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We study the nonconservation of the chiral charge of Dirac fields between past and future null infinity
due to the Adler-Bell-Jackiw chiral anomaly. In previous investigations [A. del Rio, Phys. Rev. D 104,
065012 (2021)], we found that this charge fails to be conserved if electromagnetic sources in the bulk
emit circularly polarized radiation. In this article, we unravel yet another contribution coming from the
nonzero, infrared “soft” charges of the external, electromagnetic field. This new contribution can be
interpreted as another manifestation of the ordinary memory effect produced by transitions between
different infrared sectors of Maxwell theory, but now on test quantum fields rather than on test classical
particles. In other words, a flux of electromagnetic waves can leave a memory on quantum fermion states
in the form of a permanent, net helicity. We elaborate this idea in both 1þ 1 and 3þ 1 dimensions. We
also show that, in sharp contrast, gravitational infrared charges do not contribute to the fermion chiral
anomaly.
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I. INTRODUCTION

Not all symmetries of a classical theory remain exact
after quantization. When this occurs, i.e., when a symmetry
of the action is broken by quantum effects, one speaks
about anomalies [1]. Anomalies were first discovered in the
late 1960s, in the seminal works by Adler, Bell, and Jackiw,
as an attempt of solving the pion decay puzzle [2,3]. They
found that the chiral symmetry of the action of a massless
Dirac field ΨðxÞ that interacts with an electromagnetic
background is broken in quantum field theory.
Mathematically, this outstanding result is beautifully
encoded in the nonconservation equation of the fermionic
chiral current jaAðxÞ ¼ Ψ̄ðxÞγaγ5ΨðxÞ, which on a 3þ 1
dimensional Minkowski spacetime takes the form

h∇ajaAi ¼ −
ℏq2

8π2
Fab

⋆Fab; ð1Þ

where Fab is the field strength of the background electro-
magnetic field, ⋆Fab its Hodge dual, and q the charge of the
fermion. This is the celebrated chiral or axial anomaly.
Besides electromagnetic fields, gravitational back-

grounds have also the ability of triggering a chiral anomaly,
as it was soon after found in [4–6]. Mathematically, this
contribution generalizes the previous equation by adding a
new term proportional to the pseudoscalar curvature
invariant Rabcd

⋆Rabcd, where Rabcd is the Riemann tensor
and %Rabcd its Hodge dual with respect to the first two
indices:

h∇ajaAi ¼ −
ℏq2

8π2
Fab

⋆Fab þ ℏ
192π2

Rabcd
⋆Rabcd: ð2Þ

The following years experienced an outbreak of fascinating
results involving anomalies, both regarding physics and
mathematics. Examples include, besides the prediction of
the neutral pion decay rate to two photons, applications to
the matter-antimatter asymmetry of the universe, the U(1)
and strong CP problems in QCD, implications for anomaly
cancellation in the Standard Model (see [7] for a nice

*adrian.rio@uv.es
†agullo@lsu.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 105025 (2023)

2470-0010=2023=108(10)=105025(22) 105025-1 Published by the American Physical Society

https://orcid.org/0000-0002-9978-2211
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.105025&domain=pdf&date_stamp=2023-11-30
https://doi.org/10.1103/PhysRevD.104.065012
https://doi.org/10.1103/PhysRevD.104.065012
https://doi.org/10.1103/PhysRevD.108.105025
https://doi.org/10.1103/PhysRevD.108.105025
https://doi.org/10.1103/PhysRevD.108.105025
https://doi.org/10.1103/PhysRevD.108.105025
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


summary of all these applications), and connections with
the index theorems in geometric analysis [8–10]. The
notion of chiral anomalies has also been extended to other
fields, including integer spin fields [11–14].
In this article, we investigate yet another aspect of chiral

anomalies, related to global properties of both the fer-
mionic and the background fields. These global properties
appear when discussing the Noether charge associated with
the chiral current, namely QA ¼

R
Σ dΣj0A, where the inte-

gral is computed on any constant-time Cauchy hypersur-
face Σ. For the sake of clarity, let us focus on
electromagnetic backgrounds, although similar arguments
apply also for gravitational backgrounds—except for some
important differences that we unravel in this article.
Classically, the chiral charge QA of a Dirac field measures
the difference in the amplitude of the two helical compo-
nents of the field. Quantum mechanically, this quantity
translates to the difference in the number of positive and
negative helicity particles, together with possible contri-
butions from “vacuum polarization.” The charge QA is
strictly conserved in the classical theory, but it is not
quantum mechanically due to nonconservation of the
current (2). This can be easily shown by considering any
two Cauchy hypersurfaces, Σin and Σout, and noticing that
the change in the vacuum expectation value of QA between
Σin and Σout is equal to the integral of h∇ajaAi in the four-
dimensional region R bounded by Σin and Σout:Z

R
d4xh∇μj

μ
Ai ¼

Z

R
d4xðh∂tj0Aiþ h∇! · j⃗AiÞ

¼
Z

R
d4xh∂tj0Ai ¼ hQAiΣout

− hQAiΣin
; ð3Þ

where, in the second equality, the second term vanishes
due to Stoke’s theorem and standard falloff conditions of
the fields at spatial infinity. Hence, a nonzero value of the
integral

R
R d

4xh∇ajaAi implies the nonconservation of the
chiral charge of the quantum fermionic field.
Our goal is to understand what characteristics the

electromagnetic backgrounds must have to produce a
nonzero value of this integral. It is easy to check that
the pseudoscalar Fab

⋆Fab appearing in (1) can be written as
the divergence of a vector, jaCS ¼ 2Ab

⋆Fab, where Aa is the
electromagnetic potential—CS stands for Chern-Simons.
Repeating the steps used to produce Eq. (3), Eqs. (1) and
(3) automatically imply that the fermionic chiral charge
hQAi fails to be conserved if and only if the scalar QCS ¼R
Σ dΣj0CS associated with the vector jaCS changes between
Σin and Σout:

hQAiΣout
− hQAiΣin

¼ −
q2ℏ
8π2

½QCSjΣout
−QCSjΣin

': ð4Þ

This simple observation provides an interesting strategy to
classify electromagnetic backgrounds that are able to
trigger an anomalous nonconservation of the chiral charge

of fermionic quantum fields propagating thereon.1 This
strategy was initiated in [15,16] for both electromagnetic
and gravitational backgrounds, where some aspects of the
scalar QCS were analyzed for asymptotically flat space-
times, in which the hypersurfaces Σin and Σout can be
chosen to be past (I−) and future null infinity (Iþ),
respectively. This is a natural choice when studying
massless quantum fields. It was shown that, at these
limiting surfaces, the scalar QCS receives a contribution
from the net helicity of the radiative content of the
electromagnetic and gravitational fields. This implies that,
if there are sources in the bulk emitting helical or circularly
polarized radiation—in gravity, this happens, for instance,
in the coalescence of a large family of binary black hole
mergers [15,17]—there is a net change of QCS between I−

and Iþ, which induces a change in the chiral charge hQAi
of fermionic quantum fields propagating thereon. This is a
profound relation between the radiative content of the
background field and the chiral charge of quantum fields.
We emphasize that this is a quantum effect; classically,
hQAi is strictly conserved for massless fields, regardless of
the properties of the electromagnetic and gravitational
backgrounds.
This article unravels another contribution to QCS—

which, consequently, also acts as a source of fermionic
helicity hQAi—originated in the existence of certain
electromagnetic infrared or “soft” charges. Infrared charges
have received a good deal of attention in the recent past,
due to their theoretical importance in the study of the
S-matrix in quantum electrodynamics and quantum gravity,
and due to their connection with soft theorems (see the
reviews [18,19] and references therein). On the other hand,
nonzero infrared charges indicate the generation of
“memory effects” in physical systems. To give an example,
test charged particles can experience a permanent change in
their velocity (a “kick”) after the passage of electromag-
netic waves [20]. In electrodynamics, this was the first
example of memory reported in the literature. Other
memory effects have been identified in recent years (see
for instance [21,22] for an effect related with the helicity of
radiation, and references therein).
Therefore, the results of this article can be interpreted as

another type of memory effect produced by infrared
charges, now on test quantum fields rather than on classical
test particles. Quite interestingly, we find that this new
manifestation of electromagnetic memory effect does not
occur for the gravitationally-induced chiral anomaly.

1For Yang-Mills fields, the standard strategy consists in
looking for instanton solutions in Euclidean space. However,
there are no instanton solutions of Maxwell (Abelian) equations
in four dimensions. Furthermore, it is useful to work directly
within the framework of asymptotically flat spacetimes, since it
captures the full causal structure of physical (Lorentzian) space-
times.
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The rest of this article is organized as follows. Section II
introduces a simple example of pedagogical value: a
massless Dirac field in 1þ 1-dimensional flat spacetime
coupled to an electromagnetic background. Section III
contains a brief summary of the asymptotic properties of
the electromagnetic field at past and future null infinity,
including the notion of soft charges and memory effect in
this framework; readers already familiar with the notation
can skip this section. Section IV contains the main analysis
of this article, where the contribution of soft electromag-
netic charges for the Adler-Bell-Jackiw anomaly is derived.
This section also includes a simple example of an electro-
magnetic configuration for which the relevant infrared
charges are different from zero. The gravitational case is
discussed in Sec. V, and Sec. VI closes the paper with a few
conclusions and remarks.
Throughout this paper, we use geometric units in which

G ¼ c ¼ 1, and we keep ℏ explicit in our equations to
emphasize quantum effects. The metric signature is chosen
to be ð−;þ;þ;þÞ; ∇a represents the Levi-Civita connec-
tion; the Riemann tensor is defined by 2∇½a∇b'vc ≕
Rabc

dvd for any covector vd. Unless otherwise stated, all
tensors will be assumed to be smooth.

II. CHIRAL ANOMALY IN TWO DIMENSIONS

This section discusses a massless, charged Dirac field in
a 1þ 1-dimensional flat spacetime, propagating on a
homogeneous electric background with finite support in
time. To make our arguments simpler, we assume that the
spacetime manifold is R × S1, i.e., the spatial dimension
has been compactified to the circle. The electric field is
assumed to be strong enough to make the backreaction of
the quantum field negligibly small. This setup has great
pedagogical value to illustrate some of the main messages
of this paper, particularly the relation between the chiral
fermion anomaly and the memory effect. We also discuss
the relation of these concepts with spontaneous quantum
particle-pair creation.
In a 1þ 1-dimensional spacetime, Fab has only one

independent component—the electric field—Fab ¼ Eϵab,
where ϵab is the totally antisymmetric tensor. Among the
twoMaxwell equations, dF ¼ 0 is a trivial identity in 1þ 1
dimensions, since it involves antisymmetrizing three indi-
ces which can only take two different values. The other set
of Maxwell equations, d⋆F ¼ ⋆j, lead to ϵab∂bE ¼ −ja.
These equations imply that the electric field cannot vary out
of the support of the sources j, neither in space nor in time.
Hence, in 1þ 1 dimensions there are neither magnetic
fields nor electric waves.
Let us consider a fixed, time-dependent electric field that

is uniform in space. This can be generated by a time-
dependent current of the form ja ¼ ð0; jðtÞÞ. We further
assume that the electric field is different from zero only
during a finite interval, EðtÞ ≠ 0 for tin < t < tout. Despite

the fact that dF ¼ 0 is an identity and there is no magnetic
field, it is still useful to introduce a vector potential,
F ¼ dA, in terms of which the electric field reads
E ¼ ∂tAθ − ∂θAt. A gauge transformation changes
Aa → Aa þ ∂aα, with α a continuous function in the
spacetime manifold. We can always use this freedom to
make At ¼ 0, so that, under this gauge choice, E ¼ ∂tAθ.
In 1þ 1 dimensions, the expression (1) for the chiral

anomaly is replaced by [23]

h∇ajaAi ¼
qℏ
2π

ϵabFab: ð5Þ

The right-hand side can be written as qℏ
2π ∇ajaCS, where

jaCS ¼ 2ϵabAb. Although this vector is not gauge invariant,
its divergence, as well as the scalarQCSðtÞ≡

R
t dxj

0
CSðt; xÞ,

are both gauge invariant.2 Following the argument
described in the Introduction, Eq. (5) implies that the
change of the chiral charge hQAiðtÞ ¼

R
L
0 dθhj0Aiðt; θÞ from

tin to tout can be written, for any quantum state, as

hQAiðtoutÞ − hQAiðtinÞ ¼
qℏ
2π

½QCSðtoutÞ −QCSðtinÞ'; ð6Þ

where QCS ≡
R
L
0 dθj0CS ¼ 2

R
S1 Aadla. As mentioned

above, this quantity is manifestly gauge invariant. Recall
also that this scalar is purely electric, i.e., it does not know
anything about the Dirac field. From this, we have

QCSðtoutÞ −QCSðtinÞ ¼ 2

Z
L

0
dθðAθðtoutÞ − AθðtinÞÞ

¼ 2L
Z

tout

tin
dtEðtÞ; ð7Þ

where in the last equality we have used that E ¼ ∂tAθ, that
the electric field is homogeneous, and that L is the length of
the spatial sections. Hence, Eq. (6) tells us that the
anomalous nonconservation of the chiral charge hQAi is
dictated by the value of the time integral of the electric field

hQAiðtoutÞ − hQAiðtinÞ ¼
qℏ
π
L
Z

tout

tin
dtEðtÞ: ð8Þ

This result shows that the vacuum expectation value hQAi
“keeps memory” of the past history of the electric field. In
particular, the effect of switching on an electric field for
some period of time tin < t < tout can leave a residual,
permanent helicity contribution on the vacuum state of the
quantum field (quantified by the value of hQAi at late

2A more rigorous derivation of this vector gives jaCS ¼
2ϵabðAb − A0

bÞ with ∇½aA0
b' ¼ 0, which includes an auxiliary

potential A0
b that makes jaCS gauge invariant. Since this extra

term does not affect physical quantities, we can simply take
A0
b ¼ 0, as customary in the literature.
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times), even after switching off completely the external
field. One can think about this residual helicity as the way
the quantum field retains information about the past
influence of the electric background.
The integral on the right-hand side above also features in

the memory effect found for classical particles [20]. A test
charged particle in our background would suffer a perma-
nent change in its velocity after the passage of this
electromagnetic pulse if and only if

R tout
tin dtEðtÞ ≠ 0.

From this point of view, the permanent change in the
vacuum expectation value hQAi found above can be
thought of as another manifestation of the electromagnetic
memory effect, but now on quantum fields.
It may be surprising that, despite the fact that the external

electric field vanishes, the quantum system does not return
to its original configuration. To better understand this
effect, one has to resort to the electromagnetic potential,
which makes manifest that the memory actually originates
from transitions between inequivalent vacua of the electric
field (hence, the background does not really return to the
same exact configuration either). To see this, recall that our
electric background evolves from a vacuum configuration,
EðtinÞ ¼ 0, to another vacuum configuration EðtoutÞ ¼ 0.
Classically, the two electric vacuum states are equivalent,
but quantum mechanically they may not be.3 In particular,
note that the change in potential from tin to tout,
AaðtoutÞ − AaðtinÞ, is nontrivial. This can be seen from
the fact that the loop integral

R
S1 dlaðAaðtoutÞ − AaðtinÞÞ,

which is gauge invariant, is different from zero if and only
if
R tout
tin dtEðtÞ ≠ 0. But since the electric field vanishes at

early and late times, AaðtoutÞ can only differ from the
initial potential AaðtinÞ by a residual gauge transformation,
left by the dynamical evolution of the electric field.
A straightforward calculation shows that this gauge
transformation is given by AaðtoutÞ ¼ AaðtinÞ þ ∂aα with
αðθÞ ¼ θ

R tout
tin dtEðtÞ þ α0, for some constant α0. However,

this is not an ordinary gauge transformation because αðθÞ is
not a continuous function on S1 (because αðLÞ ≠ αð0Þ).
Instead, it belongs to the family of so-called “large” gauge
transformations [23], which carry physical implications,
and which can be used to label inequivalent notions of
vacuum states of the quantum electromagnetic theory.4

In summary, the passage of an electric pulse withR tout
tin dtEðtÞ ≠ 0 induces a large gauge transformation in

the vector potential, which produces a memory effect, not
only on classical charged particles but also on the states
of quantum fermion fields. As will be discussed below, in
3þ 1 dimensions there is another contribution to the chiral
anomaly coming from the radiative content of the electro-
magnetic field; such contribution does not arise in 1þ 1
due to the absence of electromagnetic radiation.
The permanent change in the vacuum expectation value

of the chiral charge hQAi, described on the left-hand side of
(8), can also be understood in terms of the standard notion
of electromagnetic memory for particles. Heuristically,
virtual charged particles populating the quantum vacuum
would suffer a permanent change in its velocity after
switching on this electric pulse, provided the integralR tout
tin dtEðtÞ does not vanish. In 1þ 1 dimensions these
charges can only propagate in two directions, left or right.
Therefore, positive charges suffer a “kick” in the direction
of the electric field, while negative charges are kicked in the
opposite direction. Both particles in the pair have the same
helicity. If the kick is strong enough, it will turn virtual
charges into physical excitations out of the quantum
vacuum. This results in a net creation of helicity, which
explains the permanent change of the quantum state or of
the chiral charge hQAi.
This heuristic picture can be made rigorous through a

calculation of particle-pair creation using Bogoliubov coef-
ficients. We finish this section with a brief allusion to this.
If the electric field is nonzero only during a finite interval,
tin < t < tout, we can define natural “in” and “out” notions
of vacua and particles. The question of interest is, if the
field is prepared in the “in” vacuum before tin, and evolved
until a time after tout, what is the number of “out” quanta in
the final state?
This question can be answered without much difficulty

in the case in which the electric field is uniform at all times
(Appendix A contains a detailed derivation of this and of
the general case of an electric field that varies both in space
and time). As before, let us work in a gauge in which the
vector potential is purely spatial, At ¼ 0. Without loss of
generality, we can also consider AθðtÞ ¼ 0 for t < tin. Let
A0 ¼

R tout
tin EðtÞdt denote then the value of Aθ at late times,

after tout. In short, a nonzero value of A0 induces a
permanent frequency shift between the “in” and “out”
basis of solutions of the field equations, which define the
“in” and “out” vacua, respectively. Namely, for modes with

3The most prominent example of this is the Ahranov-Bohm effect [24].
4More precisely, when the potential Aa is viewed as a gauge connection on a Uð1Þ principle bundle over R × S1, we can speak of

infinitesimal gauge transformations, as well as of global or finite gauge transformations. In the temporal gauge fixing At ¼ 0, a finite
gauge transformation, Aa → Aa − ig−1∇ag, is determined by a continuous map g∶ S1 → S1, given in a local coordinate system by
gðθÞ ¼ eiαðθÞ. Continuous maps on S1 can be divided in different (homotopy) classes, where two elements of the same class can be
deformed continuously into each other. The classification of continuous maps is determined by the first homotopy group, ΠðS1Þ ≃ Z,
which shows that each class of gauge functions is labeled by an integer. This is easy to infer from the requirement that g is continuous,
because it demands αðLÞ − αð0Þ ¼ 2πn, for n∈Z. Two gauge functions g, g0 belonging to different classes cannot be deformed
continuously into each other. An ordinary gauge transformation is a gauge transformation g that belongs to the trivial class or n ¼ 0,
while gauge functions with n ≠ 0 lead to “large” gauge transformations [23].
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spatial dependence eikθ, with k∈ ð2π=LÞn and n∈Z, the
“in” modes oscillate with frequency ωin ¼ k, while “out”
modes oscillatewith frequencyωout ¼ kþ qA0. Becausek is
discretized (due to the compactness of the spatial sections)
there is a finite number of modes within the frequency
interval ð0; qjA0jÞ. Namely, there are ½qjA0j L

2π'modes within
this interval, where the square brackets denote integer part.
This shift in frequency automatically implies that

the evolution creates a number ½qjA0j L
2π' of fermion-

antifermion pairs. Because of linear momentum conserva-
tion (note that the background is homogeneous), antifer-
mions (positive charges) move in the direction of EðtÞ,
while fermions (negative charges) move in the opposite
direction. However, helicity is not conserved in this
process. Fermions moving to the right (left), and antifer-
mions moving to the left (right), both have negative
(positive) helicity. As a result, both members of the pair
have positive ℏ (negative −ℏ) helicity if A0 > 0 (A0 < 0).
The total helicity carried by the excited pairs is
2ℏ½qA0

L
2π' ¼ 2ℏ½q

R tout
tin EðtÞdt L

2π'. This agrees, except for
the noninteger part, with the prediction for hQAiðtoutÞ −
hQAiðtinÞ given in Eq. (8). The difference is due to the
“vacuum polarization,” i.e. the helicity leftover in the “out”
vacuum, which did not reach the threshold to excite
another pair.
Although, for the sake of pedagogy, in this section we

have restricted to uniform, background electric fields, all
the arguments generalize to arbitrary functions Eðt; θÞ.
Appendix A contains information about this generalization
and further details which have been omitted in this section.

III. ASYMPTOTIC STRUCTURE OF THE
ELECTROMAGNETIC FIELD AND INFRARED

CHARGES: A BRIEF REVIEW

The rest of this paper will focus on the chiral anomaly in
asymptotically flat spacetimes in 3þ 1 dimensions. The
presence of electromagnetic radiation, not present in 1þ 1
dimensions, makes it more convenient to use past and
future null infinity for the initial and final Cauchy hyper-
surface of zero-rest mass fields. This section contains a
brief summary of tools concerning the asymptotic structure
of the electromagnetic field at null infinity and infrared
charges. These tools are well known [18,25–27], and the
reader familiar with them can skip this section.

A. Review on the asymptotic structure of the
electromagnetic field

The electromagnetic radiation generated by charges and
currents can be rigorously studied within the framework of
asymptotically flat spacetimes [25–27]. This framework
makes use of the notions of conformally compactified
spacetimes introduced by Penrose in the 1960s [28].
Let (R4, η̂ab) represent the physical, Minkowski space-

time, and let (M, ηab) denote an extended (unphysical)

spacetime obtained from (R4, η̂ab) by an ordinary conformal
compactification, i.e. by the addition of “points at infinity.”5

More precisely, the new metric is obtained from the physical
one by a conformal transformation ηab ¼ Ω2ðxÞη̂ab, while
the new manifold is constructed by attaching smoothly a null
boundary J to the physical manifold, M ¼ R4 ∪ J .
Locally, J corresponds to the hypersurface Ω ¼ 0 and
has null normal ηab∇bΩ ≠ 0. From a physical viewpoint, the
elements of J represent the “points of (null) infinity,” i.e. the
points that can be asymptotically reached by following
radial, null geodesics in the physical spacetime. The boun-
dary J is made of two portions, past (J −) and future (J þ)
null infinity. In the following, we will focus on J þ. The
construction is similar for J −.
For example, in a Bondi-Sachs coordinate system

fu; r; θ;ϕg, where u ¼ t − r is the standard retarded time,
the Minkowski metric reads dŝ2 ¼ −du2 þ 2dudrþ
r2dω2 and one uses Ω ¼ 1=r to obtain ds2 ¼ −Ω2du2 þ
2dudΩþ dω2 after the conformal transformation men-
tioned above. The restriction of this line element to the
Ω ¼ 0 hypersurface gives a well-defined (although degen-
erate) metric. The limit r → ∞ keeping u; θ;ϕ constant
follows the geodesics of outgoing radiation propagating to
future null infinity, getting to Ω ¼ 0 in finite time as
measured by the unphysical metric. The extended manifold
is obtained then by including all these limiting points
fu;Ω ¼ 0; θ;ϕg to the original manifold, and future null
infinity is described then by the submanifold R × S2.
This framework makes it possible to study the behavior

of the electromagnetic field in a neighborhood of infinity
(which in this case is simply a boundary of the spacetime
manifold) using standard techniques in differential geom-
etry. To see this, let us first note that the electromagnetic
field tensors are conformal invariant, F̂ab ¼ Fab, Âa ¼ Aa.
These tensors are well defined in the entire extended
spacetime, including at the boundary J þ. The electromag-
netic field Fab has six independent components. In a
Newman-Penrose basis fna;la; ma; m̄ag [29], where typ-
ically one takes la ¼ −∇au as the vector tangent to
outgoing null geodesics, the six electric and magnetic
components of Fab can be captured in the following three
complex scalars

Φ2 ≔ Fabnam̄b; ð9Þ

Φ1 ≔
1

2
½Fabnalb þ Fabmam̄b'; ð10Þ

Φ0 ≔ Fabmalb: ð11Þ

If we assume smooth fields, the Peeling theorem guarantees
that these scalars admit the following Taylor expansion inΩ
in a neighborhood of future null infinity [30]:

5We shall use the hat symbol for any tensor and quantity
intrinsic to the physical spacetime.
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Φ2ðu;Ω; θ;ϕÞ ¼ Φ0
2ðu; θ;ϕÞ þ ΩΦ1

2ðu; θ;ϕÞ þ ( ( ( ; ð12Þ

Φ1ðu;Ω; θ;ϕÞ ¼ Φ0
1ðu; θ;ϕÞ þ ΩΦ1

1ðu; θ;ϕÞ þ ( ( ( ; ð13Þ

Φ0ðu;Ω; θ;ϕÞ ¼ Φ0
0ðu; θ;ϕÞ þ ΩΦ1

0ðu; θ;ϕÞ þ ( ( ( ; ð14Þ

where we denote Φ0
2ðu; θ;ϕÞ≡Φ2ðu;Ω ¼ 0; θ;ϕÞ and

similarly for Φ0
1ðu; θ;ϕÞ and Φ0

0ðu; θ;ϕÞ. These fields
encode all the information about the electromagnetic field
at J þ. They are, however, not independent. Using
Maxwell’s equations, one finds

∂uΦ0
1 ¼ ðΦ0

2; ð15Þ

∂uΦ0
0 ¼ ðΦ0

1; ð16Þ

where ∂uf ¼ na∇af for any function f (this is a
consequence of the Newman-Penrose normalization
nala ¼ −1), and where ð is a spin-weighted derivative
operator [30], defined by Vb

1V
c
2…ma∇aTbc… ¼

ððVb
1V

c
2…Tbc…Þ, for arbitrary tensors Va

i and Tbc….
These equations determine the evolution of the scalars
Φ0

0 and Φ0
1 along the retarded time u in J þ, upon giving

initial conditions, and also some input for Φ0
2. In contrast,

the dynamics of Φ0
2 along u is not determined by Maxwell

equations. This scalar serves as the free data for a character-
istic value formulation of Maxwell theory at J þ.
By switching back to the original physical spacetime,

with the appropriate conformal rescaling of the Newman-
Penrose vectors, one can see that Φ̂2 ∼Oðr−1Þ and
Φ̂1 ∼Oðr−2Þ. From this, one identifies the scalar Φ0

2 as
describing the two radiative degrees of freedom of the
electromagnetic field, while Φ0

1 represents the Coulombic
part of the field. In fact, the total energy flux radiated to J þ

is given by F ¼
R
dudS2Tabnanb ¼

R
dudS2jΦ0

2j2, where
Tab is the energy-momentum tensor, and therefore is
entirely determined from Φ0

2. Similarly, the electric charge
of sources in the bulk can be determined from J þ using
Gauss’s law as Q ¼ 1

2π

R
dS2ReΦ0

1ðu; θ;ϕÞ, and is com-
pletely determined from Φ0

1. Using Maxwell equations in
J þ, it is straightforward to check that ∂uQ ¼ 0, reflecting
the conservation of the electric charge. Note also that the
requirement of finite energy flux at J þ, F < ∞, requires
Φ0

2ðu; θ;ϕÞ → 0 as u → )∞.
In terms of an electromagnetic potential, one introduces

the scalars A2 ≔ Aam̄a, A1 ¼ Aana, A0 ¼ Aala. The falloff
conditions of the potential for large r is not given before-
hand from the theory and requires some input. Physical
considerations require that these components admit an
asymptotic series with leading behavior Oðr−1Þ [31,32].
Using F ¼ dA, one can obtain the following formulas,

valid at future null infinity J þ:

Φ0
2 ¼ Ȧ0

2 − ð̄A0
1; ð17Þ

ImΦ0
1 ¼ ImðA0

2; ð18Þ

where dot denotes derivative with respect to retarded time
u. Furthermore, by integrating Maxwell equations at J þ,
one can further obtain

ReΦ0
1 ¼ ReðA0

2 −
Z

u

u0
du0ðð̄A0

1 þGðu0; θ;ϕÞ; ð19Þ

where Gðu0; θ;ϕÞ arises as an integration factor. From (9)
we see that the two electromagnetic radiative degrees of
freedom are distributed between A0

2 and A0
1. But these are

three real-valued scalars, so there is, as expected, some
gauge redundancy in the description. A useful gauge fixing
is A0

1 ≡ Aana ¼ 0. With this gauge choice, the real and
imaginary parts of A0

2 represent the two radiative degrees
of freedom, electric and magnetic respectively. The
Coulombic aspects of the field are all encoded in
Gðu0; θ;ϕÞ, in particular Q ¼ 1

2π

R
S2 Gðu0; θ;ϕÞ.

B. Electromagnetic soft charges and the memory effect

The phenomenon of memory effect is well known in
Maxwell’s theory [20]. The most prominent example is a
charged pointlike particle of initial velocity v⃗1 that suffers a
“kick” and changes its direction of propagation to v⃗2 after
the passage of an electromagnetic pulse. This is an example
of electric-type memory. In the intermediate process, the
charged particle emits radiation by Bremsstrahlung; the
properties of the emitted radiation carry information about
this effect.
At future null infinity, the phenomenon of electromag-

netic memory is encoded in the following quantities:

qα ¼
Z

dS2αðθ;ϕÞðΦ0
1ð∞; θ;ϕÞ −Φ0

1ð−∞; θ;ϕÞÞ; ð20Þ

where α is a smooth real function on the sphere S2. The
complex numbers qα are called soft charges, and they
measure permanent changes in the multipolar structure of
the Coulombic part of the electromagnetic field after some
process. From (15), one infers that qα ≠ 0 only if
Φ2ðu; θ;ϕÞ ≠ 0, i.e. only, if there is a flux of electromag-
netic radiation reaching infinity. When this happens, one
says that the electromagnetic field keeps memory on the
radiation flux emitted to infinity in the past.
The relation of the charges qα and the radiation reaching

J þ can be explicitly shown by using Maxwell equations to
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replace Φ0
1 by Φ0

2 in (20):

qα ¼
Z

dS2duαðθ;ϕÞΦ̇0
1ðu; θ;ϕÞ

¼
Z

dS2duαðΦ0
2ðu; θ;ϕÞ

¼ −
Z

dS2duðαðθ;ϕÞΦ0
2ðu; θ;ϕÞ: ð21Þ

Expanding in spin-weighted spherical harmonics, this can
be further simplified as

qα ¼
X

lm

ð−1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
αl−m

Z
þ∞

−∞
duΦ0

2lmðuÞ

≡
X

lm

α̃lmqlm: ð22Þ

The problem is reduced to study the basis qlm ¼Rþ∞
−∞ duΦ0

2lmðuÞ of charges. Note that, for l ¼ 0, i.e. when
αðθ;ϕÞ ¼ const, the soft charge is identically zero. This is
consistent with the fact that the monopole of the electro-
magnetic field (the electric charge) is conserved and cannot
be radiated away. In contrast, dipolar and higher order
structure (l ≥ 1) can be radiated away. That phenomena is
encoded in qlm ≠ 0 for l > 0.
As argued in the previous subsection, finiteness of

energy fluxes require that Φ2lmðuÞ belongs to L2ðR;CÞ,
which implies that it admits a Fourier transform on J þ:

Φ̃0
2lmðωÞ ¼

Z
þ∞

−∞
duΦ0

2lmðuÞe−iωu: ð23Þ

This automatically implies that the charges qlm are simply
the “zero mode” of Φ̃0

2lm

qlm ¼ Φ̃0
2lmð0Þ: ð24Þ

Therefore, only the zero-frequency modes of the emitted
electromagnetic radiation leave a memory on the multipolar
structure of the field. This is the reason why these charges are
called “soft,” as they are associatedwith “soft photons” [19,33].
These charges are intrinsically associated to asymptotic

symmetries of Maxwell theory. One way of looking
into this is by considering the phase space Γ of the
electromagnetic degrees of freedom at J þ. This phase
space is made of pairs of canonically conjugate
fields6 ðAa; EbÞ, where Aa ¼ −A0

1la þ A0
2ma þ Ā0

2m̄a and
Ea ¼ −2ReΦ0

1n
a þΦ0

2m
a þ Φ̄0

2m̄
a.7 Γ can be endowed

with the structure of an infinite-dimensional Banach
manifold. The usual symplectic structure for Maxwell
theory can be written on future null infinity as

ΩððAð1Þ
a ; Eð1ÞaÞ; ðAð2Þ

a ; Eð2ÞaÞÞ

¼
Z

R×S2
du dS2

"
Að1Þ
a Eð2Þa − Að2Þ

a Eð1Þa
#
: ð25Þ

Together with suitable falloff conditions at u → )∞
required to make this integral well defined, the pair
ðΓ;ΩÞ defines the phase space for the radiative degrees
of freedom of Maxwell theory.
Now, consider the (restricted) family of gauge trans-

formations Aa → Aa þDaα, with α ¼ αðθ;ϕÞ. This trans-
formation is generated in phase space by the quantity

Qα ≡ 1

2
ΩððAa; EaÞ; ðDaα; 0ÞÞ

¼ −
1

2

Z

R×S2
du dS2ðDaαÞEa

¼ −
1

2

Z

R×S2
du dS2DaðαEaÞ

¼
Z

R×S2
du dS2naDaðαReΦ0

1Þ;

where in the second equality we have used Maxwell
equations (15) to write DaEa ∝ ReΦ̇0

1 − ReðΦ0
2 ¼ 0.

Recalling that ∂u ¼ naDa, the right-hand side of this
equation happens to be equal to the real part of the soft
charges defined in (20). (A similar analysis using a “dual”
potential Za produces the imaginary part of the soft
charges.)
This observation tells us that soft charges qα can be

identified with the generators of gauge transformations in
the radiative phase space. Since soft charges can be
different from zero, one concludes that transformations
Aa → Aa þDaα in J þ are actual symmetries of our phase
space ðΓ;ΩÞ, rather than mere gauge transformations.
Therefore, they have physical significance (which is,
precisely, the electromagnetic memory). From the view-
point of the bulk, these are gauge transformations that do
not vanish at infinity. To distinguish them from ordinary
gauge transformations, they are called “large” gauge trans-
formations. The set of all large gauge transformations
constitutes the infinite-dimensional, asymptotic symmetry
group of Maxwell theory.

IV. THE CHIRAL ANOMALY INDUCED BY AN
ELECTROMAGNETIC BACKGROUND

This section contains the main results of this article. We
consider a quantum, massless Dirac field propagating in

6In the Newman-Penrose basis introduced above, notice that
the tangent space at each point of future null infinity is spanned
by the three vectors fna; ma; m̄ag, while the cotangent space is
spanned by the three covectors fla; ma; m̄ag.7No gauge condition on Aa has been imposed at this level.
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Minkowski spacetime in 3þ 1 dimensions with metric ηab,
coupled to an electromagnetic field Fab. The spin 1=2 field
is treated as a test field, i.e. we neglect its backreaction on
the electromagnetic and spacetime backgrounds. This
external electromagnetic field is assumed to be generated
by some distribution of electric charges and currents, that
are smooth and confined in space, but otherwise arbitrary.
To keep the parallelism with the 1þ 1-dimensional chiral
anomaly discussed in the previous section, the sources will
be “switched on” only for a finite amount of time, in the
sense that they become stationary at sufficiently late and
early times. All possible electromagnetic waves are radi-
ated during a finite period of time.
As discussed above, the electromagnetic field can induce

a change in the helicity of the fermionic field due to the
chiral anomaly. Our starting point is expression (3) for the
change of the chiral charge of the quantum field

hQAiΣout
− hQAiΣin

¼
Z

R
d4x

ffiffiffiffiffiffi−ηp h∇ajaAi

¼ −
ℏq2

8π2

Z

R
d4x

ffiffiffiffiffiffi−ηp
Fab

⋆Fab: ð26Þ

If we integrate over the entire spacetime manifold,
R ¼ M ≃R4, then Σin and Σout correspond to past and
future null infinity, respectively. This choice makes it
possible to use the machinery summarized in the previous
section to disentangle the properties of the electromagnetic
field that can make the right-hand side different from zero.
This problem was worked out in [16], where it was found
that, assuming no incoming electromagnetic radiation from
past null infinity, the right-hand side of (26) can be written
in terms of boundary data on future null infinity as

hQAiJ þ −hQAiJ − ¼ℏq2

4π2

Z
∞

−∞
du
Z

dS2ImfðA0
2−ðα0ÞΦ̄0

2g:

ð27Þ

Here, α0 is a smooth real-valued function on the sphere and
ðα0 is a pure gauge potential (i.e. it produces no electro-
magnetic field,Φ0

2 ¼ 0). This expression was derived in the
gauge A0

1 ¼ 0. Notice that a nonzero value is obtained in
the integral (27) because of the weak decay behavior of the
radiative solutions of Maxwell equations in a neighborhood
of future null infinity: A2 ∼ 1=r, Φ2 ∼ 1=r (recall the
discussion earlier). These two radial factors compensate
the r2 factor in the integral measure.8

To analyze the physical interpretation of the right-hand
side of the previous equation, it is convenient to work with
a compactified retarded coordinate u. We will consider
u∈ ½−L=2; L=2' and let L → ∞ at the end of the

calculation. As explained above, ifΦ0
2 is the electromagnetic

radiation field, the requirement that the energy flux across
J þ is finite implies Φ0

2ð·; θ;ϕÞ∈L2ðRÞ for all ðθ;ϕÞ∈S2,
and in particular Φ0

2 → 0 as u → )∞. Therefore, we will
consider functions Φ0

2ð·; θ;ϕÞ∈L2ðð−L=2; L=2ÞÞ, for all
ðθ;ϕÞ∈S2, with boundary conditions given by
Φ0

2ð) L
2 ; θ;ϕÞ ¼ 0. This will guarantee that Φ0

2 → 0 as
u → )∞ at the end of the calculation. Since the functions
Φ0

2ð·; θ;ϕÞ happen to be periodic with period L, an ortho-
normal basis for L2ðð−L=2; L=2ÞÞ is given by
fe−iωnL=2ffiffiffi

L
p e−iωnugn∈Z, where ωn ¼ 2π

L n, so one can expand
in Fourier series:

Φ0
2ðu;θ;ϕÞ ¼

Xþ∞

n¼−∞
Φ̃0

2ðωn; θ;ϕÞe−iωn
L
2
e−iωnu

ffiffiffiffi
L

p : ð28Þ

The inverse Fourier series is

Φ̃0
2ðωn; θ;ϕÞ ¼ eiωn

L
2
1ffiffiffiffi
L

p
Z

L=2

−L=2
Φ0

2ðu; θ;ϕÞeþiωnudu: ð29Þ

The basis modes are orthonormal with respect to the L2

norm:

Z
L=2

−L=2
du

1ffiffiffiffi
L

p e−iωnuð−1Þn 1ffiffiffiffi
L

p eþiωn0uð−1Þn ¼ δnn0 : ð30Þ

The continuous limit will be recovered using the for-
mula limL→∞

1
L

P
n∈Z fðnLÞ ¼

1
2π

Rþ∞
−∞ dwfðwÞ.

In order to disentangle the potential contribution of IR
charges to Eq. (27) we will make an explicit distinction
between the zero frequency mode Φ̃0

2ð0; θ;ϕÞ ≠ 0 and the
rest of the modes. Let us then write the field and potential as

Φ0
2ðu;θ;ϕÞ¼

X

n≠0
Φ̃0

2ðωn;θ;ϕÞð−1Þn
e−iωnu

ffiffiffiffi
L

p þ 1ffiffiffiffi
L

p Φ0
2ð0;θ;ϕÞ;

ð31Þ

A0
2ðu; θ; βÞ ¼

1ffiffiffiffi
L

p
X

n≠0
Φ̃0

2ðu; θ;ϕÞ
e−iωnu − e−iωnu0

−iωn
ð−1Þn

þ u − u0ffiffiffiffi
L

p Φ̃2ð0; θ;ϕÞ þ A0
2ðu0; θ;ϕÞ; ð32Þ

where the second line is derived using Φ0
2 ¼ Ȧ0

2, which is
valid in the gauge A0

1 ¼ Aana ¼ 0. Next, we substitute this
expansion in (27) and keep track of the contribution of the
zero mode. The calculation is tedious, and is written in
detail in Appendix B. We focus here in the result and its

8There are no contributions to (26) from spatial infinity, nor
from future or past timelike infinities, because the product of the
electromagnetic field and its potential decays too fast [as Oðr−3Þ]
in those directions; see [16] for details.
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physical meaning:

hQAiJ þ − hQAiJ −

¼ ℏq2

4π2

"
1

2π

Z
dS2

Z
∞

−∞
dω

$$$Φ̃0
2ðω; θ;ϕÞ − Φ̃0

2ð0; θ;ϕÞ
$$$
2

ω

þ Imqα − Reqβ

#

: ð33Þ

The first term in the right-hand side of this equation
contains the contribution from electromagnetic radiation
with nonzero frequencies reaching J þ; the subtraction of
Φ̃0

2ð0; θ;ϕÞ removes the zero mode from the integral. This,
in turn, makes the integrand finite in the limit ω → 0 (the
integral is well defined for ω → )∞ by Plancherel theo-
rem). This term can be further expressed as [16]

Z
∞

−∞
dω

$$$Φ̃0
2ðω; θ;ϕÞ − Φ̃0

2ð0; θ;ϕÞ
$$$
2

ω

¼
Z

∞

0

dω
ω

%$$$Φ̃Rðω; θ;ϕÞ
$$$
2 −

$$$Φ̃Lðω; θ;ϕÞ
$$$
2
&
; ð34Þ

whereΦRðω; θ;ϕÞ ≔ Φ̃0
2ðω; θ;ϕÞ − Φ̃0

2ð0; θ;ϕÞ defined for
ω > 0, and Φ̄Lðω; θ;ϕÞ ≔ Φ̃0

2ð−ω; θ;ϕÞ − Φ̃0
2ð0; θ;ϕÞ

defined for ω < 0, describe right- and left-handed circu-
larly polarized radiation, respectively. Expression (34) has a
neat physical interpretation: it measures the net electro-
magnetic helicity radiated to J þ.
The second and third terms in (33) come entirely from

the zero mode of the electromagnetic field, and correspond
to two infrared charges of magnetic and electric type, Imqα
and Reqβ, respectively:

Imqα ¼
Z

dS2αð∞; θ;ϕÞ

×
"
ImΦ0

1ð∞; θ;ϕÞ − ImΦ0
1ð−∞; θ;ϕÞ

#
; ð35Þ

Reqβ ¼
Z

dS2βð∞; θ;ϕÞ

×
"
ReΦ0

1ð∞; θ;ϕÞ − ReΦ0
1ð−∞; θ;ϕÞ

#
: ð36Þ

In these equations the real-valued functions α and β are
defined from the longitudinal and transverse part of the
electromagnetic potential at future timelike infinity, as
follows. In the gauge we are using, in which
A0
1 ¼ Aana ¼ 0, the one-form A0

a lives on the cotangent
space of each cross section S2 of J þ. Therefore, it can be
expressed as the sum of a gradient and a curl:
A0
a ¼ Daαþ ϵbaDbβ, where Da is the covariant derivative

on S2. This equation defines αðu; θ;ϕÞ and βðu; θ;ϕÞ.

Using (18) and (19), they can be solved from
ReΦ0

1ðu;θ;ϕÞ¼Δαðu;θ;ϕÞþGðθ;ϕÞ and ImΦ0
1ðu; θ;ϕÞ ¼

Δβðu; θ;ϕÞ, where Δ denotes the two-dimensional
Laplacian. Since the soft charges Imqα and Reqβ are
specified from functions α and β, which depend on the
electromagnetic potential, these are field-dependent soft
charges. Since α, β originate from a gradient and a curl,
respectively, the function α can be thought of as the electric
degree of freedom of the emitted waves, while β is the
magnetic one.
In summary, the change of the chiral charge of a

quantum, massless, Dirac field between past to future null
infinity, resulting from its coupling to an electromagnetic
background, yields

hQAiJ þ − hQAiJ − ¼ ℏq2

4π2

'
1

2π

Z
dS2

Z
∞

0

dω
ω

× ðjΦ̃Rðω; θ;ϕÞj2 − jΦ̃Lðω; θ;ϕÞj2Þ

þ Imqα − Reqβ

(
: ð37Þ

This is the main result of this paper. It shows that the
anomalous nonconservation of fermionic helicity receives
two types of contributions from an external electromagnetic
field. Namely, hQAi can change in time if (i) a distribution
of electric currents and charges in the bulk are able to
radiate chiral electromagnetic waves, and (ii) there is a
change in the infrared sector of the external electromagnetic
field, such that the two soft charges (35) and (36) are
different from zero. The presence of ℏ emphasizes that this
is a quantum effect with no classical analog; it originates
from the chiral anomaly.
We finish this section with a few remarks.
Remark 1.We have assumed no incoming radiation from

J −. If the electromagnetic field is not trivial at past null
infinity, we just need to replace quantities at J þ above with
differences between J þ and J −.
Remark 2. The contribution from soft charges bears

some similarity with the rationale behind the theory of
instantons [34,35], in which quantum-mechanical transi-
tions between “topologically inequivalent” vacuum states
of the Hilbert space underlying a non-Abelian gauge theory
induces an anomaly. In the quantum theory of the electro-
magnetic field, for each nontrivial IR sector one has a
representation of the canonical commutation relations
which is unitarily inequivalent to the usual Fock repre-
sentation. So, just like with the interpretation of the
instantons, we can say here that tunneling transitions
between the different IR vacuum states of the electromag-
netic field induces the fermionic chiral anomaly.9 In
contrast, in this approach there is no need to work with

9Notice that this was precisely the origin of the chiral anomaly
in 1þ 1 dimensions discussed in Sec. II.
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Euclidean field equations. In fact, by working with sol-
utions of the Lorentzian Maxwell equations we also get a
radiative contribution, in addition to the contribution from
soft charges. This radiative contribution is not predicted in
the Euclidean case, where everything is “instantaneous.”

A. Examples

We discuss now examples of electromagnetic sources
that are able to trigger the chiral anomaly obtained in (37).
A physical configuration of electric charges and currents
that can radiate circularly polarized electromagnetic waves
was described in [16], namely, an electric-magnetic oscil-
lating dipole. In this subsection we focus on examples that
produce nonzero values of the infrared charges (36)
and (35).
Soft charges of electric type are determined by the

Coulombic contribution (i.e. ∼1=r2) of the radial compo-
nent of the electric field:

Reqlm ¼
I

dS2ReΦ0
1ðu; θ;ϕÞYlmðθ;ϕÞ

$$$$
þ∞

−∞
;

ReΦ0
1ðu; θ;ϕÞ ¼ lim

r→∞
½r2Erðu; r; θ;ϕÞ': ð38Þ

The canonical example where these soft charges are not
zero is a charged particle with some initial velocity that
interacts with an external source (a nucleus, another
charged particle, etc.) and changes its velocity [20]. In
this process, the charged particle emits Bremstrahlung,
which is known to possess zero-frequency photons. We
shall review this example here for completeness.
The electromagnetic field generated by a moving

charged particle can be obtained in closed form from the
Lienard-Wiechart potentials [36]:

E⃗ðt; r⃗Þ ¼ q
4πð1 − n⃗s · vs

!Þ3

'
n⃗s − v⃗s

ð1 − v2sÞkr⃗ − r⃗sk2

þ n⃗s × ½ðn⃗s − v⃗sÞ × ˙v⃗s'
kr⃗ − r⃗sk

($$$$
t¼tr

; ð39Þ

B⃗ðt; r⃗Þ ¼ v⃗sðtsÞ × E⃗ðt; r⃗Þ; ð40Þ

where r⃗sðtÞ is the location of the charge, v⃗s ¼ ˙r⃗s its
velocity, n⃗s ¼

r⃗−r⃗sðtÞ
kr⃗−r⃗sðtÞk

, and tr ¼ t − kr⃗ − r⃗sðtrÞk is the
retarded time [which is a function of ðt; r⃗Þ]. For a particle
with constant velocity, ˙v⃗s ¼ 0, and the electric field above
can be rewritten as [36]

E⃗ðt; r⃗Þ ¼ q
4π

1 − v2'
1 − v2 þ

%
ðr⃗−v⃗tÞ·v⃗
kr⃗−v⃗tk

&
2
(
3=2

×
r⃗ − v⃗t

kr⃗ − v⃗tk3
; ðr⃗sðtÞ ¼ v⃗s · tÞ: ð41Þ

Changing to Bondi-Sachs coordinates fu; r; θ;ϕg, and
taking the limit r → ∞ keeping fu; θ;ϕg constant, one
obtains the following expression for the radial component
of the electric field

Eaðu; r; θ;ϕÞ∇ar ¼
q

4πr2
1 − v2

ð1 − va∇arÞ2

¼ q
4πr2

1 − v2

ð1 − v cos θÞ2
; ð42Þ

where in the last equality we have chosen ẑ in the direction
of v⃗s. From this expression and (38) one readily obtains

ReΦ0
1ðu; θ;ϕÞ ¼

q
4π

1 − v2

ð1 − v cos θÞ2
: ð43Þ

For a particle that always moves with the same constant
velocity, Reqlm ¼ 0 for all l. This is easy to see if we
choose the reference system comoving with the particle, so
that v⃗s ¼ 0 and ReΦ0

1ðu; θ;ϕÞ ¼
q
4π. However, if the par-

ticle interacts with some external potential and changes its
velocity, then we can no longer choose an inertial reference
system attached to the particle at all times. While at early
times we may have ReΦ0

1ðu → −∞; θ;ϕÞ ¼ q
4π, at late

times we will have ReΦ0
1ðu → þ∞; θ;ϕÞ ¼ q

4π
1−v2

ð1−v cos θÞ2.
The electric soft charges can be now computed:

Reqlm ¼ q
4π

ð1 − v2Þ
I

iþ
dS2 Ylmðθ;ϕÞ

ð1 − v cos θÞ2
− qδl0

¼ qð1 − v2Þ
2

δm0

Z
1

−1
dx

PlðxÞ
ð1 − vxÞ2

− qδl0: ð44Þ

In particular, Req00 ¼ 0 due to electric charge conserva-
tion, as expected. By taking different values of l one can
check that this expression is indeed different from zero. In
summary, soft charges of electric type can be generated by
Lorentz boosting an electric charge.
Soft charges of magnetic type are determined by the

Coulombic contribution (i.e. ∼1=r2) of the radial compo-
nent of the magnetic field:

Imqlm ¼
I

dS2 ImΦ0
1ðu; θ;ϕÞYlmðθ;ϕÞ

$$$$
þ∞

−∞
;

ImΦ0
1ðu; θ;ϕÞ ¼ lim

r→∞
½r2Brðu; r; θ;ϕÞ': ð45Þ
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Because magnetic charges have not been observed, we do
not have, in principle, a magnetic analog of a boosted
charge. To the best of our knowledge, there are no examples
of magnetic memory reported in the literature. We discuss
here one such example which, although it could be
challenging to materialize physically [37], it certainly
contains pedagogical value.
To think in potential situations that exhibit magnetic

memory it may be useful to rewrite the radial component of
the magnetic field of a moving particle (40) as

Baðt; r⃗Þ∇ar ¼
q=m

4πð1 − n⃗s · v⃗sÞ3kr⃗ − r⃗sðtrÞk2

×
)
ðn⃗s · a⃗sÞLr þ ð1 − n⃗s · v⃗sÞL̇r

þ ð1 − v2sÞLr

kr⃗ − r⃗sðtrÞk

*$$$$
tr

; ð46Þ

where a⃗s ¼ ˙v⃗s is the acceleration of the charge, and Lr is
the radial component of the particle’s angular momentum
L⃗ ¼ mr⃗s × v⃗s. Equivalently, these terms are related to the
magnetic dipole moment of the moving charge:

m⃗ðtÞ ¼
Z

R3
j⃗ðtÞ × r⃗d3r⃗ ¼ q

Z

R3
d3r⃗δð3Þðr⃗ − r⃗sðtÞÞvs!ðtÞ × r⃗

¼ qv⃗sðtÞ × r⃗sðtÞ ¼ −
q
m
L⃗ðtÞ: ð47Þ

Equation (46) shows, in particular, that for a charged
particle moving with constant velocity, ImΦ0

1 ¼ 0, and
all soft charges of magnetic type are zero.
Only the first two terms in (46) may lead to ImΦ0

1 ≠ 0, as
the third term decays as Oðr−3Þ. Furthermore, a priori one
would expect that physically reasonable situations demand
asðu → )∞Þ → 0. So, for sources consisting of a moving
charged particle, to get magnetic memory one needs a
situation in which the particle acquires a permanent rate of
change for the radial angular momentum at infinity, L̇r ≠ 0.
One can imagine a situation in which this occurs.

Consider polar coordinates ft; ρ;ϕ; zg and suppose there
exists a nonvanishing magnetic field in z∈ ð0; z0Þ that has

the profile B⃗ðt; ρ;ϕ; zÞ ¼ B0=ρẑ for ρ > ρ0, for some
constants B0 and ρ0 > 0. Due to the inhomogeneous
magnetic field, a charged particle that initially is at rest
at some point in the interval ð0; z0Þ and ρ > ρ0, and suffers
a “kick” at some instant of time, will start spiraling
outwards. It can be expected then that L̇r ≠ 0 at infinity.
This problem can be solved in closed form as follows. If

the kinematical variables of the charged particle are

r⃗s ¼ ρsu⃗ρ; ð48Þ

v⃗s ¼ ρ̇su⃗ρ þ ρsϕ̇su⃗ϕ; ð49Þ

a⃗s ¼ ðρ̈s − ρsϕ̇
2
sÞu⃗ρ þ ðρsϕ̈s þ 2ρ̇sϕ̇sÞu⃗ϕ; ð50Þ

then one can solve

ρ̇sðtÞ ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 −
%
qB0

m
þ c
ρsðtÞ

&
2

s

; ð51Þ

ϕ̇sðtÞ ¼∓ qB0

mρsðtÞ
þ c
ρ2sðtÞ

; ð52Þ

d
dt

ðρ2sðtÞϕ̇sðtÞÞ ¼
qB0

m
ρ̇sðtÞ; ð53Þ

where c is a constant of integration. Since ρ̇sðtÞ > 0, ρsðtÞ
is monotonically increasing, therefore ρsðt → ∞Þ → þ∞
and consequently ϕ̇s → 0. The angular momentum is
simply given by L⃗ ¼ ρ2sðtÞϕ̇sðtÞu⃗z, so

L̇rðtÞ ¼
qB0

m
ρ̇sðtÞ cos θ: ð54Þ

One can further check that a⃗sðt → ∞Þ → 0⃗.
Taking into account that trðt; r → ∞Þ → u, and also

r̂·v⃗sðtÞ¼ρ̇sðtÞsinθcosðϕ−ϕsðtÞÞþρsðtÞϕ̇sðtÞsinðϕ−ϕsðtÞÞ,
the limit r → ∞ keeping fu; θ;ϕg constant gives
kr⃗− r⃗sðtrÞk∼kr⃗− r⃗sðuÞk∼r and n⃗sðtrÞ · v⃗sðtrÞ ∼ n⃗sðuÞ·
v⃗sðuÞ ∼ r̂ · v⃗sðuÞ. From (46) we get

Brðu; r; θ;ϕÞ ¼
q=m

4πr2ð1 − ρ̇sðuÞ sin θ cosðϕ − ϕsðuÞÞ − ρsðuÞϕ̇sðuÞ sinðϕ − ϕsðuÞÞÞ2
qB0

m
ρ̇sðuÞ cos θ þOðr−3Þ: ð55Þ

At future timelike infinity we have ϕ̇sðu → ∞Þ → 0, ϕsðu → ∞Þ → ϕ0 ρ̇sðu → ∞Þ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − q2B2

0

m2

q
. Taking into account all

of this,

ImΦ0
1ðu → ∞Þ ¼ q=m

4πð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − q2B2

0

m2

q
sin θ cosðϕ − ϕ0ÞÞ

2

qB0

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 −

q2B2
0

m2

r
cos θ: ð56Þ

CHIRAL FERMION ANOMALY AS A MEMORY EFFECT PHYS. REV. D 108, 105025 (2023)

105025-11



To finish this section, recall from the discussion below
(36) that ReΦ0

1ðu; θ;ϕÞ ¼ Δαðu; θ;ϕÞ þGðθ;ϕÞ and
ImΦ0

1ðu; θ;ϕÞ ¼ Δβðu; θ;ϕÞ. Therefore, from (43),
obtained in the first example, it is possible to obtain a
nonzero value of αðu; θ;ϕÞ for u → ∞, as well as
ReΦ0

1ð∞; θ;ϕÞ − ReΦ0
1ð−∞; θ;ϕÞ ≠ 0; while from (56),

obtained in the second example, it is possible to obtain
a nonzero value of βðu; θ;ϕÞ when u → þ∞, and
ImΦ0

1ð∞; θ;ϕÞ − ImΦ0
1ð−∞; θ;ϕÞ ≠ 0. Combining the

two examples, it is not difficult to check that (35) and
(36) are both nonvanishing.

V. THE CHIRAL ANOMALY INDUCED BY A
GRAVITATIONAL BACKGROUND

As remarked in the Introduction, if instead of an
electromagnetic field we consider an external gravitational
background, described by a curved spacetime (M, gab),
Dirac fields (as well as the electromagnetic field itself
[11–14]) experience a gravitationally induced chiral
anomaly [see Eq. (2)]. Similarly to what we did for
electromagnetic backgrounds, we explore here global
properties of this chiral anomaly by studying the change
of the chiral charge QA.
As usual in general relativity, we restrict our study to

globally hyperbolic spacetimes to ensure the well posed-
ness of the Cauchy problem. This allows us to foliate the
manifold in the form M ≃R × Σ. We will further assume
that the spatial slices are Σ ≃ R3. Performing a similar
analysis as in (3), the permanent change in the chiral charge
predicted by the chiral anomaly is dictated now by the
Chern-Pontryagin integral

hQAiJ þ −hQAiJ − ¼ ℏ
192π2

Z

R4
d4x

ffiffiffiffiffiffi−gp
Rabcd

⋆Rabcd; ð57Þ

where fxag is a global coordinate system for M ≃R4. The
right-hand side of this equation was investigated in [15,16].
Although it may appear intractable from an analytical
viewpoint, it is actually possible to rewrite it in a form
that allows us to extract information of physical value
without having to resort to numerical techniques. More
precisely, assuming no incoming gravitational waves from
past null infinity J −, it is possible to rewrite it as an integral
over future null infinity only:

hQAiJ þ −hQAiJ − ¼−
ℏ

96π2

Z
∞

−∞
du
Z

dS2ImðNΨ4Þ: ð58Þ

In this expression, Ψ4ðu;θ;ϕÞ¼−limr→∞rCabcdm̄a×
nbm̄cnd is a complex scalar constructed from the Weyl
tensor Cabcd, which carries the two radiative degrees of
freedom of gravitational waves; it is the gravitational
analog of the complex scalar Φ0

2ðu; θ;ϕÞ in electrodynam-
ics [compare with equations (9) and (12)]. On the other

hand, Nðu; θ;ϕÞ ¼ Nabðu; θ;ϕÞmamb is the relevant com-
ponent of the Bondi news tensor Nab [25], which measures
the time evolution of the asymptotic shear of outgoing null
geodesics at J þ. It is a symmetric, transverse (Nabnb ¼ 0),
and traceless tensor on J þ that, just like Ψ4, captures the
two gravitational degrees of freedom at future null infinity.
The two quantities are related by Ψ4 ¼ − 1

2 Ṅ, so N can be
thought of as the gravitational analog of the electromag-
netic potential A0

2 [compare with equation (17) with the
gauge choice A0

1 ¼ 0]. The total amount of energy carried
away by the gravitational waves across J þ is proportional
to
R∞
−∞ dS2dujNðu; θ;ϕÞj2. Because of this, the Bondi news

indicates unambiguously if a system is radiating gravita-
tional waves. If N ¼ 0 then the sources do not emit
radiation, while N ≠ 0 indicates the presence of radiation.
Finiteness of this energy flux requires Nð·; θ;ϕÞ∈
L2ðR;CÞ for all ðθ;ϕÞ∈S2, and in particular N → 0 as
u → )∞. These properties carry over to Ψ4.
In view of the results found in Sec. IV, it is natural to ask

if gravitational soft charges, or gravitational memory, may
also contribute to the fermion chiral anomaly (58). The
gravitational memory effect [38–44] consists in the perma-
nent relative displacement that a set of free test masses may
experience after the passage of a gravitational wave burst.
The deformation of a congruence of free observers or
curves is controlled by the shear. If σðu; θ;ϕÞ denotes the
asymptotic shear of outgoing null geodesics at future null
infinity, a flux of gravitational radiation will make
σðu; θ;ϕÞ evolve with time u, while it remains constant
otherwise. As commented above, this effect is captured
precisely in the Bondi news, which is related to the shear
via the equation N ¼ 2σ̇. Because N → 0 as u → )∞,
σðu; θ;ϕÞ reaches constant values at early and late times.
However, σð−∞; θ;ϕÞ ≠ σð∞; θ;ϕÞ in general, and there
can remain a permanent distortion in the shear. The amount
of gravitational memory encoded in free test masses is
quantified then by the overall change in the asymptotic
shear σðu; θ;ϕÞ of outgoing null geodesics between early
and late times:

qα¼
1

8π

Z
dS2ð̄2αðθ;ϕÞðσð∞;θ;ϕÞ−σð−∞;θ;ϕÞÞ; ð59Þ

where α is an arbitrary real-valued function on the
sphere. These quantities are called gravitational infrared
charges [27] [compare this definition with the electromag-
netic analog (20)]. Following the analogy with the electro-
magnetic case, it can also be proven that these charges can
be identified with the Hamiltonian generating Bondi-
Metzner-Sachs (BMS) supertranslations in the radiative
phase space of general relativity [45,46]. From the point of
view of the bulk, supertranslations are diffeomorphisms
(the gauge transformations in general relativity) that do
not vanish at infinity, as a result of which they are
called “large.”

ADRIÁN DEL RÍO and IVAN AGULLO PHYS. REV. D 108, 105025 (2023)

105025-12



Notice that the physical manifestations of the gravita-
tional and electromagnetic memory effects are qualitatively
different. An electromagnetic field does not generate a
permanent, relative displacement of electrically charged
particles; instead, it generates a permanent, relative velocity
between the charges.
Using the relation between the shear and the Bondi news,

we can formulate the gravitational infrared charges in terms
of the radiative degrees of freedom,

qα ¼
1

16π

Z
þ∞

−∞
dudS2Nðu; θ;ϕÞð̄2αðθ;ϕÞ: ð60Þ

Expanding in a basis of spin-weighted spherical harmonics,
this expression reduces to

qα¼
1

16π

Z
þ∞

−∞
du
X

lm

αlmNlmðuÞ≡ 1

16π

X

lm

αlmqlm; ð61Þ

for real-valued coefficients αlm. In the second equality, we
have defined the parameters qlm ¼

Rþ∞
−∞ duNlmðuÞ. Now,

because Nð·; θ;ϕÞ∈L2ðR;CÞ, each of its harmonic modes
admits a Fourier transform on J þ

ÑlmðωÞ ¼
Z

þ∞

−∞
duNlmðuÞe−iωu: ð62Þ

Therefore, just like in the electromagnetic case, we con-
clude that the infrared charges are determined by the zero-
frequency mode of the gravitational radiation as described
by the Bondi news N. Namely,

qα ¼
1

16π

X

lm

αlmÑlmð0Þ: ð63Þ

Notice, however, that, in sharp contrast with the electro-
magnetic case (20), the infrared charges are determined by
the zero modes of the “potential” Nðu; θ;ϕÞ and not by the
zero modes of the “field” Ψ4ðu; θ;ϕÞ. While this may look
like an irrelevant comment, it is an important point in our
analysis. The calculation of the right-hand side of (58) is
formally equal to the electromagnetic case (27) if we
identify A0

2 with N, and Φ0
2 with Ψ4. In the previous

section we found that the electromagnetic infrared charges
contribute to the chiral anomaly through the zero modes of
the electromagnetic field Φ0

2ðu; θ;ϕÞ. Similarly, in the
gravitational case, (58) only receives contributions from
the zero modes of Ψ0

4ðu; θ;ϕÞ, while the zero mode of

Nðu; θ;ϕÞ never appears. However, Ψ0
4ðu; θ;ϕÞ has no zero

mode:

Ψ̃4ð0;θ;ϕÞ¼
Z

þ∞

−∞
duΨ4ðu;θ;ϕÞ

¼−
1

2
½Nðþ∞;θ;ϕÞ−Nð−∞;θ;ϕÞ'¼0; ð64Þ

where in the second equality we made use of Ψ4 ¼ − 1
2 Ṅ,

and the last equality follows from Nð)∞; θ;ϕÞ ¼ 0. This is
in sharp contrast with electrodynamics, whereΦ0

2ðu; θ;ϕÞ—
the electromagnetic analog of Ψ4—does have a zero mode.
As a consequence, only the radiative part of the gravitational
field contributes to the chiral fermion anomaly in (58). There
is no gravitational memory contributing to the change of the
chiral charge hQAi, and the total change from J − to J þ is
determined by the helicity carried away by gravitational
waves generated in the bulk [15,16].

VI. CONCLUSIONS

Chiral fermion anomalies have been extensively studied
in the literature for several decades and from multiple
viewpoints. Despite that, this topic is sufficiently rich to
allow for yet another intriguing insight. We have found one
such new aspect by studying global aspects of the chiral
anomaly, related to the failure of the chiral charge QA of a
massless Dirac field to be conserved. This charge is strictly
conserved classically, as well as in quantum field theory for
free Dirac fields. However, the presence of background
fields, either electromagnetic or gravitational, may induce a
local nonconservation of the chiral current jaA by quantum
fluctuations, which can potentially produce a time evolu-
tion in the vacuum expectation value hQAi.
The identification of external fields that can or cannot

trigger a change of hQAi is a nontrivial problem. For non-
Abelian gauge fields, a traditional approach is to look for
instanton solutions in a euclidean spacetime, which display a
complex topological/global structure. To address this ques-
tion, we have evaluated instead the change in hQAi between
past and future null infinity using familiar, global techniques
within the framework of asymptotically flat spacetimes. For
an external electromagnetic field, our results are neatly
summarized in Eq. (37). This equation tells us that hQAi
can change between past and future null infinity if (i) electro-
magnetic sources in the bulk emit circularly polarized
electromagnetic waves (i.e. radiation with net helicity)
and/or (ii) if electromagnetic sources in the bulk produce
transitions between certain infrared sectors of Maxwell
theory. The relevant transitions are determined by a concrete
pair of infrared charges of electric and magnetic type,
respectively, written in Eqs. (35) and (36). To gain physical
intuition, we have devised an academic example where the
required soft charges are different from zero.
Physically, nonzero infrared charges are known to

produce memory effects on physical systems. This is
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how the transitions between the infrared quantum vacua
can leave observable imprints. To the best of our knowl-
edge, the only electromagnetic memory effects known to
date involve classical systems. Here, we have shown that
quantum states of a field theory can also keep memory of
the past influence of electromagnetic radiation, by storing a
certain amount of helicity.
The connection of electromagnetic memory and the

change of hQAi has also been worked out in 1þ 1
dimensions, which is cleaner because there are no electro-
magnetic waves. This example also allowed us to interpret
this new memory effect in terms of “kicks” of virtual
charges and excitation of particle pairs out of the quantum
vacuum.
Overall, the results in this paper, together with our

previous analysis [15,16], open up an unforeseen connec-
tion between chiral anomalies, the radiative content of the
electromagnetic field, infrared charges, and the memory
effect.
Although our approach is qualitatively different, the

contribution from soft charges to the chiral anomaly bears
some similarity with the rationale underlying instantons in
Euclidean gauge-field theories. According to the usual
interpretation [34,35], instantons mediate quantum-
mechanical transitions between inequivalent vacuum states
of the Hilbert space of the background (non-Abelian) gauge
field. These transitions, which are labeled by the instanton
charge, are able to induce the chiral anomaly [47]. On the
other hand, the quantization of the electromagnetic field at
future null infinity leads naturally to a Hilbert space that
can be divided in different, disjoint infrared sectors [26,48],
which represent inequivalent notions of quantum vacua.
The infrared charges label transitions between the different
infrared sectors, and therefore play the same role of the
instanton charge. We have shown in this article that these
transitions contribute to the chiral anomaly in a specific
manner.
To finish, we have also checked that, quite interestingly,

gravitational infrared charges do not contribute to the
fermion chiral anomaly.
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APPENDIX A: CHIRAL FERMION ANOMALY
AND SPONTANEOUS PARTICLE CREATION

IN 1 + 1 DIMENSIONS

In Sec. II we argued that the permanent change in the
vacuum expectation value hQAi produced by the chiral
anomaly (2) can be understood as a net creation of helicity
resulting from virtual particles that are “kicked” out of the
vacuum state. In 1þ 1 dimensions it is relatively easy to
see the connection between the chiral fermion anomaly and
particle pair creation. In this appendix we show this
connection and deduce the anomaly from the analysis of
Bogoliubov transformations between canonical in and out
vacua. We perform the analysis for a general, nonuniform
background electric field Eðt; xÞ.
When the external electric field is uniform, E ¼ EðtÞ, a

heuristic argument involving the Dirac “sea” has been
given in several occasions in the literature (see [23,49–51]).
However, to the best of our knowledge, an explicit and/or
rigorous, complete calculation is still lacking. In particular,
this heuristic picture always misses a contribution from
vacuum polarization, which we provide here.
Let us consider a massless, quantum Dirac field Ψðt; xÞ

living in a two-dimensional flat spacetime, ðR × S1; ηabÞ,
and coupled to an external electric field Eðt; xÞ. The spatial
sections will have length equal to L. The electric field
departs from an initial “vacuum” configuration at early
times, Eðtin; xÞ ¼ 0; it is switched on for a finite amount of
time, and eventually returns to another “vacuum” state,
Eðtout; xÞ ¼ 0. At early and late times, in which the field
strength vanishes, one can introduce canonical “in” and
“out” vacuum states for the fermion field. As remarked in
Sec. II, the two electric vacua are equivalent in the classical
theory, but they may differ in the quantum theory if the
potential Aaðt; xÞ changes nontrivially, as a result of which
the “out” state of the fermion field will potentially differ
from the “in” state.
As in Sec. II, we work with the temporal gauge fixing:

Atðt; xÞ ¼ 0. This can always be obtained by a suitable
gauge transformation. There is still a residual gauge free-
dom, which consists in Aaðt; xÞ → Aaðt; xÞ þ∇aα, for
α ¼ αðxÞ. This residual freedom can be fixed by demand-
ing Aaðt → −∞; xÞ → 0, which we will adopt here
onwards. At early and late times, where Eðt; xÞ ¼ 0, we
have ∂tAx ¼ ∂xAt, and the electromagnetic connection
one-form takes the form Aðt → −∞; xÞ ¼ 0 and
Aðt → ∞; xÞ ¼ AðxÞdx.
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Massless Dirac fields Ψðt; xÞ split into two decoupled,
left- and right-handed Weyl spinors that will be denoted by
uþ, u−, respectively. In 1þ 1 dimensions these spinors are
represented by ordinary functions on the spacetime. For
t < tin, the two Weyl equations read

ði∂t − i∂xÞuþ ¼ 0;

ði∂t þ i∂xÞu− ¼ 0; ðA1Þ

while for t > tout we have

ði∂t − i∂x − qAðxÞÞuþ ¼ 0; ðA2Þ

ði∂t þ i∂x þ qAðxÞÞu− ¼ 0; ðA3Þ

where the evolution of the electric field has left a residual
gauge potential in the field equations. To study the effects
of the external, dynamical electric field on the fermion
modes, it is useful to analyze the Bogoliubov transforma-
tions between the “in” an “out” vacuum states. To specify
these states we have to provide first a basis of positive-
frequency solutions for the in and out Hilbert spaces.
Let us focus on Eqs. (A2) and (A3) (the solutions at early

times can be simply recovered by taking A ¼ 0). These
equations admit separable solutions of the form u)ðt; xÞ ¼
f)ðtÞg)ðxÞ, which produce

i∂tf)ðtÞ
f)ðtÞ

¼ ) ð∂x þ qAðxÞÞg)ðxÞ
g)ðxÞ

≡ ω) ¼ const; ðA4Þ

for some separation constants ω). The left-hand side of this
equation can be solved to give f)ðtÞ ¼ e−iω)t and are of
positive frequency with respect to the operator H ¼ i∂t if
ω) > 0. To solve the spatial dependence of the field modes,
note that the potential must be pure gauge (because E ¼ 0),
so let us write qA ¼ ∂xϕðxÞ for some function ϕðxÞ. Then
ði∂x þ qAðxÞÞgtðxÞ ¼ eþiϕðxÞi∂xðe−iϕðxÞg)Þ and the equa-
tion above yields g)ðxÞ ¼ e∓iω)xeiϕðxÞ. In conclusion, a
basis of positive-frequency solutions to the Weyl equations
above consist of fu);ωðt; xÞgω>0, where

u);ωðt; xÞ ¼ e−iω)ðt)xÞeiϕðxÞ: ðA5Þ

These functions represent left- and right-moving modes,
respectively, and they define the two chiral sectors of the
theory. In 1þ 1 dimensions handedness is nothing but the
direction of propagation in the spatial dimension.
At early times the connection is identically zero, A ¼ 0,

so ϕðxÞ ¼ 0 for the in modes: uin);ωðt; xÞ ¼ e−iω)ðt)xÞ.
However, the dynamics of the electric field could produce
ϕðxÞ ≠ 0 at late times. This is the electric memory
mentioned in the main text. The out modes can differ by
a position-dependent, global phase with respect to the in
modes: uout);ωðt; xÞ ¼ e−iω)ðt)xÞeiϕðxÞ.

The compactness of the spatial spacetime dimension
imposes severe constraints on the field modes. On S1 there
are two inequivalent spin structures: the trivial one (that
corresponds to imposing periodic boundary conditions on
the field modes), and the nontrivial one (that corresponds to
imposing antiperiodic boundary conditions) [52]. That is,
u);ωðt; xþ LÞ ¼ ei2πδu);ωðt; xÞ, where δ ¼ 0 or 1=2 for
periodic and antiperiodic boundary conditions, respec-
tively. We shall assume here periodic boundary conditions,
for simplicity. This implies e∓iω)LeiϕðxþLÞ ¼ eiϕðxÞ, which
produces ∓ ω);nLþ ϕðxþ LÞ − ϕðxÞ ¼ −n2π; n∈Z, or

ω);n ¼ )n
2π
L

) ðϕðxþ LÞ − ϕðxÞÞ
L

: ðA6Þ

In other words, the allowed frequencies of the field modes
take only discrete values. To convert the right-hand side in
terms of the electromagnetic potential, recall that
qAx ¼ ∂xϕðxÞ, so ϕðxÞ ¼ q

R
x Aðx0Þdx0, and ϕðxþ LÞ−

ϕðxÞ ¼ q
R
xþL
x Aðx0Þdx0. This integral is well defined, so

we can make a change of variable x0 → x0 − x to rewrite it
as ϕðxþ LÞ − ϕðxÞ ¼ q

R
L
0 Aðx0Þdx0≕ 2πqCS½A', where

CS½A' is the Chern-Simons [9]. Therefore,

ω);n ¼ ) 2π
L

ðnþ qCS½A'Þ: ðA7Þ

From this result we can infer

ω);n > 0 implies
)
n>−qCS½A' for positive chirality;

n <−qCS½A' for negative chirality;

ðA8Þ

ω);n < 0 implies
)
n<−qCS½A' for positive chirality;

n >−qCS½A' for negative chirality:

ðA9Þ

The field equations (A2) and (A3) are linear, and
therefore the space of solutions of each chiral sector has
the structure of a vector space. As usual, we endow these
vector spaces with the Dirac inner product
ðu1; u2Þ ¼

R
L
0 dxū1ðt; xÞu2ðt; xÞ, which is preserved in time

by the Weyl equations and by the periodic boundary
conditions. Then, an orthonormal basis fin);nðt; xÞ of peri-
odic, positive-frequency modes for the “in” Hilbert space

L2ðð0; LÞÞ ⊕ L2ðð0; LÞÞ is given by fe
−i2πL nðtþxÞffiffiffi

L
p gn∈Zþ for

left-moving spinors and fe
i2πL nðt−xÞffiffiffi

L
p gn∈Z− for right-moving

spinors. If we define the helicity as h ≔ ℏ ω);n
2π
Ln

¼ )ℏ, we

see that for left-moving spinors, uþ, positive-frequency
modes have positive helicity, while for right-moving
spinors u− positive-frequency modes have negative helicity
(2πL n can be thought of as the wave number of the mode).
On the other hand, an orthonormal basis fout);nðt; xÞ of
periodic, positive-frequency modes for the out Hilbert
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space L2ðð0; LÞÞ ⊕ L2ðð0; LÞÞ is given, at late times, by

)
e−i

2π
LnðtþxÞ
ffiffiffiffi
L

p ei
2π
LqCS½A'ð−t−xÞþiq

R
x Aðx0Þdx0

*

nþqCS½A'∈Zþ
ðA10Þ

for left-moving spinors, and

)
ei

2π
Lnðt−xÞ
ffiffiffiffi
L

p ei
2π
LqCS½A'ðt−xÞþiq

R
x Aðx0Þdx0

*

nþqCS½A'∈Z−
ðA11Þ

for right-moving spinors.
In the basis of in modes the quantum fields can be

expanded as

uþðt; xÞ ¼
Xþ∞

n>0

ainþ;nfinþ;nðt; xÞ þ
X−∞

n<0

bin†−;nfinþ;nðt; xÞ; ðA12Þ

u−ðt; xÞ ¼
X−∞

n<0

ain−;nfin−;nðt; xÞ þ
Xþ∞

n>0

bin†þ;nfin−;nðt; xÞ; ðA13Þ

where fin);nðt; xÞ → e∓i2πL nðt)xÞffiffiffi
L

p at early times. In this expres-

sion ain);n annihilate fermions (negative charges) with
positive (þ) and negative (−) helicity, while bin†∓;n create

antifermions (positive charges) with negative (−) and
positive (þ) helicity. The ) signs on u) and fin);n simply
denote the sign of chirality (i.e. the direction of propaga-
tion). On the other hand, in the basis of out modes we have
instead

uþðt;xÞ¼
Xþ∞

n>−qCS½A'
aoutþ;nfoutþ;nðt;xÞþ

X−∞

n<−qCS½A'
bout†−;n foutþ;nðt;xÞ;

ðA14Þ

u−ðt;xÞ¼
X−∞

n<−qCS½A'
aout−;nfout−;nðt;xÞþ

Xþ∞

n>−qCS½A'
bout†þ;n fout−;nðt;xÞ;

ðA15Þ

where fout);nðt; xÞ → e∓i2πL nðt)xÞffiffiffi
L

p ei
2π
LqCS½A'ð∓t−xÞþiq

R
x Aðx0Þdx0 at

late times. The Bogoliubov coefficients that relate the in
and out representations are now easy to obtain. Since
fout);nðt; xÞ form a complete basis of the Hilbert space of
solutions, fin);nðt; xÞ can be expanded as

n > 0 ðpositive energyÞ∶ finþ;nðt; xÞ ¼
Xþ∞

n0>−qCS½A'
αþnn0f

out
þ;n0ðt; xÞ þ

X−∞

n0<−qCS½A'
βþnn0f

out
þ;n0ðt; xÞ; ðA16Þ

n < 0 ðnegative energyÞ∶ finþ;nðt; xÞ ¼
X−∞

n0<−qCS½A'
α̃þnn0f

out
þ;n0ðt; xÞ þ

Xþ∞

n0>−qCS½A'
β̃þnn0f

out
þ;n0ðt; xÞ; ðA17Þ

n < 0 ðpositive energyÞ∶ fin−;nðt; xÞ ¼
X−∞

n0<−qCS½A'
α−nn0f

out
−;n0ðt; xÞ þ

Xþ∞

n0>−qCS½A'
β−nn0f

out
−;n0ðt; xÞ; ðA18Þ

n > 0 ðnegative energyÞ∶ fin−;nðt; xÞ ¼
Xþ∞

n0>−qCS½A'
α̃−nn0f

out
−;n0ðt; xÞ þ

X−∞

n0<−qCS½A'
β̃−nn0f

out
−;n0ðt; xÞ: ðA19Þ

Using the normalization conditions ðf);n; f);n0Þ ¼ δn;n0 one can get several useful identities. For instance:

δnn0 ¼ ðfinþ;n; finþ;n0Þ ¼
Xþ∞

n00>−qCS½A'
ᾱþnn00α

þ
n0n00 þ

X−∞

n00<−qCS½A'
β̄þnn00β

þ
n0n00 ; ðA20Þ

δnn0 ¼ ðfin−;n; fin−;n0Þ ¼
X−∞

n00<−qCS½A'
ᾱ−nn00α

−
n0n00 þ

Xþ∞

n00>−qCS½A'
β̄−nn00β

−
n0n00 : ðA21Þ

Setting n ¼ n0, the convergence of the integrals imply that limn00→þ∞ jβ)nn00 j ¼ 0. In what follows we will also need the
inverse Bogoliubov transformations. Since fin);nðt; xÞ also form a complete basis of the Hilbert space of solutions, the
elements fout);nðt; xÞ can equivalently be expanded as

n > −qCS½A' ðpositive energyÞ∶ foutþ;nðt; xÞ ¼
Xþ∞

n0>0

γþnn0f
in
þ;n0ðt; xÞ þ

X−∞

n0<0

δþnn0f
in
þ;n0ðt; xÞ; ðA22Þ

n < −qCS½A' ðpositive energyÞ∶ fout−;nðt; xÞ ¼
X−∞

n0<0

γ−nn0f
in
−;n0ðt; xÞ þ

Xþ∞

n0>0

δ−nn0f
in
−;n0ðt; xÞ: ðA23Þ
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For n00 > 0 we have γþnn00 ¼ ðfinþ;n00 ; f
out
þ;nÞ ¼ αþn00n and for

n00 < 0 we have δþnn00 ¼ ðfinþ;n00 ; f
out
þ;nÞ ¼ β̃þn00n. Similarly, for

n00 < 0 we obtain γ−nn00 ¼ ðfin−;n00 ; fout−;nÞ ¼ α−n00n, while for

n00 > 0 we get δ−nn00 ¼ ðfin−;n00 ; fout−;nÞ ¼ β̃−n00n. Using
ðf);n; f);n0Þ ¼ δn;n0 we further obtain the following iden-
tities:

δnn0 ¼ðfoutþ;n;foutþ;n0Þ¼
Xþ∞

n00>0

αþn00nα
þ
n00n0 þ

X−∞

n00<0

β̃þn00n β̃
þ
n00n0 ; ðA24Þ

δnn0 ¼ðfout−;n;fout−;n0Þ¼
X−∞

n00<0

α−n00nα
−
n00n0 þ

Xþ∞

n00>0

β̃−n00n β̃
−
n00n0 : ðA25Þ

Setting n ¼ n0, the convergence of the integrals imply that
limjn00j→þ∞ jβ̃)n00nj ¼ 0.
Plugging (A16) and (A17) into (A12), and rewriting as in

(A14), we can read off the Bogoliubov transformation of
the creation and annihilation operators:

aoutþ;n0 ¼
Xþ∞

n>0

αþnn0a
in
þ;n þ

X−∞

n<0

β̃þnn0b
in†
−;n; ðA26Þ

bout†−;n0 ¼
X−∞

n<0

α̃þnn0b
in†
−;n þ

X∞

n>0

βþnn0a
in
þ;n: ðA27Þ

Similarly, plugging (A18) and (A19) in (A13), and rewrit-
ing as in (A15), we can read off the Bogoliubov trans-
formation for the remaining creation and annihilation
operators:

aout−;n0 ¼
X−∞

n<0

α−nn0a
in
−;n þ

Xþ∞

n>0

β̃−nn0b
in†
þ;n; ðA28Þ

bout†þ;n0 ¼
Xþ∞

n>0

α̃−nn0b
in†
þ;n þ

X−∞

n<0

β−nn0a
in
−;n: ðA29Þ

We have now all of the required ingredients to see the
connection between the chiral anomaly and particle pair
production. Using the normalization equations
ðf);n; f);n0Þ ¼ δn;n0 , the chiral charge can be formally
evaluated as:

Q5ðtÞ ¼
Z

L

0
dxΨ̄ðt; xÞγ0γ5Ψðt; xÞ ¼

Z
L

0
dxΨ†ðt; xÞγ5Ψðt; xÞ ¼

Z
L

0
dxðūþuþ − ū−u−Þ ¼ ðuþ; uþÞ − ðu−; u−Þ

¼
X

n>−qCS½A'
aout†þ;n aoutþ;n þ

X

n<−qCS½A'
bout−;nb

out†
−;n −

X

n<−qCS½A'
aout†−;n aout−;n −

X

n>−qCS½A'
boutþ;nb

out†
þ;n :

However, this operator is not well defined in our Fock space; its expectation values produce divergent sums. This is because
Q5ðtÞ is quadratic in the quantum fields, and, consequently, the evaluation of expectation values requires renormalization.
The quantity of interest is hinjQ5ðtÞjiniren, whose time evolution tells us whether there exists an anomaly or not. To obtain
this result one can apply renormalization directly. However, there is an alternative, indirect procedure which, as we shall see,
provides useful insights on the physical interpretation of hinjQ5ðtÞjiniren. Let us introduce the following fiducial (“normal-
ordered”) operator:

∶Q5∶ ðtoutÞ ≔
Z

L

0
dxlim

y→x
½Ψ̄ðtout; xÞγ0γ5Ψðtout; yÞ − IhoutjΨ̄ðtout; xÞγ0γ5Ψðtout; yÞjouti'

¼
X

n>−qCS½A'
aout†þ;n aoutþ;n −

X

n<−qCS½A'
bout†−;n bout−;n −

X

n<−qCS½A'
aout†−;n aout−;n þ

X

n>−qCS½A'
bout†þ;n boutþ;n: ðA30Þ

This operator, which is given in terms of particle number operators of the out vacuum state, is now well defined on the Fock
space. In particular, the expectation value hinj∶Q5∶ðtoutÞjini exists. However, keep in mind that this is just an auxiliary
operator that we introduced for convenience. What truly determines the quantum anomaly is the time evolution of the
charge Q5, not of the fiducial operator ∶Q5∶ . Using the definition above we can obtain the relation between the two:

hinj∶Q5∶ðtoutÞjini ¼ hinjQ5ðtoutÞjiniren − houtjQ5ðtoutÞjoutiren: ðA31Þ

We can now invert this expression to finally get the result of interest:

hinjQ5ðtoutÞjiniren ¼ hinj∶Q5∶ðtoutÞjiniþ houtjQ5ðtoutÞjoutiren: ðA32Þ
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The first contribution on the right-hand side depends only
on the Bogoliubov coefficients and does not require
renormalization. Then, it can be understood in terms of
particle pairs created with net helicity by the external,
electric background. The second term on the right-hand
side requires renormalization, and it represents a vacuum
polarization effect. To the quantum anomaly, both effects
contribute.10

As a side remark, it is interesting to note the similarity of
this result with the Hawking effect for black holes. In the
formation of a black hole by gravitational collapse, one can
compute the expectation value of the particle number
operator using Bogoliubov transformations between past
and future null infinity (with in and out states, respectively),
as Hawking originally did. This calculation is well defined
and does not require renormalization. In our problem,
this would be analogous to the calculation of
hinj∶Q5∶ ðtoutÞjini, which is related to the particle number
operators. On the other hand, one can also study the
Hawking effect by computing the nondiagonal, flux com-
ponent of the expectation value of the stress-energy tensor
across future null infinity. This calculation, based only on
the in state, does require renormalization. This is because,
apart from the particle pair creation, there is yet another
contribution coming from vacuum polarization effects. In
our case, since Q5 is a quadratic operator, the evaluation of
hinjQ5ðtoutÞjiniren is analogous to the calculation of the
Hawking effect using the stress-energy tensor and not via
the particle number operator.
The evaluation of hinj∶Q5∶ ðtoutÞjini in (A32) is straight-

forward from the expressions (A26)–(A29) above and the
canonical commutation relations. It produces

hinj∶Q5∶ðtoutÞjini=ℏ ¼
X

n>−qCS½A'
n0<0

jβ̃þn0nj
2 −

X

n<−qCS½A'
n0>0

jβþn0nj
2

−
X

n<−qCS½A'
n0>0

jβ̃−n0nj2 þ
X

n>−qCS½A'
n0<0

jβ−n0nj2:

Note that each sum is convergent because each summand
decays in both indices as n → ∞. Using (A20)–(A21),

(A24)–(A25) one can write:

Xk

n>0

1¼
Xk

n>0

 
Xþ∞

n00>−qCS½A'
jαþnn00 j

2þ
X−∞

n00<−qCS½A'
jβþnn00 j

2

!

; ðA33Þ

X−k

n<0

1¼
X−k

n<0

 
X−∞

n00<−qCS½A'
jα−nn00 j2þ

Xþ∞

n00>−qCS½A'
jβ−nn00 j2

!

; ðA34Þ

Xk

n>−qCS½A'
1¼

Xk

n>−qCS½A'

 
Xþ∞

n00>0

jαþn00njþ
X−∞

n00<0

jβ̃þn00nj
2

!
; ðA35Þ

X−k

n<−qCS½A'
1 ¼

X−k

n<−qCS½A'

 
X−∞

n00<0

jα−n00njþ
Xþ∞

n00>0

jβ̃−n00nj2
!

; ðA36Þ

for some positive integer k. Subtracting (A33) from (A35),
and then taking the limit k → ∞, we obtainP

n>−qCS½A'
n0<0

jβ̃þn0nj
2 −
P

n<−qCS½A'
n0>0

jβþn0nj
2 ¼ ½qCS½A'', where ½·'

indicates the integer part. Subtracting now (A34) from
(A36), and taking again the limit k → ∞, we getP

n<−qCS½A'
n0>0

jβ̃−n0nj2 −
P

n>−qCS½A'
n0<0

jβ−n0nj2 ¼ −½qCS½A''. In con-

clusion,

hinj∶Q5∶ ðtoutÞjini ¼ 2ℏ½qCS½A'': ðA37Þ

This is the main result of this appendix. It makes manifest
that the vacuum expectation value of the Dirac chiral charge
Q5 at late times, (A32), receives an important contribution
from particle pair creation.
The evaluation of houtjQ5ðtoutÞjoutiren in (A32), on the

other hand, is technically more involved and requires
renormalization. This can be done using the adiabatic
method [54–56]. Since the main purpose of this appendix
was to show the connection with particle pair creation, we
just give the final answer without entering into the details,
which is

houtjQ5ðtoutÞjoutiren ¼ 2ℏðqCS½A' − ½qCS½A''Þ: ðA38Þ

The final result reads hinjQ5ðtoutÞjiniren ¼ 2ℏqCS½A', and
hinjQ5ðtinÞjiniren ¼ 0. This agrees, precisely, with the pre-
diction of the Adler-Bell-Jackiw anomaly. In other words,
there is a nontrivial evolution of the Noether charge in the
quantum theory, which violates the classical symmetry.
As a final remark, notice that, since ðqCS½A'−

½qCS½A''Þ∈ ½0; 1½, unless ½qCS½A'' is very small, the par-
ticle-creation contribution dominates against the vacuum
polarization effect.
Example: Uniform electric field. We address now the

problem described at the end of Sec. II. When the electric
background field is homogeneous, E ¼ EðtÞ, the Weyl
equations read, for any time t,

10Mathematically, ∶Q5∶ (and not Q5) is the relevant operator
that is related with the index theorem in geometric analysis [53],
and, because of this, one may be tempted to identify it with the
chiral anomaly. Historically, chiral anomalies were studied on
compact manifolds without boundary, that arise naturally using
Euclidean techniques, and in these cases the chiral fermion
anomaly was found to match the predictions from the Atiyah-
Singer index theorem. As a result, the statement that chiral
anomalies are predicted by index theorems became a standard
lore. However, this is not true in more general cases. In particular,
for manifolds with boundary, extra contributions arise in the
index theorem, like the APS eta index ηAPS [53], and the
agreement with the anomaly fails. Physically, these extra boun-
dary terms are represented by the vacuum polarization effects
houtjQ5ðtoutÞjoutiren pointed out in this appendix.
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ði∂t − i∂x − qAxðtÞÞuþ ¼ 0;

ði∂t þ i∂x þ qAxðtÞÞu− ¼ 0: ðA39Þ

In our gauge choice we have EðtÞ ¼ ∂tAxðtÞ, with
Axðt → −∞Þ → 0 and Axðt → þ∞Þ → A, for some real-
valued constant A. The Weyl equations can be solved in full
closed form. The properly normalized in modes defined
above are

fin);nðt; xÞ ¼
1ffiffiffiffi
L

p e∓ið2πnL ðt)xÞþq
R

t

−∞
Axðt0Þdt0Þ; ðA40Þ

while the out modes are

fout);nðt; xÞ ¼
1ffiffiffiffi
L

p e
∓ið2πnL ðt)xÞ−qAtoutþq

R
t

tout
Axðt0Þdt0Þ: ðA41Þ

Notice that the in modes satisfy the initial condition
fin);nðt; xÞ ∼ 1ffiffiffi

L
p e∓i2πnL ðt)xÞ at early times, while the out

modes satisfy the required final condition fout);nðt; xÞ ∼
1ffiffiffi
L

p e∓i½tð2πnL þqAÞ)2πn
L x' at late times.

Using these explicit solutions, we can now calculate the
relevant Bogoliubov coefficients in full closed form. It is
straightforward to get

ðfout);n0 ; f
in
);nÞ ¼

1

L
e∓iqðAtoutþ

R
tout
−∞

dt0Axðt0ÞÞ
Z

L

0
dxe∓i2πL ðt)xÞðn−n0Þ

¼ e∓iqðAtoutþ
R

tout
−∞

dt0Axðt0ÞÞδnn0 : ðA42Þ

Note that (i) the result is time independent, as expected
from the Dirac inner product, (ii) jðfout);n0 ; f

in
);nÞj ¼ 1, and

(iii) the emergence of δnn0 is a direct consequence of the
homogeneity of the background field.
Let us assume that qA > 0 (similar results hold when

qA < 0). Then from (A16)–(A19) we can simplify [we
neglect the irrelevant phase factor of (A42)]

n > 0 ðpositive energyÞ∶ finþ;nðt; xÞ ¼ foutþ;nðt; xÞ; ðA43Þ

n < 0 ðnegative energyÞ∶ finþ;nðt; xÞ ¼ Θð−n − qAL=2πÞfoutþ;nðt; xÞ þ Θðnþ qAL=2πÞfoutþ;nðt; xÞ; ðA44Þ

n < 0 ðpositive energyÞ∶ fin−;nðt; xÞ ¼ Θð−n − qAL=2πÞfout−;nðt; xÞ þ Θðnþ qAL=2πÞfout−;nðt; xÞ; ðA45Þ

n > 0 ðnegative energyÞ∶ fin−;nðt; xÞ ¼ fout−;nðt; xÞ: ðA46Þ

This result shows that there is a number ½qAL=2π' of negative-frequency, left-moving in modes that transform into positive-
frequency, left-moving out modes. This means that the electric field has created ½qAL=2π' left-moving fermions (with
negative electric charge) out of the in vacuum. Similarly, there is a number ½qAL=2π' of positive-frequency, right-moving in
modes that are measured as negative-frequency, right-moving modes by out observers. In other words, the electric field has
excited ½qAL=2π' right-moving antifermions (with positive electric charge). All of these particles have positive helicity ℏ.
This explains the net helicity found in the general result (A37).

APPENDIX B: PROOF OF (33)

We include here the technical details and computations of Sec. IV. The starting point is Eqs. (31) and (32). Our task is to
plug these expressions in (27) and get (33).
Let us denote by Aaux

2 ðu; θ;ϕÞ the first term on the right-hand side of (32). Using (27), we divide the calculation in three
terms. First,
Z

L=2

−L=2
du
Z

dS2 ImðAaux
2 Φ̄0

2Þ ¼
Z

dS2Im
1

L

(
X

n;n0≠0
Φ̃0

2ðn; θ;ϕÞΦ̃0
2ðn0; θ;ϕÞ

e−iðωn−ωn0 Þu − e−iωnu0eiωn0u

−iωn
ð−1Þnþn0

þ
X

n≠0
Φ̃0

2ðn; θ;ϕÞ
e−iωnu − e−iωnu0

−iωn
Φ̃0

2ð0; θ;ϕÞð−1Þn
)

¼
Z

dS2Im
1

L

(
X

n≠0
L
jΦ̃0

2ðn; θ;ϕÞj2

−iωn
þ 1

i
LΦ̃2ð0; θ;ϕÞ ·

X

n≠0
Φ̃2ðn; θ;ϕÞ

e−iωnu0

ωn
ð−1Þn

)

¼
Z

dS2
X

n≠0

jΦ̃2ðn; θ;ϕÞj2

ωn
− Re

%
Φ̃2ð0; θ;ϕÞ

X

n≠0
Φ̃2ðn; θ;ϕÞ

e−iwnu0

ωn
ð−1Þn

&
; ðB1Þ
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where in the second equality we used the orthonormal properties of the basis modes (30), and the identityR L=2
−L=2 du e

i2πnu=L ¼ 0 to get rid of some terms. Second,

Z
L=2

−L=2
du
Z

dS2 Im

(%
−u0ffiffiffiffi
L

p Φ̃2ð0; θ;ϕÞ þ A0
2ðu0; θ;ϕÞ

& X

n≠0
Φ̃2ðn; θ;ϕÞ

eiωnuð−1Þnffiffiffiffi
L

p þ 1ffiffiffiffi
L

p Φ̃2ð0; θ;ϕÞ

!)

¼ L
Z

dS2Im
)%

−u0ffiffiffiffi
L

p Φ̃2ð0; θ;ϕÞ þ A0
2ðu0; θ;ϕÞ

&
1ffiffiffiffi
L

p Φ̃2ð0; θ;ϕÞ
*

¼
ffiffiffiffi
L

p Z
dS2ImðA0

2ðu0; θ;ϕÞΦ̃2ð0; θ;ϕÞÞ

¼
Z

L=2

−L=2
dudS2ImðA0

2ðu0; θ;ϕÞΦ2ðu; θ;ϕÞÞ; ðB2Þ

where in the first equality we used the identity
R L=2
−L=2 due

i2πnu=L ¼ 0; in the second equality we noticed that one term was
real, so its imaginary part vanishes; and in the last equality we recalled the definition of Fourier transform. Finally,

Z
L=2

−L=2
du
Z

dS2Im

(
uffiffiffiffi
L

p Φ̃2ð0; θ;ϕÞ

 
X

n≠0
Φ̃2ðωn; θ;ϕÞ

eþiwnu
ffiffiffiffi
L

p ð−1Þn þ 1ffiffiffiffi
L

p Φ̃2ð0; θ;ϕÞ

!)

¼
Z

Lð2

−L=2
du
Z

dS2Im

(
uffiffiffiffi
L

p Φ̃2ð0; θ;ϕÞ
X

n≠0
Φ̃2ðωnθ;ϕÞ

eiωnu
ffiffiffiffi
L

p ð−1Þn
)

¼
Z

Lð2

−L=2
du
Z

dS2Im

(
1

L
Φ̃2ð0; θ;ϕÞ

X

n≠0
Φ̃2ðωnθ;ϕÞ eiωnuð−1Þn 1

i
d
dϵ

$$$$
ϵ¼0

eiϵu
)

¼
Z

dS2Im

(
1

L
Φ̃2ð0; θ;ϕÞ

X

n≠0
Φ̃2ðωnθ;ϕÞð−1Þn

1

i
d
dϵ

$$$$
ϵ¼0

Z
Lð2

−L=2
dueiðϵþωnÞu

)

¼
Z

dS2Im

(
1

L
Φ̃2ð0; θ;ϕÞ

X

n≠0
Φ̃2ðωnθ;ϕÞ

L
iωn

)

¼ −
Z

dS2Re

(

Φ̃2ð0; θ;ϕÞ
X

n≠0

Φ̃2ðωnθ;ϕÞ
ωn

)

; ðB3Þ

where in the first equality we noted that one term has vanishing imaginary part; and in the fourth equality we
used

R Lð2
−L=2 due

iðϵþωnÞu ¼ ð−1Þn eiϵL=2−e−iϵL=2
iðωnþϵÞ .

Combining all three terms above, and for u0 ¼ −L=2, which allows to further simplify some terms, we end up with
Z

L=2

−L=2
du
Z

dS2ImfðA0
2 − ð̄α0ÞΦ̄2g

¼
Z

dS2

(
X

n≠0

jΦ̃2ðn; θ;ϕÞj2

ωn
− 2Re

%
Φ̃2ð0; θ;ϕÞ

Φ̃2ðn; θ;ϕÞ
ωn

&)
þ
Z

L=2

−L=2
dudS2ImðA0

2ð−L=2; θ;ϕÞ − ðα0ÞΦ2ðu; θ;ϕÞ:

ðB4Þ

Note that
P

n≠0
jΦ̃0

2ð0;θ;ϕÞj
2

ωn
∼
P

n≠0
1
n ¼ 0. Therefore, we can rewrite the first term above as

R
dS2

P
n≠0

jΦ̃0
2ðn;θ;ϕÞ−Φ̃

0
2ð0;θ;ϕÞj

2

ωn
.

The second term above can also be greatly simplified and has a nice physical interpretation. To see this, note first that, in the
gauge A0

1 ¼ Aana ¼ 0, the one-form A0
a lives on the tangent space of S2, so it can be expressed as the sum of a gradient and

a curl: A0
a ¼ Daαþ ϵbaDbβ, where Da is the connection on S2. Thus, A0

2 ¼ ððαþ iβÞ, with α; β∈C∞ðR × S2;RÞ. There
still exists a residual gauge freedom represented by A0

a → A0
a þDaΛ, with Λ̇ ¼ 0. Under this transformation β remains

invariant, and although α does not remain invariant, the combination α − α0 does. With this new terminology we can
reexpress the second term on the right-hand side above as
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Z
L=2

−L=2
dudS2ImðA0

2ð−L=2; θ;ϕÞ − ðα0ÞΦ0
2ðu; θ;ϕÞ ¼

Z
L=2

−L=2
dudS2Imðiðβ þ ð̄ðα − α0ÞÞΦ0

2ðu; θ;ϕÞ

¼ −
Z

L=2

−L=2
dudS2βReðΦ0

2ðu; θ;ϕÞ þ ðα − α0ÞβImðΦ0
2ðu; θ;ϕÞ

¼ −Reqβ þ Imqα−α0 ; ðB5Þ

where in the last step we made use of Maxwell equa-
tions (15) and the definition of infrared charges (20).
As we can see this contribution in the chiral anomaly is

related to memory of the electromagnetic background.
Despite Φ0

2ð) L
2 ; θ;ϕÞ ¼ 0, if Φ0

2ðu; θ;ϕÞ ≠ 0, then
βðu; θ;ϕÞ and αðu; θ;ϕÞ − α0ðu; θ;ϕÞ evolve in time u,
leading to nonzero soft charges. Using (18) and (19), these
functions can be solved from ReΦ0

1ðu; θ;ϕÞ ¼
Δαðu; θ;ϕÞ þ Gðθ;ϕÞ and ImΦ0

1ðu; θ;ϕÞ ¼ Δβðu; θ;ϕÞ,
where Δ denotes the two-dimensional Laplacian. The
parameter βð−L=2; θ;ϕÞ tells us about the magnetic field
at spatial infinity i0 when we take L → ∞, while the
combination αð−L=2; θ;ϕÞ − α0ð−L=2; θ;ϕÞ tells us about
the electric field. The residual gauge freedom mentioned
above can be fully fixed by choosing G such that
Gðθ;ϕÞ ¼ − Q

2 , where Q ¼ 1
2π

R
S2 dS2ReΦ0

1 is the (con-
stant) electric charge of the sources. Because α0 was chosen
such that A0

a ¼ Daα0 produces Φ0
2 ¼ Φ0

1 ¼ 0, in this fully
fixed gauge choice α0 satisfies Δα0 ¼ 0, which for smooth
functions on the sphere is equivalent to α0 ¼ 0.
In summary, for a fully gauge-fixed theory the final result

reads

Z
∞

−∞
du
Z

dS2ImfðA0
2 − ðα0ÞΦ̄0

2g

¼ 1

2π

Z
dS2

Z
∞

−∞
dω

jΦ̃0
2ðω; θ;ϕÞ − Φ̃0

2ð0; θ;ϕÞj2

ω

þ Imqα − Reqβ; ðB6Þ

where the infrared charges are evaluated for αð−∞; θ;ϕÞ,
βð−∞; θ;ϕÞ.
Note that the integral is wel defined in the infrared limit

ω → 0. On the other hand, when the soft charges are all
zero, we also have Φ̃0

2ð0; θ;ϕÞ ¼ 0, and this expression
reduces to the result obtained in [16]. As shown in [16], the
first contribution on the right-hand side above represents
the difference between right-handed and left-handed cir-
cularly polarized radiation reaching future null infinity.
This is a purely radiative contribution.
The contribution from the IR charges in (B6) can be

rewritten in a different form:

Imqα − Reqβ ¼
Z

dS2αð−∞; θ;ϕÞðImΦ0
1ð∞; θ;ϕÞ − ImΦ0

1ð−∞; θ;ϕÞÞ

−
Z

dS2βð−∞; θ;ϕÞðReΦ0
1ð∞; θ;ϕÞ − ReΦ0

1ð−∞; θ;ϕÞÞ

¼
Z

dS2αð−∞; θ;ϕÞΔðβð∞; θ;ϕÞ − βð−∞; θ;ϕÞÞ −
Z

dS2βð−∞; θ;ϕÞΔðαð∞; θ;ϕÞ − αð−∞; θ;ϕÞÞ

¼
Z

dS2½αð−∞; θ;ϕÞΔβð∞; θ;ϕÞ − βð−∞; θ;ϕÞΔαð∞; θ;ϕÞ': ðB7Þ

As a final remark, note that Eq. (B6) can also be obtained if we had chosen u0 ¼ þL=2 to write (B4) instead of
u0 ¼ −L=2. The only difference is that α and β in that equation would be evaluated at u ¼ þL=2 and not at u ¼ −L=2.
Although apparently different, the two expressions are actually equivalent. The equivalence is manifest from (B7), which
implies Imqαð∞Þ − Reqβð∞Þ ¼ Imqαð−∞Þ − Reqβð−∞Þ after integration by parts. Equation (B6) with this last choice is the
result of Eq. (33) of the main text.
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