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Computation Offloading via Multi-Agent Deep
Reinforcement Learning in Aerial
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Abstract—The exponential growth of Internet of Things (loT) devices and emerging applications have significantly increased the
requirements for ubiquitous connectivity and efficient computing paradigms. Traditional terrestrial edge computing architectures cannot
provide massive loT connectivity worldwide. In this paper, we propose an aerial hierarchical mobile edge computing system composed
of high-altitude platforms (HAPs) and unmanned aerial vehicles (UAVs). In particular, we consider non-divisible tasks and formulate a
task offloading problem to minimize the long-term processing cost of tasks while satisfying the queueing mechanism in the offloading
procedure and processing procedure of tasks. We propose a multi-agent deep reinforcement learning (DRL) based computation
offloading algorithm in which each device can make its offloading decision according to local observations. Due to the limited
computing resources of UAVs, high task loads of UAVs will increase the ratio of abandoning offloaded tasks. To increase the success
ratio of completing tasks, the convolutional LSTM (ConvLSTM) network is utilized to estimate the future task loads of UAVs. In addition,

a prioritized experience replay (PER) method is proposed to increase the convergence speed and improve the training stability. The
experimental results demonstrate that the proposed computation offloading algorithm outperforms other benchmark methods.

Index Terms—Aerial computing, mobile edge computing, deep reinforcement learning, computation offloading.

1 INTRODUCTION

ITH the development of sixth-generation wireless
W communication systems (6Gs), several widely antici-
pated applications, such as smart farming, intelligent trans-
portation, and depopulated zone detection, can be realized
through the deployment of large-scale Internet-of-Thing
(IoT) networks [1]. Considering that most IoT devices are
low-cost devices equipped with limited storage and com-
puting resources, these devices cannot execute computation-
intensive tasks locally [2]. Fortunately, the mobile edge
computing (MEC) paradigm has been proposed to assist
IoT devices in executing computing tasks [3]. However, tra-
ditional terrestrial-network-based edge computing systems
are inadequate for IoT devices in emergency scenarios and
remote areas. Hence, it is essential to design a novel effective
MEC system for such circumstances.

As supplements to terrestrial networks, unmanned aerial
vehicles (UAVs), high-altitude platforms (HAPs), and satel-
lites with different orbits can provide effective coverage
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to areas where terrestrial infrastructures are unavailable or
overloaded [4]. Compared with satellites, HAPs can stay at
a quasi-stationary position at an altitude of approximately
20 km for several months to provide stable, low-latency,
and affordable services for IoT devices [5]. HAPs can open
the way to new critical IoT services. For example, an HAP
can be equipped with various kinds of sensors to monitor
the environment and caching servers to record the events
occurring within the HAP zone. Many existing works have
been devoted to studying the usage of HAPs and UAVs in
several applications and projects [6], [7], [8]. For example,
the HAWK30 project executed by HAPSMobile aims to
deploy multiple HAPs to connect mobile users, UAVs, and
IoT devices around the world [9]. As we know, in Puerto
Rico’s 2017 disaster, Loon technology was a cost-effective
coverage solution to the difficult challenge of providing
Internet access and communication services to people for
post-disaster recovery [10]. High-altitude balloons (HABs)
equipped with sensors, caching servers, and computing
servers can detect and predict important events deduced
from sensor readings in real time. These functionalities can
assist emergency and disaster teams in building new models
for natural disasters based on sensor readings, which can
help forecast future events more accurately. UAVs are well
known due to their low transmission delay and flexibility
of deployment [11]. Devices with limited power supplies
cannot connect directly to HAPs, so they can seek the help of
UAVs. However, the computing and storage resources and
endurance time of a UAV are much shorter than those of an
HAP. Hence, UAVs can only execute a limited number of
computation-intensive tasks for IoT devices. Unlike UAVs
with limited onboard energy and resources, HAPs have
much longer endurance time and are capable of executing
large quantities of computation-intensive tasks due to their
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larger payload capacity. Therefore, the cooperation of HAPs
and UAVs has the great potential to provide powerful
services for IoT devices that work around the clock and are
distributed across the ground, ocean, and air [12].

In this paper, we propose an aerial hierarchical MEC sys-
tem composed of MEC-mounted HAPs and MEC-mounted
UAUVs in the air to provide computing services for the IoT
devices covered by HAPs and UAVs. Each computing task
is non-divisible owing to the dependency among the bits
in the task [13]. Specifically, if a device cannot execute a
computing task within its maximum tolerable delay, it can
offload the task to a UAV for processing. If a UAV cannot
execute an offloaded task while meeting the delay require-
ment, it can re-offload the task to an HAP for processing.
In addition, we consider the queuing mechanism applied
in the offloading and processing procedures of tasks. As-
suming that each UAV has only one CPU due to its limited
payload capacity, the processing capacity allocated to an
offloaded task relies on the task load of the UAV. When
numerous devices offload their tasks to the same UAV for
processing, the high task load may cause these offloaded
tasks to experience a long processing delay. Moreover, some
offloaded tasks may even be abandoned if their deadlines
expire. Hence, the processing delay of a task depends on the
offloading decisions of the task itself and tasks that arrived
previously.

This paper focuses on minimizing the long-term system
cost which considers the processing delay of the tasks that
are completely processed and the penalties for abandoned
tasks. Traditional approaches such as branch-and-bound
algorithms [14] and heuristic algorithms [15] mostly con-
sider one-shot optimization and require prior knowledge of
systems to construct corresponding task offloading strate-
gies. These methods are difficult to apply in our proposed
aerial hierarchical MEC system due to several stochastic
factors, such as the number of tasks per device, the number
of available UAVs, and the insertion of emergency tasks.
To address these challenges, deep reinforcement learning
(DRL) enables agents to learn the optimal policy according
to local observations without prior knowledge of the system
model. For a UAYV, the tasks offloaded from IoT devices
previously influence current task loads. Hence, the task load
of each UAV follows a temporal correlation. In addition, an
IoT device located in the overlapping region of adjacent
UAVs can offload its task to one of them, which causes
spatial correlation of task loads between adjacent UAVs.
Therefore, convolutional LSTM (ConvLSTM) networks can
be exploited to extract spatio-temporal features of task loads
and predict the future task loads of all UAVs. Moreover,
traditional DRL randomly samples experience transitions
from replay memory, in which all the experiences are treated
equally and their significance is ignored. However, ignoring
the significance of useful experiences will cause the training
process to suffer from poor stability and slow convergence.

To solve the above difficulties, this paper develops a
multi-agent DRL-based computation offloading algorithm.
By adopting the algorithm, each device can make its offload-
ing decision according to local observations, including task
properties, channel gains, predicted task loads, and queue
information. In summary, the contributions of this paper are
summarized as follows:

e We propose a novel aerial hierarchical MEC system
composed of MEC-mounted HAPs and MEC-mounted
UAVs. In the proposed system, we formulate a task
offloading problem to minimize the long-term process-
ing cost while satisfying the queueing mechanism in
the offloading procedure and processing procedure of
tasks.

e To achieve long-term cost minimization, we propose
a multi-agent DRL-based computation offloading algo-
rithm. The algorithm incorporates the ConvLSTM net-
work and prioritized experience replay (PER) method.
Specifically, the ConvLSTM network is utilized to es-
timate the future task loads of UAVs to improve the
success ratio of completing tasks. The PER method
guarantees that useful experiences are replayed with
higher probabilities, which can not only increase the
convergence performance but also improve the training
stability.

e We perform simulations to analyze the performance
of our proposed algorithm compared with those of
three DQN variants, a random computation offload-
ing method, a branch-and-bound-based algorithm, and
a metaheuristic-based algorithm. The proposed algo-
rithm outperforms other methods in most scenarios
with different task arrival probabilities, different maxi-
mum tolerable delays, and different numbers of devices
in terms of the average cost and ratio of dropped tasks.

The remainder of this paper is organized as follows.
Section 2 introduces the related work. In section 3, we
present the system model and formulate the optimization
problem of computation offloading. The multi-agent DRL-
based computation offloading algorithm is proposed in sec-
tion 4, followed by the performance evaluation in section 5.
Finally, conclusions are drawn in Section 6.

2 RELATED WORK

Computation offloading in traditional three-tier MEC net-
works consisting of devices, edges, and cores has attracted
much attention from academics and industries in recent
years. The work in [16] investigated a dynamic service
caching and task offloading strategy to minimize the com-
putation latency under a long-term energy consumption
constraint in MEC-enabled dense cellular networks. In [17],
the authors utilized a randomized rounding technique to
optimize the service placement and request routing with
the goal of minimizing the load of the centralized cloud in
dynamic dense MEC networks. Zhou et al. studied the joint
optimization of computing offloading and service caching
to minimize the task cost in edge computing-based smart
grids [18]. The work in [19] jointly optimized the service
caching, computation offloading, transmission, and com-
puting resource allocation, aiming to minimize the over-
all computation and delay costs in a general scenario of
multiple users with multiple tasks. Wang et al. formulated
an optimization problem of task offloading and resource
allocation as a Markov decision process with the goal of
minimizing the delay and energy consumption costs in a
three-tier MEC system [20]. In [21], an energy-efficient task
offloading scheme was presented to minimize the wireless
energy transmission in a three-tier wireless-powered MEC
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network. The traditional three-tier MEC network provides
efficient service to users. However, the inherent defects of
terrestrial infrastructures pose significant obstacles in real-
izing the immense potential benefits offered by IoT devices.
In particular, it is expensive to deploy traditional three-tier
MEC networks in remote areas with low population density,
difficult terrain, and a lack of infrastructure, such as power
grids. Moreover, terrestrial connectivity will be interrupted
in some emergency scenarios, such as natural disasters.

Motivated by the above, the non-terrestrial edge comput-
ing network is a promising solution for providing various
services to IoT devices working around the clock, which
are distributed across the ground, ocean, and air. Aerial
computing networks generally consist of two primary com-
ponents: 1) low-altitude platforms (LAPs), such as UAVs
and drones; and 2) HAPs, such as airships and HABs.
There are abundant studies on LAP-based aerial computing
systems. The work in [22] investigated a multi-dimensional
resource management for UAV-assisted vehicle networks
and maximized the number of tasks offloaded from vehi-
cles by optimizing association decisions and resource al-
locations. In [23], Zhou et al. investigated the impact of
task priority on MEC networks in which UAVs provide
mobile computing services for users in multiple hotspots.
The problem focuses on maximizing the utility of users
by optimizing UAV hotspot selection and task offloading
decisions. The authors of [24] optimized the trajectories,
task allocation, and communication resource management
of UAVs to minimize the sum of the execution delay and
energy consumption. In [25], the authors proposed a spiral
UAV placement algorithm for minimizing the number of
UAVs to cover all users. Then, they utilized a DRL-based
secure transmission method to maximize the system utility.
A dynamic UAV edge computing network was developed
in [26], which supports the dynamic entry and exit of
UAVs and updates UAV deployment according to the user
distribution. In [27], Liu et al. proposed a two-layer UAV
maritime communication network and minimized the sum
of the communication delay and computation delay by
optimizing the trajectory of the centralized top-UAV and
the configuration of virtual machines. A multi-agent path
planning scheme was proposed in [28] to minimize the
energy consumption of UAVs while considering the UAV
load balance.

Several recent related works on HAP-based aerial com-
puting have been presented. An HAP-enabled edge comput-
ing paradigm was presented in [29] to provide low-latency
and high-efficiency connectivity for massive IoT users. The
work in [30] focused on minimizing the energy and time
consumption for task computation and transmission in an
MEC-enabled balloon network where HABs act as wireless
base stations. The work in [31] aimed at minimizing costs
in the HAP-MEC-cloud network while ensuring commu-
nication, computing, and caching resource constraints. A
column generation computation offloading algorithm and
a greedy computation offloading algorithm are presented to
solve the problem. In [32], the authors proposed an HAP-
based computation framework for intelligent transportation
systems (ITS) where the HAP stores the fundamental data
for ITS-based applications to reduce the system delay.

There are also some works on multitier non-terrestrial
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Fig. 1. Aerial hierarchical MEC system.

computing architecture. Ding et al. presented a satellite-
HAP-integrated edge computing network to provide edge
computing services for ground users and minimize the
weighted sum of the energy consumption of the network
[33]. In [34], an HAP and UAV cooperative framework
was proposed to provide MEC services for IoT devices
in disasters or remote areas, and a matching game theory
based algorithm was presented to make the offloading
decisions. Mao et al. focused on task computations in a
space-aerial-assisted mixed cloud-edge computing frame-
work composed of UAVs and satellites [35], where UAVs
provide low-delay MEC services for IoT devices and satel-
lites to guarantee ubiquitous cloud computing. The work in
[36] presented a space-air-ground-integrated network and
proposed a learning-based queue-aware algorithm to opti-
mize task offloading and computation resource allocation.
However, these works do not leverage the advantages of
multiple and distributed network datasets, such as diverse
channel features and environmental properties, while en-
hancing network quality. Moreover, the datasets of future
intelligent aerial networks are distributed across large-scale
networks instead of being centrally located. Hence, it is
highly necessary to utilize distributed and large-scale op-
timization approaches for providing scalable and intelligent
aerial computing applications. Compared with traditional
terrestrial computing infrastructures, computing platforms
in aerial computing networks possess limited storage re-
sources and battery capabilities, which may hinder the
deployment of aerial computing services. Hence, intelligent
aerial computing is expected to become a dominant research
area where artificial intelligence functionalities can be inte-
grated into aerial devices at UAVs and HAPs to realize self-
controlled and autonomous aerial systems. In this paper, we
propose a distributed multi-agent DRL-based computation
offloading method to optimize aerial hierarchical edge com-
puting networks.

3 SYSTEM MODEL

In this section, we first introduce the aerial hierarchical
MEC system. Then the user device model, MEC-mounted
UAV model, and MEC-mounted HAP model are presented.
Finally, we formulate a task offloading problem with the
goal of minimizing the total processing cost of tasks.

Authorized licensed use limited to: University of Houston. Downloaded on September 19,2024 at 18:09:21 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3391289

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, XXX 4

UAV me M

w

Device ueld
Computation queue
x,()=1

HAP £

:‘5CPU

Computation queue for u

CPU Computation queue for m

b=
pi- S ¥ -y,

Transmission queue

Transmission queue

Fig. 2. The queue scheduling mechanism in the aerial hierarchical MEC
system.

3.1 Aerial Hierarchical MEC System

As shown in Figure 1, our proposed aerial hierarchical MEC
system consists of an HAP, multiple UAVs in the air, and
abundant terrestrial user devices. Note that both the HAP
and the UAVs remain quasi-stationary in this system. The
set of UAVs is denoted by M = {1,2,..., M}, and all the
UAVs fly within the coverage of the HAP. We assume that
the HAP and UAVs are equipped with edge servers and that
the loading capacity of the HAP is stronger than that of each
UAV.

Some user devices can only execute lightweight comput-
ing tasks locally due to their limited computing capability.
Hence, computation-intensive tasks can be offloaded to a
surrounding UAV. If the task load of the UAV is extremely
high, the offloaded tasks may be abandoned when their
deadlines expire. In this case, the HAP can assist the
overloaded UAV in executing the computing task. That is,
the UAV regarded as a communication relay transmits the
data offloaded from user devices to the HAP. Therefore, a
computing task has three choices: 1) computed locally; 2) of-
floaded to a UAV and computed by the UAV; or 3) offloaded
to the HAP through a UAV relay and computed by the HAP.
Figure 2 illustrates the offloading procedure and processing
procedure of tasks in the aerial hierarchical MEC system.

3.2 User Device Model

This paper focuses on a single episode with 7' time slots,
ie, T ={1,2,...,T}, and the duration of each time slot
is 6 seconds. The set of user devices is denoted by U =
{1,2,...,U}. For each user device, a new task arrives with
a Poisson distribution at the beginning of each time slot [37].
The computing task generated by user device u € U at time
slot t € T is described as A, (t) = {pu(t), Du(t), Bu}, where
A (), pu(t), Uy (t), and B, denote the unique index of the
task, the data size (in bits), the maximum tolerable delay
(in time slots), and the required processing density (in CPU
cycles/bit), respectively. The task A, (¢) is dropped if it has
not been completely executed before the beginning of time
slot t + 9, (¢).

Once task A, () arrives at user device u at the beginning
of time slot ¢, device u should make an offloading decision.
The binary variable x,,(t) indicates whether task A, (t) is
executed locally or not. If device u decides to execute task
Ay () locally, ,(t) = 1; otherwise, x,(t) = 0. The value
of binary variable y¥ (¢) indicates whether task A, () is
offloaded to UAV m or not. If device u decides to offload
task A\, (t) to UAV m, y(t) = 1; otherwise, y% (t) = 0.

TABLE 1
Notation List

Notation  Description
u Set of user devices
M Set of UAVs
T Set of time slots
Au(t) Computing task generated by device u
pu(t) Data size of task A, (¢)
D (t) Maximum tolerable delay of task A, (%)
B Required processing density of task A, (%)
fu Computing capacity of device u
T () Waiting time for processing task A (t)
A () Length of transmission queue in device u

m Computing capacity of UAV m

UaV(t)  Length of computation queue in UAV m
)\i,ellay(t) Task in the transmission queue of UAV m
9 (1)  Waiting time for transmitting task A (¢)
¥ (t)  Length of transmission queue in UAV m
AE{}}; (t) Task in the computation queue of the HAP
fiap Computing capacity of the HAP
Tsﬁlp(t) Waiting time for processing task )\?n’},lf (t)
gty (t) Length of computation queue in the HAP

In addition, the binary variable o (t) denotes whether the
offloaded task A, (t) is computed by UAV m or not. If
task A\, () is computed by UAV m, ol (t) = 1; otherwise,
g, (t) = 0. We let binary variable 2!, (¢) indicate whether
task A, (t) is offloaded to the HAP through the relay UAV
m or not. If UAV m transmits the data of the offloaded task
Au(t) to the HAP, 2! (t) = 1; otherwise, 2}, (t) = 0. Note
that each computing task can be processed by one node, i.e.,

D () = L(zu(t) = 0), YuelUd,VteT, 1)
meM
alb () + 20 (1) =yh(t), Yueld,Yme MNVLET, (2)

where the indicator function 1(z € X) = 1 if x € X, and
1(x € X) = 0 otherwise. The notations used in this paper
are listed in Table 1.

3.2.1 Local Computation Queue

The local computation queue of the user device follows
a first-in-first-out (FIFO) pattern. Assuming that there is
one CPU for processing tasks in the user device, a new
arrival task must wait in the computation queue if previous
tasks occupy the computing resource. For the task A, (%)
which has been placed in the local computation queue (i.e.,
2 (t) = 1), 75°™ () denotes the number of time slots spent in
waiting for processing, and d°™(t) represents the time slot
when the task A, (t) has either been completely executed or
abandoned. Given d°™(f) of previously arrived tasks \, ()
for £ < t, user device u will compute 7™ (#) as follows:

_ max
te{0,1,....,t—1}

7EM (¢) = max { dom(f) — t, o} )
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Initially, d$°™(0) is set to zero. The time slot d$*™(¢) can be
computed as

W] o+ ﬁu(t)} , (4)

where [-] denotes the ceiling function and f,, is the com-
puting capacity of the CPU (in CPU cycles/s) in device w.
The term t+75°™(¢) represents the time slot when task A, (%)
starts being processed. The term [(p,(t) - B8y)/(fu - 6)] is the
number of time slots spent in processing task A, (t). There-
fore, the first term in the minimization function represents
the time slot when task A, (¢) will be completely executed if
the deadline of the task is not considered. The second term
denotes the time slot when task A, () will be abandoned.

d>™(t) = min {t + 7O (t) + {

3.2.2 Local Transmission Queue

The transmission queue of each user device follows an FIFO
pattern. The task placed in the transmission queue will
be offloaded to a chosen UAV. Assuming that each user
device transmits data on an orthogonal channel, the wireless
communication between a device and a UAV suffers from
line-of-light (LoS) path loss. We define g, ,,, (t) to denote the
channel gain between device u and UAV m during time slot
t. The transmission data rate from device u to UAV m (in
bits/s) is obtained as follows:
Ju,m (t) )

P,
Tt (t) = By logs (1 + N, ) , )

where B, is the communication bandwidth allocated to a
single channel. The notation P, denotes the transmitting
power of device u and Nj is the noise power at UAV m. We
assume that ;% (¢) is constant during time slot #.

If task A\, (¢ ) is placed in the local transmission queue at
the beginning of time slot ¢ (i.e., z,(t) = 0), we let d™(¢)
represent the time slot when task A, (t) has been completely
transmitted. Due to the uncertain future data rate between
device u and UAV m, the value of d!'(t) cannot be obtained
until task A, (t) is completely transmitted. We define d™(t)
to denote the time slot when the transmission of task A, (%)
starts, i.e.,

. max
te{0,1,...,t—

d™(t) = max{ }dga(f), t} . (6)
1

Initially, d™(0) is set to zero. In addition, the values of d™(¢)
and d(t) must satisfy the following constraints:

a(t)—1

ST uh ) iR (6) -5 < pult), @)

{=dta(t) meM

d ()
Z Dy () T, ()6 = pult). 8)
dtra (t) meM

Speciﬁcally, such inequations mean that the data size of task
Ay (t) is larger than the size of the data transmitted from
d™(t) to d'(t) — 1 and is no larger than that from time slot
Jtra( ) to dtra( )

Let ¢i(¢) (in bits) denote the length of the transmission
queue in device u at the end of time slot ¢. If a task in the
transmission queue of device u is being transmitted to a
UAV during time slot ¢, we denote the task as A, (t). The

amount of data transmitted by device u during time slot ¢ is
defined as

Hn=> 3 B(S\u(t)_

f=1 meM

(t)) y'rn(f) t;arn( ) J. (9)

Therefore, the value of ¢i*(¢) can be updated as
g (t) =max {gl*(t = 1) + pu(t) - 1 (zu(t) = 0)
- @u(t% O}v

where &, (t) (in bits) represents the amount of data dropped
by the transmission queue at the end of time slot ¢.

- fu(t)
(10)

3.3 MEC-mounted UAV Model

We let U, (t) C U denote the set of user devices under the
coverage of UAV m during time slot ¢. Each MEC-mounted
UAV m € M maintains |U,,(t)| computation queues and a
transmission queue. Each computation queue corresponds
to a user device in the set U,,(t). The transmission queue
in each UAV is responsible for sending the data of tasks
offloaded from user devices to the HAP.

3.3.1 Computation Queues of UAV

Each computation queue of a UAV follows an FIFO pat-
tern. If UAV m receives an offloaded task from device
u € Up, (t—1) during time slot t—1 and is required to process
the task, we denote the task as AL}y () and place it in the
corresponding computation queue at the beginning of time
slot t. Specifically, if task A, (f) for f € {1,2,...,t — 1} is re-
ceived at UAV m during time slot t—1 (i.e., ym( ) =1)andis
processed by UAV m (ie., o, (f) = 1), then A, (£) = A4V (t).
In addition, the number of bits put into the computation
queue of UAV m corresponding to device u at the beginning
of time slot ¢ is denoted by pUAV(t)

For each UAV m, let ¢, (t) (in bits) represent the length
of the computation queue corresponding to device u at the
end of time slot . Among those computation queues, we
define a nonempty queue during time slot ¢ if either there
is a new arrival task reaching the queue at the beginning of
time slot ¢ (i.e., pi (t) > 0) or if the task in the queue was
not processed to completion at the end of time slott —1 (i.e.,
qum(t —1) > 0). Let ®,,(t) indicate the set of nonempty
computation queues at UAV m during time slot ¢. Then, we
have

T, (1) = {ulu € Ut — 1), o2 () > 0

or gy (t —1) > 0}. (11)

Let U,,(t) denote the number of nonempty computation
queues at UAV m during time slot ¢, i.e., U,,, (t) = [P, (2)].

Assuming that each MEC-mounted UAV has one CPU,
the computing capacity of UAV m is allocated to the
nonempty computation queues at UAV m equally. We de-
note the computing capacity of the CPU (in CPU cycles/s) at
UAV m as f2V. The queue length ¢ (t) can be computed
as

UAV (t)

u,m

(1) = max{q:féx( 1) + pUAY()
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SOV . §
C Bu- Ut

where in bits) is the amount of data abandoned by
the queue at the end of time slot ¢.

If UAV m receives an offloaded task A7/ (t) from device
u and places the task in the corresponding computation
queue at the beginning of time slot ¢, a variable d$°™ (¢) € T
is defined to describe the time slot when task /\‘jf)){ (t) has
been completely executed by UAV m. Since the value of
U, (t) varies with the offloading decisions of the tasks, the
computing capacity allocated to each computation queue
is unknown a priori for user devices. Hence, the value of
dsom (t) cannot be obtained until task AY4Y (t) is completely

executed. We define d°™ (¢) to indicate the time slot when
the processing of task )\Eﬁx (t) starts, i.e.,

1(u € P,(t) ,O}, (12)

UAV( ) (

max
t'€{0,1,....t—1}

i, (t) = max { a3 (6), t} . (13)

Initially, dsom (0) is set to zero. In addition, the values of
di, (t) and di7 (t) must satisfy the following constraints:

dom (t)—1

u,m fUAV -0
Z 57()]1 (u€ () < pum(®),  (14)
f=digm, s U
am, <t> g
) 1(ue Wn(h) 2 p2N (1), (15)
f= dgf“;n(t) 5u m( )

Specifically, such inequations mean that the data size of task
AJAV(t) is larger than the data size processed by UAV m
from time slot dsom () to dSo™ (t) — 1 and is no larger than
that from time slot d5>, (¢) to d<o™ (£).

u,m

3.3.2 Transmission Queue of UAV

The transmission queue of a UAV follows an FIFO pattern.
In addition, if the UAV receives more than one task of-
floaded from different user devices during the same time
slot and these tasks are then offloaded to the HAP, the task
with the shortest remaining time has the highest priority
to be put into the transmission queue. Assuming that each
UAV transmits data to the HAP on an orthogonal channel,
we define g,, 5, to denote the channel gain between UAV m
and the HAP. The transmission data rate from UAV m to the
HAP (in bits/s) can be formulated as

P,
tra 7B 1 1 gm,h m
m h 0go ( + kBTsBm

where B,,, denotes the communication bandwidth allocated
to a single channel and P, is the transmitting power of
UAV m. Let kg and T, denote Boltzmann’s constant and
the system noise temperature, respectively. We assume that
the value of 1 is constant.

If UAV m receives an offloaded task from device u
during time slot ¢ — 1 and places the task in the transmission
queue at the beginning of time slot ¢, we denote the task as
Aol (t). Specifically, if task A, (f) for £ € {1,2,...,t — 1}
arrives at UAV m during time slot ¢ — 1 (i.e., y* () = 1
and o, (f) = 0) and has the highest priority, then )\rday( t) =
Ay (f). The maximum tolerable delay and the data size of

(16)

task Am () are denoted by W™ (t) = U, (f) — t + { and
pfnelay(t) = pu(f), respectively. We denote Tfﬁlay(t) as the
number of time slots spent in waiting for transmission, and
let dfflay( ) represent the time slot when task )\relay( t) has
either been transmitted completely or abandoned. Given

drelaY( f) for < t, UAV m computes 7y, y(t) as follows:

. max
tef{0,1,....,t—1}

7relaY (1) = max { d () —t, 0} : (17)

Initially, drelay(O) is set to zero. Then, the value of drelay( t)
can be expressed as

prelay(t)
di ™ (t) =min{t + T:,?ay(tw{ it } t+ ﬁiilay(t)} - (18)
Tm,h 4

The term t + 7 (t) represents the time slot when task
)\relay(t) starts being transmitted to the HAP. The term
[piﬁlay( t)/(r2), - 6)] is the number of time slots required to

transmit the data of task )\relay( t). Let e ¥ (t) (in bits) denote
the length of the transmission queue in UAV m at the end

of time slot ¢. The value of gja™ (¢) can be updated as

qizlay(t) — max {qrelay ) + prelay(t)

tra N - grelay , 0}’ (19)

where &, relay( t) (in bits) represents the amount of data aban-
doned by the transmission queue of UAV m at the end of
time slot ¢.

3.4 MEC-mounted HAP Model

The MEC-mounted HAP maintains M computation queues,
and each queue corresponds to a UAV in set M. In addi-
tion, each computation queue of the HAP follows an FIFO
pattern. If the HAP receives an offloaded task from UAV
m € M during time slot ¢ — 1 and places the task in the
corresponding queue at the beginning of time slot ¢, we
denote the task as )\ELA}I:( ). Specifically, if task )\?leay( t) for
f e {1,2,...,t — 1} offloaded from UAV m arrives at the
HAP during time slot ¢ — 1, then A\ () = ALAR(t). The
number of bits put into the computation queue of HAP h
corresponding to UAV m at the beginning of time slot ¢ is
denoted by p)A7 (). We let 51147 (t) represent the processing
density of task AL (t). The maximum tolerance delay of
task )\fInA}I;( ) is ﬁlan}IL)( )= ﬁrelay( f) —t +1.

Assuming that the MEC-mounted HAP has M CPUs,
each CPU is responsible for processing the tasks in a com-
putation queue. The computing capacity of a CPU (in CPU
cycles/s) in the HAP is denoted as f}A". We define a vari-
able d}} () to represent the time slot when task A}’ (¢) has
been either completely executed or abandoned by HAP h.
In addition, the variable TEA,f( ) denotes the number of time

slots spent in waiting for the processing task )\HAP( ). Given
dHAP(f) for £ < t, the value of 7)¥4F (£) can be computed by

Tan‘f,f (t) = max { max

t€{0,1,....t—1}

iy () — t,()} . (20)
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dlffg (0) is set to zero. The value of dELA{: (t) is

Initially,
calculated by

HAP 4\ . RHAP
dn(t) = min{t+ Tondh (£) + F’” J(cg ."g”’(ﬂ,

t+ I (t )}. 1)
Let qHAP( ) (in bits) denote the length of the computation

queue in the HAP corresponding to UAV m at the end of
time slot ¢. The value of ¢;}%/ () can be updated as

(D) max{qu\ﬂ 1) + pHAP(p) — €A 1)
fHAP 5
0y, (22)
AT

where £47(t) (in bits) denotes the amount of data aban-
doned by the queue at the end of time slot ¢.

3.5 Problem Formulation

If a computing task has been executed, the cost of the task
is defined as the duration between the time slot when the
task is generated and the time slot when the task has been
completely executed. Let ¢, (t) (in time slots) represent the
processing cost of task A, (t). If task \,(t) is executed at

device u locally, we have
cult) = & (1) — t. 23)

If task A\, (1) is offloaded to some UAV for processing, then

- ¥ Yo

meM f=¢

Otherwise, if task A, (¢) is offloaded to HAP h for processing
via a UAV, we have

ZZZ“ u

meM {=t t*={
()\relay() )\HAP( )) dHAP( )—t.

_ )\UAV( )) Jeom (t’) —t

u,m

(24)

_ )\relay( ))

(25)

However, computing task A, (¢) may be abandoned if it is
not fully processed when its deadline expires. In this case,
the processing cost of task A, (t) is defined as ¢, (t) = C,
where ' > 0 is a constant penalty. According to this
discussion, the total cost in the aerial hierarchical MEC
system is formulated as

Crot = Z Z cu(t)

teT ueld

(26)

The objective of this paper is to find an optimal computa-
tion offloading decision to minimize the total system cost ¢y
while satisfying the queueing mechanism in the offloading
procedure and processing procedure of tasks. We formulate
the optimization problem as

P: min ¢
st x,(t) €{0,1}, Vu eU,Vt €T,
yw (t) € {0,1}, Vu e U,Ym € M, ¥Vt € T,

w(t)e{0,1}, Vvu e, Ym e MVt € T,
ho ()€ {0,1}, Yu e U, ¥Ym e MVt € T,
1), (2),(7),(8), (14), (15), (23), (24), (25).

Theorem 1. The three-tier computation offloading problem P is
NP-hard.

Proof. We prove the NP-hardness of the three-tier com-
putation offloading problem P by introducing an instance
of multiple knapsack problem with assignment restriction
(MKAR), which is NP-hard. According to the definition in
[38], given a set of items with associated positive real profits
and a set of knapsacks in which each has a positive real
capacity, the MKAR allocates items to knapsacks with the
aim of maximizing total profit while satisfying knapsack
capacity limits and assignment restrictions.

Then, we reduce the known NP-hard MKAR to the
three-tier computation offloading problem P. Each task
Ay (t) (item in MKAR) has a data size p,(t) and a neg-
ative computation cost —c,(t) (profit in MKAR). Then,
the problem P allocates each task to an appropriate MEC
node (local device, UAV, or HAP) to maximize the total
profit 3, .+ >, cy —cu(t) while satisfying the UAV storing
capacity limit (knapsack capacity limit in MKAR) and task
offloading constraints in the aerial hierarchical MEC system
(assignment restriction in MKAR).

Therefore, each instance of the NP-hard MKAR is
polynomial-time reducible to the three-tier computation of-
floading problem P. Hence, the problem P is NP-hard. [

Designing a distributed computation offloading algo-
rithm poses challenges in our proposed aerial hierarchical
edge computing network. Since the optimization problem P
is demonstrated to be NP-hard, solving this problem via
conventional optimization approaches is difficult because
of the complicated interactions among the tasks and the
dynamic computing system. On the other hand, when an
IoT device makes an offloading decision, it does not know a
priori knowledge of task loads at MEC-mounted UAVs. This
is because the load level relies on the offloading decisions of
other IoT devices. Moreover, the load levels at UAVs may
vary over time. Thus, the queuing delay and processing de-
lay of a new arrival task will be affected by the decisions of
predecessor tasks generated at other devices. Nonetheless,
deep reinforcement learning (DRL) based algorithms are
promising for solving the dynamic computation offloading
problem. Thus, we propose utilizing the DRL technique,
which can enable IoT devices to make offloading decisions
according to local observations without the prior knowledge
of the system model or dynamic changes.

4 DRL-BASED COMPUTATION OFFLOADING

In this section, we first propose a ConvLSTM network to
predict the future task loads of UAVs. Then, a multi-agent
DRL-based computation offloading algorithm featuring PER
is presented to enable each device to make its offloading
decision.
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4.1 ConvLSTM Network

As explained in Section 1, the task loads of UAVs have a
spatio-temporal correlated relationship. On the one hand,
IoT devices may offload tasks to nearby MEC-mounted
UAVs. Hence, UAVs above an area with massive IoT de-
vices will meet a great number of demands. Due to the
movement of some IoT devices (e.g., connected vehicles and
autonomous delivery fleets), the computation demands on
MEC-mounted UAVs above different areas change accord-
ingly. That is, the demands on a UAV regarded as the task
load of the UAV will follow a spatial correlation. In addition,
an IoT device located in the overlapping coverage region of
adjacent UAVs can offload its task to one of them, which also
causes the spatial correlation of task loads between adjacent
UAVs. On the other hand, with the emergence of various
compute-intensive applications (e.g., onboard AR/VR en-
tertainment, autonomous driving, and autonomous aerial
delivery), the processing and transmission of such a task
may continue for multiple time slots. In addition, for a UAV,
the tasks offloaded from IoT devices previously influence
the current task load of the UAV. Therefore, the task load of
each UAV follows a temporal correlation. More importantly,
the task loads of all UAVs determine the completion ratio of
offloaded tasks in the network. However, the knowledge
of task loads is unknown to IoT devices, and the fully
connected deep neural network in traditional DRL lacks the
representative ability to make accurate state inferences.

To solve such problems, we propose utilizing the Con-
vLSTM network to extract spatio-temporal features of UAV
task loads and predict task loads in the near future. Specifi-
cally, the ConvLSTM network structurally consists of con-
volutional neural networks (CNNs) and long short-term
memory (LSTM) networks. CNNs have been widely applied
in object detection and image recognition [39]. It can extract
spatial features of an input two-dimensional tensor by sev-
eral layers of convolutional operations. In each time slot,
the task loads of all UAVs can be described as a map, where
the value of each grid denotes the task load corresponding
to the UAV in the grid. Then, the convolution operation is
responsible for capturing the relationship between adjacent
grids, i.e., the task loads of adjacent UAVs.

Moreover, the maps during continuous time slots form a
time series. LSTM is capable of capturing temporal features
and learning the long-term dependencies of sequential data
[40]. There are three critical components in LSTM: the input
gate, forget gate, and output gate. These gates cooperate
to capture useful information from input data, which can
avoid gradient vanish and explosion appearing in classical
recurrent neural network. Hence, the relationships among
the previous input vectors can be extracted. Based on the
structure of the LSTM network, we replace the dot product
in the gates with a convolution operation to construct the
ConvLSTM framework.

Let two-dimensional tensor W (t) represent the task loads
of all UAVs at time slot ¢. The size of ¥(¢) is I, x .. We
denote {¥(t)}; ; as the (i, j) element of ¥(t), which equals
the task load of UAV m located at the corresponding grid
on the map during time slot ¢. To obtain the history of
the task loads, we suppose that each UAV broadcasts its
task load to the HAP at the end of each time slot. The

¥(t-D) Y(t-D+1) Y(-1)
ConvLSTM | ConvLSTM » ~|ConvLSTM
Unit Unit Unit

7 T wl

Fig. 3. The framework of the ConvLSTM network.

HAP utilizes the sequential data of task loads to predict
the future task load of each UAV in the next time slot.
Figure 3 illustrates the structure of a ConvLSTM network.
The ConvLSTM network includes D ConvLSTM units, each
of which takes the two-dimensional tensor data at one time
slot as the input. These ConvLSTM units are connected in
sequence to capture the variations in the sequential input
tensor from W(t — D) to (¢t — 1). The final ConvLSTM unit
outputs a two-dimensional tensor w(t), which denotes the
predicted task loads of all the UAVs on the map during time
slot .

4.2 Three Basic Elements

Assuming that each user device is regarded as an agent, we
introduce the observation/state, action, and reward for each
agent as follows.

4.2.1 State

We assume that the HAP and each UAV broadcast the
length of each computation queue and the length of each
transmission queue at the end of each time slot. The state
of user device u € U in time slot ¢, denoted by 0,(t), in-
cludes task properties and environment-related information
of the aerial hierarchical MEC system. Specifically, device u
observes the following state at time slot ¢:

ou(t) = (Nu(t), g(t), di™ (1), 4y (1), w(t), @, (t — 1),
qrelay(t _ 1),qHAP(t o 1)),

where g(t) = {gu,m (t), gm,n|Vm € M} denotes the wireless
channel gains at time slot ¢. A device agent can obtain its
own signal channel gain g, ,(¢) for all m € M and the
constant channel gain between each UAV and the HAP.
The two-dimensional data w(t) are reshaped into one-
dimensional data w(t¢) and transmitted to each user device
from the HAP. The length of the computation queue corre-
sponding to device u in UAVs at the end of time slot t — 1 is
denoted by g7V (t—1) = {q7 (t—1)|Vm € M}. The length
of the transmission queue in UAVs at the end of time slot

t—1is denoted by g™ (t—1) = {q;eqlay(t— 1)|Vm € M}. The
length of the computation queue in the HAP at the end of
time slot t —1 is denoted by ¢4 (t—1) = {¢/IAP (t—1)|Vvm €

4.2.2 Action

Based on the observation o, (t), device u will take action
for a new arrival task A, (t): (a) whether to execute the task
locally or offload it to a UAV, i.e., z,(t); (b) which UAV
the task is offloaded to, i.e., y,(t) = {y% (¢)|[Vm € M}; (c)

Authorized licensed use limited to: University of Houston. Downloaded on September 19,2024 at 18:09:21 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3391289

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, XXX 9
: {W(@-D),..., V(- 1)}
Device u
) < [
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. . =TT D AU >
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Update > Netw‘(zrk 0, L ‘ |
o helt V=774
o,(i),a,(i) 7 (i),0. (i +1) 7 (1),0,(f +1)} S
“ “ v =2t
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probability Replayiciony w(r)
I*{o,(i),a,(i),r,(i),0,(i + 1)} B
Update experience probability prob(e’)

Fig. 4. Overview of the multi-agent DRL-based computation offloading scheme. The right part with a red block is the ConvLSTM network deployed
in the HAP. The left part with blue blocks is the DRL-based network deployed in each device.

whether to process the offloaded task in the selected UAYV,
ie., a,(t) = {ak (t)|¥m € M}, or offload it to the HAP, i.e.,
zy(t) = {2l ,,.(t)Vm € M}. Therefore, the action of device
w in time slot ¢ can be formulated as

a’u(t) = {Iu (t), Yu (t>7 Qy

We denote the action space as A,,.

(1), zu(t)}- 27)

4.2.3 Reward

Considering the state 0,(t), device u takes the offloading
policy a,(t) to interact with the aerial hierarchical MEC
environment and obtains the reward. The long-term reward
of agent u is defined as

T

r(ou(t), au(t)), (28)
where the discount factor -y represents the importance of the
reward. The value of 7(0,(t), a,(t)) is set to be C' — ¢, (1),
in which C' denotes a constant larger than the upper bound
of ¢, (t).

4.3 DRL-based Computation Offloading Algorithm

Our network consists of multiple IoT devices and multiple
computing nodes (i.e., UAVs and HAPs). Utilizing all his-
torical empirical data to train a single model centrally will
cause IoT devices to lose many important local features and
become incapable of capturing interaction features among
devices. This may cause IoT agents to make erroneous
computation offloading decisions according to their local
observations and be unadaptable to the environments of our
proposed aerial hierarchical edge computing network. To
solve this problem, we propose utilizing multi-agent DRL,
which is more suitable for complicated aerial hierarchical
edge computing networks, including multiple IoT devices
and multiple computing nodes.

In our proposed multi-agent DRL-based computation of-
floading scheme, each device u € U is regarded as an agent.
Assuming that device u maintains a replay memory R, the
memory R, stores the experience (0,(t), ay(t), 7 (t), 0, (t+
1)) of device u at the end of time slot ¢. In addition, each

device u maintains two neural networks, namely a target
network and an evaluation network. The parameters of the
target network and the evaluation network are denoted by
0; and 6,, respectively. Figure 4 illustrates the architecture
of the DRL-based computation offloading scheme featured
with the ConvLSTM network and PER method.

Assuming that the number of episodes is E, the initial
state of device u € U at the beginning of each episode is
given by

ou(1) =(Au(1), 9(1), ;7™ (1), ¢, (1), w(1),

QEAV(O), qrelay HAP 0))7 (29)
where w(1), g4V (0), ¢*'#¥(0), and qHAP (0) are zero vectors.
If device u has a new arrival task A, (t) at the beginning of
time slot ¢, it will take its action as follows
a random action from A,
arg max Qu (0y(t),al8y),

w.p. €,

au(t) = w.p. 1 —e¢, (30)

where ¢ denotes the probability of random exploration and
Q. (04(t),al ,) represents the Q-value of the evaluation
network under the observed state 0, (t) and action a.

Once device u performs action a,,(t), it observes the next
state 0,(t + 1) at the beginning of time slot ¢ + 1. Since
multiple time slots may be needed to process and transmit
a task, the reward r,(t) of task \,(t) may not be obtained
immediately. Therefore, at the beginning of time slot ¢ + 1,
device u may obtain a set of rewards corresponding to some
tasks that arrived before time slot ¢. Let T*t C T denote
the set of time slots such that each task ), (f) was generated
at the beginning of time slot € T.+ and then has been
processed completely or abandoned in time slot ¢. Hence,
T, + is formulated as

ﬁﬁt:[{{:l,Q,. o pu(f) >0, dO™(f) =1t
or Y 21 (AU (0) = Ay (£)) dm (i) = t
meM j={
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or 3° i i 1 (M) = N3 ) -

meM ;—=f j=1
1 (XS = M) Y G) = t}

Based on the definition of 7;, user device u can obtain a
set of rewards {r,(£)} for tasks \,(f) associated with time
slott € T, at the beginning of time slot ¢ + 1. Then, device
u stores the experience (0, (f), a, (), 7, (£), 0,(f + 1)).

In traditional DRL, a mini-batch of experience transitions
is randomly selected from the replay memory. However, the
transitions are replayed with the same frequency regardless
of their significance. In this approach, the negative influence
of erroneous actions in the corresponding states cannot be
learned rapidly by the agent. Hence, it is inefficient to replay
all experience transitions uniformly. To solve the problems
above, PER methods are proposed to select more useful
experience transitions with higher probabilities [41], [42].
Both successful and failed attempts can generate useful
experiences since successful attempts can provide the agent
with positive rewards, and failed attempts are beneficial
for preventing the agent from performing erroneous actions
frequently. Hence, PER methods can enable agents to learn
more rapidly and effectively from certain transitions, includ-
ing successful and failed attempts.

The replay probability of each experience depends on the
priority value. The absolute temporal-difference (TD) error
is commonly utilized to measure the priority values of expe-
riences. Let Z denote a mini-batch of samples from memory
R,. For an experience €!, = (0,(i), a,(i),r.(i),0,(i +1)) €
7, the TD-error function is defined as

TD(e},) = Q,,(i) = Qu(0u(i), @u(i)|6.),

where Q; (i) denotes the target Q-value for experience €.
The expression of @, (¢) is formulated as

Q. (1) = 74 (i) + 7Qu(0u(i + 1), a,(i)|6,,),

where a; (1) represents the action with the maximum Q-
value in the state 0, (i + 1), i.e.,

(D)
(32)

a,(i) = arg max Qu(ou(i+1),al8,). (33)

However, greedy TD-error prioritization leads to several
issues. Some transitions with a low TD error may not be re-
played during the long time after their first visit. In addition,
it is sensitive to the circumstances in which the obtained
rewards are stochastic. Finally, greedy prioritization may
lead to over-fitting since it focuses only on a small subset of
the replay memory. To overcome these issues, a stochastic
sampling method is used to ensure a nonzero sampling
probability for the lowest-priority experience. Specifically,
the probability of sampling experience ¢!, is defined as

(prio(e))”
Yeier, (prio(e})”’

where « represents a positive constant regarding the level
of the prioritization, with o = 0 corresponding to the
uniform sampling. The notation prio(e!,) > 0 denotes
the priority of the experience e!, which is calculated by

u’

prob(e;,) = (34)

Algorithm 1: Training process of the agent u

1 Initialize: An initial replay memory R, for device v,
the counter Num = 0, A = 0;

2 fore=1to E do
3 fort € 7 do
4 if a new task A, (t) arrives at device u then
5 | Take action a.,(t) based on (30);
6 end
7 Obtain the state o, (¢ + 1) and a set of rewards
{TU (&)7 K€ 7:L*,t}/
8 for task Ay (k) with k € T, do
9 Store experience e, = (0u(k), au(K), ru(K),
0y(k + 1)) in memory R,, with maximal
priority prio(e}) = max;<,. prio(e,);
10 en
1 fori e Z do
12 Sample experience e, ~ prob(e’,);
13 Compute importance-sampling weight
w(el,) according to (35);
14 Compute TD loss TD(e},) according to (31);
15 Update the replay probability prob(ef,)
according to (34);
16 Accumulate weight change A = A+
=(el) - TD(eL) - Vo, Qu(0u(1), au (0)160);
17 end
18 Update weights 6, = 0, + 1 - A;
19 Reset A = 0;
20 Num = Num + 1;
21 if mod (Num, Replace_Period) = 0 then
22 ‘ 9; =0,
23 end
24 end
25 end

prio(e!) = 1/rank(e?,). Here, rank(e’,) is the order of ex-
perience e!, when all experiences in the replay memory R,
are sorted according to the absolute TD error. In addition,
an importance-sampling weight is introduced to correct the
bias caused by the prioritized experience replay. We define
the weight w(e’,) as

i 1 '

=)= (T o)

where ¢+ > 1 denotes an annealing variable. Algorithm 1

displays the training process of the agent on device u € U.

Steps 11-17 show the details of the PER method. Steps 18-

23 update the weights of the evaluate network and target
network.

(35)

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our pro-
posed computation offloading algorithm. First, the simula-
tion setup is described. Then, we analyze the convergence
and effectiveness of the algorithm. Finally, we compare the
proposed algorithm with four benchmark methods in terms
of the ratio of the dropped tasks and average cost.

5.1 Simulation Setup

We conduct simulations in the following scenario: one HAP
at an altitude of 20 km and nine UAVs at an altitude of 2 km
above the area with a size of 14x14 km?. The coordinate
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TABLE 2
Simulation Parameters

Parameters Value

Bu,Yu €U 0.2 ~ 0.3 Gigacycles/Mbits
fu,Yuel 15 Gigacycles/s
fm,Ym e M 240 Gigacycles/s
In 45 Gigacycles/s
P, YuelU 0.5W

Pp,Vme M 10W

By,Yu el 5 MHz

Bn,Ym e M 20 MHz

kp 1.38 x 1072 J/K
T 1000 K

No -114 dBm

0 01s

T 1000

= UAV
4 HAP
* JoT

Fig. 5. The locations of the HAP and UAVs in the simulation scenario.

of the HAP is at the center of the area, and the UAVs
are uniformly distributed in the area. An illustration of
the simulation scenario is shown in Figure 5. Note that all
the UAVs are within the coverage of the HAP, and all the
terrestrial devices are within the coverage of the UAVs. The
data size generated by each device is randomly selected
in the range [20, 30] Mbits, and the maximum tolerable
delay is 3 seconds. The experimental parameters and the
corresponding values are shown in Table 2.

The python library TensorFlow (version 1.4.0) is utilized
to construct ConvLSTM network and DQN. All the experi-
ments are tested on a Windows workstation (CPU: Intel i7-
7700 @3.6 GHz, RAM: 32 GB, GPU: NVIDIA GeForce GTX
1080). A 2-layer ConvLSTM with a convolution kernel size
equal to 2 x 2 is adopted by the HAP to predict the task
loads of all UAVs. The learning rate of the DQN is set to
0.001, and the discount factor is equal to 0.9. The replay
buffer size is set to 500 and the batch size for training is
set to 8. We provide six benchmark methods for experi-
mental comparisons: 1) the random computation offloading
method; 2) the branch-and-bound-based computation of-
floading method [14]; 3) the metaheuristic-based computa-

ConvLSTM-PER-DQN|
ConvLSTM-DQN

—— PER-DQN
—— DQN

8]
=

5]
N O

Learning Rate = 0.1

Average Cost
= =

8
Learning Rate = 0.01
4 Learning Rate = 0.001
0 Learning Rate = 0.0001 e )
0 250 500 750 1000 0 250 500 750 1000
Episodes Episodes

(a) (b)

Fig. 6. The convergence performance of computation offloading meth-
ods. (a) The average cost vs. different learning rates. (b) The average
cost vs. different methods during training.

TABLE 3
Overhead of DRL Model Training and Inference

Methods TC Params

DON 900.12s 3716 B
PER-DQN 610.31s 6880 B
ConvLSTM-DQN 419.89s 13400 B
ConvLSTM-PER-DQN 454.73s 17280 B

tion offloading method [43]; 4) the DQN-based computation
offloading method; 5) the ConvLSTM-DQN-based compu-
tation offloading method; and 6) the PER-DQN-based com-
putation offloading method.

5.2 Simulation Results

We study the impact of the learning rate on the convergence
performance of our proposed algorithm, as shown in Figure
6(a). In the training process of ConvLSTM-PER-DQN, a
learning rate of 0.1 is relatively high, and in the early stages
of training, it might lead to overshooting or divergence.
The model parameters may update too aggressively, causing
the policy to become unstable and leading to an increase
in reward (i.e., a decrease in average cost). Initially, these
updates could improve the policy, but as the training pro-
gresses, large updates might cause the model to overshoot
the optimal policy, leading to a decrease in performance.
In addition, a high learning rate can lead to oscillations
or instability in the optimization process. The model may
struggle to find a stable policy due to large parameter
updates, resulting in a fluctuation in reward. Reducing the
learning rate can allow the model to stabilize and fine-
tune its parameters more precisely, leading to an eventual
increase in reward. In this paper, we adjust the learning
rate in the set {0.1, 0.01, 0.001, 0.0001} to find an optimal
learning rate that can stabilize the training process. When
the learning rate is 0.0001, the convergence speed is slow.
When the learning rate is 0.1, the agent cannot converge
to a global optimum since a large learning rate causes the
agent to become trapped into a local optimum. Therefore,
when the learning rate is 0.001, the convergence speed is
relatively fast, and the obtained average cost is the smallest.

Figure 6(b) illustrates the average cost of the computa-
tion offloading algorithms based on ConvLSTM-PER-DQN,
ConvLSTM-DQN, PER-DQN, and DQN during the training
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Fig. 7. The performance with different task arrival probabilities. (a) Ratio
of dropped tasks. (b) Average cost.

process. Initially, the average costs of ConvLSTM-PER-DQN
and ConvLSTM-DQN are much lower than those of PER-
DON and DQN. This is because the ConvLSTM module
can effectively extract dependencies from the sequential
task loads of UAVs, which is capable of improving the
training effectiveness. As the episode progresses, these com-
putation offloading algorithms tend to be steady after 340,
500, 600, and 750 iterations. In addition, utilizing the PER
method to train the agent can reduce the fluctuation of
the average cost in the training process. Obviously, our
proposed ConvLSTM-PER-DQN algorithm converges faster
and achieves a lower average cost than the other three
algorithms.

Table 3 lists the training and inference overhead of the
four DQN-based computation offloading algorithms. We
execute all the experiments on a Windows workstation.
Due to the limitations of the experimental equipment, the
training and inference overhead of the DQN and ConvL-
STM network are considered together. The execution time
of our proposed ConvLSTM-PER-DQN-based computation
offloading algorithm is observably shorter than that of the
other algorithms, while the overall parameter size of the
ConvLSTM-PER-DQN-based algorithm is 4.6 times greater
than that of the simplest DQN-based algorithm. This is
because the parameter size of the ConvLSTM network occu-
pies most of the storage space and is insignificant for HAP.
With the advances in lightweight composite materials and
autonomous avionics, several HAPs, such as STRATOBUS
[44] and Elevate [45], which are able to stay floated in the
stratosphere with more than 100 kg of payload, can pro-
vide enough storage capacity and computational capacity
for training the ConvLSTM network. In addition, if some
elementary IoT devices cannot afford the overhead of DRL
model training, the training task can be offloaded to the
MEC-mounted UAV or MEC-mounted HAP, and the IoT
devices only need to receive the network parameters that
have already been trained.

In Figure 7, we investigate the correlation between the
task arrival probability and the ratio of dropped tasks
as well as the average cost. Figure 7(a) shows that the
four DRL-based computation offloading algorithms yield a
lower ratio of dropped tasks than do the branch-and-bound-
based algorithm and metaheuristic-based algorithm as the
task arrival probability increases. It is worth noting that
our proposed computation offloading algorithm based on
ConvLSTM-PER-DON outperforms the other three DQN-

Maximum Tolerable Delay (s)

(@) (b)

Maximum Tolerable Delay (s)

Fig. 8. The performance with different maximum tolerable delays. (a)
Ratio of dropped tasks. (b) Average cost.

based algorithms, which reveals that the combination of
ConvLSTM, PER and DON is particularly effective. When
the task arrival probability is high (i.e., 0.8), the ConvLSTM-
PER-DQN- based algorithm can always keep the ratio of
dropped tasks less than 0.6, while the ratios of dropped
tasks obtained by other computation offloading algorithms
increase to more than 0.7. Figure 7(b) shows the average
cost as a function of the task arrival probability. As the
task arrival probability increases, the average cost gradually
increases since more tasks are generated in the system.
When the task arrival probability increases from 0.2 to 0.5,
the growth rate of the average cost of the ConvLSTM-
PER-DQN algorithm is slower than that of the other algo-
rithms. This finding implies that the growth in the average
cost of our proposed computation offloading algorithm
is the mildest. When the task arrival probability is 0.5,
the ConvLSTM-PER-DQN-based algorithm outperforms the
other algorithms by at least 14.8% shorter average cost. As
the task arrival probability reaches 0.8, the ConvLSTM-PER-
DON algorithm outperforms the other algorithms by at least
4.1% shorter average cost.

Figure 8(a) and Figure 8(b) investigate the effect of the
maximum tolerable delay on the ratio of dropped tasks
and the average cost. As illustrated in Figure 8(a), the
ConvLSTM-PER-DQN-based computation offloading algo-
rithm perpetually obtains a lower ratio of dropped tasks
than do the other baseline algorithms, particularly when
the maximum tolerable delay is small. This finding implies
that the ConvLSTM-PER-DQN-based algorithm achieves
better performance for delay-sensitive tasks. When the max-
imum tolerable delay is 2.0 s, the ConvLSTM-PER-DQN-
based algorithm decreases the ratio of dropped tasks by
18.5%~33% compared with the other three DQN-based
algorithms. In addition, the ConvLSTM-PER-DQN- based
algorithm decreases the ratio of dropped tasks by more than
86% as compared to the branch-and-bound algorithm and
metaheuristic algorithm. With the increase in the maximum
tolerable delay, the ratio of dropped tasks of all algorithms
gradually decreases. As the deadline of each task reaches 3.2
s, the ratio of dropped tasks of our proposed ConvLSTM-
PER-DQN algorithm is zero and ultimately becomes steady.
This is because when the maximum tolerable delay is long,
the system has enough time to transmit and process the
generated tasks. Figure 8(b) shows that the average cost
of each algorithm gradually decreases and finally becomes
steady when the maximum tolerable delay is prolonged.
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Fig. 9. The performance with different numbers of devices. (a) Ratio of
dropped tasks. (b) Average cost.

This is because when the deadline is extended, tasks that
require long processing time and transmission time can be
executed completely before the deadline, and the penalty
will not be counted in the system cost. When the deadline
is large enough (i.e., 3.2 s), there are no dropped tasks and
no differences in the average cost with further increase in
the maximum tolerable delay. The converged average cost
of the ConvLSTM-PER-DQN-based algorithm is approxi-
mately 9.01.

In Figure 9, we investigate how the number of de-
vices affects the ratio of dropped tasks and average cost.
As shown in Figure 9(a), the branch-and-bound-based al-
gorithm and metaheuristic-based algorithm have a large
space as compared with the four DRL-based computation
offloading algorithms. In addition, a lower ratio of dropped
tasks can be achieved by the ConvLSTM-PER-DQN-based
computation offloading algorithm than by other algorithms,
particularly in the case of a large number of devices. As
the number of devices reaches 100, the ratio of dropped
tasks of the ConvLSTM-PER-DQN algorithm is less than
0.02. This is because ConvLSTM can effectively react to the
dynamic task loads of UAVs. In Figure 9(b), the average cost
of each algorithm increases with the increase in the number
of devices. This is because an increasing number of tasks
are processed, and their processing costs are counted in the
system cost. When the number of devices increases to 130,
the average cost of the ConvLSTM-PER-DQN algorithm is
approximately 16, and the ConvLSTM-PER-DON algorithm
achieves an average cost of 20.9% and 23.2% lower than
those of the metaheuristic algorithm and branch-and-bound
algorithm, respectively.

6 CONCLUSION

In this paper, we develop an aerial hierarchical MEC system
by cooperating MEC-mounted HAPs and MEC-mounted
UAVs. A non-divisible computing task has three choices:
1) computed locally; 2) offloaded to a UAV and computed
by the UAV; or 3) offloaded to the HAP through a UAV
relay and computed by the HAP. We formulate a problem of
minimizing the total processing cost, which is intractable to
solve by conventional optimization approaches. Hence we
propose a multi-agent DRL-based computation offloading
algorithm that incorporates the ConvLSTM network and
PER methods. The ConvLSTM network is utilized to predict
the task loads of UAVs, and the PER method is beneficial

for accelerating convergence during the model training. The
experimental results show that our proposed computation
offloading algorithm outperforms the baselines with respect
to the average cost and the ratio of dropped tasks.
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