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ABSTRACT

Speaker diarization has traditionally been explored using
datasets that are either clean, feature a limited number of
speakers, or have a large volume of data but lack the com-
plexities of real-world scenarios. This study takes a unique
approach by focusing on the Fearless Steps APOLLO au-
dio resource, a challenging data that contains over 70,000
hours of audio data (A-11: 10k hrs), the majority of which
remains unlabeled. This corpus presents considerable chal-
lenges such as diverse acoustic conditions, high levels of
background noise, overlapping speech, data imbalance, and a
variable number of speakers with varying utterance duration.
To address these challenges, we propose a robust speaker
diarization framework built on dynamic Graph Attention
Network optimized using data augmentation. Our proposed
framework attains a Diarization Error Rate (DER) of 19.6%
when evaluated using ground truth speech segments. No-
tably, our work is the first to recognize, track, and perform
conversational analysis on the entire Apollo-11 mission for
speakers who were unidentified until now. This work stands
as a significant contribution to both historical archiving and
the development of robust diarization systems, particularly
relevant for challenging real-world scenarios.

Index Terms— Fearless Steps APOLLO, Graph Net-
works, Speaker Diarization, Historical Archiving

1. INTRODUCTION

Speaker diarization aims to identify ’who spoke when’ in an
audio stream by segmenting the signal into distinct, speaker-
specific clusters. Traditional systems include voice activity
detection, followed by speaker embedding extraction. These
embeddings are then used for clustering algorithms to group
speaker segments and assign speaker labels to each cluster.

Recent advances in the field of Graph Neural Networks
(GNNs)[1, 2] have garnered significant attention. However,
the application of GNNs in speaker diarization tasks remains
relatively underexplored. Notable studies such as Wang et al.
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[3] and Singh et al. [4] have applied GNNs to speaker diariza-
tion. However, their methodologies are primarily validated ei-
ther on datasets featuring limited numbers of speakers in con-
trolled meeting scenarios or in datasets that require an exten-
sive amount of training data. This highlights a common issue
in speaker diarization research where most algorithms rely on
datasets derived from simulated environments, meeting sce-
narios with limited speakers, or clean conditions. There is a
need for speaker diarization algorithms that can manage the
complexities of real-world team-based acoustic environments
without compromising on performance.

Our work focuses on the Fearless Steps Apollo 11 (FSteps)
audio corpus, a challenging dataset with over 10,000 hours of
mostly unlabeled audio data. The Fearless Steps APOLLO
collection will contain all missions, with over 150k hrs of
audio and meta-data. Manual annotation for this corpus is
an impractical task. The dataset presents challenges such as,
overlapped speech, variable acoustic conditions, background
noise, and a varying number of speakers per channel ranging
from 3 to 65. Each speaker also has highly varying utterance
duration [5, 6]. Existing diarization algorithms struggle to
perform well under these complex conditions, making the
dataset a unique challenging benchmark [7, 8].

Previous work on FSteps corpus [6] focused on the vari-
ability in utterance duration and addressing data imbalance by
omitting speakers with limited speech duration. Current work
here includes all speakers, even those that have limited ut-
terances/duration. We propose a robust network architecture
that maintains a high performance even under these challeng-
ing conditions.

The main contributions of this study are: [i] introducing
a novel framework based on dynamic Graph Attention Net-
works, which is optimized through data augmentation and
weight decay; [ii] Evaluation encompasses both supervised
and unsupervised graph edges, relating to speaker classifica-
tion and diarization respectively: [iii] Tracked and analyzed
conversational dynamics of nine key speakers of interest inte-
gral to Apollo-11 mission; [iv] Our work stands as one of the
first initiatives to identify and extract meta-labels for speak-
ers contributing to historical archiving, and serves as a lasting
tribute to the unsung heroes of the Apollo mission.
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Fig. 1. Flowchart of speaker diarization pipeline with [i] audio augmentation and embedding, followed by [ii] graph construction
for train/test phases with supervised and unsupervised edges, and finally [iii] classification via DGAT layer.

2. DATASET DESCRIPTION

For our study, we employ the FSteps A-11 corpus, which con-
tains over 10,000 hours of audio across 30 channels (part of
Fearless Steps APOLLO collection, +150k hrs data). Both
train and test are conducted on 100-hour labeled subset that
includes three mission-critical events: Lift-Off (25 hours),
Lunar Landing (50 hours), and Lunar Walk (25 hours). Even
though human annotators have manually labeled this dataset,
it still has inaccuracies and inconsistencies. To the best of
our knowledge, 172 speakers have been identified [9, 10, 11],
with 5 out of 30 channels considered. Unlike prior work [6],
we include all speakers in the dataset, even those with limited
speech utterance duration.

2.1. Data Augmentation

We observe a significant data imbalance, with approximately
30 speakers having fewer than 3 utterances. To address this
issue, we propose using data augmentation for each speaker
class, wherein ’m’ augmentations are applied for each speaker
class; in our experiments, ’m’ is set to 10. We use the augly
toolkit [12] to implement five types of audio augmentations:
volume adjustment, reverberation, speed alteration, tempo
modification, and pitch shifting. For each randomly chosen
audio segment, up to 5 of these augmentations are randomly
applied, each with a variable factor. This process is repeated
to generate a total of 10 augmented segments for each speaker
class.

3. GRAPH STRUCTURE

A graph is defined by its node set V = {v1, ....vn} and edge
set E ⊆ {(vi, vj) | vi, vj ∈ V }, where (i, j) ∈ E denotes an
edge from node j to node i. In our context, a single graph

corresponds to a 30-minute audio segment. A node vi is rep-
resented by its speaker embedding with F dimensions and
xi, i ∈ 1, 2, ...., N where N is the total number of nodes. Note
that the number of nodes in each graph can vary according to
the number of speakers and their utterances. Message passing
between neighboring nodes occurs during each iteration via a
propagation function f(.) [13].

In training, nodes are connected by edges if they be-
long to the same speaker class. For test, we employ two
types of edges: supervised and unsupervised. In supervised,
we have prior knowledge of speaker clusters, and edges are
connected between nodes within these predefined clusters.
Conversely, in the unsupervised setting, edges are connected
between nodes if the cosine similarity between those nodes
cross a threshold of 0.65. The Diarization Error Rate (DER)
is calculated for all baseline systems. Human annotated SAD
(Speech Activity Detection) labels are used here in both train
and test phases.

4. BASELINE SYSTEMS

For all our experiments, we use ECAPA TDNN as our speaker
embedding, producing a 192-dim vector pretrained on Vox-
celeb1+Voxceleb2 [14, 15, 16, 17]. Baseline methods include
cosine distance, K-means, and Agglomerative Clustering. We
also test GNN variants including Graph Convolutional Net-
works (GCN) and Graph Attention Networks (GAT) [1, 2].

5. PROPOSED SYSTEMS

Dynamic Graph Attention Networks (DGAT) [18] uses a
dynamic attention mechanism to model the interaction be-
tween nodes in a graph. DGAT inherently provides flexibility
wherein the attention mechanism adapts to features and con-
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Data Augmentation Clustering Type Accuracy Precision Recall F1 DER
No Cosine Similarity 50.47 69.19 50.47 54.25 42.25
No K-means 45.50 71.23 45.5 50.66 52.59
No Agglomerative 52.32 73.99 52.33 57.52 45.35

Data Augmentation Network Type Supervised edges Unsupervised edges
Accuracy Accuracy Precision Recall F1 DER

No GCN 77.57 62.19 69.88 62.19 61.3 33.6
Yes GCN 87.48 71.5 76.39 71.5 71.4 25.5
No GAT 79.09 63.41 72.3 63.41 64.23 32.9
Yes GAT 89.79 77.61 80.27 77.61 77.81 20.3
No 2-layer DGAT [6] 80.11 63.35 73.47 63.49 63 32.7
Yes 2-layer DGAT [6] 88.46 73.26 77.37 73.26 72.76 24.5
Yes 1-layer DGAT (Ours) 90.49 78.37 80.17 78.36 78.2 19.6

Table 1. Comparative evaluation of baseline systems and proposed method. Metrics for supervised edges and unsupervised
edges considered. Proposed method shows superior performance

text of the graph. The propagation function is defined as:

h′
i =

∑
j∈N i

αij .Whj , (1)

where Ni is the set of neighboring nodes of node i, and h′
i is

the updated feature representation of node i. Let hi ∈ RF be
the input features of node i and hj ∈ RF be the input features
of a neighboring node j. To learn the node representation for
each node, the attention co-efficient function can be given as:

αij =
exp

(−→a T LeakyReLU
([

Wh⃗i||Wh⃗j

]))
∑

k∈Ni
exp

(−→a T LeakyReLU
([

Wh⃗i||Wh⃗k

])) .
(2)

Attention coefficients compute the weights contributed by
each neighbor between pairs of nodes. The attention score
eij on the nodes can then be computed as:

eij = a(Wh⃗i||Wh⃗j). (3)

This equation indicates the importance of node j’s features to
node i. eij is only computed for nodes j ∈ Ni, where Ni is
some neighborhood of node i in the graph. If a node is gener-
ally less reliable or not very informative, the attention mech-
anism, during training, can adjust to have less significance
for such nodes. Furthermore, data augmentation can improve
the robustness of the model and handle variation between em-
beddings. The DGAT layer can more accurately differentiate
between useful and noisy information. In previous work [6],
two-layer DGAT architecture was utilized to overcome limi-
tations of data imbalance by excluding speakers with limited
speech duration. However, this omits speaker information
from at least 30 speakers. In our current study, we address
these limitations by introducing data augmentation and con-
sider all available speakers for training. As a result, we find
that a single-layer DGAT leads to both robust and discrimina-
tive embeddings. This architecture yields better performance

compared to a two-layer approach, as can be seen in Table 1,
thereby validating our design choices.

In terms of implementation, our proposed framework
leverages a single DGAT constructed using PyTorch Geomet-
ric [19]. The input dimension is set to 192, while the hidden
dimension is configured at 256, and the number of heads is
fixed at 4. Following the DGAT layer, a dropout layer with
a dropout rate of 0.3 is added. Furthermore, two linear lay-
ers are added: the first has an output dimension of 256 and
the second layer with 172. The DGAT layer incorporates an
edge softmax function to normalize the attention weights.
For the loss function, we employ cross-entropy. To regulate
the network and mitigate the risk of overfitting, weight decay
is introduced with a factor of 0.0001. To provide a holis-

Sup Edges Unsup Edges
Num of Augs Acc Acc Prec Recall F1 DER

None 81.60 65.58 74.59 65.58 65.86 31.9
5 89.90 77.12 79.11 77.12 77.08 21.2

10 90.49 78.37 80.17 78.36 78.2 19.6
20 89.33 76.49 78.64 76.49 76.32 22.1
30 90.25 77.25 78.48 77.25 76.52 21

Parameter Acc Acc Prec Recall F1 DER
No dropout 88.38 75.62 77.75 75.62 75.7 22.3

No weight decay 90.79 77.66 79.74 77.66 77.34 20.4
Hidden dim Acc Acc Prec Recall F1 DER

128 90.33 76.79 79.08 76.79 76.51 21.09
512 90.71 78.01 79.83 78.01 77.8 19.9

Table 2. Ablation studies on supervised and unsupervised
edges, examining variations in augmentations, network archi-
tecture, and hidden dimensions

tic view of our model, we evaluate using multiple metrics.
Classification accuracy is measured for both supervised and
unsupervised edges which is relevant only for graph-based
models. For unsupervised edges and other baseline models,
we measure precision, recall, and F1 scores. The Diariza-
tion Error Rate (DER) is also measured. All experiments are
conducted using human annotated SAD.
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Fig. 2. Tracking nine key speakers over entire Apollo 11 mission, with background colors indicating active Apollo 11 teams
and their corresponding Flight Director and CAPCOM

6. RESULTS

The challenge posed by FSteps A-11 corpus is the imbalanced
distribution of speaker utterances and their varying utterance
duration. Utilizing data augmentation can help in alleviating
this imbalance. Hence, we measure performance with and
without data augmentation even in baseline systems to show
the effectiveness of data augmentation. Table 1 shows that our
method outperforms traditional clustering systems and popu-
lar graph networks in terms of performance. We conduct abla-
tion studies with our initial experiments focusing on the num-
ber of augmentations per speaker class, ranging from 5 to 30.
Although there are small variations, we see that 10 augmen-
tations per speaker class yields the best overall performance.
The model is also assessed based on different hidden dimen-
sions. While variations in hidden dimensions do not have a
significant impact on results, using 256 hidden dimensions
offers a slight performance advantage. A stark difference is
observed when data augmentation is excluded, reaffirming its
importance for enhancing the model in both our proposed and
baseline systems. We also found no difference in performance
when we varied the number of heads in the DGAT layer.

To extract speaker identities, it is important to understand
Apollo-11 communications within the team. The Apollo-11
mission involved four teams: Green, White, Black, and Ma-
roon, each taking time shifts over the 8 day mission with their
corresponding set of speakers. Our research focuses exclu-
sively on the labeled data generated from the Green, White,
and Black teams. We use our proposed model to generate
meta-labels for nine speakers of interest: three Flight Direc-

tors, three CAPCOMs1, and three Astronauts, each originat-
ing from one of three teams(except Astronauts as they are
present throughout 8 day mission). In Fig 2, active teams
were highlighted with corresponding background color dur-
ing each interval over 8 days.

For the purposes of this analysis, we generated meta-
labels and only included those that met a high confidence
threshold according to our model. As most of the data is
completely unlabeled, we use a SAD system trained on the
FSteps corpus [20]. Additionally, we have annotated peri-
ods of elevated speech duration, which coincide with key
moments during the mission. Finally, all curated audio, meta-
data, and models will be shared on [21]

7. CONCLUSION

This study introduced a novel speaker diarization framework
that can address challenges present in the naturalistic FSteps
corpus. To handle data imbalance, we proposed data augmen-
tation and leveraged a DGAT network which achieved a DER
of 19.6%. Unlike previous work, our approach incorporates
all speakers and makes broader analysis feasible. Moreover,
we identified, tracked and analyzed nine key yet previously
unidentified speakers throughout the entire Apollo-11 mission
contributing to advancements in historical archiving and serv-
ing as a tribute to the unsung heroes of Apollo

1Note, CAPCOM is the only NASA specialist authorized to communicate
with the astronauts
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