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Hydroxybenzylammonium compounds can undergo a reversible 1,4- or 1,6-elimination to afford quinone methide
DOI: 10.1039/x0xx00000 intermediates after release of the amine. These molecules are useful for the reversible conjugation of payloads to amines.
We hypothesized that aromaticity could be used to alter the rate of reversibility as a distinct thermodynamic driving force.
We describe the use of density functional theory (DFT) calculations to determine the effect of aromaticity on the rate of
release of the amine from hydroxybenzylammonium compounds. Namely, the aromatic scaffold affects the dearomatization
reaction to reduce the kinetic barrier and prevent the reversibility of the amine elimination. We consequently synthesized
a small library of polycyclic hydroxybenzylammoniums, which resulted in a range of release half-lives from 18 minutes to
350 hours. The novel mechanistic insight provided herein significantly expands the range of release rates amenable to
hydroxybenzylammonium-containing compounds. This work provides another way to affect the rate of payload release in
hydroxybenzylammoniums.

Previous Studies:
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was a reversible step in this reaction. Therefore, an
Figure 1. (a) Benzyl carbamates for amine release. (b) Hydroxybenzylammoniums
with electron-donating groups and intramolecular trapping arms.” (c) Polycyclic
azaquinone methide-mediated release of benzylic phenols.? (d) Polycyclic aromatic
a-Department of Chemistry and Biochemistry and California NanoSystems hydroxybenzylammoniums. Star indicates a potential payload of interest
Institute,University of California, Los Angeles, Los Angeles, California, 90095- (Fluorophore, polymer, protein/peptide, etc.).
1569, United States.
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Figure 2. (a) Free energy diagrams for polycyclic aromatic hydroxybenzylammonium release calculated at the M06-2X/aug-cc-pVTZ, CPCM(Water)//B3LYP-D3/6-31+G(d,p),
CPCM(Water) level of theory. (b) TS1 geometries calculated for 1,4-benzene, 1,4-naphthalene, 1,4-anthracene, and 9,10-anthracene-based hydroxybenzylammoniums. (c)

Calculated free energy of activation at the aforementioned level of theory plotted against the corresponding Polansky Aromaticity Index of the parent hydrocarbon scaffold.

intramolecular nucleophilic agent was designed in silico to
subvert the entropic cost of an intermolecular reaction by
interacting with the quinone methide intermediate, preventing
the reversibility of the reaction (Fig. 1a). The addition of the
pendant nucleophilic group accelerated the half-life by five-fold
and achieved a reaction half-life of 5.5 hours and a first-order
rate constant of 3.53 x 10-> s-1. However, certain applications
with self-immolative linkers may necessitate even faster release
of the payload. Accessing these higher rates would require a
different approach from the use of electron donating
substituents and pendant nucleophilic groups.

Inspired by work showing the increased rates of azaquinone
methide-mediated release of benzylic phenols when polycyclic
aromatic cores were used (Fig. 1c),812 we hypothesized that
leveraging aromaticity as a thermodynamic driving force would
serve as a separate approach to modulate the release rates of
the hydroxybenzylammoniums (Fig. 1d). Using experimental
and computational mechanistic studies, we were able to
elucidate the key role of aromaticity in the release of amines.
This mechanistic insight led us to develop
hydroxybenzylammoniums with amine release half-lives from
18 minutes to 350 hours.

Results and Discussion

DFT Calculations

2 | J. Name., 2012, 00, 1-3

To examine the effect of aromatic rings on the release, we
initially computed the free energy diagrams for the 1,4-benzene
substrate at the MO06-2X/aug-cc-pVTZ, CPCM(Water)//B3LYP-
D3/6-31+G(d,p), CPCM(Water) level of theory using
methylamine as a model amine (Fig. 2a). Previously, we have
noted that the release of these hydroxybenzylammoniums is
pH-dependent,” but in this instance, the pK, of the phenol
proton should not be significantly affected by the addition of
more aromatic rings (See SI Fig. S48).13 As the initial
deprotonation event should have a similar Gibbs free energy
(AG) (ca. +2.5 kcal/mol) for the substrates, we have computed
the reaction starting from the zwitterionic species Intl. Intl
then undergoes the elimination of methylamine with a Gibbs
activation free energy (AG*) of 14.0 kcal/mol. However, the
formation of the quinone methide Int2 is endergonic by 0.4
kcal/mol, indicating the reversibility of this reaction. Examining
the 1,4-naphthalene substrate, we observe a AG* of 12.0
kcal/mol with a AGgx, of -4.5 kcal/mol, which has a lower AG*
and AGgy, compared to the 1,4-benzene substrate. These results
indicate that the amine release for the 1,4-naphthalene scaffold
should be both faster and less reversible than the 1,4-benzene
substrate. Fusion of additional benzene rings may further affect
the amine release rate, so we computed the 1,4-anthracene and
1,4-tetracene substrates, which lead to AG* of 10.8 and 11.1
kcal/mol and AGgs of -6.6 and -7.1 kcal/mol, respectively.
Comparing the substrates’ free energy diagrams (Fig. 2a), we
observe an Evans-Polanyi type relationship wherein the AGgyn is
proportional to the AG*. Additionally, we observe a noticeable
decrease in the C-N bond distance when comparing the

This journal is © The Royal Society of Chemistry 20xx
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Figure 3. (a) Library of polycyclic aromatic — phenethylamine conjugates prepared and their experimentally determined release rate constants. (b) Phenethylamine release
kinetics of 1, 2a, and 3a (n = 3, some error bars are smaller than markers) carried out at 5 mM of the benzene- or naphthalene-hydroxybenzylammoniums or 1 mM of the

anthracene-hydroxybenzylammonium in a 1:1 mixture of methanol and 0.1 M Tris buffer (pH 7.4). (c) First-order plot of phenethylamine release kinetics of 2a and 3a (n = 3,

some error bars are smaller than markers).

transition state geometries (Fig. 2b), emphasizing the earlier
transition state for the more conjugated substrates.

We also sought to examine how hydroxybenzylammonium
substitution in the polyaromatic system affects the reaction
energetics. Examining the 9,10-anthracene and 5,12-tetracene
substrates, we observe AG* of 8.5 and 7.4 kcal/mol and AGgyn of
-11.9 and -14.3 kcal/mol, respectively. These substrates provide
a pronounced AAG* compared to their distally substituted
counterparts. By examining the Polansky Aromaticity Index, a
measure of the local aromaticity in polyaromatic hydrocarbons,
of the parent hydrocarbon scaffold, we observe a trend wherein
the less aromatic systems have a lower AG* (Fig. 2c), indicating
that the dearomatization reaction is more facile for these
substrates. Since the central rings are less aromatic compared
to the distal rings, the AG* for these substrates is significantly
lowered (i.e. 9,10-anthracene vs. 1,4-anthracene and 5,12-
tetracene vs. 1,4-tetracene). Based on our computational
results, we proposed that the 6,13-pentacene substrate would
have the most favorable AG* and AGgy, as it has the lowest
Polansky  Aromaticity Index among the computed
substrates.141> We computed the free energy diagram for this

Crptp e G <35 Gl

4 5
(62%) (73%)
Scheme 1. Synthesis of 1,4-anthracene hydroxybenzaldehyde 8.

+BUONO, CuBry K,COg, Mel
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substrate and observed a AG* of 6.5 kcal/mol and AGgy, of -16.8
kcal/mol (Fig. 2a), which is in agreement with our hypothesis.
From these seven substrates, we can elucidate the effect that
aromatic ring fusion and location of the
hydroxybenzylammonium play in this reaction. Namely, these
two factors facilitate the dearomatization reaction, which leads
to a decrease in AG* and a decrease in reversibility for the amine
elimination.

Synthesis of Hydroxybenzylammonium Scaffolds

To validate these computational predictions, we sought to
synthesize all of the computed substrates (Fig. 2a). Using
commercially available 4-hydroxybenzaldehyde and 4-hydroxy-
1-naphthaldehyde, phenethylamine conjugates 1 and 2a were
prepared via reductive amination, respectively. To synthesize
the 1,4-anthracene scaffold, we performed a Sandmeyer
reaction with the commercially available 1-amino-4-
hydroxyanthraquinone using copper (ll) bromide and tert-butyl

nitrite, forming bromoanthraquinone 4. This was then
methylated (5) and subsequently reduced with sodium
OH

BErG n-BuLIDMF
~ DCM, 0t023°C, 16 h ~ THF,-78 1023 °C, 3 h
o

[ 7 8
(47%) (65%) (54%)
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borohydride to yield 1-bromo-4-methoxyanthracene (6). Lastly,
a sequence of demethylation (7) followed by lithiation and
formylation with DMF afforded the hydroxyaldehyde 8 (Scheme
1, see Sl for details). 8 was then conjugated to phenethylamine
via reductive amination to form 3a.

Difficulty in regioselective functionalization to form the 1,4-
tetracene, 5,12-tetracene, and 6,13-pentacene substrates
precludes their synthesis. Additionally, computational
examination of the 1,4-anthracene and 9,10-anthracene
hydroxyaldehyde tautomers indicated that the 9,10-anthracene
favors tautomerization to the anthrone, whereas the 1,4-
anthracene prefers the hydroxyaldehyde scaffold (See Sl pages
S87-88).16 Formation of the anthrone likely prevents formation
of the corresponding hydroxybenzylammonium after reductive
amination, so we shifted our focus to the release studies of the
1,4-benzene, 1,4-naphthalene, and the 1,4-anthracene
scaffolds that prefer the hydroxyaldehyde tautomer.

Release Studies of Polycyclic Aromatic Hydroxybenzylammoniums

Phenethylamine was chosen as a model amine payload for high-
performance liquid chromatography (HPLC) kinetic analysis. The
release studies were performed using standard conditions with
5 mM solution of the hydroxybenzylammonium in a 1:1 mixture
of methanol and 0.1 M Tris buffer at pH 7.4, where the
appearance of phenethylamine was monitored via HPLC and
quantified using the area under the curve at 254 nm. As we
previously demonstrated, the 1,4-hydroxybenzylammonium (1)
shows no release, likely due to the reversibility of the quinone
methide formation. We next sought to experimentally profile
the the 1,4-naphthalene-based
hydroxybenzylammonium. 2a has a release half-life of six hours
and first-order rate constant of 2.98 x 10 s1 (Fig. 3), which
approaches the fastest rate constant from our initial report
(3.53 x 10° s1) and was synthesized in one step from

release of

commercially available starting materials. This finding also
validates our computational prediction that we are able to
modulate the release rate by tuning the aromatic scaffold of the
hydroxybenzylammonium.

With DFT calculations showing that the 1,4-anthracene
substrate has a AAG* of -1.2 kcal/mol and a AAGgy, of -2.1
kcal/mol compared to the 1,4-naphthalene scaffold (Fig. 2a), we
profiled the release for the 1,4-anthracene substrate. Due to its
diminished solubility in 1:1 methanol and Tris buffer, the
release assays for 3a were performed at 1 mM concentration
instead of the standard 5 mM. In agreement with DFT
calculations, the more conjugated 1,4-anthracene system (3a)
showed a 20-fold
naphthalene 2a, pushing the release half-life to 18 minutes and
rate constant to 6.12 x 104 s'1 (Fig. 3).

increase in release rate compared to

To ensure that both the naphthalene 2a and anthracene 3a
proceed though our proposed mechanism of deprotonation and
quinone methide formation, we prepared methylated
derivatives 2b and 3b (See Sl for details). As expected, this
prevented the deprotonation of the phenol and subsequent
formation of the quinone methide intermediate, leading to no
observed release of phenethylamine (Fig. 3).

Heteroaromatic Hydroxybenzylammonium and
Azabenzylammonium Release

Previous literature reports demonstrate that in the case of
benzyl carbamate-based self-immolative linker release, the
pyridine core system releases faster than its benzene analog.1?
This is likely due to the lower the pK, of the phenol proton in
the heteroaromatic case, so we also hypothesized that this may
aid in the release rate in the hydroxybenzylammoniums (See S|
Fig. S49). Therefore, we decided to explore the effect of
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Figure 4. (a) TS1 structures calculated at the B3LYP-D3/6-31+G(d,p), CPCM(water) level of theory for 5- and 8-hydroxyquinoline benzylammoniums and calculated free energies
of activation for the forward and reverse reactions at the M06-2X/aug-cc-pVTZ, CPCM(Water)//B3LYP-D3/6-31+G(d,p), CPCM(Water) level of theory. (b) Library of pyridine-,
quinoline-, and azanaphthalene-based phenethylamine conjugates synthesized and their experimentally determined release rate constants. (c) First-order plot of

phenethylamine release kinetics (n = 3, some error bars are smaller than markers) carried out at 5 mM of the hydroxy- or azabenzylammonium in a 1:1 mixture of methanol

and 0.1 M Tris buffer (pH 7.4).
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Figure 5. Release half-life spectrum of hydroxybenzylammonium molecules. Release half-lives displayed are from this report as well as our previous article.2®

heteroaromatic cores on the rate of release in our

hydroxybenzylammoniums.

Since 5-hydroxypicolinaldehyde is the only stable isomer of
phenethylamine
conjugate 9 via reductive amination. However, subjecting it to

hydroxypyridine,18 we first prepared its

standard release conditions did not show any release, similar to
the benzene core (1).

We then shifted our focus to a quinoline core system, positing
that the additional conjugation would accelerate the release.
Two isomers of quinolines could be prepared that undergo the
1,6-elimination, so we first sought to computationally examine
the 5- and 8-hydroxyquinoline isomers to determine an optimal
experimental candidate. The 5-hydroxyquinoline substrate has
a AAG?* of +4.5 kcal/mol compared to the 8-hydroxyquinoline
substrate, likely due to the hydrogen bonding of the
benzylammonium N-H protons to the nitrogen atom in the
quinoline that is disrupted during the dearomatization reaction
(See Sl for details).

Accordingly, the 8-hydroxyquinoline substrate was synthesized
(See SI for details) reductive amination with
phenethylamine was performed to generate 10 for further

and

release assays. The release assay was carried out using the
standard protocol, and the 8-hydroxyquinoline
benzylammonium 10 exhibited a rate constant of 5.50 x 107 s1
with a half-life of 350 hours, which is significantly slower
compared to the naphthalene scaffold 2a. We hypothesize that
despite the lower pK;, of the phenol proton, the heteroaromatic
rings are more electron deficient, which leads to slower release
of the amine-based payload.

Lastly, we examined different elimination triggers to determine
how the azaquinone methide elimination compared to its
quinone methide A Boc-protected
naphthylamine was prepared and deprotection with TFA prior
to the release assay afforded the azaquinone methide-based
benzylammonium 11. However, it showed a significant
decrease in rate (Half-life of 277 hours and rate constant of 6.94
x 107 s'1) compared to the quinone methide benzylammonium
2a. This is likely due to the reduced donating capability of the
aniline (o, = -0.66) compared to the phenoxide (o, =-0.81).2°

counterpart. amino-

We believe that further elaboration and incorporation of these
hydroxybenzylammonium motifs into peptide- and protein-
polymer conjugates would allow for further rate tuning of these

This journal is © The Royal Society of Chemistry 20xx

materials as traceless, self-immolative linkers. The expanded
half-lives presented in this study (>10 days to <30 minutes, Fig.
5) give users the option to choose an aromatic scaffold
amenable to their desired application. Incorporation of a
cleavable phenol protecting group would allow for a stimuli-
responsive release, which could provide temporal control over
payload release from the hydroxybenzylammonium scaffold.
Additionally, we propose that this strategy is also amenable to
the release of secondary and tertiary amines (See Sl pages S85-
86), though the tertiary amine would necessitate formation of
the hydroxybenzylammonium via a substitution reaction
instead of reductive amination.

Conclusions

The hydroxybenzylammonium elimination reaction can provide
scientists with a useful tool for reversible modification of
compounds as a self-immolative linker. In prodrugs and
antibody-drug conjugates, self-immolative linkers are often
used to temporarily inactivate the therapeutics to limit off-
target effects. However, when they are exposed to the requisite
stimuli, the self-immolative linkers are cleaved, releasing the
active payload.20.21 These linkers have also been explored as a
useful strategy to employ in formulations of polymer-protein
conjugates. Polymer conjugation is widely employed to address
some of the challenges for these therapeutics, such as
instability in the presence of internal and external stressors and
short circulation times.22-27 However, conjugation of large
polymers onto the surface of the proteins often significantly
reduces the bioactivity of the proteins.28-32 Therefore, the use
of self-immolative linkers between the protein and polymer,
where the covalent linker cleaves upon external stimuli, allows
the native proteins to be released, reversing the loss of activity
by removing the conjugated polymer.33 Additionally, self-
immolative monomers have been incorporated into stimuli-
responsive materials that are designed to undergo a cascade
and sequential depolymerization upon the removal of the end-
capping group.34-36

Using DFT calculations, we uncovered the effect that polycyclic
aromatic cores have on accelerating the release of an amine-
containing payload from the hydroxybenzylammoniums. The
release of the amine is accelerated in the polycyclic aromatic
substrates due to the reduced aromaticity in these systems
which simultaneously prevents the reversibility of the
elimination. We subsequently prepared a series of polycyclic

J. Name., 2013, 00, 1-3 | 5



aromatic-based hydroxybenzylammoniums and were able to
achieve half-lives as fast as 18 minutes. Lastly, we examined the
effect of heteroaromatic hydroxybenzylammonium and
azabenzylammonium scaffolds on the release of amines, but
they did not show improved rates of release. Thus, these results
demonstrate another avenue to tune the release profile of the
hydroxybenzylammoniums and the computational and
experimental synergy available in this field.

Data Availability

All data are available free of charge in the ESI, including
experimental details, NMR spectra, characterization,
coordinates of computed structures.
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The factors that govern hydroxybenzylammonium-mediated amine
releasing reactions has been computationally examined. This
mechanistic insight led to subsequent experimental validation and
generation of release half-lives as low as 18 minutes.

8 | J. Name., 2012, 00, 1-3

Please do not adjust margins

Journal Name

This journal is © The Royal Society of Chemistry 20xx




