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Abstract—As a promising solution to alleviate network con-
gestion, mobile edge caching based on unmanned aerial vehicles
(UAVs) has emerged and received intensive research interests,
where users could download their desired contents from UAVs
with much lower latency. As for the UAV-assisted edge caching,
to improve the users’ Quality of Experience while reducing the
cost on content updating, how to jointly design the trajectory
and caching strategy for UAVs is critical. However, considering
the dynamics and uncertainty on the traffic environment, as well
as the mutual effect among different UAVs, such joint design
is nontrivial. In this article, we propose a collaborative joint
trajectory and caching scheme for UAV-assisted networks under
the dynamic and uncertain traffic environment. Unlike most
existing work relying on model-based or single-agent methods,
we develop a multiagent deep reinforcement learning (MADRL)
approach to obtain the solution, where the specific content
demand model is not needed and each UAV would learn the
best decision autonomously based on its local observations. It
can achieve the adaptive cooperation among different UAVs,
while optimizing the overall network performance. Moreover,
standing from the perspective on swarm intelligence, we further
develop a dynamic clustering federated learning framework on
the MADRL algorithm. By performing parameter fusion, each
UAV can improve the learning efficiency.

Manuscript received 11 November 2023; revised 27 March 2024; accepted
2 May 2024. Date of publication 15 May 2024; date of current version
23 August 2024. The work of Xuanheng Li and Jiahong Liu was supported
in part by the National Natural Science Foundation of China under Grant
62271100; in part by the Science and Technology Program of Liaoning
Province under Grant 2023JH2/101700366; in part by the Fundamental
Research Funds for the Central Universities under Grant DUT24ZD127; and
in part by the Xiaomi Young Talents Program. The work of Xianhao Chen
was supported in part by the HKU IDS Research Seed Fund under
Grant IDS-RSF2023-0012, and in part by the HKU-SCF FinTech Academy
Research and Development Funding. The work of Jie Wang was supported
in part by the National Natural Science Foundation of China under Grant
62071081; in part by the Science and Technology Program of Liaoning
Province under Grant 2022JH1/10800100, Grant 2023JH2/101300199, and
Grant 2023JH26/10300010; and in part by the Dalian Science and Technology
Innovation Fund under Grant 2022JJ12WZ057. The work of Miao Pan was
supported in part by the U.S. National Science Foundation under Grant CNS-
2107057 and Grant CNS-2318664. (Corresponding author: Xuanheng Li.)

Xuanheng Li and Jiahong Liu are with the School of Information
and Communication Engineering, Dalian University of Technology, Dalian
116024, China (e-mail: xhli@dlut.edu.cn; liujiahong@mail.dlut.edu.cn).

Xianhao Chen is with the Department of Electrical and Electronic
Engineering, University of Hong Kong, Hong Kong (e-mail:
xchen@eee.hku.hk).

Jie Wang is with the School of Information Science and Technology, Dalian
Maritime University, Dalian 116026, China (e-mail: wang_jie@dlmu.edu.cn).

Miao Pan is with the Department of Electrical and Computer Engineering,
University of Houston, Houston, TX 77004 USA (e-mail: mpan2@uh.edu).

Digital Object Identifier 10.1109/JIOT.2024.3401219

Index Terms—Deep reinforcement learning, federated learning,
mobile edge caching, unmanned aerial vehicle (UAV) networks.

I. INTRODUCTION

W ITH the development of telecommunications networks,
the global number of smart devices will surge from

7.6 to 17 billion between 2020 and 2030 [1], leading to an
explosive growth on the wireless data traffic. Since around
71% of data traffic is content distribution [2] and a large
number of requested contents are actually repeated, mobile
edge caching was proposed and regarded as a promising
technology to alleviate the network congestion under the
surging traffic [3], [4], [5], [6], [7], [8]. In the edge caching
network, many servers with the caching units are deployed at
the edge of the network and prestore some popular contents,
so that the users could acquire their desired contents from the
adjacent edge servers, instead of the remote cloud servers. In
this way, duplicated data transmissions could be avoided and
the network backhaul bottleneck could be relieved. Moreover,
users could download contents with the reduced transmission
delay due to the closer connection [9].

Recently, taking the mobility and flexibility of unmanned
aerial vehicles (UAVs) into account, several works have
considered to employ UAVs to facilitate edge caching, also
known as UAV-assisted edge caching networks [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19]. By deploying caching
units on UAVs, these cache-enabled UAVs could swiftly fly
to the hot spots and provide users with the prestored popular
contents. The areas served by UAVs could be regarded as
downlink small cells, where users can easily acquire their
desired contents from UAVs. Compared with the static ground
edge nodes, cache-enabled UAVs can act as flying containers
that track the dynamic traffic demand flexibly and provide on-
demand services. Furthermore, due to the reliable Line of Sight
(LoS) air-to-ground (A2G) links, these flying containers can
further reduce the transmission delay and improve the users’
Quality of Experience (QoE).

As for an UAV-assisted edge caching network, how to well
schedule the UAVs’ trajectories, while accurately determining
which contents to cache on each UAV and when to update
the caching contents, is the key to improve the users’ QoE
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efficiently. Unfortunately, such a joint scheme design is not an
easy task.

1) Considering the limited caching capability and numer-
ous potential contents, it is necessary to determine
which contents are the most popular ones for caching.
However, users’ preferences and their content demand
are usually time varying, making the content popularity
always change as well. Such uncertainty makes the
caching strategy design very challenging, especially
for some practical cases without precise statistical
information of the content demand. In parallel with
that, the cost on content updating should be also taken
into account, e.g., the spent energy and communication
resources. There would be a tradeoff between the users’
QoE and updating cost.

2) In general, from the perspective on the whole network
performance, UAVs should be deployed in those hot
spots to meet more content demand. However, as
aforementioned, the content demand of each user is
usually time varying. Further considering the users’
mobilities, the content demand would be dynamic in
both the temporal and spatial domains, making the UAV
trajectory design a nontrivial task. In addition, trajectory
and caching decisions are closely related with each
other. Different trajectories would face different content
requests, leading to different caching decisions. Hence, a
sophisticated joint design would be necessary to achieve
high QoE with low content updating cost.

3) With regard to the UAV group, multiple UAVs should
meet diverse popular content requests and serve different
hot spots cooperatively to well cover the whole network
with better performance. How to achieve a collaborative
intelligence is the key here.

Aiming at tackling the aforementioned challenges, sev-
eral works have investigated the UAV-assisted edge caching
network [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30]. In [20], [21], [22], [23], [24], and [25], researchers
have proposed different trajectory and caching strategies to
improve the network performance from different perspectives.
Most of them assumed the exact probability distribution of
content demand is available, and developed the strategies
relying on the model-based optimization approach. However,
in some practical cases, the perfect distributional information
of content demand might be hardly obtainable. To address this
problem, some recent works have embraced the reinforcement
learning approach to develop a model-free solution [26], [27],
[28], [29], [30]. Although these works did not rely on specific
content demand information, the proposed approaches either
made each UAV learn its strategy independently or determined
all UAVs’ strategies together, rather than enable them to made
decisions autonomously, where UAVs may not be able to well
cooperate with each other adaptively.

In this article, aiming at maximizing the users’ satisfac-
tion on the transmission delay while reducing the cost on
content updating, we propose a QoE-aware collaborative joint
trajectory and caching (COACH) scheme for the UAV-assisted
edge caching network, where the dynamics and uncertainty
on the traffic environment caused by the varying user demand

and user mobility are particularly considered. Taking the
mutual effect among different UAVs and uncertain demand
into account, we propose a multiagent deep reinforcement
learning (MADRL) approach based on the multiagent deep
deterministic policy gradient (MADDPG) algorithm. It can
make each UAV learn the best decision on the trajectory and
cache autonomously based on its local observations, while
optimizing the overall network performance. Furthermore,
standing from the perspective on swarm intelligence, to make
UAVs cooperate with each other, we further develop a dynamic
clustering federated learning framework on the MADDPG
algorithm (DCF-MADDPG). By performing parameter fusion
in an UAV cluster, each UAV could capture the content
demand feature of adjacent areas and learn the experiences of
other UAVs, so that the learning efficiency of the UAV group
could be improved with a faster convergence rate. The main
contributions of this article are summarized as follows.

1) Comprehensively considering both the users’ QoE and
content updating cost, we propose a COACH scheme for
the UAV-assisted edge caching network to enable UAVs
dynamically serve the hot spots with popular contents.

2) The uncertainty of the traffic environment is par-
ticularly considered during the design. Unlike most
existing works relying on the model-based optimization
approach, we develop a MADRL method built on a cen-
tralized training and decentralized executing manner. It
can make each UAV learn the best trajectory and caching
decision autonomously, while achieving the optimal
network performance and collaborative intelligence.

3) Standing from the perspective on swarm intelligence,
to facilitate each UAV to learn the experiences of
other UAVs, we further develop a dynamic clustering
federated learning framework on the MADRL approach.
By performing parameter fusion in a cluster, each UAV
can improve the learning efficiency and achieve the
optimal strategy faster. Furthermore, a rigorous analysis
on the convergence of the proposed approach has been
presented.

The remainder of this article is organized as follows.
Related work are presented in Section II. System model and
problem formulation are reviewed in Section III. In Section IV,
we introduce the proposed DCF-MADDPG algorithm. Then,
simulation result and analysis are drawn in Section V, followed
by conclusion in Section VI.

II. RELATED WORK

Considering the superiority and great potential of UAVs,
many works have been devoted to the UAV-assisted edge
caching network [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30]. Wu et al. [20] developed a dual dynamic
adaptive caching algorithm to jointly design the trajectory
and caching strategy for serving more users with the reduced
delay. In [21], service caching placement, UAV trajectory, UE-
UAV association, and task offloading decisions were jointly
optimized by Zhou et al. to minimize the service delay.
Wang et al. proposed a dynamic pricing and capacity allocation
scheme in [22] to maximize UAV service profit. In [23],
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aiming at minimizing total energy consumption, Gu et al. put
forward an energy-aware coded caching strategy for solving
the optimal content placement, power allocation, and coverage
deployment. In [24], to reduce the content delivery delay,
Li et al. studied flight control strategy of UAVs by the
distributed optimization and robust mean field game theory.
Besides, aiming at minimizing the content delivery delay,
Zhang et al. jointly optimized the user association, power
allocation, deployment of UAVs, and caching placement by
the branch and bound-based algorithm in [25]. Although
these works in [20], [21], [22], [23], [24], and [25] have
designed the edge caching strategy from different perspectives
to improve the network performance, they mainly relied on the
optimization method, where the model-based content demand
information is assumed to be available. However, in practice,
the content demand model might be unavailable.

Considering the demand uncertainty, several works have
employed the reinforcement learning approaches to obtain a
model-free solution [26], [27], [28], [29], [30]. In [26], to
reduce the average transmission delay, Luo et al. proposed
a weighted K-means algorithm to deploy UAVs and adopted
Q-learning algorithm to learn the content placement policy.
Peng and She [27] designed a deep deterministic pol-
icy gradient (DDPG)-based solution to obtain the optimal
vehicle association and resource allocation decisions. These
works in [26] and [27] could make UAVs design the strat-
egy autonomously without model-based demand information.
Nevertheless, they adopted single-agent approaches, where
each UAV learns its optimal decision independently. In this
way, UAVs could not realize swarm intelligence and serve
the network with better performance. In [28], considering
the QoE satisfaction and the power consumption issue,
Anokye et al. adopted the dueling deep Q-network-based
algorithm to determine the caching contents and deployment
of UAVs. To minimize the long-term content delivery delay,
Wang et al. [29] proposed a DDPG-based algorithm to jointly
optimize caching placement, user scheduling, and power
allocation. In [30], to improve the global cache hit ratio
and signal-to-noise ratio, Araf et al. developed a cooperative
multiagent actor–critic-based reinforcement learning approach
to jointly design the deployment of UAVs and caching strat-
egy. These works in [28], [29], and [30] adopted multiagent
approaches. However, it is noteworthy that all UAVs’ strategies
were determined together, where each UAV obtained its
strategy from a controller, rather than made decisions by itself.
In this way, the UAVs may not be able to well cooperate with
each other adaptively. To exploit the adaptive collaboration
of UAVs and fully realize swarm intelligence, we develop a
DCF-MADDPG solution.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider an UAV-assisted edge caching network as
shown in Fig. 1, where multiple cache-enabled UAVs act as
flying containers to provide users with edge caching services
by carrying certain popular contents on themselves. To be
specific, we assume that there are N UAVs launching from

Fig. 1. UAV-assisted edge caching network.

TABLE I
MAIN NOTATIONS USED IN THIS ARTICLE

certain starting points and flying around the network in a time-
slotted way. As for each time slot, it contains two parts, namely
flying phase and transmission phase. At the beginning of each
time slot, each UAV will determine its flight parameters and
caching contents. Then, it will fly to the next location carrying
the selected contents accordingly during the flying phase, and
hover at that place during the transmission phase to enable
users to download their desired contents. If the contents are
cached on the nearby UAV, users can download them from the
UAV through A2G links. Otherwise, they need to download
the contents from the remote base station (BS) through the
ground-to-ground (G2G) links. For such an UAV-assisted edge
caching network, it is important to well schedule the UAVs’
trajectories and the stored caching contents to make them
serve more users, so that the overall network QoE could be
enhanced. The main notations used for the system model are
summarized in Table I.

B. Transmission Model

Next, we will introduce both the G2G and A2G link models,
and calculate the transmission delay accordingly.
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1) Ground-to-Ground Links: For any user u, if it is located
without the coverage range of UAVs or UAVs have not carried
its desired contents, it needs to download the contents from
BS through the G2G links. The transmission rate of the user
u at the time slot t can be described as

rBS
u,t = Wlog2

(
1 + PBSgu,t

σ 2

)
(1)

in which W denotes the bandwidth allocated to each user, PBS

and σ 2 are the transmission power of the BS and the noise
power, respectively. gu,t is the channel gain from the BS to
the user u at the time slot t, which can be expressed based on
a simplified model as [31]

gu,t = β
(

dBS
u,t

)−α
(2)

where α and β are the path loss factor and the antenna related
parameter, respectively. dBS

u,t represents the distance between
the BS and user u, which can be calculated by

dBS
u,t =

√(
xBS − xu,t

)2 + (
yBS − yu,t

)2 (3)

in which (xBS, yBS) and (xu,t, yu,t) are the coordinates of the
BS and user u, respectively. Then, for each content m, we
denote its size as qm and the transmission delay downloading
from the BS can be presented as

DBS
m,u,t = qm

rBS
u,t
. (4)

2) Air-to-Ground Links: If UAVs fly around users carrying
with their desired contents, users could download the contents
from the nearby UAVs with the reduced transmission delay
through the A2G links. Considering the chance of the LoS
connectivity, we adopt the standard shadowing model of LoS
links associated with the LoS connection probability to model
the A2G links. To be specific, for any UAV n and user u,
we denote the LoS connection probability of the A2G link
between them at the time slot t as [32]

Pr
(

dUAV
n,u,t

)
= 1

1 + X exp

(
−Y

(
arctan

(
h

dUAV
n,u,t

)
− X

)) (5)

where we assume that all the UAVs fly on the same horizontal
plane with the same height h. X and Y are constants related to
the environment. Similar to (3), dUAV

n,u,t represents the horizontal
distance between the UAV n and user u, which can be
described as

dUAV
n,u,t =

√(
xUAV

n,t − xu,t
)2 + (

yUAV
n,t − yu,t

)2
(6)

where (xUAV
n,t , yUAV

n,t ) is the coordinates of the UAV n at the
time slot t. Then, the average path loss (in dB) for the A2G
link between the UAV n and user u at the time slot t can be
expressed as

ln,u,t = 20 log

(
4π fc

c

)
+ 20 log

(√
h2 + dUAV

n,u.t
2
)

+ Pr
(

dUAV
n,u,t

)
ηLoS +

(
1 − Pr

(
dUAV

n,u.t

))
ηNLoS (7)

where c and fc denote the speed of light and the carrier
frequency, respectively. ηLoS and ηNLoS represent the shadow-
ing constants corresponding to the LoS and non-LoS (NLoS)
connections depending on the environment [33]. If the path
loss is lower than a threshold l0, we regard the user located
within the UAV’s coverage, and the transmission rate1 can be
described as

rUAV
n,u,t = Wlog2

(
1 + PUAV

n

10ln,u,t/10σ 2

)
(8)

where PUAV
n is the transmission power of the UAV n. Similar

to (4), for each content m, if user u downloads it from the
UAV n at the time slot t, the delay can be expressed as

DUAV
n,m,u,t = qm

rUAV
n,u,t

. (9)

C. Cache Placement Model

As aforementioned, UAVs are equipped with a set of
caching units to store the popular contents to serve users. Due
to the limited caching memory size Cn, the amount of cache
contents is restricted as

M∑
m=1

qmδn,m,t ≤ Cn ∀n ∀t (10)

where the binary indicator δn,m,t represents whether or not the
content m is cached by the UAV n at the time slot t.

To cache the latest popular contents, UAVs could update
their caching contents from the BS at each time slot. However,
considering the cost on content updating, such as the energy
consumption and resource utilization for downloading the
contents, it is necessary to determine whether or not to update
caching units. We adopt a binary indicator ωn,m,t to represent
whether or not UAV n updates the caching unit to store the
content m at the time slot t. If it does, i.e., δn,m,t = 1
and δn,m,t−1 = 0, the updating binary indicator ωn,m,t = 1.
Otherwise, ωn,m,t = 0. Then, the total cost on content updating
can be written as

K =
N∑

n=1

M∑
m=1

T∑
t=1

k̂mωn,m,t (11)

where k̂m denotes the unit cost for updating the content m.

D. UAV Mobility Model

We use the azimuth φn,t and the flight velocity vn,t to
describe the UAV’s flight trajectory, which should satisfy

0 ≤ φn,t ≤ 2π ∀n ∀t (12)

0 ≤ vn,t ≤ Vmax ∀n ∀t. (13)

Then, for each UAV n, the location can be expressed as

xUAV
n,t+1 = xUAV

n,t + vn,t cosφn,t ∀n ∀t (14)

yUAV
n,t+1 = yUAV

n,t + vn,t sinφn,t ∀n ∀t. (15)

1We assume that each UAV is allocated with the orthogonal channels to
serve users, and users could download their desired contents from UAVs
without interference.
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Fig. 2. Relationship between MOS and transmission delay.

Furthermore, during the flying phase, it is necessary to keep
UAVs apart from each other to avoid collisions. The distance
between any two UAVs should be greater than a threshold
dmin, which can be expressed as∥∥∥(

xUAV
n,t , yUAV

n,t

)
−

(
xUAV

n′,t , yUAV
n′,t

)∥∥∥ ≥ dmin ∀n �= n′ ∀t. (16)

E. QoE Model

We adopt the mean opinion score (MOS) to measure the
users’ QoE, which links the transmission delay performance
indicator with the subjective user perceived quality as shown
in Fig. 2. Based on (4) and (9), we construct the transmission
delay-based QoE model to evaluate the satisfaction of the user
u at the time slot t as [34]

MOSu,t = K̂1 ln

(
1

Du,t

)
+ K̂2 (17)

where K̂1 and K̂2 are both the constants. Du,t is the transmis-
sion delay corresponding to (4) and (9).

F. Problem Formulation

Assume that the UAVs will serve the network and return to
the starting points for energy recharging every T time slots1.
Considering both the users’ QoE and content updating cost,
we formulate the proposed COACH scheme as

P1 : max
δ,v,φ

λ1

N∑
n=1

U∑
u=1

T∑
t=1

ξn,u,tMOSu,t−λ2K

s.t. (10), (12)−(16) (18)

where λ1 and λ2 are the bias parameters. ξn,u,t is an indicator to
represent whether or not user u is located within the coverage
range of the UAV n at the time slot t.

Note that, the formulated problem P1 is an NP-hard
problem, which involves coupling continuous decision vari-
ables v,φ and binary decision variables δ. Furthermore, the
exact information of the content demand during the T time
slots is required to obtain the solution, which, unfortunately,
might be hardly obtainable precisely in advance. Thus, we
develop an MADRL solution, which enables each UAV to
design the best trajectory and caching strategy autonomously
that will optimize the overall network performance. Then, we

1Note that energy efficiency is an important issue for the UAV assistance
paradigm [35], [36], [37], [38]. Since, the key point of this work is to develop
an adaptive joint trajectory and caching scheme for the UAV-assisted edge
caching network under the dynamic and uncertain traffic environment, we
have not particularly addressed this issue, but considered a classical recharging
method as in many existing works.

further develop a DCF-MADDPG algorithm to fully exploit
the collaboration of UAVs, so that the learning efficiency of
the UAV group could be improved with a faster convergence
rate.

IV. MULTIAGENT FEDERATED DEEP REINFORCEMENT

LEARNING SOLUTION FOR THE COACH SCHEME

In this section, we first propose an MADDPG-based deep
reinforcement learning solution to make each UAV learn the
best decision autonomously based on its local observations
to achieve an optimal network overall utility. Then, for fully
exploiting the collaboration of UAVs, we further develop
a DCF-MADDPG solution [39]. UAVs perform parameter
fusion in divided clusters to learn the strategies of adjacent
UAVs. In this way, the learning efficiency of the UAV
group could be improved, and the convergence rate could be
accelerated.

A. Reinforcement Learning Framework

At each time slot t, each UAV n will observe the state sn,t

and take an action an,t according to certain policy πn,t. Then,
it will obtain an immediate reward rn,t by interacting with the
environment and traverse to a new state sn,t+1. Each UAV n
is committed to finding the optimal policy that maximizes the
accumulated reward

Rn,t =
T∑

i=t

γ i−trn,i (19)

where γ ∈ (0, 1) is a discount factor. Next, along with the
formulated problem P1, we will define the state, action, and
reward for the COACH scheme.

1) State: We denote the amount of demand within the
coverage range of UAV n on all the M contents at the time
slot t as ρn,t = [ρ1,n,t, . . . , ρM,n,t]T . Since, the location of
each UAV and the content demand at that place will directly
influence the users’ QoE and content updating cost, we define
the state sn,t observed by each UAV n at the time slot t as

sn,t =
{

xUAV
n,t ; yUAV

n,t ; ρn,t

}
. (20)

2) Action: As the decisions to make, we define the action
of each UAV n at the time slot t as

an,t = {
δn,t, vn,t, φn,t

}
(21)

in which δn,t = [δ1,n,t, . . . , δM,n,t]T is the binary indicator
associated with the caching decisions satisfying the con-
straint (10). vn,t and φn,t denote the flight velocity and azimuth,
respectively, for the trajectory decision.

3) Reward: The reward rn,t is the feedback to evaluate the
action an,t choosing in state sn,t. Taking the MOS, cost on
content updating and the collision avoidance into account, we
define the reward for the UAV n at the time slot t as

rn,t = λ′
1

U∑
u=1

ξn,u,tMOSu,t−λ′
2

M∑
m=1

k̂mωn,m,t

− λ′
3

μ∥∥∥(
xUAV

n,t , yUAV
n,t

)−(
xUAV

n′,t , yUAV
n′,t

)∥∥∥ (22)
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Fig. 3. MADDPG algorithm for the COACH scheme.

where λ′
1, λ′

2, and λ′
3 are the bias parameters. μ is the

penalty coefficient. The first penalty term
∑M

m=1 k̂mωn,m,t can
avoid frequent content updating to reduce the updating cost.
The second penalty term (μ/[‖(xUAV

n,t , yUAV
n,t )−(xUAV

n′,t , yUAV
n′,t )‖])

can avoid collisions among different UAVs because a small
distance on the denominator will make the reward a very small
negative value.

B. MADDPG Algorithm

The proposed MADDPG-based deep reinforcement learning
method [40] is shown in Fig. 3. It contains four neural
networks, namely actor current network (ACN), actor target
network (ATN), critic current network (CCN), and critic target
network (CTN). The first ACN is placed on each UAV for the
action decision making and the other three neural networks are
placed at the central server to evaluate the strategy that each
UAV makes from the perspective on the whole network, which
will be adopted for training the ACN. The MADDPG method
will be implemented in a centralized training and decentralized
executing manner.

1) Actor Network: As aforementioned, the ACN is
deployed on the UAVs, so that they could determine the actions
by themselves based on the local observations. Specifically,
for each UAV n, the ACN πn,t(sn,t|ϕn.) is used to determine
which action is chosen. The input of it is the current observed
state sn,t and the output is the πn,t(sn,t). Note that, the output
of the ACN πn,t(sn,t) is a continuous vector, while the caching
decision δn,t should be a discrete one. Hence, considering the
constraint (10), we discretize the continuous output into CCn

M
levels, corresponding to the CCn

M possible cases, and obtain
the discrete action an,t by determining which level πn,t(sn,t)+
N (0, σ̂ 2) belongs to, where N (0, σ̂ 2) is a Gaussian noise
with the variance σ̂ 2 added on the output for the environment
exploration. Then, it will transit to the next state sn,t+1 and
the variance σ̂ 2 decreases. The UAV will obtain a reward
rn,t according to the feedback from the environment. The
experience tuple {sn,t, an,t, rn,t, sn,t+1} will be uploaded to the

central server and stored in a replay memory for training the
neural networks. When the surrounding environment changes
dramatically, UAVs will explore the environment to capture the
new demand feature. To be specific, if

∑I−1
i=0 rn,t−i ≤ rn,t−I ,

σ̂ 2 will be initialized.
The ATN π ′

n,t(s
′
n,t|ϕ′

n) has the same network structure as the
ACN, which is deployed on the central sever and employed
for training the critic networks. The parameters of it ϕ′

n are
copied from the ACN every Ta time slots in a soft updating
way as

ϕ′
n ← τ aϕn + (

1 − τ a)ϕ′
n (23)

where τ a � 1 is the forgetting factor of the ATN.
The parameters of the ACN ϕn are updated based on the

gradient ascent method, i.e.,

ϕn,t+1 = ϕn,t + λa∇ϕn
J
(
ϕn

)
(24)

where λa denotes learning rate of the ACN. ∇ϕn
J(ϕn) is the

policy gradient in terms of ϕn expressed as

∇ϕn
J
(
ϕn

) = E

[
∇an,t Qn,t

(
sALL

t , aALL
t

)
∇ϕn

πn,t
(
sn,t

)]
(25)

where ∇an,t Qn,t(sALL
t , aALL

t ) is the policy gradient of the CCN
in terms of the action an,t that can be downloaded from the
central server.

2) Critic Network: The two critic networks, namely
CCN Qn,t(sALL

t , aALL
t |θn) and CTN Q′

n,t(s
′ALL
t , a′ALL

t |θ ′
n), are

placed at the central server. The former one is used to
evaluate how good all the UAVs’ actions are in the current
states, and the latter one is employed for updating the CCN’s
parameters. Both two networks have the same structure. For
CCN, the input is the state vector, including all the UAVs’
submitted states, i.e., sALL

t = (s1,t, . . . , sN,t), and the action
vector, including all the UAVs’ submitted actions, i.e., aALL

t =
(a1,t, . . . , aN,t). The output is the Q-value of the state-action
pair for all the UAVs. For each UAV n, the policy gradient
of the corresponding CCN ∇an,t Qn,t(sALL

t , aALL
t ) will return to

the UAV for training its local ACN as in (24).
The parameters of CCN are updated as

θn,t+1 = θn,t − λc∇θn J(θn) (26)

where λc is the learning rate of the CCN. J(θn) is the loss
function defined as

J(θn) = E

[(
ŷn,t − Qn,t

(
sALL

t , aALL
t

))2
]
. (27)

ŷn,t is the target value calculated as

ŷn,t = rn,t + γQ′
n,t

(
s′ALL

t , a′ALL
t

)
(28)

where Q′
n,t(s

′ALL
t , a′ALL

t ) is the output of the CTN. a′ALL
t is

the output of the ATN under the input s′ALL
t , i.e., a′ALL

t =
(π ′

1,t(s′
1,t), . . . , π

′
N,t(s′

N,t)). The parameter updating can be
achieved by sampling a mini-batch experience data from the
replay memory. Similar to the relationship between the ACN
and ATN, the parameters of CTN θ ′

n are copied from the CCN
every Tc time slots as

θ ′
n ← τ cθn + (

1 − τ c)θ ′
n (29)

where τ c � 1 is the forgetting factor of the CTN.
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Fig. 4. Dynamic clustering federated MADDPG algorithm for the COACH
scheme.

C. Dynamic Clustering Federated MADDPG Algorithm

Since all UAVs need to learn the optimal strategy in the
same network environment, to further exploit the collaboration
of UAVs, we incorporate the concept of federated learning with
dynamic clustering and develop a DCF-MADDPG-based solu-
tion standing from the perspective on swarm intelligence as
shown in Fig. 4, where each UAV could learn the experiences
of others. Specifically, to facilitate adjacent UAVs to share the
surrounding environment information, the central server will
first classify UAVs into different clusters based on the UAVs’
locations. Then, UAVs perform parameter fusion in divided
clusters to update network parameters, which could learn the
strategies of other UAVs. In this way, each UAV can improve
the learning efficiency.

Each UAV n will upload location (xUAV
n,t , yUAV

n,t ) to the
central server every T̃ time slots for determining the dynamic
clusters. After obtaining all UAVs’ locations, the central server
is committed to categorizing neighbor UAVs into the same
cluster to make them learn strategies from each other. If the
distance between the UAV n and n′ is less than d̂, they will be
divided into the same cluster to learn the action and evaluation
strategies of neighbor UAVs.

When UAVs are classified into different clusters, they will
perform parameter fusion. As for the ACN equipped on the
UAVs, each UAV n will upload the local model ϕn to the
central server every T̃ time slots. For the cluster k, the central
server performs parameter fusion as

ϕG
k =

1

Nk

Nk∑
n=1

ϕn (30)

where Nk is the number of UAVs in the cluster k. Then,
the central server sends back the global model ϕG

k to UAVs
belonging to the cluster k for updating their ACN parameters
accordingly. Each UAV will keep learning the environment
starting from the new global model parameters ϕG

k and make
actions accordingly.

Similarly, as for the CCNs at the central server, they fuse
the global model every T̃ time slots as

θG
k =

1

Nk

Nk∑
n=1

θn. (31)

Then, each CCN belonging to the cluster k updates its
parameters to θG

k and keep running the MADDPG algorithm.

D. Implementation Based on Centralized Training and
Decentralized Executing

Next, we will summarize the whole implementation process
of the proposed DCF-MADDPG algorithm. The ACN is
placed on each UAV for the action decision making, and
the other three neural networks are placed at the central
server to evaluate the strategy that each UAV makes from the
perspective on the whole network, which will be adopted for
training the ACN. The four neural networks would be trained
offline with the historical data at first, and then executed
online. During the online execution, the networks will be
trained as well according to the new observations, and the
network parameters of ACN and CCN will be updated every
T̂a and T̂c time slots, which will be copied to ATN and CTN
every Ta and Tc time slots. Besides, every T̃ time slots, the
parameters of both the ACN and CCN will be fused at the
central server for federated learning.

To be specific, at each time slot t, each UAV n will
first observe the current state sn,t, including its location
(xUAV

n,t , yUAV
n,t ) and the content demand at that place ρn,t.

Then, it will choose the action based on the output of
the ACN πn,t(sn,t) + N (0, σ̂ 2). After performing the action,
it will fly to a new location carrying certain determined
contents, and get a reward rn,t according to the users’ QoE
and updating cost. Each UAV n will submit its experience
tuple {sn,t, an,t, rn,t, sn,t+1} to the central server. Note that,
the proposed DCF-MADDPG algorithm is implemented in a
distributed manner, where UAVs execute the action without
the control of the central server.

After obtaining all UAVs’ information, the central
server will send back the policy gradient of CCN
∇an,t Qn,t(sALL

t , aALL
t ) to each UAV n every T̂a time slots,

which will be adopted for updating the parameters of ACN
as (24), and the CCNs will be trained as well based on (26)
every T̂c time slots. The central server determines the dynamic
clusters based on the UAVs’ locations every T̃ time slots.
Then, the parameters of both the ACN and CCN will be
fused at the central server, and the parameters of ACN and
CCN will be copied to ATN and CTN every Ta and Tc

time slots, respectively. The aforementioned training process
is centralized at the central server. The whole process is
summarized in Algorithm 1.

E. Convergence Analysis

Next, according to the analysis in [41], we will prove the
convergence of the proposed DCF-MADDPG algorithm. We
take the actor network as an example. The convergence of
the critic network could be proved in similar way. We first
introduce a single-agent approach, where the strategies of all
UAVs are trained together in the centralized controller. The
parameter vector of the single-agent approach is denoted as
μl̂(t), t ∈ [(l̂ − 1)T̃, l̂T̃]. It updates from the (l̂ − 1)-th global
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Algorithm 1 DCF-MADDPG Algorithm

1: Initialize: ϕ, ϕ′, θ , θ ′, τ a, τ c, λa, λc, γ , σ̂ 2.
2: for UAV n in N do
3: Initialize state sn,t.
4: end for
5: for episode = 1, 2,... do
6: for t = 1, 2,..., T do
7: for UAV n in N do
8: σ̂ 2 ← 0.9999 × σ̂ 2.
9: Execute action an,t according to πn,t

(
sn,t

) +
N (

0, σ̂ 2
)
.

10: Obtain reward rn,t according to (22).
11: if

∑I−1
i=0 rn,t−i ≤ rn,t−I then

12: Initialize σ̂ 2.
13: end if
14: Transit to the next state sn,t+1.
15: Store transition {sn,t, an,t, rn,t, sn,t+1} in the replay

memory unit.
16: Sample a mini-bach from the memory unit.
17: if t mod T̂a == 0 then
18: Update ACN according to (24).
19: end if
20: if t mod T̂c == 0 then
21: Update CCN according to (26).
22: end if
23: if t mod Ta == 0 then
24: Update ATN according to (23).
25: end if
26: if t mod Tc == 0 then
27: Update CTN according to (29).
28: end if
29: if t mod T̃ == 0 then
30: Upload location

(
xUAV

n,t , yUAV
n,t

)
to central server.

31: Upload local model ϕn to central server.
32: Perform parameter fusion according to (30)

and (31).
33: end if
34: end for
35: end for
36: end for

model parameter ϕG((l̂ − 1)T̃) and follows a centralized gra-
dient descent as:

μl̂(t) = μl̂(t − 1)− λ̂J
(
μl̂(t − 1)

)
(32)

where λ̂ is the learning rate. We denote J(μl̂(t)) − J(ϕ∗)
as θ̂l̂(t), where ϕ∗ is the optimal actor network parameter
that minimizes the loss function J(·). Based on the parameter

vector μl̂(t), we will analyse the gap between J(ϕG(L̂T̃)) and
J(ϕ*) to show the convergence of the global parameter after
L̂T̃ time slots.

Then, we present some definitions as follows.
Definition 1: For any actor network parameter ϕn(t) and

global model parameter ϕG(t), the gradient divergence ψn is
defined as ∥∥∥∇J

(
ϕn(t)

) − ∇J
(
ϕG(t)

)∥∥∥ ≤ ψn. (33)

Based on ψn, the global gradient divergence ψG is defined as

ψG = 1

N

N∑
n=1

ψn. (34)

Definition 2: We define the learning rate of centralized
gradient descent λ̂ in (32) satisfying

λ̂ ≤ 1

β̂
(35)

and

λ̂τ − ρ̂g
(
T̃
)

T̃ε2
> 0 (36)

where β̂ is a constant making the loss function J(·) β̂-smooth
as ∥∥∇J

(
ϕ̄n(t)

) − ∇J
(
ϕ̂n(t)

)∥∥ ≤ β̂
∥∥ϕ̄n(t)− ϕ̂n(t)

∥∥ (37)

for any ϕ̄n(t) and ϕ̂n(t) [42]. ρ̂ is a constant making J(·)
ρ̂-Lipschitz as∥∥J

(
ϕ̄n(t)

) − J
(
ϕ̂n(t)

)∥∥ ≤ ρ̂
∥∥ϕ̄n(t)− ϕ̂n(t)

∥∥ (38)

for any ϕ̄n(t) and ϕ̂n(t). τ = ω̂(1 − ([λ̂β̂]/2)) and ω̂ =
mint(1[‖μl̂(t)− ϕ∗‖2]). The function g(x) is presented as

g(x) = ψG

β̂

((
λ̂β̂ + 1

)x − 1
)

− λ̂ψGx. (39)

ε is a constant satisfying

J
(
μl̂

(
l̂T̃

))
− J

(
ϕ∗) ≥ ε ∀l̂ (40)

and

J
(
ϕG

(
L̂T̃

))
− J

(
ϕ∗) ≥ ε. (41)

Next, we will first analyse the gap between θ̂l̂(t + 1) and
θ̂l̂(t), and then prove the convergence of the global parameter.
According to (37), since J(·) is β̂-smooth, we have (42),
shown at the bottom of the page. Recalling J(μl̂(t))−J(ϕ∗) =
θ̂l̂(t), (42) is equivalent to

θ̂l̂(t + 1) ≤ θ̂l̂(t)− λ̂

(
1 − β̂λ̂

2

)∥∥∇J
(
μl̂(t)

)∥∥2
. (43)

J
(
μl̂(t + 1)

) − J
(
μl̂(t)

) ≤ ∇J
(
μl̂(t)

)T(
μl̂(t + 1)− μl̂(t)

) + β̂

2

∥∥μl̂(t + 1)− μl̂(t)
∥∥2

≤ −λ̂∇J
(
μl̂(t)

)T∇J
(
μl̂(t)

) + β̂λ̂2

2

∥∥∇J
(
μl̂(t)

)∥∥2
. (42)

Authorized licensed use limited to: University of Houston. Downloaded on September 19,2024 at 18:08:09 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: CACHING ON THE SKY: A MULTIAGENT FEDERATED REINFORCEMENT LEARNING APPROACH 28221

Since J(·) is a convex function, we have

θ̂l̂(t) ≤ ∇J
(
μl̂(t)

)T(
μl̂(t)− ϕ∗). (44)

By Cauchy–Schwarz Inequality, (33) could be transformed
into

θ̂l̂(t)∥∥μl̂(t)− ϕ∗∥∥ ≤ ∥∥∇J
(
μl̂(t)

)∥∥. (45)

Based on (32) and (34), we could obtain

θ̂l̂(t + 1) ≤ θ̂l̂(t)−
λ̂
(

1 − β̂λ̂
2

)
θ̂l̂(t)

2

∥∥μl̂(t)− ϕ∗∥∥2
. (46)

Since, −ω̂ ≥ −(1/[‖μl̂(t)− ϕ∗‖2]), we could reformu-
late (46) into

θ̂l̂(t + 1) ≤ θ̂l̂(t)− ω̂λ̂

(
1 − β̂λ̂

2

)
θ̂l̂(t)

2. (47)

It could be rewritten as

1

θ̂l̂(t + 1)
− 1

θ̂l̂(t)
≥
ω̂λ̂

(
1 − β̂λ̂

2

)
θ̂l̂(t)

θ̂l̂(t + 1)
. (48)

Since, θ̂l̂(t + 1) ≤ θ̂l̂(t) from (32), (48) could be further
reformulated into

1

θ̂l̂(t + 1)
− 1

θ̂l̂(t)
≥ ω̂λ̂

(
1 − β̂λ̂

2

)
. (49)

So far, we have presented the gap between θ̂l̂(t + 1) and
θ̂l̂(t). Based on the gap, we will prove that J(ϕG(L̂T̃))−J(ϕ*)

converges to a constant. For (49), summing up t from (l̂ − 1)T̃
to l̂T̃ − 1, we have

1

θ̂l̂

(
l̂T̃

) − 1

θ̂l̂

((
l̂ − 1

)
T̃
) ≥ T̃ω̂λ̂

(
1 − β̂λ̂

2

)
. (50)

For (50), summing up all l̂ = 1, 2, . . . , L̂, we achieve that

L̂∑
l̂=1

⎛
⎝ 1

θ̂l̂

(
l̂T̃

) − 1

θ̂l̂

((
l̂ − 1

)
T̃
)
⎞
⎠ ≥ L̂T̃ω̂λ̂

(
1 − β̂λ̂

2

)
(51)

which can be further rewritten as (52), shown at the bottom
of the page. Then, since μl̂+1(l̂T̃) = ϕG(l̂T̃), referring to [41,
Th. 1], the conclusion could be presented as∥∥∥μl̂

(
l̂T̃

)
− μl̂+1

(
l̂T̃

)∥∥∥ ≤ g
(
T̃
)
. (53)

Since, the loss function J(·) is ρ̂-Lipschitz, we could
obtain (54), shown at the bottom of the page. We combine (53)
with (54) to obtain that

θ̂l̂

(
l̂T̃

)
− θ̂l̂+1

(
l̂T̃

)
≥ −ρ̂g

(
T̃
)
. (55)

Considering (40) and θ̂l̂(t + 1) ≤ θ̂l̂(t) from (32), we draw the
conclusion as

θl̂

(
l̂T̃

)
θl̂+1

(
l̂T̃

)
≥ ε2. (56)

Based on (55) and (56), (52) could be transformed into

1

θ̂L

(
L̂T̃

) − 1

θ̂1(0)
≥ L̂T̃ω̂λ̂

(
1 − β̂λ̂

2

)
−

(
L̂ − 1

) ρ̂g
(
T̃
)

ε2
. (57)

Then, based on (40) and (41), we have

− 1(
J
(
ϕG

(
L̂T̃

))
− J(ϕ∗)

)
θ̂L̂

(
L̂T̃

) ≥ − 1

ε2
. (58)

Based on (55) and (58), we could obtain (59), shown at the
bottom of the page. Summing up (57) and (59), we get (60),
shown at the bottom of the page. Since, θ̂1(0) > 0, (60) could
be transformed into

1

J
(
ϕG

(
L̂T̃

))
− J(ϕ∗)

≥ L̂T̃

(
ω̂λ̂

(
1 − β̂λ̂

2

)
− ρ̂g

(
T̃
)

T̃ε2

)
.

(61)

1

θ̂L̂

(
L̂T̃

) − 1

θ̂1(0)
− L̂T̃ω̂λ̂

(
1 − β̂λ̂

2

)
≥

L̂−1∑
l̂=1

⎛
⎝ θ̂l̂

(
l̂T̃

)
−θ̂l̂+1

(
l̂T̃

)
θ̂l̂

(
l̂T̃

)
θ̂l̂+1

(
l̂T̃

)
⎞
⎠ (52)

∥∥∥J
(
μl̂

(
l̂T̃

))
− J

(
μl̂+1

(
l̂T̃

))∥∥∥ ≤ ρ̂

∥∥∥μl̂

(
l̂T̃

)
− μl̂+1

(
l̂T̃

)∥∥∥ (54)

1

J
(
ϕG

(
L̂T̃

))
− J(ϕ∗)

− 1

θ̂L̂

(
L̂T̃

) =
J
(
μL̂

(
L̂T̃

))
− J

(
ϕG

(
L̂T̃

))
(

J
(
ϕG

(
L̂T̃

))
− J(ϕ∗)

)
θ̂L̂

(
L̂T̃

) ≥ − ρ̂g
(
T̃
)

ε2
(59)

1

J
(
ϕG

(
L̂T̃

))
− J(ϕ∗)

− 1

θ̂1(0)
≥ L̂T̃ω̂λ̂

(
1 − β̂λ̂

2

)
− L̂

ρ̂g
(
T̃
)

ε2
(60)
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Fig. 5. Different demand distributions of different contents. (a) Demand distribution on content 1. (b) Demand distribution on content 2. (c) Demand
distribution on content 3. (d) Demand distribution on content 4. (e) Demand distribution on content 5. (f) Demand distribution on content 6. (g) Demand
distribution on content 7. (h) Demand distribution on content 8.

From (61), we could present the gap between J(ϕG(L̂T̃)) and
J(ϕ*) as

J
(
ϕG

(
L̂T̃

))
− J

(
ϕ*

)
≤ 1

L̂T̃

(
ω̂λ̂

(
1 − β̂λ̂

2

)
− ρ̂g

(
T̃
)

T̃ε2

) . (62)

So far, we have proved that J(ϕG(L̂T̃))−J(ϕ*) converges to
a constant. Since, the global model parameter of each dynamic
cluster could converge, the convergence of the proposed DCF-
MADDPG algorithm could be guaranteed.

V. SIMULATION RESULT AND DISCUSSION

We consider a 1000 × 1000 m2 area as the simulation
scenario, where N = 3 UAVs are deployed to serve the entire
network and eight hot spots exist with huge traffic demand.
In each hot spot, we randomly deploy [200, 400] users based
on a normal distribution, and let them prefer to download
two specific contents from all the M = 8 contents. At each
time slot, each user has one content request, and it either
stays in its current position or move to another hot spot at
a speed of 1 m/s. Thousand users are randomly deployed in
other areas with a random movement with a speed of 1 m/s,
and each one has one content request that is randomly chosen
from all the M = 8 contents. At each time slot, all users in
the network have a 5% probability of changing their content
requests. Fig. 5 presents the demand distribution on different
contents at one time slot.

One time slot is set as 1 s and 500 time slots are defined as
one episode. Each UAV returns to the starting point for power
charging at the end of every episode. The BS is located in the
corner of this area and the number of orthogonal channels is set
as 300. The key simulation parameters of the communication
and caching models are set following the common rules as
in [13], [33], [43], [44], and [45], which are shown in Table II.
As for the hyper-parameters settings, we let bias parameter
λ′

1 = 1, λ′
2 = 1, λ′

3 = 1, discount factor γ = 0.9, exploration

TABLE II
PARAMETER SETTINGS

noise σ̂ 2 = 1, exploration related parameter I = 5, and model
fusion cycle T̃ = 25. The memory unit size is 20 000 and mini-
batch size is 256. Other detailed parameters are described in
Tables III and IV. Under the parameter settings, we compare
our proposed DCF-MADPPG algorithm with the following
benchmarks to evaluate the performance.

1) MADDPG: In this algorithm, the actor network and
critic network are trained according to (23), (24), (26),
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(a) (b) (c)

Fig. 6. Reward, MOS, and content updating cost under different algorithms. (a) Reward under different algorithms. (b) MOS under different algorithms.
(c) Content updating cost under different algorithms.

TABLE III
HYPER-PARAMETERS OF ACTOR NETWORK

TABLE IV
HYPER-PARAMETERS OF CRITIC NETWORK

and (29) without federated learning to develop the
trajectory and caching strategy.

2) DDPG: According to the DDPG, each UAV indepen-
dently learns the trajectory and caching strategy without
collaboration.

3) Trajectory Strategy Without Caching Decision Making
(TS): Based on the MADDPG solution, UAVs cache
contents randomly and learn the optimal trajectory
strategy.

In Fig. 6, we present the average reward, MOS and
content updating cost under different algorithms. Compared
with MADDPG, the proposed DCF-MADPPG accelerates the
convergence rate with the aid of dynamic clustering and
global model aggregation, which represents that the proposed
solution could make each UAV learn the experiences of others
effectively. Then, it can be seen that the rewards and MOS of
DCF-MADPPG and MADDPG significantly outperform than
those of DDPG. For achieving an optimal network overall

Fig. 7. Trajectory and caching decisions under the DCF-MADDPG solution.

performance, DCF-MADPPG and MADDPG fully exploit the
swarm intelligence to make each UAV learn the best decision
on the trajectory and cache autonomously. Moreover, it is
evident that DCF-MADPPG, MADDPG, and DDPG have
much better performance than TS, indicating that it is essential
to jointly determine both the trajectory and caching in the
UAV-assisted network. The reason is that the trajectory and
caching decisions are closely related with each other. Different
trajectories would face different content requests, leading to
different caching decisions.

In Fig. 7, we show trajectory and caching decisions under
the DCF-MADDPG solution. We can observe that UAVs fly
around different hot spots carrying on the cache popular
contents. Taking the UAV 1 as an example, it flies around the
hot spot 1, and caches the contents 2 and 6. Correspondingly,
users in hot spot 1 prefer to download the contents 2
and 6, indicating UAVs could track dynamic traffic demand
autonomously.

Next, we change the demand distributions of different
contents in the 300th episode, regarding as a dynamic traffic
environment, and evaluate the performance under different
algorithms. The changed demand distribution of each content
is shown in Fig. 8. In Fig. 9, we present the reward, MOS,
and content updating cost under different algorithms in this
dynamic traffic environment. From Fig. 9, it can be observed
that the MADDPG and DCF-MADPPG make each UAV learn
the optimal decision on the trajectory and cache adaptively
in the new environment, and obtain a better reward than the
DDPG and TS. Furthermore, compared with MADDPG, the
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Fig. 8. Different demand distributions of different contents when the traffic environment changes. (a) Demand distribution on content 1. (b) Demand
distribution on content 2. (c) Demand distribution on content 3. (d) Demand distribution on content 4. (e) Demand distribution on content 5. (f) Demand
distribution on content 6. (g) Demand distribution on content 7. (h) Demand distribution on content 8.

(a) (b) (c)

Fig. 9. Reward, MOS, and content updating cost under different algorithms when the traffic environment changes. (a) Reward under different algorithms.
(b) MOS under different algorithms. (c) Content updating cost under different algorithms.

Fig. 10. Trajectory and caching decisions under the DCF-MADDPG solution
when the traffic environment changes.

proposed DCF-MADPPG fully exploits the collaboration of
UAVs to make each UAV learn the new environment feature
faster. In summary, the proposed DCF-MADPPG algorithm
can enable UAVs to track dynamic hot spots and cache popular
contents adaptively, so that the users’ QoE could be improved
with low content updating cost.

In Fig. 10, we present trajectory and caching decisions
under the DCF-MADDPG solution in this dynamic traffic
environment. It can be observed that as the time goes on, UAVs

can learn the new environment feature and adaptively adjust
their trajectory and caching decisions. Specifically, taking the
UAV 3 as an example, it ceases serving the original area and
instead flies to the new hot spot adaptively. When UAV 3 flies
over the hot spot 7, it caches the contents 4 and 6. From Fig. 8,
we can see that users in hot spot 7 prefer to download the
contents 4 and 6. Subsequently, UAV 3 leaves the hot spot
7 and heads toward the hot spot 8. During the flight, due to
the cost on content updating, UAV 3 does not update cache
units to serve scattered users. When UAV 3 arrives at the hot
spot 8, it updates cache units to cache the contents 1 and 4.
Correspondingly, users in hot spot 8 prefer to download the
contents 1 and 4. The scheduling results represent that the
UAVs could adapt to changing surroundings autonomously to
make network overall performance optimal.

VI. CONCLUSION AND FUTURE WORK

In this article, taking the long-term overall users’ QoE as the
objective, also with the consideration on the content updating
cost, we proposed a QoE-aware COACH scheme for the
UAV-assisted edge caching network, where the dynamics and
uncertainty on the traffic environment caused by the varying
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user demand and user mobility were particularly considered.
To address the content demand uncertainty, we developed an
MADRL approach. It could make each UAV learn the best
decision on the trajectory and caching autonomously based on
its local observations to achieve an optimal network overall
performance. Moreover, to fully exploit the swarm intelligence
and make each UAV learn the experiences of others, we
further developed a DCF-MADDPG algorithm. By performing
parameter fusion in an UAV cluster, each UAV could improve
the learning efficiency and achieve the optimal strategy faster.
Simulation results have verified that the proposed DCF-
MADDPG algorithm could make UAVs track dynamic traffic
demand to improve users’ QoE with low content updating
cost. The key limitation of the proposed solution is the
complexity on training the neural networks and the cost on the
parameter fusion. Fortunately, the proposed COACH scheme
can be implemented in a centralized training and decentralized
executing manner, which would be practical for the UAV
network. Specifically, the complex training process would be
handled by the power central server, while each UAV only
needs to download the updated parameters and perform the
actions according to the output of the actor network based on
its local observations. Furthermore, the parameter fusion could
be implemented once a period of time, not very frequently. As
for our future work, we will further jointly investigate the edge
computing and caching, and develop more efficient multiagent
decision making approaches.
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