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Abstract

In recent decades, considerable research has been de-
voted to speech enhancement leveraging the short-term Fourier
transform (STFT) analysis. As speech processing technology
evolves, the significance of phase information in enhancing
speech intelligibility becomes more noticeable. Typically, the
Hanning window has been widely employed as analysis window
in STFT. In this study, we propose the Chebyshev window for
phase analysis, and the Hanning window for magnitude analy-
sis. Next, we introduce a novel cepstral domain enhancement
approach designed to robustly reinforce the harmonic structure
of speech. The performance of our model is evaluated using
the DNS challenge test set as well as the naturalistic APOLLO
Fearless Steps evaluation set. Experimental results demonstrate
that the Chebyshev-based phase solution outperforms the Han-
ning option for in phase-aware speech enhancement. Further-
more, the incorporation of quefrency emphasis proves effective
in enhancing overall speech quality.

Index Terms: speech enhancement, cepstral analysis, analysis
window, deep neural network

1. Introduction

Monaural speech enhancement is one of the most challenging
task in the field of acoustic signal processing. It involves us-
ing advanced algorithms to extract or reconstruct clean speech
from noise-corrupted observations. Effective speech enhance-
ment significantly improves speech quality and intelligibility by
suppressing noise while preserving the target speech[1]. Con-
sequently, Speech enhancement technology is extensively used
in wireless communications, hearing aids[2, 3] and other intel-
ligent voice-enabled speech technologies.

Traditional speech enhancement methods, such as Wiener
filtering method [4], spectral subtraction [5], and MMSE-based
method[6], excel in handling stationary background noises
but face performance degradation with non-stationary noises.
To tackle this issue, Cohen et al. proposed a sophisticated
system[7] that enhances the capability of traditional speech
enhancement by suppressing non-stationary noises. However,
some algorithms designed for this purpose introduce artificial
noises. To address this, efforts have been made to solve this
issue[8]. Notably, these methods primarily focus on magnitude
denoising, often neglecting the crucial role of phase estima-
tion. Yet, previous studies [9, 10] emphasize the importance
of phase modification in improving speech quality and intelli-
gibility. Paliwal et al. [11] conducted a comprehensive study
demonstrating the significant impact of the phase spectrum on
analysis-modifiation-synthesis (AMS) based speech enhance-
ment. Their work indicates that combining noisy magnitude
with either clean or compensated noisy phase notably enhances
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speech quality. In addition, the use of a Chebyshev analysis
window with a lower dynamic range further augments perfor-
mance in this regard.

In recent years, data-driven speech enhancement methods
using deep neural networks (DNNs) have been widely stud-
ied, demonstrating significant improvement under various noise
conditions [12]. By utilizing advanced machine learning tech-
nology and training strategy, DNNs can either directly map the
clean spectrogram[13] or estimate the complex-valued time-
frequency(TF) mask[14]. While real-value time-frequency do-
main methods have advantages in modeling the magnitude of
each frequency band, they still have difficulty reconstructing
the phase of the target signal. Considering that phase has a
critical impact on perceived speech quality, particularly under
low signal-to-noise ratio conditions[15], most TF domain meth-
ods currently adopt complex-valued frequency features to im-
plicitly estimate phase information[16]. Another mainstream
approach aims to estimate clean speech waveform from noisy
speech waveform in the time domain using neural networks[17]
which can avoid the decoupling of magnitude and the phase in-
formation in the frequency domain. To take advantage of both
domain features, Tang et al. proposed a cross-domain frame-
work [18] that jointly uses the spectrum and waveform.

Inspired by these studies, we propose a novel approach
that explores the effectiveness of using alternate (mismatched)
analysis windows for phase and magnitude estimation in neural
network-based speech enhancement solution'. Specifically, we
use a Hanning window for noisy magnitude extraction, which
is proven effective for magnitude spectrum. Simultaneously,
a Chebyshev analysis window is applied for noisy phase ex-
traction. The motivation of using Chebyshev window will be
further discussed in Section 2.3. The separated phase and mag-
nitude are processed independently using a dual-path parallel
convolutional encoder-decoder structure. In addition, we pro-
pose employing cepstral enhancement for magnitude denoising,
since emphasizing pitch information in time-quefrency(TQ) do-
main is crucial for speech harmonic reconstruction. After sep-
arate processing, the complex-valued spectrum is easily recon-
structed by multiplying the two parts. Our contributions can
be summarized as follows: 1) We propose a novel cepstral do-
main (magnitude) and spectral domain (phase) fusion speech
enhancement framework, demonstrating superior performance
compared to single-domain approaches. 2) The adoption of a
Chebyshev analysis window for DNN-based clean phase esti-
mation is introduced, showcasing superior performance com-
pared to the Hanning analysis window.
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2. Proposed method
2.1. AMS based speech enhancement

In time domain, the noisy speech can be formulated as:
y(n) = s(n) * h(n) + d(n) (1)

where y(n) is noisy signal captured by single omni-directional
microphone, s(n) is the clean speech, h(n) is the room im-
pulse response(RIR), d(n) is the additive noise and * denotes
the convolution operation. The first step of AMS process is
employing short-term Fourier transform (STFT) for frequency
analysis. The time-frequency(TF) domain noisy representation
is given by:

Y(k,n) =" y(m)w(n —m)e >™m/E ()

where k and n are frequency and time indices respectively, and
w(n) is the analysis window with a length of L. Hence, the TF
domain representation of equationl can be derived as:

Y (k,n) = S(k,n)H(k,n) + D(k,n) 3)

In this study, we aim to remove D(k,n) and preserve H (k,n)
by only cancelling the additive noise. Eventually, the last step
of AMS is to reconstruct time domain speech by using inverse
STFT and overlap and add(OLA) synthesis method.

2.2. Cepstral analysis

While time and frequency domain methods have received sig-
nificant attention in speech enhancement, the potential of cep-
stral domain speech enhancement has been relatively over-
looked. The concept of cepstrum was initially introduced by
Bogert et al. [19] to analyze the periodicity of the spectrum. In
1991, Sorensen et al. [20] first adopted a multi-layer neural net-
work to suppress noise in the cepstral domain for noise-robust
speech recognition. A standard cepstral analysis and its inverse
process can be found in [21].

In the cepstral domain, the excitation and spectral enve-
lope exhibit contrasting distributions along the quefrency axis,
as illustrated in Figure 1 right plots. Moreover, the distribu-
tion of noise in the cepstral domain also differs from the lo-
cation of speech component, as noise usuallt lacks the simi-
lar ’source-filter’ pattern observed in speech. For instance, in
Figure 1, pitch contour of speech still remains visible in the
time-quefrency (TQ) domain while most of speech harmonic is
masked by noise in time-frequency (TF) domain. Thus, we be-
lieve cepstrum is potentially a better feature than spectrum for
speech enhancement. Prior works, such as Liu et al. [22], have
employed an in-place cepstral processing block to effectively
restore the speech harmonic structure that is masked by noise,
demonstrating the considerable potential of cepstral modifica-
tion.

In this work, we directly estimate the clean cepstrum from
the noisy observation for clean magnitude estimation. It should
be noted that we don’t use complex cepstrum in this contri-
bution due to the phase wrapping issue occurred during com-
plex cepstral analysis. Therefore, the proposed method adopts
minimum-phase reconstruction method by using real-valued
cepstrum and an appropriate window. A real-valued cepstral
analysis is derived by applying real-valued logarithm to the
magnitude of the Fourier transform of speech:

Seepstrum = real [IFFT {In(|[FFT {s(t)}|)}) (@)
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Figure 1: Clean and noisy speech in different domain. Top left:
clean speech in TF domain; Top right: clean speech in TQ do-
main; bottom left: noisy speech in TF domain; bottom right:
noisy speech in TQ domain

N

1 if n=0n=73-1
window(n) =< 2 if 0<n< -1 (5)
0 if ¥-1<n<N-1

Applying the window function in equation (5) on real cep-
strum Scepstrum yields the minimum-phase speech component
in cepstral space. The minimum-phase component contains the
equivalent energy of the speech spectrum[23].

2.3. The effect of analysis window

With the development of speech processing, researchers re-
alized phase also plays a crucial role in recovering distorted
speech, particularly in low signal-to-noise ratio cases [9]. The
choice of using different analysis windows for STFT has been
extensively studied in recent decades. In most AMS framework-
based speech enhancement approaches, such as [6], the Ham-
ming or Hanning window is commonly employed as the anal-
ysis window for magnitude spectral enhancement, demonstrat-
ing satisfactory performance. Conversely, numbers of works
[24, 25, 26] have shown that using a short-length Hamming
window for phase spectral estimation can lead to poor speech
quality. The ’phase-only’ reconstructed speech becomes intel-
ligible when the window length exceeds 1 second. However,
employing such long window lengths is impractical for speech
processing, as speech is not stationary in such extended dura-
tion. Therefore, Paliwa et al. [11] thoroughly investigated the
suitable window types for both magnitude and phase spectrum
estimation. Experimental results indicate that when clean ref-
erence speech is unavailable, using the Chebyshev window for
phase extraction and the Hamming window for magnitude ex-
traction can significantly improve the quality of reconstructed
speech compared to solely using the Hamming window. Based
on these findings, we are inspired to use the Chebyshev window
for phase-aware speech enhancement.

2.4. The DNN-based dual path structure

To separately estimate the magnitude and phase spectrum, we
employed a dual-path parallel deep neural network structure, as
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depicted in Figure 2. In the system diagram, the Conformer U-
Net blocks constitute the DNN structure, and the rest process-
ing blocks are signal processing methods. The upper branch in
Figure 2 is designed to process the real-valued speech magni-
tude in the cepstral space, and the lower branch is intended for
complex-valued phase estimation. The final denoised speech
spectrum can be calculated by multiplying the outputs from the
two branches. Figure 3 illustrates how the noisy magnitude and
phase representations are extracted by applying different win-
dow functions.

|

In the cepstral domain, the energy of the speech envelope
representation is much higher than the pitch peak. This is pri-
marily because the energy decays exponentially along the que-
frency axis [27], causing the pitch peak in the high quefrency
region to have a very small value. To enhance the DNN’s perfor-
mance for better estimation, we employ a power-law cepstrum
compression method (equation (6)), inspired by similar spec-
trum compression techniques [28]. This method aims to narrow
the dynamic range and normalize the energy distribution.

We employed two distinct Conformer U-Net structures
for real-valued and complex-valued features, as illustrated in
Figure 4. The Conformer U-Net comprises a convolutional
encoder-decoder structure and residual connections. The key
difference between these two networks is that the Conformer
U-Net for the phase has two decoders for the real and imagi-
nary parts. To achieve simultaneous phase and magnitude esti-
mation, we utilized a joint loss function [16] for this task:
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The joint loss function is:
Ljoint = ’YLmag + LR + L17 (10)

Here, Lr and L represent the real and imaginary spectrum
losses, Lyag is the magnitude loss function, and -y is a weight
factor. n this work, we set the weight factor v and compression
factor 5 to 5 and 0.3 respectively.

3. Experiments
3.1. Dataset

In this study, we utilized two datasets for training and evalua-
tion: the Deep Noise Suppression (DNS) challenge[29] dataset
and the APOLLO Fearless Steps dataset[30]. The training set
consists of 562.72 hours of clean reference speech in English
and 181 hours of noise. Additionally, to enhance system robust-
ness in reverberant environments, 75% of the clean speech is
convolved with Room Impulse Responses (RIR) randomly se-
lected from OpenSLR26[31] and OpenSLR28[31] to simulate
reverberation. The proposed system incorporates an on-the-fly
data augmentation method, ensuring that all noisy data used in
the training process is synthesized by randomly applying differ-
ent Signal-to-Noise Ratios (SNR) ranging from -5 to 20 dB.

For objective evaluation, we employed a non-blind syn-
thetic test set to assess our model and compare its performance
with state-of-the-art (SOTA) methods. This synthetic test set
was released as part of the 2020 DNS Challenge and comprises
12 classes of noise, with Signal-to-Noise Ratios (SNR) rang-
ing from 0dB to 25dB. Additionally, real recording data from
the APOLLO Fearless Step test set> was used for evaluation in
a real-world environment. The APOLLO data was upsampled
to 16kHz before evaluation, as the original sampling rate was
8kHz.

3.2. Experimental setups

The proposed framework employs a 32ms window length
with a 16ms hop length for STFT, resulting in 257 fre-
quency/quefrency bins in each frame for 16kHz sampling rate
data. In this work, the dynamic range of the Chebyshev win-
dow is set to 30 dB based on previous studies. The AdamW
optimizer is used with an initial learning rate of 0.001. Addi-
tionally, we utilize the Xavier initializer to initialize the values
of weights in each layer. The channel numbers of convolution
layers in encoders are 32, 32, 64, 64, 96, 256, with (5,3) kernel

Zhttps://fearless-steps.github.io/ChallengePhase2/



Table 1: Objective evaluation on 2020 DNS challenge test set

Methods Featur_e Without reverb

Domain  WB-PESQ NB-PESQ STOI
Noisy 1.582 2.265 91.52
NS-Net[32] F 2.145 2.873 94.47
DTLNJ[33] F - 3.040 94.76
DCCRN—E[34] F - 3.266 -
ConvTasNet[17] T 2.730 - -
FullSubNet[35] F 2.777 3.305 96.11
Proposed C+F 2.840 3.338 96.05

Table 2: Ablation study on 2020 DNS challenge test set

Without reverb
Methods WB-PESQ NB-PESQ STOI
Spec match 2.610 3.171 94.61
Spec mismatch 2.802 3.322 95.38
Fusion match 2.815 3.306 95.74
Fusion mismatch 2.840 3.338 96.05
—Cep compress 2.722 3.229 94.67

and (2,1) stride size in the shape of (frequency/quefrency, time).
The decoder consists of transpose convolution layers, which are
the reverse version of convolution layers. The convolution lay-
ers in the skip path have a (3,3) kernel size with (1,1) stride
and zero padding. All convolution layers in the encoder and
decoder are followed by 2D-batchnorm and PReLU activation.
The 2-layer Conformer structure has 4 attention heads, 256 FFN
dimensions, and a 15 kernel size for depth-wise convolution.

To illustrate the effectiveness of cepstral domain enhance-
ment and the Chebyshev window, we conducted several ablation
studies on the DNS challenge test set, as shown in Table 2. In
general, the methods are divided into spectral domain methods
(Spec) and domain fusion (Fusion) methods. The spectral do-
main methods directly use spectral magnitude as input for *’Con-
former U-Net Mag’ instead of cepstrum. The term *Match’ in-
dicates that the analysis windows for magnitude and phase are
the same (Hanning window), and *mismatch’ means the win-
dow functions are different for magnitude (Hanning) and phase
(Chebyshev). Additionally, importance of cepstrum compres-
sion is also evaluated in this study.

3.3. Results and analysis

In Table 1, we compared our method with other top-ranked sys-
tems in the DNS challenge. To ensure fairness, we directly used
the scores reported in their papers; the character ’-’ denotes an
unreported score. The results indicate that our method outper-
forms the other compared systems in terms of wide-band per-
ceptual evaluation of speech quality (WB-PESQ) score[36] and
narrow-band PESQ (NB-PESQ) score.

Moreover, based on the results of the ablation studies in
Table 2, we observe that using a mismatched window combi-
nation yields superior performance compared to using matched
window functions. This suggests that employing the Cheby-

Table 3: Evaluation on APOLLO Fearless Steps test set

Methods | OVRL{ SIGT BAK+
Noisy 1.88 2.50 2.11
DTLN 2.06 242 3.55

Proposed 2.17 2.72 4.11

1708

Figure 5: Spectrogram with matched and mismatched win-
dow: top left is noisy speech with mismatched window; top
right is noisy speech with matched window; bottom left shows
clean speech with mismatched window and bottom right is clean
speech with matched window

shev window for noisy phase not only enhances speech quality
[11] but also improves the performance of DNN-based phase-
aware speech enhancement. Figure 5 illustrates that using a
mismatched window can reduce part of noise, but applying it
in clean speech can cause speech distortion. Consequently, we
use matched window function for clean speech in trainning pro-
cess. The speech is synthesized using the Hanning window in
Figure 5. By comparing the evaluation results of the proposed
method (Fusion mismatch) and the spectral domain method
(Spec mismatch), we can conclude that cepstrum is potentially
a better feature than spectrum for magnitude estimation. When
we eliminate cepstral compression in the proposed method, the
neural network performance and speech quality degrade. This
demonstrates that pre-processing for normalization is important
to deep neural network training and modeling.

To showcase the performance of the proposed system on
real recording data, we also evaluate our method on the Fear-
less Step APOLLO dataset in terms of the DNS Mean Opinion
Score (MOS), a non-intrusive objective evaluation metric [37].
The results in Table 3 demonstrate that our method exhibits bet-
ter performance on the naturalistic low-quality dataset, where
OVRL, SIG, and BAK represent overall effect, speech signal,
and background noise.

4. Conclusions

In this paper, we introduced a novel approach for speech en-
hancement, leveraging mismatched window functions and fea-
ture fusion. More precisely, we proposed a two-branch structure
to independently handle speech magnitude features extracted by
the Hanning window and phase features extracted by the Cheby-
shev window. Experimental results demonstrate the superiority
of the Chebyshev window over the Hanning window in phase-
aware speech enhancement. And We also proved noise suppres-
sion in cepstral space further enhances performance. In future
research, we aim to use a single encoder for different domain
features and extend this work to simultaneous denoising and
dereverberation tasks. Audio samples are available online’.

3 Audio Samples: https:/winkee520.github.io/CSFNet/
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