time #, x;. We calculate
the square difference at each time step and take the square root of the mean over all
the time steps to assess the best ensemble size and observation scheme.

2.4 Model Experiments
2.4.1 Glacier Model Forecasting

We conduct the twin experiments varying the ensemble size and the times of assimila-
tion as described in Sect. 2.3.3. We implement the EnKF until observations “terminate”
in 2022 and then use the analyzed state as an initial condition for the model to simu-
late H and L into the future, up to the year 2300. This “model forecast experiment”
is designed to explore the impact of historical data on projections of glaciers in the
future, which can inform current practices in glacier modeling.

3 Results
3.1 Sensitivity Analysis

Through our study of the effect of varying the model parameters by +10%, we find
that the glacier height decreases gradually and then is essentially constant until 1950,
at which point it decreases more rapidly until 2300 for all parameter values simulated
(Fig. 3a-3c). Despite this general pattern, we see that the implementation of 10%
variation can cause both a great deal of variation in model behavior and also very little
depending on which set of parameters is perturbed.

As we can see in Fig. 3a, varying the surface mass balance parameters causes little
variation in the modeled glacier height, and all simulations produce a generally similar
shape. This is likely because thick marine-terminating glaciers, like the one simulated
in this model, can take many millennia to respond to a change in surface mass balance.
On the other hand, varying either the initial conditions (i.e. the group of parameters
including bed slope) or the sill variables causes a great deal of variation in the modeled
glacier height (Fig. 3b and 3c), with a larger spread observed for the variable initial
conditions. These variations have a more direct influence on the behavior of the model
at the grounding line, which responds on time scales of decades to centuries, i.e. within
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t vs. H(t): smby smby smb tvs. H(t): H, L, b, tvs. H(t): sillin sillypar $illgiope
22, vs. H(t): smby smby smby o5 vs. H(t) - vs. H(t): si si sillstop
= 2 — o %
z £ 2 =
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Fig. 3 Glacier height H(¢) over time ¢ with £10% variability in nominal parameters defining a surface
mass balance, b initial conditions, and ¢ sill geometry. The sudden change of behavior at 1950 is due to
more frequent and higher accuracy observations that came with the start of the satellite era

Fig.4 Single initial condition t vs. H(t): H, =2.18, L, = 4.3212, b,
with slope varied +10% 2.2 : ‘ -
= =
=
&
= 1.8
1.6

0 500 1000 1500 2000 2500
Time, t

the time scale of the simulations considered here. However, it should be noted that
much of the variation in Fig. 3b is actually due to changing H, and L,, as we find
there is little variation in the glacier height if we hold these fixed and only vary the
slope, by (Fig. 4).

When deciding which model parameters are best suited for applications of data
assimilation, our sensitivity analysis reveals that variable sill parameters will produce
greater variation in model output. In the real world, uncertainty in the bed topography
(and thus sill parameters) is also quite large, as measurements of the ice sheet base
require the use of sparse ice-penetrating radar or borehole data. Parts of the bed topog-
raphy falling in between existing radar measurement lines or boreholes are inferred
using interpolation which can introduce substantial errors into these parameters. This
motivates our choice of a sill parameter, and the sill slope in particular, as one model
parameter to vary for our experiments (Table 1). We also vary smb,, H,, and L,.

3.2 EnKF Parameters

The mean square differences computed when the twin experiments were conducted
using various ensemble sizes are shown in Fig. 5a and 5b. We find that ensemble
sizes of 7-10 were ideal, as the mean square difference hovers around a relatively
constant value when the ensemble sizes is increased beyond this. The relatively small
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Table 1 Model parameters and

C . . Parameters and Initial Conditions
initial conditions used for the

baseline simulation True Inaccurate % variation
smb, 0.3 0.35 +~ 16.67
smby 0.15 0.15 n/a
smb s 0.0 0.0 n/a
H, 2.18 2.3 +~ 5.5
L, 4.44 4.6 +~3.3
by —0.001 —0.001 n/a
sillin 415 415 n/a
Sillmax 425 425 n/a
sillsiope 0.01 0.008 20
Ensemble Size vs. Mean Difference of H 045 Ensemble Size vs. Mean Difference of L
0.1 0.4
. 0.09 5 0.35
£ 0.08 B 03
A 0.07 A
o = 0.25
g 0.06 g
=i
0.05 0.2
0.04 0.15
0.03 0.1
0 20 40 60 80 0 20 40 60 80
Ensemble Size Ensemble Size
(a) (b)

Fig.5 Mean Square Difference in glacier height H a and length L b for varying ensemble sizes. The optimal
ensemble size that best balances computational cost and model accuracy lies around 7-10

ensemble size is sensible given that this model has few degrees of freedom (two
prognostic variables and few model parameters).

When exploring the optimal observation scheme, i.e. the time frames and frequency
of assimilation that produce a sufficiently small mean difference over the course of
the model run with a small number of observations, we find that before 1950 the best
observation frequency is approximately every 19 years for a total of 100 observations
(Fig. 6a and 6b). For the time frame of 1950-2300 we found that yearly observations
for a total of 350 observations is the best frequency (Fig. 7).

3.3 Twin Experiments
Given our results from Sect. 3.2, we conduct the twin experiments using an ensemble

size of 7-10, and assimilation frequency of every 19 years prior to 1950 and yearly
observations after this.
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Fig. 6 Background, truth, and analysis for pre-1950 data assimilated every 19 years a and assimilated
yearly b

08 Post-Satellite Era Data Mean Difference 0.8 Pre-Satellite Era Data Mean Difference
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Number of Observations Number of Observations
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Fig.7 Mean squared difference between analysis and truth for pre-satellite era data a and post-satellite era
b data assimilation with different frequencies

The results of the “model forecasting” experiments are shown in Fig. 8. We see
that after the last observation in 2020, the H () analysis diverges from the truth but
predicts a similar value at the end of the simulation. Similarly, we see that L(¢) analysis
diverges slightly from the truth but also ends with a similar value. The analysis of both
H (t) and L(z) is significantly closer to the truth than the baseline cases.

4 Discussion

4.1 Data Assimilation Impact on Glacier Studies

Our results show that implementing an EnKF improves the output of the two-stage
ice sheet model. It improves model forecasts of glacier length and thickness, moving

simulations initialized with erroneous or uncertain parameters closer to the “truth”
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Fig.8 Model run of H a and L b using best observation scheme and ensemble size

once data is assimilated. While this model is simplified, this suggests that data assim-
ilation has strong potential to improve more complex glacier models. These methods
can also be used to inform glacier studies, e.g., they can help determine the quantity
of measurements needed to most accurately model ice sheets. Specifically, our results
show that the increased costs of including more frequent observations does not always
increase accuracy of the model. The improvements to glacier models shown in this
study are important as they can help glacier modelers determine the frequency of
measurements that researchers should gather in order to improve model output. For
example, in Sect. 3.2 we found that there should be observations every 19 years before
1950 and yearly after 1950 in order to obtain model forecasts with minimal error,
with constraints on observational frequency. Using a greater number of assimilation
cycles is computationally more expensive, making it worthwhile to find an optimal
assimilation scheme. More significant is the fact that it can be very expensive and
time-intensive for researchers to collect glacier field data. We are not suggesting that
researchers stop collecting data more frequently than once a year, as this data can
still provide insight for different areas of research relating to glaciers and the systems
they affect. However, assimilation frequency should be further explored using more
complicated models and/or using real observation data.

A more complicated model will likely require larger ensemble sizes due to com-
plexities introduced by an increase in the degrees of freedom, something that can be
computationally prohibitive to implement. Therefore, we conjecture that it would be
worthwhile to explore a more computationally efficient data assimilation method such
as the singular evolutive interpolated Kalman filter in more complex models. See e.g.,
[14, 18] for more details.

The results of the sensitivity analysis show that the model itself is quite sensitive
to changes in various parameters, which is significant as real world measurements
of such parameters often have a lot of uncertainty and/or error. Knowledge of the
range of accuracy in measurements that is necessary for model accuracy may help
guide instrumentation development. This also underscores the importance of accurate
measurements in simplified (and likely complex) glacier models, and the important
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role that data assimilation may play in adjusting the model simulations to reduce the
uncertainties created by input errors.

4.2 Study Limitations

It is worth noting that these calculations were performed using one specific set of
parameters, so the findings are likely not universal. When the EnKF or similar data
assimilation methods are implemented into more complicated glacier models, it will be
worthwhile to similarly investigate optimal observation schemes. In this case, precision
in determining the optimal observation scheme will be crucial, as small differences
in the number and frequency of observations may have significant impacts due to the
non-linearities in the system.

5 Conclusions

In this work, we conducted sensitivity analyses, and investigated and compared the
impacts of data assimilation, specifically the ensemble Kalman filter (EnKF), on a
two-stage ice sheet model. We explored the model output variables, glacier height
and length, in the context of glacier melt due to climate change. To the best of our
knowledge, this is one of the only studies in which EnKF techniques are incorporated
with ice sheet modeling. Our results showed that incorporating observational data with
the EnKF technique improves the accuracy of glacier height and length forecasts, and
we determined that an ensemble size of 10 best minimizes computational cost while
also minimizing error. The assimilation results also suggest the time frame in which
observational data is most impactful to the output of the model, and that an ice sheet
model may perform reasonably well even when only receiving modern observational
data once yearly, without any historical data.

From our ensemble size results (Sect. 3.2), we hypothesise that there is a rela-
tionship between the number of variables as well as the parameter sensitivity in the
two-stage glacier model and the ideal ensemble size required. When this method is
implemented with more complex glacier models, the ideal ensemble size will likely be
larger. We further postulate that a model supported by an observation scheme with a
sufficient number of recent observations does not require much pre-satellite era obser-
vation data to make good predictions. “Sufficient” may be as low as one observation
per year. However, if the model trajectory is quite far from the mean observation tra-
jectory, long-term predictions may not be reliable using an EnKF alone. This work
provides foundational exploration and motivates implementation of a non-linear data
assimilation scheme such as the EnKF with a more complicated glacier model and
real-world observations. This has promising implications for better understanding sea
level rise.
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6 A Data Availability

The full data file with the data we generated, as well as related code and further graphs
of data assimilation schemes for this two-stage ice sheet model can be found at https://
github.com/hakuupi/StormSurge.

The code wused to run model and perform assimilation is in the
Juypter_Notebook_Code folder; we ran Python in Jupyter Notebook to gen-
erate data and run model.

Our data is stored in Experiment_Data and is saved in csv files. Note that the
parameters and initial conditions used are in the name of the file.

The MATLAB code used to generate graphics used in our paper is found in
Matlab_Plot_Code.

B Figures

See Appendix Figs. 9, 10 and 11.
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Fig. 9 Assimilation dates and frequencies. a Assimilation Frequencies Before 1900 in the pre-satellite
era. The assimilation schemes with under 5 percent in the assimilation time period are every 19 years or
more frequent. The scheme that assimilates data every 19 years is boxed. The red vertical line marks the
year 1900, the end of data assimilation in this experiment. b Assimilation Frequencies After 1950 in the
post-satellite era. The assimilation schemes with under 5 percent in the assimilation time period are yearly
or more frequent. The yearly scheme is boxed. The red vertical line marks the year 1950, the start of data
assimilation in this experiment.
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Fig. 10 Model runs with worse observation and ensemble Scheme with mean square difference for H
of 0.00982 and mean square difference for L of 0.00941. Note: mean square difference is rounded to 3
significant digits. a Observations and Truth Simulation for H. b Observations and Truth Simulation for L.
¢ Analysis, Ensemble, Observations and Truth Simulation for H. d Analysis, Ensemble, Observations and
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Fig. 11 Model Runs with best observation and ensemble scheme, with mean square difference for H
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