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Chiral fermion anomaly as a memory effect
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We study the nonconservation of the chiral charge of Dirac fields between past and future null infinity
due to the Adler-Bell-Jackiw chiral anomaly. In previous investigations [A. del Rio, Phys. Rev. D 104,
065012 (2021)], we found that this charge fails to be conserved if electromagnetic sources in the bulk
emit circularly polarized radiation. In this article, we unravel yet another contribution coming from the
nonzero, infrared “soft” charges of the external, electromagnetic field. This new contribution can be
interpreted as another manifestation of the ordinary memory effect produced by transitions between
different infrared sectors of Maxwell theory, but now on test quantum fields rather than on test classical
particles. In other words, a flux of electromagnetic waves can leave a memory on quantum fermion states
in the form of a permanent, net helicity. We elaborate this idea in both 1 4+ 1 and 3 + 1 dimensions. We
also show that, in sharp contrast, gravitational infrared charges do not contribute to the fermion chiral

anomaly.
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I. INTRODUCTION

Not all symmetries of a classical theory remain exact
after quantization. When this occurs, i.e., when a symmetry
of the action is broken by quantum effects, one speaks
about anomalies [1]. Anomalies were first discovered in the
late 1960s, in the seminal works by Adler, Bell, and Jackiw,
as an attempt of solving the pion decay puzzle [2,3]. They
found that the chiral symmetry of the action of a massless
Dirac field ¥(x) that interacts with an electromagnetic
background is broken in quantum field theory.
Mathematically, this outstanding result is beautifully
encoded in the nonconservation equation of the fermionic
chiral current j§(x) = ¥(x)y“y ¥(x), which on a 3+ 1
dimensional Minkowski spacetime takes the form
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where F,, is the field strength of the background electro-
magnetic field, *F“* its Hodge dual, and ¢ the charge of the
fermion. This is the celebrated chiral or axial anomaly.

Besides electromagnetic fields, gravitational back-
grounds have also the ability of triggering a chiral anomaly,
as it was soon after found in [4-6]. Mathematically, this
contribution generalizes the previous equation by adding a
new term proportional to the pseudoscalar curvature
invariant R .,*R*°“, where R, is the Riemann tensor
and *R,,., its Hodge dual with respect to the first two
indices:
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The following years experienced an outbreak of fascinating
results involving anomalies, both regarding physics and
mathematics. Examples include, besides the prediction of
the neutral pion decay rate to two photons, applications to
the matter-antimatter asymmetry of the universe, the U(1)
and strong CP problems in QCD, implications for anomaly
cancellation in the Standard Model (see [7] for a nice
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summary of all these applications), and connections with
the index theorems in geometric analysis [8—10]. The
notion of chiral anomalies has also been extended to other
fields, including integer spin fields [11-14].

In this article, we investigate yet another aspect of chiral
anomalies, related to global properties of both the fer-
mionic and the background fields. These global properties
appear when discussing the Noether charge associated with
the chiral current, namely Q4 = [; d= 7%, where the inte-
gral is computed on any constant-time Cauchy hypersur-
face X. For the sake of clarity, let us focus on
electromagnetic backgrounds, although similar arguments
apply also for gravitational backgrounds—except for some
important differences that we unravel in this article.
Classically, the chiral charge Q4 of a Dirac field measures
the difference in the amplitude of the two helical compo-
nents of the field. Quantum mechanically, this quantity
translates to the difference in the number of positive and
negative helicity particles, together with possible contri-
butions from “vacuum polarization.” The charge Q, is
strictly conserved in the classical theory, but it is not
quantum mechanically due to nonconservation of the
current (2). This can be easily shown by considering any
two Cauchy hypersurfaces, %;, and X, and noticing that
the change in the vacuum expectation value of Q4 between
%, and X, is equal to the integral of (V,j4) in the four-
dimensional region R bounded by Z;, and X:

[ @@ = [ a0 + (9 -5,)

_ / #x(0,/9) = (Qn)s. — (Qa)s.,  (3)

where, in the second equality, the second term vanishes
due to Stoke’s theorem and standard falloff conditions of
the fields at spatial infinity. Hence, a nonzero value of the
integral [, d*x(V,j4) implies the nonconservation of the
chiral charge of the quantum fermionic field.

Our goal is to understand what characteristics the
electromagnetic backgrounds must have to produce a
nonzero value of this integral. It is easy to check that
the pseudoscalar F,,*F?” appearing in (1) can be written as
the divergence of a vector, j&s = 2A,*F®, where A, is the
electromagnetic potential—CS stands for Chern-Simons.
Repeating the steps used to produce Eq. (3), Egs. (1) and
(3) automatically imply that the fermionic chiral charge
(Q,) fails to be conserved if and only if the scalar Qcg =
J5 dZj2, associated with the vector jég changes between
2, and X,

(Qa)s — Ocs zm]- 4)
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This simple observation provides an interesting strategy to
classify electromagnetic backgrounds that are able to
trigger an anomalous nonconservation of the chiral charge

of fermionic quantum fields propagating thereon.' This
strategy was initiated in [15,16] for both electromagnetic
and gravitational backgrounds, where some aspects of the
scalar Qcg were analyzed for asymptotically flat space-
times, in which the hypersurfaces X, and X, can be
chosen to be past (Z7) and future null infinity (Z1),
respectively. This is a natural choice when studying
massless quantum fields. It was shown that, at these
limiting surfaces, the scalar Qcg receives a contribution
from the net helicity of the radiative content of the
electromagnetic and gravitational fields. This implies that,
if there are sources in the bulk emitting helical or circularly
polarized radiation—in gravity, this happens, for instance,
in the coalescence of a large family of binary black hole
mergers [15,17]—there is a net change of Qg between Z~
and Z, which induces a change in the chiral charge (Q,)
of fermionic quantum fields propagating thereon. This is a
profound relation between the radiative content of the
background field and the chiral charge of quantum fields.
We emphasize that this is a quantum effect; classically,
(Qp) is strictly conserved for massless fields, regardless of
the properties of the electromagnetic and gravitational
backgrounds.

This article unravels another contribution to Qcg—
which, consequently, also acts as a source of fermionic
helicity (Q,)—originated in the existence of certain
electromagnetic infrared or “soft” charges. Infrared charges
have received a good deal of attention in the recent past,
due to their theoretical importance in the study of the
S-matrix in quantum electrodynamics and quantum gravity,
and due to their connection with soft theorems (see the
reviews [18,19] and references therein). On the other hand,
nonzero infrared charges indicate the generation of
“memory effects” in physical systems. To give an example,
test charged particles can experience a permanent change in
their velocity (a “kick™) after the passage of electromag-
netic waves [20]. In electrodynamics, this was the first
example of memory reported in the literature. Other
memory effects have been identified in recent years (see
for instance [21,22] for an effect related with the helicity of
radiation, and references therein).

Therefore, the results of this article can be interpreted as
another type of memory effect produced by infrared
charges, now on test quantum fields rather than on classical
test particles. Quite interestingly, we find that this new
manifestation of electromagnetic memory effect does not
occur for the gravitationally-induced chiral anomaly.

'For Yang-Mills fields, the standard strategy consists in
looking for instanton solutions in Euclidean space. However,
there are no instanton solutions of Maxwell (Abelian) equations
in four dimensions. Furthermore, it is useful to work directly
within the framework of asymptotically flat spacetimes, since it
captures the full causal structure of physical (Lorentzian) space-
times.
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The rest of this article is organized as follows. Section II
introduces a simple example of pedagogical value: a
massless Dirac field in 1 + 1-dimensional flat spacetime
coupled to an electromagnetic background. Section III
contains a brief summary of the asymptotic properties of
the electromagnetic field at past and future null infinity,
including the notion of soft charges and memory effect in
this framework; readers already familiar with the notation
can skip this section. Section I'V contains the main analysis
of this article, where the contribution of soft electromag-
netic charges for the Adler-Bell-Jackiw anomaly is derived.
This section also includes a simple example of an electro-
magnetic configuration for which the relevant infrared
charges are different from zero. The gravitational case is
discussed in Sec. V, and Sec. VI closes the paper with a few
conclusions and remarks.

Throughout this paper, we use geometric units in which
G =c =1, and we keep % explicit in our equations to
emphasize quantum effects. The metric signature is chosen
to be (-, +,+,+); V, represents the Levi-Civita connec-
tion; the Riemann tensor is defined by 2V Vv, =

R .%v, for any covector v,. Unless otherwise stated, all
tensors will be assumed to be smooth.

II. CHIRAL ANOMALY IN TWO DIMENSIONS

This section discusses a massless, charged Dirac field in
a 1+ l-dimensional flat spacetime, propagating on a
homogeneous electric background with finite support in
time. To make our arguments simpler, we assume that the
spacetime manifold is R x St ie., the spatial dimension
has been compactified to the circle. The electric field is
assumed to be strong enough to make the backreaction of
the quantum field negligibly small. This setup has great
pedagogical value to illustrate some of the main messages
of this paper, particularly the relation between the chiral
fermion anomaly and the memory effect. We also discuss
the relation of these concepts with spontaneous quantum
particle-pair creation.

In a 1+ 1-dimensional spacetime, F, has only one
independent component—the electric field—F,, = Ee,,,
where €, is the totally antisymmetric tensor. Among the
two Maxwell equations, dF = O is a trivial identity in 1 4 1
dimensions, since it involves antisymmetrizing three indi-
ces which can only take two different values. The other set
of Maxwell equations, d*F = *j, lead to € 0,E = —j.
These equations imply that the electric field cannot vary out
of the support of the sources j, neither in space nor in time.
Hence, in 1+ 1 dimensions there are neither magnetic
fields nor electric waves.

Let us consider a fixed, time-dependent electric field that
is uniform in space. This can be generated by a time-
dependent current of the form j* = (0, j(¢)). We further
assume that the electric field is different from zero only
during a finite interval, E(¢) # 0 for £, < f < t,,.. Despite

the fact that dF = 0 is an identity and there is no magnetic
field, it is still useful to introduce a vector potential,
F =dA, in terms of which the electric field reads
E=0,Ay)—0pA,. A gauge transformation changes
A, - A, +9d,a, with @ a continuous function in the
spacetime manifold. We can always use this freedom to
make A, = 0, so that, under this gauge choice, £ = d,A,.

In 1+ 1 dimensions, the expression (1) for the chiral
anomaly is replaced by [23]

a4,
(Vaj%) :Ee bF . (5)

The right-hand side can be written as %Va Jés» where

Jjds = 2€"’A,. Although this vector is not gauge invariant,
its divergence, as well as the scalar Q¢5(1) = [, dxjlg(t, x),
are both gauge invariant.” Following the argument
described in the Introduction, Eq. (5) implies that the
change of the chiral charge (Q,)(7) = [L d6(;9)(z,6) from
tin to toy can be written, for any quantum state, as

qh
(Oa)(tou) = (Qa) (i) = Py [Ocs(fou) = Qcs ()], (6)
where Qcs = [FdOjdg =2 [ A,df®.  As  mentioned
above, this quantity is manifestly gauge invariant. Recall
also that this scalar is purely electric, i.e., it does not know
anything about the Dirac field. From this, we have

gmmm—mkg%>=2/7MMA%m—Aa%»

0

:uf%m@ (7)
Tin

where in the last equality we have used that £ = d,A,, that
the electric field is homogeneous, and that L is the length of
the spatial sections. Hence, Eq. (6) tells us that the
anomalous nonconservation of the chiral charge (Q,) is
dictated by the value of the time integral of the electric field

Iy

(©)ton) = (Qa) 1) =T [ v (8

fin

This result shows that the vacuum expectation value (Qy4)
“keeps memory” of the past history of the electric field. In
particular, the effect of switching on an electric field for
some period of time f, <t < t,, can leave a residual,
permanent helicity contribution on the vacuum state of the
quantum field (quantified by the value of (Q4) at late

A more rigorous derivation of this vector gives jig =
2e"0 (A, — AY) with V[uAg] =0, which includes an auxiliary
potential Ag that makes j¢g gauge invariant. Since this extra
term does not affect physical quantities, we can simply take
A(,), = 0, as customary in the literature.
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times), even after switching off completely the external
field. One can think about this residual helicity as the way
the quantum field retains information about the past
influence of the electric background.

The integral on the right-hand side above also features in
the memory effect found for classical particles [20]. A test
charged particle in our background would suffer a perma-
nent change in its velocity after the passage of this
electromagnetic pulse if and only if ftf:“‘ dtE(t) # 0.
From this point of view, the permanent change in the
vacuum expectation value (Q,) found above can be
thought of as another manifestation of the electromagnetic
memory effect, but now on quantum fields.

It may be surprising that, despite the fact that the external
electric field vanishes, the quantum system does not return
to its original configuration. To better understand this
effect, one has to resort to the electromagnetic potential,
which makes manifest that the memory actually originates
from transitions between inequivalent vacua of the electric
field (hence, the background does not really return to the
same exact configuration either). To see this, recall that our
electric background evolves from a vacuum configuration,
E(t;,) = 0, to another vacuum configuration E(t,,) = 0.
Classically, the two electric vacuum states are equivalent,
but quantum mechanically they may not be.’ In particular,
note that the change in potential from 7, to 7.,
A, (tow) — Ay(tn), is nontrivial. This can be seen from
the fact that the loop integral [qi d¢“(A,(tow) — Au(tin)),
which is gauge invariant, is different from zero if and only
if [ dtE(t) # 0. But since the electric field vanishes at
early and late times, A,(7,,) can only differ from the
initial potential A, (#;,) by a residual gauge transformation,
left by the dynamical evolution of the electric field.
A straightforward calculation shows that this gauge
transformation is given by A, (t,,) = A,(fn) + 0, with
a(f) = 0 [ dtE(t) + ap, for some constant ap. However,
this is not an ordinary gauge transformation because a(9) is
not a continuous function on S' (because a(L) # a(0)).
Instead, it belongs to the family of so-called “large” gauge
transformations [23], which carry physical implications,
and which can be used to label inequivalent notions of
vacuum states of the quantum electromagnetic theory.*

In summary, the passage of an electric pulse with
Jiow dtE(t) # 0 induces a large gauge transformation in

in

the vector potential, which produces a memory effect, not
only on classical charged particles but also on the states
of quantum fermion fields. As will be discussed below, in
3 + 1 dimensions there is another contribution to the chiral
anomaly coming from the radiative content of the electro-
magnetic field; such contribution does not arise in 1+ 1
due to the absence of electromagnetic radiation.

The permanent change in the vacuum expectation value
of the chiral charge (Q,), described on the left-hand side of
(8), can also be understood in terms of the standard notion
of electromagnetic memory for particles. Heuristically,
virtual charged particles populating the quantum vacuum
would suffer a permanent change in its velocity after
switching on this electric pulse, provided the integral
Jiw dtE(t) does not vanish. In 1+ 1 dimensions these
charges can only propagate in two directions, left or right.
Therefore, positive charges suffer a “kick™ in the direction
of the electric field, while negative charges are kicked in the
opposite direction. Both particles in the pair have the same
helicity. If the kick is strong enough, it will turn virtual
charges into physical excitations out of the quantum
vacuum. This results in a net creation of helicity, which
explains the permanent change of the quantum state or of
the chiral charge (Q,).

This heuristic picture can be made rigorous through a
calculation of particle-pair creation using Bogoliubov coef-
ficients. We finish this section with a brief allusion to this.
If the electric field is nonzero only during a finite interval,
tin <t < tyy, We can define natural “in” and “out” notions
of vacua and particles. The question of interest is, if the
field is prepared in the “in” vacuum before ¢, and evolved
until a time after #,,,, what is the number of “out” quanta in
the final state?

This question can be answered without much difficulty
in the case in which the electric field is uniform at all times
(Appendix A contains a detailed derivation of this and of
the general case of an electric field that varies both in space
and time). As before, let us work in a gauge in which the
vector potential is purely spatial, A, = 0. Without loss of
generality, we can also consider Ay(¢) = 0 for 7 < t;,. Let
Ay = [ E(t)dt denote then the value of A, at late times,
after #,,. In short, a nonzero value of A, induces a
permanent frequency shift between the “in” and “out”
basis of solutions of the field equations, which define the
“in” and “out” vacua, respectively. Namely, for modes with

>The most prominent example of this is the Ahranov-Bohm effect [24].

More precisely, when the potential A, is viewed as a gauge connection on a U(1) principle bundle over R x S!, we can speak of
infinitesimal gauge transformations, as well as of global or finite gauge transformations. In the temporal gauge fixing A, = 0, a finite
gauge transformation, A, — A, — ig~'V g, is determined by a continuous map g: S' — S', given in a local coordinate system by
g(0) = ¢ Continuous maps on S' can be divided in different (homotopy) classes, where two elements of the same class can be
deformed continuously into each other. The classification of continuous maps is determined by the first homotopy group, II(S!) ~ Z,
which shows that each class of gauge functions is labeled by an integer. This is easy to infer from the requirement that g is continuous,
because it demands a(L) — a(0) = 2zn, for n€ Z. Two gauge functions g, ¢ belonging to different classes cannot be deformed
continuously into each other. An ordinary gauge transformation is a gauge transformation g that belongs to the trivial class or n = 0,
while gauge functions with n # 0 lead to “large” gauge transformations [23].
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spatial dependence e™*, with k€ (2z/L)n and n € Z, the
“in” modes oscillate with frequency w;, = k, while “out”
modes oscillate with frequency w,,, = k + gA,. Because k is
discretized (due to the compactness of the spatial sections)
there is a finite number of modes within the frequency
interval (0, g|A|). Namely, there are [¢|Ao| £] modes within
this interval, where the square brackets denote integer part.

This shift in frequency automatically implies that
the evolution creates a number [g|Ao|%] of fermion-
antifermion pairs. Because of linear momentum conserva-
tion (note that the background is homogeneous), antifer-
mions (positive charges) move in the direction of E(r),
while fermions (negative charges) move in the opposite
direction. However, helicity is not conserved in this
process. Fermions moving to the right (left), and antifer-
mions moving to the left (right), both have negative
(positive) helicity. As a result, both members of the pair
have positive 7 (negative —#h) helicity if Aj > 0 (Ao < 0).
The total helicity carried by the excited pairs is
2h[qA ] = 2hlq [ E(r)dt£]. This agrees, except for
the noninteger part, with the prediction for (Q,)(toy) —
(Qa)(tin) given in Eq. (8). The difference is due to the
“vacuum polarization,” i.e. the helicity leftover in the “out”
vacuum, which did not reach the threshold to excite
another pair.

Although, for the sake of pedagogy, in this section we
have restricted to uniform, background electric fields, all
the arguments generalize to arbitrary functions E(t,0).
Appendix A contains information about this generalization
and further details which have been omitted in this section.

III. ASYMPTOTIC STRUCTURE OF THE
ELECTROMAGNETIC FIELD AND INFRARED
CHARGES: A BRIEF REVIEW

The rest of this paper will focus on the chiral anomaly in
asymptotically flat spacetimes in 3 + 1 dimensions. The
presence of electromagnetic radiation, not present in 1 + 1
dimensions, makes it more convenient to use past and
future null infinity for the initial and final Cauchy hyper-
surface of zero-rest mass fields. This section contains a
brief summary of tools concerning the asymptotic structure
of the electromagnetic field at null infinity and infrared
charges. These tools are well known [18,25-27], and the
reader familiar with them can skip this section.

A. Review on the asymptotic structure of the
electromagnetic field

The electromagnetic radiation generated by charges and
currents can be rigorously studied within the framework of
asymptotically flat spacetimes [25-27]. This framework
makes use of the notions of conformally compactified
spacetimes introduced by Penrose in the 1960s [28].

Let (R*, 7,,) represent the physical, Minkowski space-
time, and let (M, #,,) denote an extended (unphysical)

spacetime obtained from (R*, 7},;,) by an ordinary conformal
compactification, i.e. by the addition of “points at inﬁnity.”5
More precisely, the new metric is obtained from the physical
one by a conformal transformation 7,;, = Q?(x)#,,, while
the new manifold is constructed by attaching smoothly a null
boundary J to the physical manifold, M =R*uU J.
Locally, J corresponds to the hypersurface Q = 0 and
has null normal 7“*V,Q # 0. From a physical viewpoint, the
elements of 7 represent the “points of (null) infinity,” i.e. the
points that can be asymptotically reached by following
radial, null geodesics in the physical spacetime. The boun-
dary J is made of two portions, past (/™) and future (7 )
null infinity. In the following, we will focus on J*. The
construction is similar for J .

For example, in a Bondi-Sachs coordinate system
{u,r,0,¢}, where u = t — r is the standard retarded time,
the Minkowski metric reads d3* = —du® + 2dudr +
r*dw* and one uses Q = 1/r to obtain ds> = —Q’du’* +
2dudQ + dw?® after the conformal transformation men-
tioned above. The restriction of this line element to the
Q = 0 hypersurface gives a well-defined (although degen-
erate) metric. The limit r — oo keeping u, 8, ¢ constant
follows the geodesics of outgoing radiation propagating to
future null infinity, getting to Q =0 in finite time as
measured by the unphysical metric. The extended manifold
is obtained then by including all these limiting points
{u,Q=0,0,¢} to the original manifold, and future null
infinity is described then by the submanifold R x S2.

This framework makes it possible to study the behavior
of the electromagnetic field in a neighborhood of infinity
(which in this case is simply a boundary of the spacetime
manifold) using standard techniques in differential geom-
etry. To see this, let us first note that the electromagnetic
field tensors are conformal invariant, F,, = F,, Aa =A,.
These tensors are well defined in the entire extended
spacetime, including at the boundary 7. The electromag-
netic field F,, has six independent components. In a
Newman-Penrose basis {n?, £, m*, m“} [29], where typ-
ically one takes ¢, = —V,u as the vector tangent to
outgoing null geodesics, the six electric and magnetic
components of F,;, can be captured in the following three
complex scalars

@, = Fyynin?, ©)
1 aob a5b

@y = [Fopne” + Fopmin’], (10)

(I)O = Fabmalx&b. (11)

If we assume smooth fields, the Peeling theorem guarantees
that these scalars admit the following Taylor expansion in
in a neighborhood of future null infinity [30]:

>We shall use the hat symbol for any tensor and quantity
intrinsic to the physical spacetime.
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D, (1, Q. 0, ) = D(u, 0, p) + QO (.0, ) + - -, (12)
(1, Q,0,9) = D) (u,0,¢) + QO (u,0,¢) +---, (13)
Do (u,Q,0,¢) = (. 0, ¢) + Q@) (u,0,¢) +---, (14)

where we denote ®)(u,0,¢) = ®,(u,Q=0,0,¢) and
similarly for ®%(u,0,¢) and ®Y(u,0,q). These fields
encode all the information about the electromagnetic field

at J'. They are, however, not independent. Using
Maxwell’s equations, one finds
0,0y = 009, (15)
0,0) = 0!, (16)

where 9,f =n“V,f for any function f (this is a
consequence of the Newman-Penrose normalization

n*¢, = —1), and where 0 is a spin-weighted derivative
operator  [30], defined by ViVS.mV,T,. =
d(VOVS...Ty..), for arbitrary tensors V¢ and T, .

These equations determine the evolution of the scalars
@) and @Y along the retarded time u in J, upon giving
initial conditions, and also some input for @g. In contrast,
the dynamics of ® along u is not determined by Maxwell
equations. This scalar serves as the free data for a character-
istic value formulation of Maxwell theory at J .

By switching back to the original physical spacetime,
with the appropriate conformal rescaling of the Newman-
Penrose vectors, one can see that &, ~O(r™') and
®, ~ O(r2). From this, one identifies the scalar ®J as
describing the two radiative degrees of freedom of the
electromagnetic field, while dJ(f represents the Coulombic
part of the field. In fact, the total energy flux radiated to 7+
is given by F = [ dudS*T ,nn® = [ dudS*|®9J?, where
T,, is the energy-momentum tensor, and therefore is
entirely determined from ®9. Similarly, the electric charge
of sources in the bulk can be determined from J* using
Gauss’s law as Q = 5- [ dS?Re®)(u,0, ¢), and is com-
pletely determined from @Y. Using Maxwell equations in
JT, it is straightforward to check that 9,0 = 0, reflecting
the conservation of the electric charge. Note also that the
requirement of finite energy flux at 7+, F < oo, requires
@Y (u,0,¢) = 0 as u — +oo.

In terms of an electromagnetic potential, one introduces
the scalars A, := A,m*, Ay = A,n%, Ay = A,Z°. The falloff
conditions of the potential for large r is not given before-
hand from the theory and requires some input. Physical
considerations require that these components admit an
asymptotic series with leading behavior O(r~!) [31,32].
Using F = dA, one can obtain the following formulas,

valid at future null infinity J7:

— A9-30, (17)

Im®9 = ImdAY, (18)

where dot denotes derivative with respect to retarded time
u. Furthermore, by integrating Maxwell equations at J ™,
one can further obtain

Re®! = RedA) — / udu’ééA?+G(u0,9,¢), (19)

ug

where G(ug, 0, ¢) arises as an integration factor. From (9)
we see that the two electromagnetic radiative degrees of
freedom are distributed between A) and AY. But these are
three real-valued scalars, so there is, as expected, some
gauge redundancy in the description. A useful gauge fixing
is A‘l) = A,n* = 0. With this gauge choice, the real and
imaginary parts of Ag represent the two radiative degrees
of freedom, electric and magnetic respectively. The
Coulombic aspects of the field are all encoded in

G(ug. 0. ¢), in particular Q = 5- [ G(uy, 6, ).

B. Electromagnetic soft charges and the memory effect

The phenomenon of memory effect is well known in
Maxwell’s theory [20]. The most prominent example is a
charged pointlike particle of initial velocity #; that suffers a
“kick’ and changes its direction of propagation to v, after
the passage of an electromagnetic pulse. This is an example
of electric-type memory. In the intermediate process, the
charged particle emits radiation by Bremsstrahlung; the
properties of the emitted radiation carry information about
this effect.

At future null infinity, the phenomenon of electromag-
netic memory is encoded in the following quantities:

do= / dS%a(0. §)(@(c0. 0. ) — D)(~c0.0.4)).  (20)

where a is a smooth real function on the sphere S*. The
complex numbers ¢, are called soft charges, and they
measure permanent changes in the multipolar structure of
the Coulombic part of the electromagnetic field after some
process. From (15), one infers that ¢, #0 only if
@, (u,0,p) #0, i.e. only, if there is a flux of electromag-
netic radiation reaching infinity. When this happens, one
says that the electromagnetic field keeps memory on the
radiation flux emitted to infinity in the past.

The relation of the charges ¢, and the radiation reaching
J T can be explicitly shown by using Maxwell equations to
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replace ®? by @9 in (20):
0. = [ dS'dua(6.4)8(u.0.9)
= /dSzdua(’i(I)g(u,G, )
= —/d§2du6a(6,¢)(l>g(u,6,¢). (21)

Expanding in spin-weighted spherical harmonics, this can
be further simplified as

tu= ST Ve [ a0

‘m

= Zafmqu' (22)
‘m

The problem is reduced to study the basis g,, =
J7& dud),, (u) of charges. Note that, for # = 0, i.e. when
a(0, ¢) = const, the soft charge is identically zero. This is
consistent with the fact that the monopole of the electro-
magnetic field (the electric charge) is conserved and cannot
be radiated away. In contrast, dipolar and higher order
structure (£ > 1) can be radiated away. That phenomena is
encoded in g,,, # 0 for £ > 0.

As argued in the previous subsection, finiteness of
energy fluxes require that ®,,, (u) belongs to L*(R,C),
which implies that it admits a Fourier transform on J:

~ +oo .
)= [ e, e (2

This automatically implies that the charges ¢,,, are simply
the “zero mode” of @9,

Grm = D3,,(0). (24)

Therefore, only the zero-frequency modes of the emitted
electromagnetic radiation leave a memory on the multipolar
structure of the field. This is the reason why these charges are
called “soft,” as they are associated with “soft photons™ [19,33].

These charges are intrinsically associated to asymptotic
symmetries of Maxwell theory. One way of looking
into this is by considering the phase space I' of the
electromagnetic degrees of freedom at J . This phase
space is made of pairs of canonically conjugate
fields® (A,, E?), where A, = =AY, + AYm, + AYin, and
£¢ = —2Re®In® + ®Im + ®Ym®." T' can be endowed

®In the Newman-Penrose basis introduced above, notice that
the tangent space at each point of future null infinity is spanned
by the three vectors {n?, m®,m“}, while the cotangent space is
spa7nned by the three covectors {¢,, m,, m,}.

No gauge condition on A, has been imposed at this level.

with the structure of an infinite-dimensional Banach
manifold. The usual symplectic structure for Maxwell
theory can be written on future null infinity as

(A5, 1), (A7 £

- / du dS? (A&”g@)a —A£3>5<'>a). (25)
RxS?

Together with suitable falloff conditions at u — +oo
required to make this integral well defined, the pair
(', Q) defines the phase space for the radiative degrees
of freedom of Maxwell theory.

Now, consider the (restricted) family of gauge trans-
formations A, - A, + D,a, with a = a(6, ¢). This trans-
formation is generated in phase space by the quantity

1
0, = EQ((AQ, &, (D,a,0))
= —1/ du dS?*(D )&
2 Jrxs?
1
= ——/ dudS*D,(aE®)
2 Jrxs?

- / du dS*n°D,(aRe®"),
RxS?

where in the second equality we have used Maxwell
equations (15) to write D,&* x Re®! — Redd) = 0.
Recalling that 0, = n?D,, the right-hand side of this
equation happens to be equal to the real part of the soft
charges defined in (20). (A similar analysis using a “dual”
potential Z, produces the imaginary part of the soft
charges.)

This observation tells us that soft charges ¢, can be
identified with the generators of gauge transformations in
the radiative phase space. Since soft charges can be
different from zero, one concludes that transformations
A, > A, + D,ain J* are actual symmetries of our phase
space (I',Q), rather than mere gauge transformations.
Therefore, they have physical significance (which is,
precisely, the electromagnetic memory). From the view-
point of the bulk, these are gauge transformations that do
not vanish at infinity. To distinguish them from ordinary
gauge transformations, they are called “large” gauge trans-
formations. The set of all large gauge transformations
constitutes the infinite-dimensional, asymptotic symmetry
group of Maxwell theory.

IV. THE CHIRAL ANOMALY INDUCED BY AN
ELECTROMAGNETIC BACKGROUND

This section contains the main results of this article. We
consider a quantum, massless Dirac field propagating in
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Minkowski spacetime in 3 + 1 dimensions with metric 7,
coupled to an electromagnetic field F ;. The spin 1/2 field
is treated as a test field, i.e. we neglect its backreaction on
the electromagnetic and spacetime backgrounds. This
external electromagnetic field is assumed to be generated
by some distribution of electric charges and currents, that
are smooth and confined in space, but otherwise arbitrary.
To keep the parallelism with the 1 + 1-dimensional chiral
anomaly discussed in the previous section, the sources will
be “switched on” only for a finite amount of time, in the
sense that they become stationary at sufficiently late and
early times. All possible electromagnetic waves are radi-
ated during a finite period of time.

As discussed above, the electromagnetic field can induce
a change in the helicity of the fermionic field due to the
chiral anomaly. Our starting point is expression (3) for the
change of the chiral charge of the quantum field

(Ou)s.. — (Qu)s. = / /T, %)

__he | dxy/iF . (26)
87’

If we integrate over the entire spacetime manifold,
R =M ~R* then X, and X, correspond to past and
future null infinity, respectively. This choice makes it
possible to use the machinery summarized in the previous
section to disentangle the properties of the electromagnetic
field that can make the right-hand side different from zero.
This problem was worked out in [16], where it was found
that, assuming no incoming electromagnetic radiation from
past null infinity, the right-hand side of (26) can be written
in terms of boundary data on future null infinity as

hq/ du/dSZIm{ (A —3at) DY}
(7)

(Qa)7+—(0a) 7

Here, a is a smooth real-valued function on the sphere and
day is a pure gauge potential (i.e. it produces no electro-
magnetic field, <I>0 0). This expression was derived in the
gauge AY = 0. Notice that a nonzero value is obtained in
the integral (27) because of the weak decay behavior of the
radiative solutions of Maxwell equations in a neighborhood
of future null infinity: A, ~1/r, ®, ~1/r (recall the
discussion earlier). These two radial factors compensate
the r> factor in the integral measure.

To analyze the physical interpretation of the right-hand
side of the previous equation, it is convenient to work with
a compactified retarded coordinate u. We will consider
u€l-L/2,L/2] and let L - co at the end of the

¥There are no contributions to (26) from spatial infinity, nor
from future or past timelike infinities, because the product of the
electromagnetic field and its potential decays too fast [as O(r~)]
in those directions; see [16] for details.

calculation. As explained above, if @ is the electromagnetic
radiation field, the requirement that the energy flux across
J is finite implies ®I(-, 0, ¢p) € L*(R) for all (6, ¢) € S?,
and in particular ®) — 0 as u — =oo. Therefore, we will
consider functions ®)(-, 0, ¢) € L*>((—L/2,L/2)), for all
(0,4)€S?, with boundary conditions given by
®Y(+%,0.¢) =0. This will guarantee that ® — 0 as
u — oo at the end of the calculation. Since the functions
®I(-, 0, ¢) happen to be periodic with period L, an ortho-

normal basis for L?((-L/2,L/2)) is given by
{67:7{/2 e~} 5, where , =3 n, so one can expand

in Fourier series:

—iw,u

Le
<I)O (@,,0,¢)e ~iwn

n=-—0o

Y (u 0. p) =

(28)

The inverse Fourier series is

. . L2 .
@g(wn,ﬁ,q’)):e’“’"%\/lz / @Y (u, 0, p)et Ot du. (29)

-L/2

The basis modes are orthonormal with respect to the L2
norm:

/L/2 d 1 —iw, u( l)n 1 +iw ( 1) S (30)
U—=e 't(=1)" —=emH(=1)" = 6,,,.
L2 VL VL

The continuous limit will be recovered using the for-
mula 11mL—>oo L Zn €Z f f+oo de )

In order to dlsentangle the potentlal contribution of IR
charges to Eq. (27) we will make an explicit distinction
between the zero frequency mode ®9(0, 6, ¢) # 0 and the
rest of the modes. Let us then write the field and potential as

e—iw”u

0 0 L 0
D9 (u 0,9) ;«p (@,.0.9)(—1)" NG +ﬁ®2(0,6,¢>,
(31)
A300.0.5) == 3 8w 0.9) - -y
n;éO @
ﬁ D, (0,0, ¢) + A3 (up. 0. ). (32)

where the second line is derived using ®) = A9, which is
valid in the gauge A) = A,n® = 0. Next, we substitute this
expansion in (27) and keep track of the contribution of the
zero mode. The calculation is tedious, and is written in
detail in Appendix B. We focus here in the result and its
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physical meaning:

<QA>\7Jr - <QA>L7’

= = 2
he [ 1 o |880.0.9)-8%0.60.9)
= / ds? / do
4 2w —o0 w

+Img, —Regy|. (33)

The first term in the right-hand side of this equation
contains the contribution from electromagnetic radiation
with nonzero frequencies reaching J; the subtraction of
ég(O, 0, ¢) removes the zero mode from the integral. This,
in turn, makes the integrand finite in the limit @ — O (the
integral is well defined for @ — £oo by Plancherel theo-
rem). This term can be further expressed as [16]

[ ®3(0.0.0) - 85(0.0.9)

@
dw
_ A u <
where O (@, 0, ¢) == DY (@, 0, p) — D9(0, 0, ¢) defined for
w>0, and @ (0,0,9):=d)(~w,0,p)—d0,0,¢)
defined for w < 0, describe right- and left-handed circu-
larly polarized radiation, respectively. Expression (34) has a
neat physical interpretation: it measures the net electro-
magnetic helicity radiated to J.

The second and third terms in (33) come entirely from
the zero mode of the electromagnetic field, and correspond
to two infrared charges of magnetic and electric type, Img,
and Regy, respectively:

o0 - [auwof). o

Img, = /dSZa(oo,e, )

x (Im(D(l)(oo,G, ) — Im®Y(—c0, 6, ¢)), (35)

Reg, = / dSB(0. 0, )

x (Re(b?(oo,ﬁ, ¢) — Re®(—c0,0, ¢)) (36)

In these equations the real-valued functions « and f are
defined from the longitudinal and transverse part of the
electromagnetic potential at future timelike infinity, as
follows. In the gauge we are using, in which
AY = A,n% = 0, the one-form AY lives on the cotangent
space of each cross section S? of J. Therefore, it can be
expressed as the sum of a gradient and a curl:
AY = D,a+ €D, 3, where D, is the covariant derivative
on S2. This equation defines a(u,@,¢) and B(u,0, ).

Using (18) and (19), they can be solved from
Re®)(10.) = Aa(11.0.¢) + G(6.b) and Im®(u, 0. ) =
Ap(u,0,¢p), where A denotes the two-dimensional
Laplacian. Since the soft charges Img, and Reg, are
specified from functions a and f, which depend on the
electromagnetic potential, these are field-dependent soft
charges. Since a, f originate from a gradient and a curl,
respectively, the function a can be thought of as the electric
degree of freedom of the emitted waves, while f is the
magnetic one.

In summary, the change of the chiral charge of a
quantum, massless, Dirac field between past to future null
infinity, resulting from its coupling to an electromagnetic

background, yields
/ / dw
4 2 2

x (|®g(.0.9) = @ (0.0, ¢)])

+ Img,, — Req/,] . (37)

<QA>J+ - <QA

This is the main result of this paper. It shows that the
anomalous nonconservation of fermionic helicity receives
two types of contributions from an external electromagnetic
field. Namely, (Q,) can change in time if (i) a distribution
of electric currents and charges in the bulk are able to
radiate chiral electromagnetic waves, and (ii) there is a
change in the infrared sector of the external electromagnetic
field, such that the two soft charges (35) and (36) are
different from zero. The presence of 7 emphasizes that this
is a quantum effect with no classical analog; it originates
from the chiral anomaly.

We finish this section with a few remarks.

Remark 1. We have assumed no incoming radiation from
J~. If the electromagnetic field is not trivial at past null
infinity, we just need to replace quantities at 7+ above with
differences between 7+ and J~.

Remark 2. The contribution from soft charges bears
some similarity with the rationale behind the theory of
instantons [34,35], in which quantum-mechanical transi-
tions between “topologically inequivalent” vacuum states
of the Hilbert space underlying a non-Abelian gauge theory
induces an anomaly. In the quantum theory of the electro-
magnetic field, for each nontrivial IR sector one has a
representation of the canonical commutation relations
which is unitarily inequivalent to the usual Fock repre-
sentation. So, just like with the interpretation of the
instantons, we can say here that tunneling transitions
between the different IR vacuum states of the electromag-
netic field induces the fermionic chiral anomaly.9 In
contrast, in this approach there is no need to work with

°Notice that this was precisely the origin of the chiral anomaly
in 1 4 1 dimensions discussed in Sec. II.
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Euclidean field equations. In fact, by working with sol-
utions of the Lorentzian Maxwell equations we also get a
radiative contribution, in addition to the contribution from
soft charges. This radiative contribution is not predicted in
the Euclidean case, where everything is “instantaneous.”

A. Examples

We discuss now examples of electromagnetic sources
that are able to trigger the chiral anomaly obtained in (37).
A physical configuration of electric charges and currents
that can radiate circularly polarized electromagnetic waves
was described in [16], namely, an electric-magnetic oscil-
lating dipole. In this subsection we focus on examples that
produce nonzero values of the infrared charges (36)
and (35).

Soft charges of electric type are determined by the
Coulombic contribution (i.e. ~1/r%) of the radial compo-
nent of the electric field:

+o0
Req,, — f dS?ReD (0, $)Y 1 (0. B)| .
Re®(u,0,¢) = lim[r?E, (u,r,0, )] (38)

The canonical example where these soft charges are not
zero is a charged particle with some initial velocity that
interacts with an external source (a nucleus, another
charged particle, etc.) and changes its velocity [20]. In
this process, the charged particle emits Bremstrahlung,
which is known to possess zero-frequency photons. We
shall review this example here for completeness.

The electromagnetic field generated by a moving
charged particle can be obtained in closed form from the
Lienard-Wiechart potentials [36]:

|: ﬁs_?_js
o v L= o)) 7 =717

4r(1 -
_'_ns X [(”_f _j)s) X US]:| , (39)
||r— rSH t=t,
B(1,7) = ¥,(t,) x E(t. 7). (40)

where 7(¢) is the location of the charge, ¥, =7, its
velocity, 7, = ”g:;%, and 1, =t—||[F=7F(t,)| is the
retarded time [which is a function of (7, 7)]. For a particle
with constant velocity, 1;}5 = 0, and the electric field above
can be rewritten as [36]

. q 1—0?
E(t,7) = dn ) i3 273/2
o (4]
F— Ut - -
X ||?—17t||3’ (rs<t) :Us't)- (41)

Changing to Bondi-Sachs coordinates {u,r,0,¢}, and
taking the limit » — oo keeping {u, 0, ¢} constant, one
obtains the following expression for the radial component
of the electric field

q 1—2?
Eu,r,0,0)V,r =
(7,0, $)Var drr? (1 — vV, r)?
q 11—

= 42
4zr? (1 — vcos )’ (42)

where in the last equality we have chosen Z in the direction
of 7. From this expression and (38) one readily obtains

q 1 -2
Re®?(u,0,¢p) = ——— . 43
e®y(u. 0. ¢) 4z (1 — vcos 6)? (43)

For a particle that always moves with the same constant
velocity, Reg,,, = 0 for all #. This is easy to see if we
choose the reference system comoving with the particle, so
that ¥, = 0 and Red>?(u,9, )) = %. However, if the par-
ticle interacts with some external potential and changes its
velocity, then we can no longer choose an inertial reference
system attached to the particle at all times. While at early

times we may have Red??(u — —00,0,¢) = 4—", at late
T 2

: : 0 _9q 1—v

times we will have Re®](u — +0,60,¢) = d7 (v cos O

The electric soft charges can be now computed:

q 2 2 Yfm(eﬁ ¢)
Reqy, = L (1 - ds> 2P
cdem 471( v )7,{+ (1 —wvcosh)?

—? X
= %5,"0 /_i dx(lp_"pi(wc)>2 — gbyp. (44)

— 469

In particular, Reggy = 0 due to electric charge conserva-
tion, as expected. By taking different values of # one can
check that this expression is indeed different from zero. In
summary, soft charges of electric type can be generated by
Lorentz boosting an electric charge.

Soft charges of magnetic type are determined by the
Coulombic contribution (i.e. ~1/r%) of the radial compo-
nent of the magnetic field:

+oo
Img,, — 7{ dS* T (u, 0, )Yy (6.)|
Im®(u,0.) = lim B, (u. r.6. )] (45)
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Because magnetic charges have not been observed, we do
not have, in principle, a magnetic analog of a boosted
charge. To the best of our knowledge, there are no examples
of magnetic memory reported in the literature. We discuss
here one such example which, although it could be
challenging to materialize physically [37], it certainly
contains pedagogical value.

To think in potential situations that exhibit magnetic
memory it may be useful to rewrite the radial component of
the magnetic field of a moving particle (40) as

1 - v%)Lr }
+ =

(40)

’
1

where d, = Z’S is the acceleration of the charge, and L, is
the radial component of the particle’s angular momentum

L = m7; x v,;. Equivalently, these terms are related to the
magnetic dipole moment of the moving charge:

m(f) = A (1) x 7d3F = qAS P (F = F,(1)) 02 (1) X F
= qii (1) x 7,(1) = =L L (1), (47)

Equation (46) shows, in particular, that for a charged
particle moving with constant velocity, ImCD? =0, and
all soft charges of magnetic type are zero.

Only the first two terms in (46) may lead to Imq)(l) #0, as
the third term decays as O(r~3). Furthermore, a priori one
would expect that physically reasonable situations demand
ay(u - £o00) — 0. So, for sources consisting of a moving
charged particle, to get magnetic memory one needs a
situation in which the particle acquires a permanent rate of
change for the radial angular momentum at infinity, L, # 0.

One can imagine a situation in which this occurs.
Consider polar coordinates {t,p, ¢, z} and suppose there
exists a nonvanishing magnetic field in z € (0, z,) that has

|

B(u.r.0.4) = alm

the profile E(z‘,p, ¢,z) = By/pz for p > p,, for some
constants By and py > 0. Due to the inhomogeneous
magnetic field, a charged particle that initially is at rest
at some point in the interval (0, zy) and p > p,, and suffers
a “kick” at some instant of time, will start spiraling
outwards. It can be expected then that L, # 0 at infinity.

This problem can be solved in closed form as follows. If
the kinematical variables of the charged particle are

73 = psﬁ/n (48)
Es = psﬁp + psq}sﬁqﬁ# (49)
as = (ps _psq}?)ﬁp + (pséés + 2,bs¢s)ﬁ¢7 (50)

then one can solve

polt) = +\/U2 - (‘%‘wpf(t))z, (51)

¢s(t) =F mp (1) +p%(t) ’ 52)
& ROb ) =), (53)

where ¢ is a constant of integration. Since pg(t) > 0, p,(t)
is monotonically increasing, therefore p (r — 00) — +o0
and consequently ¢, — 0. The angular momentum is
simply given by L = p2(1)¢,(1)ii,, so

i) = %BO po(t) cos 6. (54)

One can further check that @, (1 — o0) — 0.

Taking into account that ¢,(¢,7 - o0) — u, and also
?-y_;(t):/)s(t)sin900s(¢—¢s(t))+ps(t)(j)s(t)sin(gb—(ps(t)),
the limit r — oo keeping {u,0,¢} constant gives
||?_ a(h)” ~ ||7_ ?s(u)” ~r and ﬁs(tr) : 1_))“‘([,,) ~ ﬁ)\(u)
Us(u) ~ 7 vs(u). From (46) we get

B0, (w)cos0+ 0(r3).  (55)

4nr> (1 — p,(u) sin@cos(p — i, (u)) — p, ()b, (u) sin(gp — py ()))? m

At future timelike infinity we have ¢, (u — c0) — 0, ¢p;(u = ) = g ps(u = ) = /1> — %. Taking into account all

of this,

q/m

By |2 4°Bp

Im®) (4 — o) =

v* — —>cos 6. (56)

5 2
4r(1 - @gsinecos((b —¢y) " "
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To finish this section, recall from the discussion below
(36) that ReCD(l)(u,G, ) = Aa(u,0,¢) +G(0,¢) and
Im®)(u, 0, p) = AB(u,0,¢p). Therefore, from (43),
obtained in the first example, it is possible to obtain a
nonzero value of a(u,0,¢) for u — oo, as well as
Re@?(oo, 0,p) — Red)(l’(—oo,é, ¢) #0; while from (56),
obtained in the second example, it is possible to obtain
a nonzero value of f(u,6,¢) when u — +oo, and
Im®Y (0, 8, ¢) — Im®Y(—c0,d, ) #0. Combining the
two examples, it is not difficult to check that (35) and
(36) are both nonvanishing.

V. THE CHIRAL ANOMALY INDUCED BY A
GRAVITATIONAL BACKGROUND

As remarked in the Introduction, if instead of an
electromagnetic field we consider an external gravitational
background, described by a curved spacetime (M, g,;,),
Dirac fields (as well as the electromagnetic field itself
[[1-14]) experience a gravitationally induced chiral
anomaly [see Eq. (2)]. Similarly to what we did for
electromagnetic backgrounds, we explore here global
properties of this chiral anomaly by studying the change
of the chiral charge Q,.

As usual in general relativity, we restrict our study to
globally hyperbolic spacetimes to ensure the well posed-
ness of the Cauchy problem. This allows us to foliate the
manifold in the form M ~ R x Z. We will further assume
that the spatial slices are ¥~ R3. Performing a similar
analysis as in (3), the permanent change in the chiral charge
predicted by the chiral anomaly is dictated now by the
Chern-Pontryagin integral

<QA>J+ _<QA>j‘ =

h
1927772/R{4 d4xv_gRabcd*Rade1 (57)

where {x} is a global coordinate system for M ~ R*. The
right-hand side of this equation was investigated in [15,16].
Although it may appear intractable from an analytical
viewpoint, it is actually possible to rewrite it in a form
that allows us to extract information of physical value
without having to resort to numerical techniques. More
precisely, assuming no incoming gravitational waves from
past null infinity 7, it is possible to rewrite it as an integral
over future null infinity only:

ho [ _
~5e2 /_ _du / dSIm(NY,).  (58)

In this expression, W4(u,0,¢)=—lim,_ rCpcqm“x
bm°n? is a complex scalar constructed from the Weyl

<QA>J+ _<QA>J- =

n’m‘n
tensor C,;,.;, Which carries the two radiative degrees of
freedom of gravitational waves; it is the gravitational
analog of the complex scalar <I>(2’(u, 0, ¢) in electrodynam-
ics [compare with equations (9) and (12)]. On the other

hand, N(u,0,¢) = N, (u,0,p)m*m? is the relevant com-
ponent of the Bondi news tensor N, [25], which measures
the time evolution of the asymptotic shear of outgoing null
geodesics at J . It is a symmetric, transverse (N s’ =0),
and traceless tensor on 7 that, just like ¥, captures the
two gravitational degrees of freedom at future null infinity.
The two quantities are related by ¥, = — %N, so N can be
thought of as the gravitational analog of the electromag-
netic potential Ag [compare with equation (17) with the
gauge choice AY = 0]. The total amount of energy carried
away by the gravitational waves across 7 is proportional
to [ dS?du|N(u. 6, $)|*. Because of this, the Bondi news
indicates unambiguously if a system is radiating gravita-
tional waves. If N =0 then the sources do not emit
radiation, while N # 0 indicates the presence of radiation.
Finiteness of this energy flux requires N(-,0,¢)€
L*(R,C) for all (0,¢)€S?, and in particular N — 0 as
u — too. These properties carry over to W,.

In view of the results found in Sec. IV, it is natural to ask
if gravitational soft charges, or gravitational memory, may
also contribute to the fermion chiral anomaly (58). The
gravitational memory effect [38—44] consists in the perma-
nent relative displacement that a set of free test masses may
experience after the passage of a gravitational wave burst.
The deformation of a congruence of free observers or
curves is controlled by the shear. If o(u, 0, ¢p) denotes the
asymptotic shear of outgoing null geodesics at future null
infinity, a flux of gravitational radiation will make
o(u,0,¢) evolve with time u, while it remains constant
otherwise. As commented above, this effect is captured
precisely in the Bondi news, which is related to the shear
via the equation N = 26. Because N — 0 as u — *oo,
o(u, 0, ¢) reaches constant values at early and late times.
However, 6(—00,0,¢) # 6(c0,0,¢) in general, and there
can remain a permanent distortion in the shear. The amount
of gravitational memory encoded in free test masses is
quantified then by the overall change in the asymptotic
shear o(u, 6, ¢) of outgoing null geodesics between early
and late times:

1=y [ 45T A(0.9)(0(0.0.9)=a(-0.0.9)). (59

where a is an arbitrary real-valued function on the
sphere. These quantities are called gravitational infrared
charges [27] [compare this definition with the electromag-
netic analog (20)]. Following the analogy with the electro-
magnetic case, it can also be proven that these charges can
be identified with the Hamiltonian generating Bondi-
Metzner-Sachs (BMS) supertranslations in the radiative
phase space of general relativity [45,46]. From the point of
view of the bulk, supertranslations are diffeomorphisms
(the gauge transformations in general relativity) that do
not vanish at infinity, as a result of which they are
called “large.”
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Notice that the physical manifestations of the gravita-
tional and electromagnetic memory effects are qualitatively
different. An electromagnetic field does not generate a
permanent, relative displacement of electrically charged
particles; instead, it generates a permanent, relative velocity
between the charges.

Using the relation between the shear and the Bondi news,
we can formulate the gravitational infrared charges in terms
of the radiative degrees of freedom,

1 +oo

T 167 ) o

G dudS*N (u, 6, )3 a(0,¢).  (60)

Expanding in a basis of spin-weighted spherical harmonics,
this expression reduces to

1 +o0

Qa:E .

1
duzamefm(u) Eﬁzafmqu’ (61)
‘m ‘m

for real-valued coefficients a,,,. In the second equality, we
have defined the parameters ¢,,, = [© duN ,(u). Now,
because N(-,0,¢) € L>(R, C), each of its harmonic modes
admits a Fourier transform on J*

Nenlw) = [ 7 duigpueor. (62)

[Se]

Therefore, just like in the electromagnetic case, we con-
clude that the infrared charges are determined by the zero-
frequency mode of the gravitational radiation as described
by the Bondi news N. Namely,

1 -
9o = E ;;amefm (0) (63)

Notice, however, that, in sharp contrast with the electro-
magnetic case (20), the infrared charges are determined by
the zero modes of the “potential” N(u, 6, ¢») and not by the
zero modes of the “field” W, (u, 0, ¢). While this may look
like an irrelevant comment, it is an important point in our
analysis. The calculation of the right-hand side of (58) is
formally equal to the electromagnetic case (27) if we
identify AY with N, and @9 with ¥,. In the previous
section we found that the electromagnetic infrared charges
contribute to the chiral anomaly through the zero modes of
the electromagnetic field ®9(u,0,¢). Similarly, in the
gravitational case, (58) only receives contributions from
the zero modes of ‘Pg(u,é’, ¢), while the zero mode of

N(u, 0, ¢) never appears. However, ¥ (u, 6, ¢) has no zero
mode:

0.00)= [ T auti(wo.p)

:—%[N(—i—oo,ﬁ,qﬁ)—N(—OOﬂ,fﬁ)}:Ov (64)

where in the second equality we made use of ¥, = —1N,
and the last equality follows from N(+o0, 0, ¢p) = 0. This is
in sharp contrast with electrodynamics, where ®9(u, 0, ¢p)—
the electromagnetic analog of W¥,—does have a zero mode.
As a consequence, only the radiative part of the gravitational
field contributes to the chiral fermion anomaly in (58). There
is no gravitational memory contributing to the change of the
chiral charge (Q,), and the total change from J~ to J 7 is
determined by the helicity carried away by gravitational
waves generated in the bulk [15,16].

VI. CONCLUSIONS

Chiral fermion anomalies have been extensively studied
in the literature for several decades and from multiple
viewpoints. Despite that, this topic is sufficiently rich to
allow for yet another intriguing insight. We have found one
such new aspect by studying global aspects of the chiral
anomaly, related to the failure of the chiral charge O, of a
massless Dirac field to be conserved. This charge is strictly
conserved classically, as well as in quantum field theory for
free Dirac fields. However, the presence of background
fields, either electromagnetic or gravitational, may induce a
local nonconservation of the chiral current j§ by quantum
fluctuations, which can potentially produce a time evolu-
tion in the vacuum expectation value (Qy).

The identification of external fields that can or cannot
trigger a change of (Q,) is a nontrivial problem. For non-
Abelian gauge fields, a traditional approach is to look for
instanton solutions in a euclidean spacetime, which display a
complex topological/global structure. To address this ques-
tion, we have evaluated instead the change in (Q,) between
past and future null infinity using familiar, global techniques
within the framework of asymptotically flat spacetimes. For
an external electromagnetic field, our results are neatly
summarized in Eq. (37). This equation tells us that (Q,)
can change between past and future null infinity if (i) electro-
magnetic sources in the bulk emit circularly polarized
electromagnetic waves (i.e. radiation with net helicity)
and/or (ii) if electromagnetic sources in the bulk produce
transitions between certain infrared sectors of Maxwell
theory. The relevant transitions are determined by a concrete
pair of infrared charges of electric and magnetic type,
respectively, written in Egs. (35) and (36). To gain physical
intuition, we have devised an academic example where the
required soft charges are different from zero.

Physically, nonzero infrared charges are known to
produce memory effects on physical systems. This is
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how the transitions between the infrared quantum vacua
can leave observable imprints. To the best of our knowl-
edge, the only electromagnetic memory effects known to
date involve classical systems. Here, we have shown that
quantum states of a field theory can also keep memory of
the past influence of electromagnetic radiation, by storing a
certain amount of helicity.

The connection of electromagnetic memory and the
change of (Q4) has also been worked out in 1+ 1
dimensions, which is cleaner because there are no electro-
magnetic waves. This example also allowed us to interpret
this new memory effect in terms of “kicks” of virtual
charges and excitation of particle pairs out of the quantum
vacuum.

Overall, the results in this paper, together with our
previous analysis [15,16], open up an unforeseen connec-
tion between chiral anomalies, the radiative content of the
electromagnetic field, infrared charges, and the memory
effect.

Although our approach is qualitatively different, the
contribution from soft charges to the chiral anomaly bears
some similarity with the rationale underlying instantons in
Euclidean gauge-field theories. According to the usual
interpretation [34,35], instantons mediate quantum-
mechanical transitions between inequivalent vacuum states
of the Hilbert space of the background (non-Abelian) gauge
field. These transitions, which are labeled by the instanton
charge, are able to induce the chiral anomaly [47]. On the
other hand, the quantization of the electromagnetic field at
future null infinity leads naturally to a Hilbert space that
can be divided in different, disjoint infrared sectors [26,48],
which represent inequivalent notions of quantum vacua.
The infrared charges label transitions between the different
infrared sectors, and therefore play the same role of the
instanton charge. We have shown in this article that these
transitions contribute to the chiral anomaly in a specific
manner.

To finish, we have also checked that, quite interestingly,
gravitational infrared charges do not contribute to the
fermion chiral anomaly.
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APPENDIX A: CHIRAL FERMION ANOMALY
AND SPONTANEOUS PARTICLE CREATION
IN 1+1 DIMENSIONS

In Sec. II we argued that the permanent change in the
vacuum expectation value (Q,) produced by the chiral
anomaly (2) can be understood as a net creation of helicity
resulting from virtual particles that are “kicked” out of the
vacuum state. In 1 + 1 dimensions it is relatively easy to
see the connection between the chiral fermion anomaly and
particle pair creation. In this appendix we show this
connection and deduce the anomaly from the analysis of
Bogoliubov transformations between canonical in and out
vacua. We perform the analysis for a general, nonuniform
background electric field E(z, x).

When the external electric field is uniform, E = E(¢), a
heuristic argument involving the Dirac “sea” has been
given in several occasions in the literature (see [23,49-51]).
However, to the best of our knowledge, an explicit and/or
rigorous, complete calculation is still lacking. In particular,
this heuristic picture always misses a contribution from
vacuum polarization, which we provide here.

Let us consider a massless, quantum Dirac field ¥(z, x)
living in a two-dimensional flat spacetime, (R x S',7,,),
and coupled to an external electric field E(#, x). The spatial
sections will have length equal to L. The electric field
departs from an initial “vacuum” configuration at early
times, E(t;,, x) = 0; it is switched on for a finite amount of
time, and eventually returns to another “vacuum” state,
E(tou, x) = 0. At early and late times, in which the field
strength vanishes, one can introduce canonical “in” and
“out” vacuum states for the fermion field. As remarked in
Sec. II, the two electric vacua are equivalent in the classical
theory, but they may differ in the quantum theory if the
potential A, (7, x) changes nontrivially, as a result of which
the “out” state of the fermion field will potentially differ
from the “in” state.

As in Sec. I, we work with the temporal gauge fixing:
A,(t,x) = 0. This can always be obtained by a suitable
gauge transformation. There is still a residual gauge free-
dom, which consists in A,(t,x) = A,(t,x) + V,a, for
a = a(x). This residual freedom can be fixed by demand-
ing A,(t - —o0,x) - 0, which we will adopt here
onwards. At early and late times, where E(f,x) = 0, we
have 0,A, = d,A,, and the electromagnetic connection
one-form takes the form A(f—> —oco0,x)=0 and
At > o0,x) = A(x)dx.
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Massless Dirac fields W(¢, x) split into two decoupled,
left- and right-handed Weyl spinors that will be denoted by
u., u_, respectively. In 1 4 1 dimensions these spinors are
represented by ordinary functions on the spacetime. For
t < t;,, the two Weyl equations read

(i0, — i0)u,. =0,

(i0, + id,)u_ =0, (A1)

while for 7 > ¢, we have
(i0, — id, — qA(x))uy =0, (A2)
(i0, + i, + qA(x))u_ =0, (A3)

where the evolution of the electric field has left a residual
gauge potential in the field equations. To study the effects
of the external, dynamical electric field on the fermion
modes, it is useful to analyze the Bogoliubov transforma-
tions between the “in” an “out” vacuum states. To specify
these states we have to provide first a basis of positive-
frequency solutions for the in and out Hilbert spaces.
Let us focus on Egs. (A2) and (A3) (the solutions at early
times can be simply recovered by taking A = 0). These

equations admit separable solutions of the form u. (¢, x) =

f+(#)g+(x), which produce
i0,fo(1) _ , O+ aAM)ge() _
72(1) = 7 () = @, = const, (A4)

for some separation constants ... The left-hand side of this
equation can be solved to give f, (f) = e7®+' and are of
positive frequency with respect to the operator H = id, if
w4 > 0. To solve the spatial dependence of the field modes,
note that the potential must be pure gauge (because E = 0),
so let us write gA = d,¢(x) for some function ¢(x). Then
(i, + qA(x))g,(x) = eT?Mig (e7 ) g,) and the equa-
tion above yields g, (x) = e¥®+¢#™) In conclusion, a
basis of positive-frequency solutions to the Weyl equations
above consist of {uy (2, x)},-0, Where
Uy (1, x) = e+ (40) oi¥) (AS)
These functions represent left- and right-moving modes,
respectively, and they define the two chiral sectors of the
theory. In 1 4+ 1 dimensions handedness is nothing but the
direction of propagation in the spatial dimension.

At early times the connection is identically zero, A = 0,
s0 ¢(x) =0 for the in modes: ul!, (1,x) = e~i@=(+x),
However, the dynamics of the electric field could produce
¢(x) #0 at late times. This is the electric memory
mentioned in the main text. The out modes can differ by
a position-dependent, global phase with respect to the in
modes: u™ (1, x) = e~i@+(13) i),

The compactness of the spatial spacetime dimension
imposes severe constraints on the field modes. On S! there
are two inequivalent spin structures: the trivial one (that
corresponds to imposing periodic boundary conditions on
the field modes), and the nontrivial one (that corresponds to
imposing antiperiodic boundary conditions) [52]. That is,
Ui o(t,x + L) = e?u, ,(t,x), where § =0 or 1/2 for
periodic and antiperiodic boundary conditions, respec-
tively. We shall assume here periodic boundary conditions,
for simplicity. This implies eTi@L e +L) — ¢ix) which
produces F wy ,L +¢p(x+ L) — p(x) = —n2n,ne€Z, or

2 (Pt L) = plx)

Wy, = inf:l: 7

(A6)

In other words, the allowed frequencies of the field modes
take only discrete values. To convert the right-hand side in
terms of the electromagnetic potential recall that
gA, = 0,¢(x), so ¢(x) =q [FA(X)dx', and ¢(x + L)—
d(x)=q [FTEA(x )dx This 1ntegral is well defined, so
we can make a change of Variable X' — x' — x to rewrite it

as ¢(x+1L)- =q JFA(X)dx =27qCS[A], where
CS[A] is the Chern Srmons [9] Therefore,
2
w1 = £ (n+CS[A)). (A7)

From this result we can infer

o n> —qCS[A] for positive chirality,
w4, >0 implies . Lo
’ n < —qCS[A] for negative chirality,
(A8)

L n < —qCS[A] for positive chirality,
w4, <0 implies i o
' n>—qCS[A] for negative chirality.

(A9)

The field equations (A2) and (A3) are linear, and
therefore the space of solutions of each chiral sector has
the structure of a vector space. As usual, we endow these
vector spaces with the Dirac inner product
(uy,uy) = JE dxiay (2, x)uy (1, x), which is preserved in time
by the Weyl equations and by the periodic boundary
conditions. Then, an orthonormal basis f (¢, x) of peri-
odic, positive-frequency modes for the “in” Hilbert space

L*((0.L)) ® L*((0.L)) is given by {—7—},cz+ for

tnl)f

left-moving spinors and {e —}tnez- for rrght moving

-2 an\

spinors. If we define the hehcrty as h:= fzwi” +h, we

see that for left-moving spinors, u_, posmve-frequency
modes have positive helicity, while for right-moving
spinors u_ positive-frequency modes have negative helicity
(2” n can be thought of as the wave number of the mode).
On the other hand, an orthonormal basis [ (¢, x) of
periodic, positive-frequency modes for the out Hilbert
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space L*((0,L)) @ L*((0,L)) is given, at late times, by

antifermions (positive charges) with negative (—) and
positive (+) helicity. The £ signs on u, and fij';’n simply

e~ iEn(i+x) 224 CS[A] (~t—x)+ig f-r A(X)dx A10 denote the sign of chirality (i.e. the direction of propaga-
¢ ( ) tion). On the other hand, in the basis of out modes we have
VL n+qCS[Ale Z* nstead
instea
for left-moving spinors, and
+00
{BZZL_”"([_X) ei%qcs[A](z—x)qu"A(x)dx’} (AL1) wy(t,x)= Z a, f (t,x) + Z bou W (1,%),
\/Z ntqCSIA] €7~ n>—qCS[A] n<—qCS[A
(A14)
for right-moving spinors.
In the basis of in modes the quantum fields can be
expanded as —0 +00
u(rx)= 3 A (rx)+ Y b (1),
Z at, fm,.(tx)+ Z P (1, x), (A12) n<—qCS|A] n>-qCS[A]
n>0 n<0 (AIS)
u_(t,x) Za W (1) + meﬂf‘“ (A13)
n<0 n>0

Fifn () eizf"qCS[A](IFt—x)Jriq fX A(x")dx'
VL

where [ (£,x) — & at

ST late times. The Bogoliubov coefficients that relate the in
\/_ and out representations are now easy to obtain. Since
annihilate fermions (negative charges) with (7, x) form a complete basis of the Hilbert space of

where f (1,x) — L at early times. In this expres-

: in
sion alt

positive (+) and negative (—) helicity, while big,, create solutions, f1 P (t.x) can be expanded as
|
) +00
n >0 (positive energy): f2,(t.x) = > ab, fO(t Z ﬁ ou (1, x), (A16)
n'>—qCS[A] n'<— qCS
n < 0 (negative energy): f* ,(t.x) = Z (8 x) + Z ﬂm (1, x), (A17)
n'<—qCS[A] n'>— qCS
—o0
n < 0 (positive energy): f",(7,x) = Z a f (2, x) + Z ﬂ;”,f‘j‘f;,(t, x), (A18)
n'<—qCS[A] n'>—qCS[A]
+oo -
n > 0 (negative energy): f,(7,x) = Z a2t x) + Z B S0 (2, X). (A19)
n'>—qCS[A] n'<—qCS[A]
Using the normalization conditions (f. ,, f+,) = 6,,, one can get several useful identities. For instance:
+o0
5"}1/ - ( lj,l‘n, 1}:’"/) - Z //a !l + Z ﬁnn//ﬁn/nu, (A20)
n"">—qCS|A ] n"<—qCS[A]
6nn’ = (fi—n,nvfiil‘n’) = Z ”a 'n + Z nn' n’n” (AZI)
n" <—qCS[A] n">-qCS[A

Setting n = n’, the convergence of the integrals imply that lim,_,_ \,Hffn,,| = 0. In what follows we will also need the
inverse Bogoliubov transformations. Since fij'ﬁ"n(t, x) also form a complete basis of the Hilbert space of solutions, the
elements 9 (7, x) can equivalently be expanded as

n > —qCS[A] (positive energy): fo%,(, x) Zy”n (%) + Z &t x (A22)
n'>0 n'<0
—00 ) ~+o0 )

n < —qCSJ[A] (positive energy): [ (z,x) = Zy;n, St x) + Zé;n, o (tx). (A23)
n'<0 n'>0
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For n" >0 we have v}, = (fT ., i“t,,) =a', and for pous _ Za* bt Zﬂ i a2

n” <0 wehave 8¢, = (f1 .. f) = B, Similarly, for £ 2 Pun T

n" <0 we obtain y, , = (f .. f2%) =a,, ., while for

n >0 we get O = (f Y m) = B,_w,r Using Similarly, plugging (A18) and (A19) in (A13), and rewrit-

(fens f2w) = 6,y we further obtain the following iden- ing as in (A15), we can read off the Bogoliubov trans-

tities: formation for the remaining creation and annihilation
operators:

— out Ol.lt
6,1"/ +.n % an//na ! + g ﬂn//nﬁn//n/, A24)

n">0 n"<0 - . I ~ s
a™, =Y agat, + > b, (A28)
n<0 n>0
t t
5 o fOun Z (x”//n a n'n' + Z/} n”n’ A25)
n”<0 n">0
Setting n = n’, the convergence of the integrals imply that pout iof = me + Z B in (A29)
li T 0 +n' T =
My |5 +0 |ﬂn”n| - Y. n>0 n<0

Plugging (A16) and (A17) into (A12), and rewriting as in
(A14), we can read off the Bogoliubov transformation of

the creation and annihilation operators: We have now all of the required ingredients to see the

connection between the chiral anomaly and particle pair

production.  Using the normalization equations

at, = Z afat, + Zﬂ* b™,, (A26)  (fin fiw) =06, the chiral charge can be formally
n>0 n<0 evaluated as:

L L L
0Os(1) = A dx¥P (1, x)yysP(t,x) = A dx¥(t, x)ys¥P(t,x) = A dx(dju, —a_u_)= (u,u.)— (u_,u_)
= > aWa+ Y bout Y aEU:Jagu}, — > B

n>—qCS[A] n<—qCS[A n<—qCS[A n>—qCS[A]

However, this operator is not well defined in our Fock space; its expectation values produce divergent sums. This is because
Qs(1) is quadratic in the quantum fields, and, consequently, the evaluation of expectation values requires renormalization.
The quantity of interest is (in|Qs(#)in),.,, whose time evolution tells us whether there exists an anomaly or not. To obtain
this result one can apply renormalization directly. However, there is an alternative, indirect procedure which, as we shall see,
provides useful insights on the physical interpretation of (in|Qs(7)|in),.,. Let us introduce the following fiducial (‘“normal-
ordered”) operator:

ren*

: QS : ( out) - / dXhm[lil(tout’ X)YOJ/S"P(tout’ y) - ]I<OUt|lP(tout’ X)VOYST(tout’ y)|OUt>]
Z a‘ft'a‘}r‘“ _ Z bout‘i'bout _ Z aou}tjagut + Z bouthou[ (A30)

n>—gCS[A] n<—qCS[A] n<—qCS[A n>—qCS[A]
This operator, which is given in terms of particle number operators of the out vacuum state, is now well defined on the Fock
space. In particular, the expectation value (in|: Qs: (7,,)]in) exists. However, keep in mind that this is just an auxiliary

operator that we introduced for convenience. What truly determines the quantum anomaly is the time evolution of the
charge Qs, not of the fiducial operator : Qs: . Using the definition above we can obtain the relation between the two:

<1n| : QS : (tout)|in> = <in|Q5(t0ut)|in>ren - <Out|Q5(tout)|0ut>ren' (A31)

We can now invert this expression to finally get the result of interest:

<in|Q5(t0ut) |in>ren = <11’1| : QS . (tout)|in> + <OUt|Q5(tout)|0ut>ren' (A32)
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The first contribution on the right-hand side depends only
on the Bogoliubov coefficients and does not require
renormalization. Then, it can be understood in terms of
particle pairs created with net helicity by the external,
electric background. The second term on the right-hand
side requires renormalization, and it represents a vacuum
polarization effect. To the quantum anomaly, both effects
contribute.'

As a side remark, it is interesting to note the similarity of
this result with the Hawking effect for black holes. In the
formation of a black hole by gravitational collapse, one can
compute the expectation value of the particle number
operator using Bogoliubov transformations between past
and future null infinity (with in and out states, respectively),
as Hawking originally did. This calculation is well defined
and does not require renormalization. In our problem,
this would be analogous to the calculation of
(in|: Qs (foy)|in), which is related to the particle number
operators. On the other hand, one can also study the
Hawking effect by computing the nondiagonal, flux com-
ponent of the expectation value of the stress-energy tensor
across future null infinity. This calculation, based only on
the in state, does require renormalization. This is because,
apart from the particle pair creation, there is yet another
contribution coming from vacuum polarization effects. In
our case, since Qs is a quadratic operator, the evaluation of
(in| Q5 (254 )|in),e, is analogous to the calculation of the
Hawking effect using the stress-energy tensor and not via
the particle number operator.

The evaluation of (in|: Qs: (Zyy)]in) in (A32) is straight-
forward from the expressions (A26)—-(A29) above and the
canonical commutation relations. It produces

= > |ﬁn,, > Iﬁ

<11’1| QS (tout |1n

n>—qCS[A n<—qCS[A
n'<0 n'>0
§ : =12 | - 12
|ﬂn’n + 'Bn’n .
n<—/qu n>77(,3

n'>0 n'<0

Note that each sum is convergent because each summand
decays in both indices as n — oo. Using (A20)—(A21),

IOMathematically, :Qs: (and not Qs) is the relevant operator
that is related with the index theorem in geometric analysis [53],
and, because of this, one may be tempted to identify it with the
chiral anomaly. Historically, chiral anomalies were studied on
compact manifolds without boundary, that arise naturally using
Euclidean techniques, and in these cases the chiral fermion
anomaly was found to match the predictions from the Atiyah-
Singer index theorem. As a result, the statement that chiral
anomalies are predicted by index theorems became a standard
lore. However, this is not true in more general cases. In particular,
for manifolds with boundary, extra contributions arise in the
index theorem, like the APS eta index #sps [53], and the
agreement with the anomaly fails. Physically, these extra boun-
dary terms are represented by the vacuum polarization effects
(out|Qs(oy)|out),., pointed out in this appendix.

(A24)—-(A25) one can write:

ilzi( S e

n>0 n>0 \n">-qCS[A] n"<—qCS[A]

i1=i( S g

n<0 n<0 \n"<-qCS[A] n">—qCS[A]

Iﬁ,an|2> . (A33)
B 2) . (A34)

I2>, (A35)

k k 00 —00
Z 1= Z (Z'a:”n|+zﬁ:”n

n>—gCS[A] n>—gCS[A] \n">0 n" <0

—k —k

SIS S AR Z Bl | (A36)
n<—qCS[A] n<—qCS[A] \n"<0 n">0

for some positive integer k. Subtracting (A33) from (A35),
and then taking the limit k — co, we obtain

Zn»&cgw |B;n|2 - Z,K pCs |ﬁn+n 2 [qcs[ H’ where H
indicates the integer part. Subtracting now (A34) from

(A36), and taking again the limit k — oo, we get
Zn<7,>cg[f\] B, 12— Zn»;]ggm 16,1 = —[gCS[A]]. In con-
clusion,

(in]: Qs (tou)lin) = 2h[gCSIA]]. (A37)

This is the main result of this appendix. It makes manifest
that the vacuum expectation value of the Dirac chiral charge
Qs at late times, (A32), receives an important contribution
from particle pair creation.

The evaluation of (out|Qs (7, )|out),., in (A32), on the
other hand, is technically more involved and requires
renormalization. This can be done using the adiabatic
method [54-56]. Since the main purpose of this appendix
was to show the connection with particle pair creation, we
just give the final answer without entering into the details,
which is
(out| Qs (ou) |out) ey = 2A(gCS[A] — [¢CS[A]]).
The final result reads (in|Qs(#oy)|in),e, = 2hgCS[A], and
(in| Qs (t;,)|in) e, = 0. This agrees, precisely, with the pre-
diction of the Adler-Bell-Jackiw anomaly. In other words,
there is a nontrivial evolution of the Noether charge in the
quantum theory, which violates the classical symmetry.

As a final remark, notice that, since (gCS[A]-
[¢qCS[A]]) €0, 1], unless [gCS[A]] is very small, the par-
ticle-creation contribution dominates against the vacuum
polarization effect.

Example: Uniform electric field. We address now the
problem described at the end of Sec. II. When the electric
background field is homogeneous, E = E(r), the Weyl
equations read, for any time ¢,

(A38)
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(i0, - 19, = gA (1)), =0,

(i0, + i0, + qA,(1))u_ = 0. (A39)
In our gauge choice we have E(r) =09,A (1), with
A,(t > —0) —» 0 and A,(t > +o0) — A, for some real-
valued constant A. The Weyl equations can be solved in full
closed form. The properly normalized in modes defined
above are

in (4 x) = T (2 (1) 'HIf (1) df)’ A40
(00) = (A40)
while the out modes are
1 i(322(14x)—qAt, +qf (7)dr)
out (1 x) =——¢ 'L o . (A4l
() = (A41)

Notice that the in modes satisfy the initial condition

modes satisfy the required final condition f" (7, x) ~

<[4 ( 27 27 .
- e Tl +aA)ET4] ot Jate times.

Using these explicit solutions, we can now calculate the
relevant Bogoliubov coefficients in full closed form. It is
straightforward to get

( out in

. ( L
out | _ le:FlQ(Atom‘Ff:zl dr'A (1)) / dxeq:i%”(tj:x)(n—n’)

e:Fiq(Atoerf—tZ:l dt/AX(I/))(snn’- (A42)

Note that (i) the result is time independent, as expected

from the Dirac inner product, (ii) |(f",., /% ,)] = 1, and

(iii) the emergence of o, is a direct consequence of the
homogeneity of the background field.

Let us assume that gA > 0 (similar results hold when
gA < 0). Then from (A16)-(A19) we can simplify [we
neglect the irrelevant phase factor of (A42)]

lﬁ,n(t,x)fv\/#zej“%(’ﬂ) at early times, while the out

n > 0 (positive energy): f,(¢,x) = fo% (1, x), (A43)
n < 0 (negative energy): fi,(t,x) = ©(—n — gAL/2x) fO% (1, x) + ©(n + qAL/2x) f", (¢, x), (A44)
n < 0 (positive energy): f",(7,x) = ©(—n — qAL/27) [ (1, x) + O(n + gAL/2x) % (¢, x), (A45)
n > 0 (negative energy): fin,(¢,x) = fo%(t, x). (A46)

This result shows that there is a number [gAL /27| of negative-frequency, left-moving in modes that transform into positive-
frequency, left-moving out modes. This means that the electric field has created [¢AL/2x| left-moving fermions (with
negative electric charge) out of the in vacuum. Similarly, there is a number [¢AL /2] of positive-frequency, right-moving in
modes that are measured as negative-frequency, right-moving modes by out observers. In other words, the electric field has
excited [gAL /2| right-moving antifermions (with positive electric charge). All of these particles have positive helicity 7.
This explains the net helicity found in the general result (A37).

APPENDIX B: PROOF OF (33)

We include here the technical details and computations of Sec. IV. The starting point is Egs. (31) and (32). Our task is to
plug these expressions in (27) and get (33).

Let us denote by A5"*(u, 0, ¢) the first term on the right-hand side of (32). Using (27), we divide the calculation in three
terms. First,

_ l(w,z—w"/)u — eiwyg pio, ,
/ du / dS? Tm(A3™®Y) = / d§21m > ®Y(n.0.4)DS (. 0, e . —1)mtn
L/2 n.'£0 —lwy,
—lw,u _ p—iw,Uy
+ Y B, 0.4)° d>8<0,0,¢><—1>"}
n#0 —iw,
CI)O 9 —iw, Uy
/dSZIm {ZL(”‘MJr L8,(0.0.4) > ®s(n.0.4)° (—1)"}
n#0 Ly, n#0 w,
(I) , 9’ 2 —zw,,uo
:/dSZZM < 0.0.) > ®(n.0.0) (- 1)">, (B1)
n70 @n 20 Wy
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where in the second equality we used the orthonormal properties of the basis modes (30), and the identity
- LL/fz du e/ = () to get rid of some terms. Second,

/L/zdu/d§21 {(—q>2(0 0. ) + A(uo. 0. ) (;m@z(n 0.9) W}I) +\%W>}

=L / d§2Im{ (%‘L‘)&)z(o, 0,¢) + A (u, 0, r/))) %m}
VL / dS*Im(AY(uo. 6. ) D5 (0. 6. §))

_ / 2 qudSP(AY (g, 0, ) D (.0, 5), (B2)
L2

where in the first equality we used the identity f—LI{?Z due™™/L = (); in the second equality we noticed that one term was
real, so its imaginary part vanishes; and in the last equality we recalled the definition of Fourier transform. Finally,

L/2 e-‘rzwnu . L~7
/_m /dSZIm{ﬁ<D (0,0, ) (;cbz(wn,e ®) N/ (-1) +ﬁ<1>2(o,9,¢))}
= /L/2 du/d§2lm{ 0 0, ¢ %;(Dz(a) 9 ¢) e\’;’n_“( )n}

1d
_ 2 iw,u _
_/L/zdu/ Slm{ 3,(0.0.4) " B (w,0.¢) e (~1)" i

eieu
n#0 e=0

S 1d L2 ;
ds? 2(0,0, 0, dug!lcrer
/ Im{ ¢ ;q)z (% ¢)( ) ld€ o O/L/2 ue }
:/dSZIm{I(D209¢Z¢’2G)9¢) }
n#0 @n
_/dSZRe{&)z(O,Q,ff’)ZM}’ (B3)
n#0 On

where in the first equality we noted that one term has vanishing imaginary part; and in the fourth equality we

used f_LL(Z dueicte)n = (1) 73"ng J;:)L/Z.

Combining all three terms above, and for uy = —L/2, which allows to further simplify some terms, we end up with
L/2 - -
/ du/dSzlm{(Ag — 0ay) D, }
-L)2

= /dSZ{ZM 2R <<I>2(O 0.9) M)} + /L/2 dudSZIm(Ag(—L/Z,H, @) — day) @, (u, 0, ).
[ -L/)2

n#0 O n
(B4)

oe¢

P9 (n.0.9)-83(0.0.)*
Note that Zn;eo . o :

The second term above can also be greatly simplified and has a nice physical interpretation. To see this, note first that, in the
gauge A) = A,n% = 0, the one-form AY lives on the tangent space of S?, so it can be expressed as the sum of a gradient and
acurl: A) = D,a + €D, B, where D,, is the connection on S?. Thus, AY = d(a + if8), with a, f€ C®°(R x S?,R). There
still exists a residual gauge freedom represented by A% — A% + DA, with A = 0. Under this transformation 8 remains
invariant, and although a does not remain invariant, the combination @ — @, does. With this new terminology we can
reexpress the second term on the right-hand side above as

~ Z#O = 0. Therefore, we can rewrite the first term above as [ dS? Zn;eo
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L2

where in the last step we made use of Maxwell equa-
tions (15) and the definition of infrared charges (20).

As we can see this contribution in the chiral anomaly is
related to memory of the electromagnetic background.
Despite  ®)(£%.,0.¢) =0, if ®Y(u.0,¢)#0, then
P(u,0,¢) and a(u,0,p) — ag(u, 0, $) evolve in time u,
leading to nonzero soft charges. Using (18) and (19), these
functions can be solved from Re®!(u,0,¢) =
Aa(u,0,$) + G(6,¢) and Imd>(1)(u,8, @) = AB(u,0,¢),
where A denotes the two-dimensional Laplacian. The
parameter f(—L/2,0, ¢) tells us about the magnetic field
at spatial infinity i when we take L — oo, while the
combination a(—=L/2,8, ¢) — ag(—L/2, 0, ¢) tells us about
the electric field. The residual gauge freedom mentioned
above can be fully fixed by choosing G such that

G(0.¢) = —%, where Q =L [, dS’Re®) is the (con-
stant) electric charge of the sources. Because o was chosen
such that AY = D,a, produces ® = ®Y = 0, in this fully
fixed gauge choice a; satisfies Aay = 0, which for smooth
functions on the sphere is equivalent to ay=0.
In summary, for a fully gauge-fixed theory the final result
|

L) R L2 L
/ dudS*Im(AY(=L/2,0,$) — dag) D) (u, 0, ¢p) = / dudS*Im(idf + d(a — ay)) DS (u, 0, @)
- -L/2

/L
B -L/2

= —Reqy + Img,_q,,

/2 - -
dudS?BRedDI(u, 0, ¢) + (a — ay) flmdDI (u, 0, @)

(BS)
[
reads
/ ™ du / dS*Tm{ (A? — Sag) Y}
L [ [* oMt n - S0
2r o w
+ Img,, — Regy, (B6)

where the infrared charges are evaluated for a(—oo, 8, ¢),
p(~0.0.4).

Note that the integral is wel defined in the infrared limit
@ — 0. On the other hand, when the soft charges are all
zero, we also have d)g(O,G, ¢) =0, and this expression
reduces to the result obtained in [16]. As shown in [16], the
first contribution on the right-hand side above represents
the difference between right-handed and left-handed cir-
cularly polarized radiation reaching future null infinity.
This is a purely radiative contribution.

The contribution from the IR charges in (B6) can be
rewritten in a different form:

Img, — Reg; = /dSza(—oo, 0, $)(Im® (o0, 0, ¢p) — Im®)(—c0, 0, ¢))

- [ d5B(-c0.0.9) (Re(00.0.) = Re(~c0.0.)

- / dS%a(~c0,0. D) A((c0.0.4) — (0.0, 4)) — / 452 (~c0.0. ) A(a(co. 0. ) — a(~c0.0. )

- / dS?[a(~00.0. ) AB(c0.0. ) — f(~c0. 0. ) Aa(co. 0. ).

(B7)

As a final remark, note that Eq. (B6) can also be obtained if we had chosen uy = +L/2 to write (B4) instead of
uy = —L/2. The only difference is that ¢ and f in that equation would be evaluated at u = +L/2 and not at u = —L /2.
Although apparently different, the two expressions are actually equivalent. The equivalence is manifest from (B7), which
implies Img (o) — Regp(o0) = IMgy(—o) — Regp oo after integration by parts. Equation (B6) with this last choice is the
result of Eq. (33) of the main text.

105025-21



ADRIAN DEL RIO and IVAN AGULLO

PHYS. REV. D 108, 105025 (2023)

[1] R. Bertlmann, Anomalies in Quantum Field Theory,
International Series of Monographs on Physics Vol. 91
(Clarendon Press, Oxford, England, 1996).

[2] S.L. Adler, Phys. Rev. 177, 2426 (1969).

[3] J.S. Bell and R. Jackiw, Il Nuovo Cimento A (1965-1970)
60, 47 (1969).

[4] T. Kimura, Prog. Theor. Phys. 42, 1191 (1969).

[51 R. Delbourgo and A. Salam, Phys. Lett. 40B, 381 (1972).

[6] T. Eguchi and P.G. O. Freund, Phys. Rev. Lett. 37, 1251
(1976).

[7] M. D. Schwartz, Quantum Field Theory and the Standard
Model (Cambridge University Press, Cambridge, England,
2014).

[8] T. Eguchi, P. B. Gilkey, and A.J. Hanson, Phys. Rep. 66,
213 (1980).

[9] M. Nakahara, Geometry, Topology and Physics, Graduate
Student Series in Physics (Hilger, Bristol, England, 1990).

[10] F. Bastianelli and P. van Nieuwenhuizen, Path Integrals and
Anomalies in Curved Space, Cambridge Monographs on
Mathematical Physics (Cambridge University Press,
Cambridge, England, 2006).

[11] I. Agullo, A. del Rio, and J. Navarro-Salas, Phys. Rev. Lett.
118, 111301 (2017).

[12] I. Agullo, A. del Rio, and J. Navarro-Salas, Int. J. Mod.
Phys. D 26, 1742001 (2017).

[13] I. Agullo, A. del Rio, and J. Navarro-Salas, Phys. Rev. D 98,
125001 (2018).

[14] 1. Agullo, A. del Rio, and J. Navarro-Salas, Symmetry 10,
763 (2018).

[15] A. del Rio, N. Sanchis-Gual, V. Mewes, 1. Agullo, J. A.
Font, and J. Navarro-Salas, Phys. Rev. Lett. 124, 211301
(2020).

[16] A. del Rio, Phys. Rev. D 104, 065012 (2021).

[17] N. Sanchis-Gual and A. del Rio, Phys. Rev. D 108, 044052
(2023).

[18] A. Ashtekar, M. Campiglia, and A. Laddha, Gen. Relativ.
Gravit. 50, 140 (2018).

[19] A. Strominger, Lectures on the Infrared Structure of Gravity
and Gauge Theory (Princeton University Press, Princeton,
NJ, 2017).

[20] L. Bieri and D. Garfinkle, Classical Quantum Gravity 30,
195009 (2013).

[21] B. Oblak and A. Seraj, arXiv:2304.12348.

[22] A. Seraj and B. Oblak, arXiv:2112.04535.

[23] R. Jackiw, in Current Algebra and Anomalies, edited by
S.B. Treiman et al. (World Scientific, Singapore, 1985),
p. 211.

[24] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

[25] R. Geroch, in Proceedings of a Symposium on Asymptotic
Structure of Space-Time, edited by F. Esposito and L.
Witten (University of Cincinnati, Cincinnati, OH, 1977),
pp. 1-105.

[26] A. Ashtekar, Asymptotic Quantization, based on 1984
Naples Lectures (Bibliopolis, Naples, 1987).

[27] A. Ashtekar, in Surveys in Differential Geometry, edited by
L. Bieri and S.T.-Yau (International Press, Boston, MA,
2015), p. 99.

[28] R. Penrose, Phys. Rev. Lett. 10, 66 (1963).

[29] E. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566
(1962).

[30] J. Stewart, Advanced General Relativity, Cambridge Mono-
graphs on Mathematical Physics (Cambridge University
Press, Cambridge, England, 1991).

[31] A. Ashtekar and B. Bonga, Classical Quantum Gravity 34,
20LTO1 (2017).

[32] A. Ashtekar and B. Bonga, Gen. Relativ. Gravit. 49, 122
(2017).

[33] S. Weinberg, Phys. Rev. 140, B516 (1965).

[34] R. Jackiw, Rev. Mod. Phys. 49, 681 (1977).

[35] M. A. Shifman, Instantons in Gauge Theories (World
Scientific, Singapore, 1994).

[36] D.J. Griffiths, Introduction to Electrodynamics, 4th ed.
(Pearson, Boston, MA, 2013).

[37] J. Winicour, Classical Quantum Gravity 31, 205003 (2014).

[38] B. Zel’dovich and A.G. Polnarev, Sov. Astron. 18, 17
(1974).

[39] V.B. Braginsky and L. P. Grishchuk, Sov. Phys. JETP 62,
427 (1985).

[40] V.B. Braginskii and K.S. Thorne, Nature (London) 327,
123 (1987).

[41] D.C. Christodoulou, Phys. Rev. Lett. 67, 1486 (1991).

[42] K.S. Thorne, Phys. Rev. D 45, 520 (1992).

[43] J. Frauendiener, Classical Quantum Gravity 9, 1639 (1992).

[44] L. Bieri and D. Garfinkle, Phys. Rev. D 89, 084039 (2014).

[45] A. Ashtekar, Phys. Rev. Lett. 46, 573 (1981).

[46] A. Ashtekar, J. Math. Phys. (N.Y.) 22, 2885 (1981).

[47] G.’t Hooft, Phys. Rev. Lett. 37, 8 (1976).

[48] A. Ashtekar and K.S. Narain, Presented at the VI
International Conference on Mathematical Physics (Syra-
cuse University, Berlin, 1981).

[49] H.B. Nielsen and M. Ninomiya, Phys. Lett. 130B, 389
(1983).

[50] J. Ambjorn, J. Greensite, and C. Peterson, Nucl. Phys.
B221, 381 (1983).

[51] L. Alvarez-Gaume and M. A. Vazquez-Mozo, An Invitation
to Quantum Field Theory, Lecture Notes in Physics
(Springer, Berlin, Heidelberg, 2012).

[52] L. Parker and D. J. Toms, Quantum Field Theory in Curved
Spacetime: Quantized Fields and Gravity (Cambridge
University Press, Cambridge, England, 2009).

[53] C. Baer and A. Strohmaier, Commun. Math. Phys. 347, 703
(2016).

[54] A. Ferreiro and J. Navarro-Salas, Phys. Rev. D 97, 125012
(2018).

[55] J.F. Barbero, A. Ferreiro, J. Navarro-Salas, and E.J.S.
Villasenor, Phys. Rev. D 98, 025016 (2018).

[56] A. Ferreiro, J. Navarro-Salas, and S. Pla, Phys. Rev. D 98,
045015 (2018).

105025-22


https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1007/BF02823296
https://doi.org/10.1143/PTP.42.1191
https://doi.org/10.1016/0370-2693(72)90825-8
https://doi.org/10.1103/PhysRevLett.37.1251
https://doi.org/10.1103/PhysRevLett.37.1251
https://doi.org/10.1016/0370-1573(80)90130-1
https://doi.org/10.1016/0370-1573(80)90130-1
https://doi.org/10.1103/PhysRevLett.118.111301
https://doi.org/10.1103/PhysRevLett.118.111301
https://doi.org/10.1142/S0218271817420019
https://doi.org/10.1142/S0218271817420019
https://doi.org/10.1103/PhysRevD.98.125001
https://doi.org/10.1103/PhysRevD.98.125001
https://doi.org/10.3390/sym10120763
https://doi.org/10.3390/sym10120763
https://doi.org/10.1103/PhysRevLett.124.211301
https://doi.org/10.1103/PhysRevLett.124.211301
https://doi.org/10.1103/PhysRevD.104.065012
https://doi.org/10.1103/PhysRevD.108.044052
https://doi.org/10.1103/PhysRevD.108.044052
https://doi.org/10.1007/s10714-018-2464-3
https://doi.org/10.1007/s10714-018-2464-3
https://doi.org/10.1088/0264-9381/30/19/195009
https://doi.org/10.1088/0264-9381/30/19/195009
https://arXiv.org/abs/2304.12348
https://arXiv.org/abs/2112.04535
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRevLett.10.66
https://doi.org/10.1063/1.1724257
https://doi.org/10.1063/1.1724257
https://doi.org/10.1088/1361-6382/aa88e2
https://doi.org/10.1088/1361-6382/aa88e2
https://doi.org/10.1007/s10714-017-2290-z
https://doi.org/10.1007/s10714-017-2290-z
https://doi.org/10.1103/PhysRev.140.B516
https://doi.org/10.1103/RevModPhys.49.681
https://doi.org/10.1088/0264-9381/31/20/205003
https://doi.org/10.1038/327123a0
https://doi.org/10.1038/327123a0
https://doi.org/10.1103/PhysRevLett.67.1486
https://doi.org/10.1103/PhysRevD.45.520
https://doi.org/10.1088/0264-9381/9/6/018
https://doi.org/10.1103/PhysRevD.89.084039
https://doi.org/10.1103/PhysRevLett.46.573
https://doi.org/10.1063/1.525169
https://doi.org/10.1103/PhysRevLett.37.8
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1016/0550-3213(83)90585-0
https://doi.org/10.1016/0550-3213(83)90585-0
https://doi.org/10.1007/s00220-016-2664-1
https://doi.org/10.1007/s00220-016-2664-1
https://doi.org/10.1103/PhysRevD.97.125012
https://doi.org/10.1103/PhysRevD.97.125012
https://doi.org/10.1103/PhysRevD.98.025016
https://doi.org/10.1103/PhysRevD.98.045015
https://doi.org/10.1103/PhysRevD.98.045015

