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ABSTRACT

With the development of deep neural networks (DNN), many
DNN-based speech dereverberation approaches have been
proposed to achieve significant improvement over the tradi-
tional methods. However, most deep learning-based derever-
beration methods solely focus on suppressing time-frequency
domain reverberations without utilizing cepstral domain fea-
tures which are potentially useful for dereverberation. In this
paper, we propose a dual-path neural network structure to
separately process minimum-phase and all-pass components
of single channel speech. First, we decompose speech sig-
nal into minimum-phase and all-pass components in cepstral
domain, then Conformer embedded U-Net is used to remove
reverberations of both components. Finally, we combine
these two processed components together to synthesize the
enhanced output. The performance of proposed method is
tested on REVERB-Challenge evaluation dataset in terms
of commonly used objective metrics. Experimental results
demonstrate that our method outperforms other compared
methods.

Index Terms— Blind speech dereverberation, cepstral
analysis, minimum-phase, all-pass system

1. INTRODUCTION

The reverberation of speech caused by multiple sound
reflections, can severely degrade speech quality and intel-
ligibility in many distant-speech application scenarios such
as hands-free telecommunication systems, speaker identifi-
cation systems [1] and automatic speech recognition (ASR)
systems. Although speech dereverberation has been studied
for decades, and numerous approaches have been proposed
to tackle this problem, it is still one of the most challenging
task in the field of speech processing. This difficulty arises
from the complexities associated with blind deconvolution
and diverse acoustic spaces.

Reverberation, often referred to as convolutional noise
in acoustic science, typically calls for conventional solu-
tions such as inverse filtering or deconvolution [2] to restore
clean speech. However, real-world room impulse responses
(RIRs) are often unknown and exhibit non-minimum phase
characteristics, rendering them unsuitable for stable inverse
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processing [3]. Oppenheim et al. [4] initially proposed ho-
momorphic filtering for speech deconvolution. This can be
achieved by converting the convolution operation to addition
and applying peak-picking or low-pass filtering in the com-
plex cepstral domain, since reverberation has distinct peaks in
the quefrency axis. Further enhancements achieved through
techniques such as temporal averaging and variable-length
windowing [5]. Cepstrum-based algorithms were extensively
explored during a certain period [6, 7]. However, these meth-
ods encountered difficulties in effectively addressing phase
distortion issues, known to significantly impact sound qual-
ity [8]. On the other hand, RIRs in real-world environments
are usually time-variant which also makes it difficult to track
the echo path.

In recent years, DNN-based methods have been exten-
sively explored to attempt to overcome these challenges due
to their powerful ability to model complicated non-linearity
functions. Han et al. [9] utilized multi-layer neural networks
to effectively map clean speech in the time-frequency do-
main. Ernst et al. adopted convolutional neural network
(CNN) which was previously used in image tasks to estimate
the clean spectrogram and obtained promising result [10].
Similar studies [11, 12] were proposed to utilize residual
connections and recurrent neural network (RNN) to boost the
performance of the CNN structure. While various frequency
domain DNN methods have been studied recently, the DNN-
based cepstral domain method did not draw much attention.
Because the cepstral domain speech has recognizable funda-
mental frequency features, we believe that emphasizing these
features can enhance the recovery of speech harmonics. In
addition, incorporating estimation of phase information has
also not been fully considered in most previous studies.

In this study, we extend the concept of signal decompo-
sition introduced in prior research [13]. We apply this idea
to the task of single-channel speech dereverberation using a
dual-path DNN structure. To begin, we evaluate the perfor-
mance of a DNN-based real-cepstrum processing framework,
highlighting its strengths and weaknesses. Next, we demon-
strate how our proposed method effectively combines the ad-
vantages of both cepstral and spectral domain approaches,
leading to improved performance. In the final section, we
present the improvements achieved in objective evaluation
metrics for speech quality and ASR.
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Fig. 1. Clean and reverberant speech in time-quefrency do-
main: (a) clean speech, (b) clean speech with a=0.5, (c) clean
speech with @=0.3, (d) reverb speech with a=0.3.
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Fig. 2. The schematic diagram of proposed system.

2. PROBLEM FORMULATION

In the time domain, a single-channel speech signal cor-
rupted with reverberation can be formulated as follows:

y(t) = s(t) x h(), (D

where y(t) is the reverberant signal captured by a omni-
directional microphone, s(t) is the clean speech, h(t) is the
room impulse response(RIR), and * denotes the convolu-
tion operation. The corresponding time-frequency domain
representation can be derived using the short-term Fourier
transform (STFT):

Y(fvt):S(f’t)H(f’t)v 2

where f and t represent the frequency and time indices. In
this study, our primary focus is on attenuating early and late
reflections of speech attributed to h(¢). Therefore, we make
the assumption that the noise level is substantially lower than
the speech signals(t) and can be considered negligible.

3. PROPOSED METHOD
3.1. Cepstral analysis

Bogert [14] initially introduced the concept of cepstrum
to analyze the periodicity of the spectrum. Oppenheim et
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Fig. 3. U-Net structures.

al. provided a standard cepstral analysis and its inverse pro-
cess [4]. By applying logarithmic operation to the two sides
of Eq. 2, a deconvolution problem is converted into a subtrac-
tion in the cepstral domain. In accordance with the ’source-
filter’ model of speech production, speech can be decomposed
into distinct components: ’excitation’ and ’time-varying fil-
ter’. These components exhibit contrasting distributions in
the cepstral domain, as depicted in Fig. 1. Notably, the pitch
contour (shown in the black box in Fig. 1) is primarily dis-
tributed in the higher quefrency region. Likewise, the clean
speech s(t) in Eq. 1 is relatively distributed in the lower quef-
erency area compared to the distribution of the RIR h(t).
Based on this, it is possible to design a low-pass filter within
the complex cepstral domain to preserve the speech while
suppressing the reverberation. However, conventional homo-
morphic filtering methods encounter challenges in determin-
ing the proper cut-off queferency and solving the phase dis-
tortion problem (the clean phase is unknown).

3.2. DNN-based decomposition network

Instead of relying on a low-pass filter with a fixed cut-
off value, we propose to estimate a universal mask for various
conditions by utilizing DNN. Jiang et al. [15] proposed to sep-
arately process pitch and vocal tract of speech using cepstral
analysis and DNN, although the ultimate enhancement is per-
formed in the spectral domain.

In complex cepstral analysis, a phenomenon known as
phase wrapping arises when applying a logarithmic opera-
tion to a complex value. A common solution to this issue
is to unwrap the phase and wrap it back during the inverse
process. This ensures that the signal can be accurately recon-
structed after the cepstral analysis and its inverse. Estimating
the wrapped clean phase is a major challenge, because the
ground truth is typically not available. Jiang et al. [16] have
attempted to solve this problem by using a complex-valued
neural network. However, it could potentially introduce addi-
tional artificial noise [15].

Motivated by the study in [13], originally designed for
microphone arrays, we introduce a novel approach using two
parallel DNNs to individually enhance the minimum-phase
and all-pass components of single-channel speech, as illus-
trated in Fig. 2. This concept is rooted in the factorization of
the RIR into its minimum-phase and all-pass components [2].
Thus, the reverberant speech Y (¢, f) can be decomposed as
follows:

Y(t7 f) = Ymini(ta f) . Yall(ta f) (3)
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1 if n=0n=4%-1
window(n) = {2 if O<n< -1 4)

0 if F-1<n<N-1

To be more specific, we compute the minimum-phase
speech using real-valued cepstral analysis and windowing (as
specified in Eq. 4, where N denotes the length of the STFT).
This process avoids phase wrapping, but the real-cepstrum
cannot be transformed into speech without incorporating the
noisy phase. Fortunately, phase information is retained in the
all-pass components, which can be easily calculated if the
minimum-phase component is known (as per Eq. 3). Once
both the minimum-phase and all-pass components are com-
puted, we employ DNNSs to enhance each of them separately.
The reconstructed speech is then generated by multiplying
the processed outputs of these two components.

chr _ { |Ycept’rum|a Zf cheptrum 2 0

ceptrum — « ;
P - ‘cheptruml Zf }/ceptrum <0

Furthermore, the energy of the cepstrum decreases rapidly
along the quefrency axis, which result in significant lower en-
ergy of the pitch contour compared to the cepstrum in the
lower quefrency region. To narrow the dynamic range and
improve estimation performance, we adopt a power-law com-
pression method to the cepstrum (Eq. 5). Where « is com-
pression value. Fig. 1. shows time-queferency plots with dif-
ferent compression values. We set o to 0.3 in this study, as
the corresponding plot in Fig. 1 (c) exhibits the most distinct
pitch contour.

&)

3.3. Learning target

The proposed system has two different DNNs as shown
in Fig 3. The *Conformer U-Net Mini’ is responsible for esti-
mating minimum-phase clean cepstrum, and its output yields
ideal ratio mask (IRM). Alternatively, the ’Conformer U-Net
AIl’ is used to generate the real and imaginary parts of all-pass
speech. It takes both the real and imaginary spectrograms of
the all-pass speech as inputs and produces corresponding esti-
mated results. Here we utilize the real and imaginary parts of
clean spectrogram as learning targets. To estimate the phase
and magnitude of the speech jointly, we employ a power-law
compression loss function [17] that consists of:

1 ~ 2
LR - Tx F ; ‘|Sreal(tv f)' - |Sreal(t7 f)| , (6)
1 ~ 2
= . B _ Q. B
Lr= TxF tzf: ‘|S"nag(t’ il |Szmag(taf)| , (D
and

_ 8 _ 13 )8
Lmag—TxF;MS(t,fn Senl| - ®

Thus, the resulting overall loss function is:
Ljoz'nt = 'YLmag +Lg+ Ly, 9)

where ~y is a weight factor. In this work, we set the weight
factor «y and compression factor 3 to 5 and 0.3 respectively.

4. EXPERIMENTS
4.1. Dataset

In this study, we conduct experiments on the REVERB
Challenge corpus [18], which includes real and simulated data
as the training set. The simulated portion of training set is cre-
ated by blending clean speech from WSJCAMO [19] with ran-
domly chosen RIRs from OpenSLR26 [20] and OpenSLR28.
During training, the simulated data is generated on-the-fly
by randomly applying RIRs to clean speech. We evaluate
our proposed method using standard objective metrics on the
evaluation set (eval) of the REVERB Challenge corpus. This
eval set consists of 2176 simulated and 372 real recorded au-
dio clips. In the simulated dataset, there are three different
reverberation times (T60) — 0.3, 0.6, and 0.7 seconds — corre-
sponding to reverberant rooms labeled as 1, 2, 3, respectively.

4.2. Experimental setups

The proposed framework employs a 32ms Hanning win-
dow with a 16ms skip rate for framing speech signals sampled
at 16kHz. This configuration yields a DFT length of 512, and
257 frequency and quefrency bins for each frame. We use
AdamW optimizer in conjunction with the ’ReduceLROn-
Plateau’ learning rate scheduler for training. It adjusts the
learning rate with a reduction factor of 0.5 and a patience of
5. The initial learning rate is set to 0.001. The Conformer em-
bedded U-Net architecture employs a 6-layer convolutional
encoder with channel numbers (32, 32, 64, 64, 96, 256). The
convolutional layers have kernel sizes of (5,3) and strides of
(2,1), each followed by batch normalization and PReLU ac-
tivation. The decoder mirrors the structure of encoder and
uses transposed convolutions. Additional convolutional lay-
ers are introduced in the skip path to establish residual con-
nections, with kernel sizes of (3, 3) and strides of (1, 1). Con-
former [21] is adopted to model both global and local infor-
mation through multi-head attention and depth-wise convo-
Iution. The 2-layer Conformer configuration comprises 4 at-
tention heads, 256 FFN dimensions, and a 15-unit kernel size
for depth-wise convolution. Notably, the final layer of ’Con-
former U-Net Mini’ employs a Tanh activation for IRM es-
timation, while Conformer U-Net All’ employs a fully con-
nected layer as the output layer.

For ASR experiments, we train a factorized time delay
neural network (TDNN-f) [22] using the Kaldi toolkit [23].
Note that we only use the clean speech as our training data
and test the proposed method on the reverberant speech with
a trigram language model.

4.3. Results and analysis

We evaluate our method on the REVERB challenge eval
set. As shown in Table 1, our proposed method demonstrates
superior performance compared to WPE, WRN, and Cauchi’s
method in both simulated and real data segments. In com-
parison to weighted prediction error (WPE), the proposed
solution demonstrates relative improvements ranging from
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Table 1. Objective Evaluations for speech quality measures on the REVERB eval set

SimData RealData
Metrics CD | LLR | FWSegSNR 1 SRMR 1 SRMR*
Room 1 2 3 2 3 1 2 3 1 2 3 1
Far microphone
Unprocessed 267 521 496|038 075 084 | 668 104 024|458 297 2.73 3.19
WPE [24] 242 504 476|035 0.79 083 | 734 080 034 | 487 3.15 2.99 3.85
WRN [11] 243 499 456 | 035 059 067 | 754 179 088 | 448 332 2.84 -
Cauchietal. [25] | 267 4.65 444 | 042 0777 082 | 893 350 275|475 388 3.86 4.76
Proposed 222 457 393|028 055 0.60 | 10.27 492 4.66 | 485 4.76 4.35 5.79
Cepstral branch | 2.67 5.01 4.64 | 042 091 094 | 693 1.09 088 | 437 351 322 3.49
Spectral branch | 2.56 4.57 3.79 | 0.33 0.61 0.61 | 890 394 4.63 | 359 323 3.3 4.01
Near microphone
Unprocessed 199 463 438 035 049 0.65| 812 335 227|450 3.74 3.57 3.17
WPE 1.82 453 412|033 052 062 | 866 344 269 | 451 389 392 4.42
WRN 202 461 415|036 046 0.60 | 828 3.57 254 | 404 346 3.27 -
Cauchi et al. 2.02 382 367|036 051 0.64 1029 6.19 4.89 | 465 432 427 4.87
Proposed 1.89 4.11 355|027 042 0.50 | 11.02 6.54 6.27 | 4.87 4.56 4.56 5.51
Cepstral branch | 2.23 446 4.13 | 037 0.70 0.78 | 838 252 272|449 399 398 3.13
Spectral branch | 2.43 422 355|032 055 055 950 442 554|347 323 328 3.88

Table 2. WER(%)]. performance of acoustic model trained
on clean speech and test on the REVERB eval set.

SimData RealData
Methods Near Far  Near Far
Unprocessed 90.34 91.86 46.78 15.72
WPE 84.71 8793 40.63 11.79
Proposed 5439 5474 16.22 7.29
Cepstral branch  88.93 92.24 52.68 25.99
Spectral branch  60.40 60.43 17.33 9.1

8.3% to 51.1% in cepstrum distance (CD), log likelihood
ratio (LLR), and speech-to-reverberation modulation energy
ratio (SRMR). On average, it achieves a 3.5dB improve-
ment in frequency-weighted segmental signal-to-noise ratio
(FWSegSNR). We conducted an ablation study to illustrate
the considerable improvement achieved by the dual-branch
approach compared to each individual branch. In Table 1,
the *Cepstral branch’ means exclusive processing using the
cepstral domain network, while the ’Spectral branch’ repre-
sents results obtained solely using ”Conformer U-Net All”
for signal estimation. To ensure a fair comparison, we ad-
justed both single-branch networks to match the model size of
the dual-branch network. The ’Cepstral branch’ exhibits the
worst performance, indicating that incorporating minimum-
phase speech and noisy phase can not effectively remove
reverberation. This aligns with our expectations since the
all-pass response tends to have severer reverberation than
the minimum-phase response [13]. The proposed method

achieves better evaluation scores than single-branch methods
by combining cepstrum enhancement and phase estimation.
This indicates that speech dereverberation can benefit from
cepstrum when clean phase estimation is incorporated, as
cepstrum directly exhibit the fundamental frequency infor-
mation which is useful for recovering speech harmonics.
Audio samples are provided online'.

We proceed to evaluate the effectiveness of our method by
assessing its impact on an ASR system. The results in Table
2 indicate that the proposed method outperforms other ap-
proaches in various reverberation environments. Specifically,
our method achieves 24.41% and 4.5% absolute improve-
ments in WER in near and far condition of RealData when
compared to WPE. This underscores how our method can
contribute to improved performance in the back-end speech
system.

5. CONCLUSIONS

In this study, we introduced a dual-path speech derever-
beration system that integrates cepstral and spectral domain
features by separately estimating minimum-phase and all-
pass speech components. Our experimental results demon-
strate that the proposed method effectively leverages the
strengths of both domain features and achieves superior per-
formance in terms of speech quality and ASR performance.
In future research, we will continue to explore methods that
can simultaneously suppress noise and reverberations.

! Audio Samples: https://winkee520.github.io/DecompNet/
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