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The nature of neutrino masses and the matter–antimatter asymmetry of our universe are two of
the most important open problems in particle physics today and are notoriously difficult to test with
current technology. Dirac neutrinos offer a solution through a leptogenesis mechanism that hinges
on the smallness of neutrino masses and resultant non-thermalization of the right-handed neutrino
partners in the early universe. We thoroughly explore possible realizations of this Dirac leptogenesis
idea, revealing new windows for highly efficient asymmetry generation. In many of them, the number
of relativistic degrees of freedom, Neff, is severely enhanced compared to standard cosmology and
offers a novel handle to constrain Dirac leptogenesis with upcoming measurements of the cosmic
microwave background. Realizations involving leptoquarks even allow for low-scale post-sphaleron
baryogenesis and predict proton decay. These novel aspects render Dirac leptogenesis surprisingly
testable.

I. INTRODUCTION

Neutrino oscillations have established neutrinos to be
massive particles, albeit much lighter than all other
fermions: mν ≲ 0.8 eV [1]. The Standard Model (SM) of
particle physics needs to be extended by additional parti-
cles to accommodate non-zeromν , the simplest extension
being three right-handed neutrinos νR that form massive
Dirac particles together with the familiar νL. This is suf-
ficient to explain all neutrino data and makes the mass
generation for leptons analogous to that of quarks. The
Higgs then couples to neutrinos with coupling strength
mν/174GeV, too feeble to be detectable in experiments
or even to ever thermalize the νR in the early universe [2–
4], assuming a vanishing abundance after the Big Bang.
Only an undetectably small νR abundance is created
through the Higgs interactions [5, 6].

The tiny νR coupling and consequent non-
thermalization was used to great effect in Ref. [7]
for Dirac leptogenesis: Similar to standard leptogen-
esis [8, 9], a lepton asymmetry is created in the early
universe through the decay of new heavy particles that
is then converted to the observed baryon asymmetry by
sphalerons [10]. Where standard leptogenesis creates
the lepton asymmetry through explicit lepton number
violation, Dirac leptogenesis creates two exactly opposite
lepton asymmetries for left- and right-handed neutrinos.
Since the latter are invisible to the sphalerons inside the
SM plasma, only the left-handed asymmetry is converted
into baryons. The asymmetry within the νR, and indeed
the νR themselves, are seemingly impossible to observe.

In this article, we provide an exhaustive list of Dirac
leptogenesis realizations and study their phenomenology.
By solving the relevant Boltzmann equations we show
that this mechanism is far more efficient than previously
estimated. Furthermore, we show that large regions of
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parameter space are surprisingly testable or already ex-
cluded by measurements of Neff in cosmic microwave
background (CMB) experiments, going far beyond ear-
lier estimates [11, 12]. Realizations involving leptoquarks
do not even require sphalerons and can thus work at low
scales, unavoidably generating proton decay as a conse-
quence.
The rest of this article is structured as follows: in

Sec. II we describe the ingredients necessary for Dirac
leptogenesis and describe the mechanism qualitatively. In
Sec. III we study the simplest realization quantitatively
to confirm the qualitative picture from before. Sec. IV is
devoted to a discussion of qualitatively different Dirac-
leptogenesis realizations that do not require sphalerons
and simultaneously generate proton decay. We conclude
in Sec. V. Some technical details and additional informa-
tion have been relegated to the appendix: the details of
our Neff calculation can be found in App. A and the full
derivation of our Boltzmann equations in App. B. App. C
lists the relevant scattering cross sections for the model
discussed in the main text. We illustrate some numerical
solutions to the Boltzmann equations in App. D.

II. INGREDIENTS FOR DIRAC

LEPTOGENESIS

For the simplest Dirac leptogenesis setup, we need sev-
eral copies of a heavy new particle X that decays – typi-
cally before sphaleron freeze-out, but at least before Big
Bang nucleosynthesis – into a non-thermalized νR plus
an SM particle. Since νR is a spin-1/2 gauge singlet, X
carries the same gauge quantum numbers as the SM par-
ticle but has a different spin. Borrowing language from
supersymmetry, X is hence either a slepton, a squark,
or a Higgsino. Consequently, any supersymmetric Dirac-
neutrino model automatically provides the necessary in-
gredients for Dirac leptogenesis. The different quantum
number assignments for X are listed in Tab. I; case b is
the one originally discussed in Ref. [7]. The same mod-
els were identified in Ref. [13] as interesting additions to
Majorana-neutrino leptogenesis. In all cases we can con-
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Case SU(3)× SU(2)× U(1) spin gX (B − L)(X) Relevant Lagrangian terms that induce X decay εwave εvertex ∆B

a (1,1,−1) 0 1 −2 νReRX̄, LLX̄ ✓ ✗ 0

b (1,2, 1/2) 0 2 0 H̄X, ν̄RLX, L̄eRX, Q̄LdRX, ūRQLX, X†H†HH ✓ ✓or ✗ 0

c (3,1,−1/3) 0 3 −2/3 dRνRX
†, uReRX

†, QLLX
†, uRdRX, QLQLX ✓ ✓or ✗ 0 or 1

d (3,1, 2/3) 0 3 −2/3 uRνRX
†, dRdRX ✓ ✗ 1

e (3,2, 1/6) 0 6 4/3 Q̄LνRX, d̄RLX ✓ ✗ 0

f (1,2,−1/2) 1/2 2 −1 X̄L, ν̄RXH, X̄eRH ✓ ✓ 0

TABLE I: Quantum numbers for particle X whose decay gives Dirac leptogenesis. εwave and εvertex indicate one-loop contri-
butions from wave-function and vertex renormalization. Case c and d can lead to ∆B = 1 proton decay (last column).

sistently assign a conserved B−L quantum number toX,
which allows us to protect the Dirac nature of neutrinos
by imposing U(1)B−L [14] or a subgroup [15] either glob-
ally or locally. X always has additional decay modes ex-
clusively into SM particles besides the one into νR. These
are crucial for Dirac leptogenesis because otherwise we
would have an additional global U(1)νR

symmetry that
would lead to CP conservation.

Assuming hierarchical X, a CP asymmetry ε in the
decays of the lightest X will create a νR asymmetry

Y∆νR
≡ nνR

− nν̄R

s

∣

∣

∣

today
≡ εη

neq
X + neq

X̄

s

∣

∣

∣

T≫MX

(1)

for every multiplet component of X, where s ∝ g⋆T
3 is

the entropy density and nA the number density of A.
The above corresponds to the standard definition of the
efficiency factor η [16], which is however not restricted to
|η| ≤ 1 for Dirac leptogenesis, although we have |εη| ≤ 1.
Following the νR asymmetry generation through X de-

cays, the νR will be out of contact with the SM plasma.
Since B−L is conserved in our Dirac-neutrino model, we
have the asymmetry Y∆(B−LSM) = Y∆νR

in the SM bath.
There, sphalerons break ∆(B+LSM) = 6, converting the
B − LSM asymmetry into a baryon asymmetry [10, 17]

Y∆B =
28

79
Y∆(B−LSM) =

28

79
Y∆νR

≃ 10−3gXεη , (2)

where in the last equation we have assumed only the SM
degrees of freedom, g⋆ = 106.75, as we will in all numer-
ical examples. To obtain the measured baryon asymme-
try [9, 18] we thus need gXεη ∼ 10−7. In cases c and d, X
decays can directly produce a baryon asymmetry and can
be effective after sphaleron freeze out; the factor 28/79
then needs to be dropped and no ∆LSM is generated.

With CP asymmetry ε simply generated at one loop
in all cases, the only quantity left to calculate is the effi-
ciency η. From Tab. I it is clear that in addition to the
desired decay channels, X unavoidably also has gauge
interactions, which can quickly deplete the number of X
at temperatures T < MX . Naively, this makes it more
complicated to generate the baryon asymmetry since it
suppresses η. However, in analogy to scalar-triplet lepto-
genesis [19] there are ways to have very efficient leptogen-
esis as long as at least some of the inverse decay reactions
are out of equilibrium, as already observed in [20].

Depending on the hierarchy of rates, different predic-
tions for Neff emerge:

(I) If all decay rates of X are out of equilibrium, we
have to rely on gauge interactions to produce X,
assuming zero initial abundance. Once these scat-
terings freeze out, the remaining X eventually de-
cay perfectly out of equilibrium at a temperature
T ≪ MX . The νR created in this decay then have a
large momentum compared to the SM temperature
and thus a potentially large contribution to Neff,
reminiscent of the superWIMP mechanism [21], see
App. A. This novel observation severely restricts
this region of parameter space.

(II) If the decay rates involving νR are in equilibrium
but the other ones are not, a large η can be achieved
in complete analogy to scalar-triplet leptogenesis.
Here, the νR are thermalized at T ∼ MX , yielding

∆Neff ≃ 0.14 (106.75/g⋆(MX))
4/3

, (3)

an amount testable by CMB-S4 [22] unless g⋆(MX)
far exceeds the SM amount [12]. This is the same
contribution as in the ∆L = 4 Dirac-leptogenesis
mechanism of Ref. [23].

(III) If the decay rates involving νR are out of equilib-
rium but the other ones are not, we have efficient
asymmetry generation with only a small amount
of νR generated through freeze-in with typical mo-
menta p ∼ 2.5T [24]. Here, ∆Neff can be unob-
servably small since both abundance and momenta
of νR are small. This freeze-in Dirac leptogenesis
technically differs from the namesake setup of [25].

The above cases allow for large η. Moving away from
these extreme cases lowers η and often pushes ∆Neff

closer to the thermal value of Eq. (3). The interactions
and decays of the heavier X copies – required to exist
for non-zero ε – will further increase ∆Neff without con-
tributing to the asymmetry. Even case (III) could there-
fore generate a testable ∆Neff unless the νR couplings of
all X are suppressed.
Below we quantify the above points for case a (cf.

Tab. I), arguably the simplest version of Dirac lepto-
genesis. The other cases give qualitatively similar phe-
nomenology, except for the leptoquark cases c and d,
which are discussed in more detail toward the end.
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III. A SIMPLE MODEL

As a simple model that realizes Dirac leptogenesis we
introduce two electrically charged scalars X1,2 ≡ X−

1,2 to

the SM (case a from Tab. I), in addition to the three
right-handed neutrinos necessary to form Dirac neutri-
nos. The Yukawa couplings of νR with the Higgs are mi-
nuscule and play no role in the following. The relevant
interactions of the charged scalars are

L = 1
2 L̄

cFiL X̄i + ēcGiνRX̄i + h.c. , (4)

assuming, without loss of generality, that theXi are mass
eigenstates. The matrices F1,2 are antisymmetric in their
flavor indices due to the antisymmetry of the SU(2) sin-
glet contraction L̄c

αLβ = ēcανL,β − ēcβνL,α. The Gi are
arbitrary complex Yukawa matrices. Total lepton num-
ber is conserved by assigning L(Xi) = 2, but, more im-
portantly, νR number is explicitly broken by the simul-
taneous presence of both Yukawas; this allows for the
generation of a νR asymmetry in the Xi decays.

1

The tree-level decay rates of Xi are given by

Γ(Xi → eRνR) ≃
Mi

16π
tr(GiG

†
i ) , (5)

Γ(Xi → eLνL) ≃
Mi

16π
tr(FiF

†
i ) , (6)

summed over all final-state flavors. CPT invariance en-
forces Γ(Xi) = Γ(X̄i) ≡ ΓXi

and hence

Γ(Xi → eR/LνR/L) = ΓXi

(

BR/L ± εi
)

, (7)

Γ(X̄i → ēR/Lν̄R/L) = ΓXi

(

BR/L ∓ εi
)

(8)

in the presence of a CP asymmetry

εi ≡
Γ(Xi → eRνR)− Γ(X̄i → ēRν̄R)

2ΓXi

, (9)

where BL = 1−BR and BR ≡ Γ(Xi → eRνR)/ΓXi
. This

definition of εi as the average νR number per Xi decay
immediately implies the absolute upper bound

|εi| ≤ min(BL, BR) , (10)

although realistic values for εi are far below this limit.
This is in complete analogy to triplet-scalar leptogene-
sis [19]. At one loop, we find from the diagrams in Fig. 1:

εi ≃
∑

j

(

M2
j /M

2
i − 1

)−1 ℑ [tr(FiF
†
j )tr(GiG

†
j)]

8π [tr(GiG
†
i ) + tr(FiF

†
i )]

. (11)

Again: a non-vanishing CP asymmetry unavoidably re-
quires both decay modes Xi → eLνL and Xi → eRνR.

1 These couplings contribute at one-loop level to the Dirac-
neutrino mass matrix, δmν ∼ FmℓG

∗v2/(16π2M2
X), which is

≪ mν in the region of interest without finetuning.

X−
i

eR

νR

eR

νR
X−
i

X−
j

eL

νL

FIG. 1: Tree-level and one-loop wave-function diagram whose
interference produces the CP-asymmetry εi of Eq. (11).

In the following we will assume a hierarchical Xi spec-
trum with X1 ≡ X being the lightest. Any asymmetry
generated by the heavier Xi>1 is expected to be washed
out by the interactions ofX; the contribution of the heav-
ier scalars to the νR density and thus ∆Neff on the other
hand will only increase the final ∆Neff. By neglecting
these contributions here we are being conservative.
Provided all leptons except for νR are in thermal equi-

librium, the Boltzmann equations (derived in App. B) for
ΣA ≡ YA + YĀ and ∆A ≡ YA − YĀ read

dΣX

dy
=

1

2

〈

σv
〉

XX̄

(

Σ2
X − Σeq

X
2
)

(12)

+
⟨ΓX⟩
s

[

ΣX − Σeq
X

(

BL +BR
ΣνR

Σeq
νR

)]

,

dΣνR

dy
= −⟨ΓX⟩

s
BR

(

ΣX − Σeq
X

ΣνR

Σeq
νR

)

(13)

+
1

2

(〈

σv
〉

s
Σeq

eR +
〈

σv
〉

t
Σeq

L

) (

ΣνR
− Σeq

νR

)

,

d∆X

dy
=

⟨ΓX⟩
s

[

∆X − Σeq
X

{

BR

∆νR

(

Σeq
eR +ΣνR

)

Σeq
νRΣ

eq
eR

(14)

−BL
4 (∆X +∆νR

)

Σeq
L

− ε

(

1− ΣνR

Σeq
νR

)}]

,

d∆νR

dy
=

⟨ΓX⟩
s

[

− ε

(

ΣX − Σeq
X

ΣνR

Σeq
νR

)

(15)

−BR

(

∆X − Σeq
X

∆νR

(

Σeq
eR +ΣνR

)

Σeq
νRΣ

eq
eR

)]

+

〈

σv
〉

s

2

[

∆νR

(

Σeq
eR +ΣνR

)

+ 2 (∆νR
+∆X) Σeq

νR

]

+
〈

σv
〉

t

[

∆νR
Σeq

L + (∆νR
+∆X)

(

ΣνR
+Σeq

νR

)]

,

where d/dy ≡ 3H (ds/dx)−1d/dx, H is the Hubble rate
and x ≡ MX/T . Neglecting the Yukawa interactions
as well as couplings in the scalar potential, the rele-
vant thermally averaged X–X̄ annihilation cross sec-
tion

〈

σv
〉

XX̄
comes from the hypercharge coupling of

X see e.g. Ref. [26]. The s- and t-channel X-mediated
|∆νR| = 1 scatterings such as eLνL → eRνR are encoded
in
〈

σv
〉

s,t
and are typically suppressed compared to the

(inverse) decays. Details can be found in App. C.
The above set of Boltzmann equations has already

been simplified by setting the linear combinations ∆νR
−

∆eR and ∆νR
+∆eR +∆νL

+∆eL +2∆X , which are con-
served due to U(1)Y × U(1)L, to zero, and by assuming
all ∆ to be suppressed by the small ε. We assume van-
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for leptogenesis without B − L violation. In this arti-
cle, we have shown that there are many simple realiza-
tions of this two-decade-old idea and that each one has
a much larger viable parameter space than anticipated:
Dirac leptogenesis is very efficient. Even more surpris-
ingly, much of this parameter space is testable through
the νR contribution to Neff, soon to be measured with
sub-percent accuracy by CMB stage-IV experiments. A
subset of models even allows for post-sphaleron baryoge-
nesis and predict proton decay, making them one of the
few known models that link these two baryon number vi-
olating observables. With both baryogenesis and Dirac
neutrinos notoriously difficult to probe, Dirac leptogene-
sis provides some novel handles for testability.
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Appendix A: Computation of ∆Neff

At temperature T , the energy density of the universe
can be written as

ρ =

[

1 +
7

8

(

Tν

T

)4

(Neff +∆Neff)

]

ργ + . . . , (A1)

where ργ is the energy density of photons, Neff =
3.045 [37] is the SM’s effective number of relativistic de-
grees of freedom in the active neutrino sector and

∆Neff =
8

7

(

T

Tν

)4
ρi
ργ

(A2)

is the respective contribution from an additional rela-
tivistic species i with energy density ρi. In general,

ρi = gi

∫

d3pi
(2π)3

Eifi , (A3)

where gi is the particle’s number of internal degrees of
freedom, Ei its energy and fi its momentum distribu-
tion. For ultra-relativistic particles, Ei = pi and we can

express the energy density as ρi = s4/3⟨qi⟩Yi, where ⟨qi⟩
is the first moment of the momentum mode, qi ≡ pi/s

1/3,

⟨qi⟩ =
gi

s4/3Yi

∫

d3pi
(2π)3

pifi , (A4)

and Yi is the comoving number density,

Yi =
gi
s

∫

d3pi
(2π)3

fi . (A5)

In the above expressions, s = g∗T
3 2π2/45 denotes the

entropy density. Accordingly,

∆Neff =
∑

i

⟨qi⟩
⟨qν⟩

Yi

Yν
Neff , (A6)

where ⟨qν⟩ and Yν are the respective quantities for the
relativistic SM neutrinos:

⟨qν⟩ ≃ 3.15

(

45

2π2g∗(Tν,FO)

)1/3

, (A7)

Yν =
3
∑

j=1

Y eq
νj

(Tν,FO) , (A8)

with Tν,FO being the temperature of neutrino decoupling.

In Eq. (A6), the sum runs over the involved production
modes of right-handed neutrinos with characteristic ⟨qi⟩
for which we employ the results of Ref. [21]. For the
production in the late decay of the mother particle X
(referred to as the superWIMP production mechanism
in [21]) we obtain

⟨qSW⟩ = 451/12π7/12

24/3g
1/12
∗

MX√
ΓXMPl

(A9)

in our notation. Early production around x ∼ 1 (via
freeze-in or close-to-equilibrium processes) gives rise to
a moment similar to Eq. (A7). The respective contribu-
tions to the comoving number density, Yi, are obtained
from solving the Boltzmann equations.

Appendix B: Boltzmann equations

In this appendix we derive the Boltzmann equations.
For the individual abundances Y of particles and antipar-
ticles, the Boltzmann equations read:

dYX

dx
=

1

3H
ds

dx

[

〈

σv
〉

XX̄

(

YXYX̄ − Y eq
X

2
)

+
⟨ΓX⟩ (BR + ε)

s

(

YX − Y eq
X

YνR
YeR

Y eq
νRY

eq
eR

)
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+
⟨ΓX⟩ (BL − ε)

s

(

YX − Y eq
X

YL
2

Y eq
L

2

)]

, (B1)

dYX̄

dx
=

1

3H
ds

dx

[

〈

σv
〉

XX̄

(

YXYX̄ − Y eq
X

2
)

+
⟨ΓX⟩ (BR − ε)

s

(

YX̄ − Y eq
X

Yν̄R
YēR

Y eq
νRY

eq
eR

)

+
⟨ΓX⟩ (BL + ε)

s

(

YX̄ − Y eq
X

YL̄
2

Y eq
L

2

)]

, (B2)

dYνR

dx
=

1

3H
ds

dx

[

− ⟨ΓX⟩ (BR + ε)

s

(

YX − Y eq
X

YνR
YeR

Y eq
νRY

eq
eR

)

+
〈

σv
〉

νReR→LL

(

YνR
YeR − Y eq

νR
Y eq
eR

Y 2
L

Y eq
L

2

)

+
〈

σv
〉

νRL̄→ēRL

(

YνR
YL̄ − Y eq

νR
Y eq
L

YēRYL

Y eq
eRY

eq
L

)

]

, (B3)

dYν̄R

dx
=

1

3H
ds

dx

[

− ⟨ΓX⟩ (BR − ε)

s

(

YX̄ − Y eq
X

Yν̄R
YēR

Y eq
νRY

eq
eR

)

+
〈

σv
〉

ν̄RēR→L̄L̄

(

Yν̄R
YēR − Y eq

νR
Y eq
eR

Y 2
L̄

Y eq
L

2

)

+
〈

σv
〉

ν̄RL→eRL̄

(

Yν̄R
YL − Y eq

νR
Y eq
L

YeRYL̄

Y eq
eRY

eq
L

)

]

, (B4)

dYeR

dx
=

1

3H
ds

dx

[

− ⟨ΓX⟩ (BR + ε)

s

(

YX − Y eq
X

YνR
YeR

Y eq
νRY

eq
eR

)

+
〈

σv
〉

νReR→LL

(

YνR
YeR − Y eq

νR
Y eq
eR

Y 2
L

Y eq
L

2

)

−
〈

σv
〉

ν̄RL→eRL̄

(

Yν̄R
YL − Y eq

νR
Y eq
L

YeRYL̄

Y eq
eRY

eq
L

)

+ SM gauge interactions

]

, (B5)

dYēR

dx
=

1

3H
ds

dx

[

− ⟨ΓX⟩ (BR − ε)

s

(

YX̄ − Y eq
X

Yν̄R
YēR

Y eq
νRY

eq
eR

)

+
〈

σv
〉

ν̄RēR→L̄L̄

(

Yν̄R
YēR − Y eq

νR
Y eq
eR

Y 2
L̄

Y eq
L

2

)

−
〈

σv
〉

νRL̄→ēRL

(

YνR
YL̄ − Y eq

νR
Y eq
L

YēRYL

Y eq
eRY

eq
L

)

+ SM gauge interactions

]

, (B6)

dYL

dx
=

1

3H
ds

dx

[

− 2
⟨ΓX⟩ (BL − ε)

s

(

YX − Y eq
X

YL
2

Y eq
L

2

)

− 2
〈

σv
〉

νReR→LL

(

YνR
YeR − Y eq

νR
Y eq
eR

Y 2
L

Y eq
L

2

)

−
〈

σv
〉

νRL̄→ēRL

(

YνR
YL̄ − Y eq

νR
Y eq
L

YēRYL

Y eq
eRY

eq
L

)

+
〈

σv
〉

ν̄RL→eRL̄

(

Yν̄R
YL − Y eq

νR
Y eq
L

YeRYL̄

Y eq
eRY

eq
L

)

+ gauge int.

]

,

(B7)

dYL̄

dx
=

1

3H
ds

dx

[

− 2
⟨ΓX⟩ (BL + ε)

s

(

YX̄ − Y eq
X

YL̄
2

Y eq
L

2

)

− 2
〈

σv
〉

ν̄RēR→L̄L̄

(

Yν̄R
YēR − Y eq

νR
Y eq
eR

Y 2
L̄

Y eq
L

2

)

−
〈

σv
〉

ν̄RL→eRL̄

(

Yν̄R
YL − Y eq

νR
Y eq
L

YeRYL̄

Y eq
eRY

eq
L

)

+
〈

σv
〉

νRL̄→ēRL

(

YνR
YL̄ − Y eq

νR
Y eq
L

YēRYL

Y eq
eRY

eq
L

)

+ gauge int.

]

.

(B8)

Notice that (3H)−1ds/dx = −s/(Hx) for constant rela-
tivistic degrees of freedom. As we will assume the SM
gauge interactions to be fully efficient, we have com-
bined νL and eL in the above equations by defining
YL = YνL

+ YeL . Now, we define ΣA ≡ YA + YĀ and

∆A ≡ YA − YĀ for any species A and rewrite the Boltz-
mann equations accordingly. ΣL and ΣeR are approx-
imated by their equilibrium values on account of their
efficient SM gauge interactions, leaving the following six
equations:
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dΣX

dx
=

1

3H
ds

dx

[

1

2

〈

σv
〉

XX̄

(

Σ2
X − Σeq

X
2
)

+
⟨ΓX⟩
s

{

ΣX − Σeq
X

(

BL +BR
ΣνR

Σeq
νR

)}]

, (B9)

dΣνR

dx
=

1

3H
ds

dx

⟨ΓX⟩
s

[

−BR

(

ΣX − Σeq
X

ΣνR

Σeq
νR

)

+
1

2

〈

σv
〉

s
Σeq

eR

(

ΣνR
− Σeq

νR

)

+
1

2

〈

σv
〉

t
Σeq

L

(

ΣνR
− Σeq

νR

)

]

, (B10)

d∆X

dx
=

1

3H
ds

dx

⟨ΓX⟩
s

[

∆X − Σeq
X

{

BR

ΣνR
∆eR +Σeq

eR∆νR

Σeq
νRΣ

eq
eR

+BL
2∆L

Σeq
L

− ε

(

1− ΣνR

Σeq
νR

)}]

, (B11)

d∆νR

dx
=

1

3H
ds

dx

⟨ΓX⟩
s

[

−BR

(

∆X − Σeq
X

ΣνR
∆eR +Σeq

eR∆νR

Σeq
νRΣ

eq
eR

)

− ε

(

ΣX − Σeq
X

ΣνR

Σeq
νR

)

(B12)

+
1

2

〈

σv
〉

s

(

∆νR
Σeq

eR +∆eRΣνR
− 2∆LΣ

eq
νR

Σeq
eR

Σeq
L

)

+
1

2

〈

σv
〉

t

{

∆νR
Σeq

L −∆L

(

ΣνR
+Σeq

νR

)

+∆eRΣ
eq
νR

Σeq
L

Σeq
eR

}]

,

d∆eR

dx
=

1

3H
ds

dx

⟨ΓX⟩
s

[

−BR

(

∆X − Σeq
X

ΣνR
∆eR +Σeq

eR∆νR

Σeq
νRΣ

eq
eR

)

− ε

(

ΣX − Σeq
X

ΣνR

Σeq
νR

)

(B13)

+
1

2

〈

σv
〉

s

(

∆νR
Σeq

eR +∆eRΣνR
− 2∆LΣ

eq
νR

Σeq
eR

Σeq
L

)

+
1

2

〈

σv
〉

t

{

∆νR
Σeq

L −∆L

(

ΣνR
+Σeq

νR

)

+∆eRΣ
eq
νR

Σeq
L

Σeq
eR

}]

,

d∆L

dx
=

1

3H
ds

dx

⟨ΓX⟩
s

[

− 2BL

(

∆X − 2Σeq
X

∆L

Σeq
L

)

+ 2ε (ΣX − Σeq
X )−

〈

σv
〉

s

(

∆νR
Σeq

eR +∆eRΣνR
− 2∆LΣ

eq
νR

Σeq
eR

Σeq
L

)

−
〈

σv
〉

t

{

∆νR
Σeq

L −∆L

(

ΣνR
+Σeq

νR

)

+∆eRΣ
eq
νR

Σeq
L

Σeq
eR

}]

, (B14)

where we have only kept terms linear in ε, ∆A and ne-
glected any asymmetry in the s- and t-channel scatter-
ing cross sections,

〈

σv
〉

νReR→LL
≃
〈

σv
〉

ν̄RēR→L̄L̄
and

〈

σv
〉

νRL̄→ēRL
≃
〈

σv
〉

ν̄RL→eRL̄
, denoted by

〈

σv
〉

s
and

〈

σv
〉

t
, respectively.

Note that d(∆νR
+ ∆eR + ∆L + 2∆X)/dx = 0 and

d(∆νR
−∆eR)/dx = 0 due to conservation of hypercharge

and lepton number, i.e. the set of differential equations is
redundant and we can eliminate two of them by plugging
in the solutions

∆νR
+∆eR +∆L + 2∆X = δ1 , (B15)

∆νR
−∆eR = δ2 , (B16)

where δi are initial conditions (set to zero here assum-
ing vanishing asymmetries in the beginning). We choose
to eliminate Eqs. (B13) and (B14) to obtain the Boltz-
mann equations in the main text. When νR is deep in
equilibrium the Boltzmann equations simplify and are
structurally similar to those of triplet leptogenesis [19].
In that region the equations become symmetric under
L ↔ R, ε ↔ −ε; for every η at (BR, ε) there is a solution
with −η at (1 − BR,−ε). This can be observed in the
upper-left corners of the two examples in Fig. 2.

Appendix C: Involved cross sections

For case a of Tab. I, the relevant annihilation cross
sections, summed over final-state spins, are

σ(XX̄ → B∗ → ff̄) =
(g′)4Y 2

f

24πs

√

1− 4M2
X

s
, (C1)

σ(XX̄ → B∗ → φφ̄) =
(g′)4Y 2

ϕ

48πs

√

1− 4M2
X

s
, (C2)

σ(XX̄ → BB) = (g′)4

16πM2
X

[

√

(y − 1)y3 +
√

(y − 1)y

(y − 1)y2

+
(1− 2y) tanh−1

(√

y−1
y

)

(y − 1)y2

]

y= s

4M2
X

, (C3)

where B is the hypercharge gauge boson and g′ the gauge
coupling. f is a massless chiral fermion with hypercharge
Yf and φ a massless complex scalar with hypercharge
Yϕ. The thermally-averaged annihilation rate is approx-
imately

⟨σv⟩XX̄ ≃ 10−4

M2
X











3.5 (MX/T )2 , MX ≪ T ,

1.2 , MX ∼ T ,

5.5 , MX ≫ T .

(C4)

The thermally-averaged annihilation rate as well as the
decay rates are shown in Fig. 4 relative to the Hubble rate
H =

√

4π3g∗/45T
2/MPl. For MX ≫ 1013 GeV, the hy-

percharge gauge interactions are not sufficient to put X
in equilibrium; for MX ≪ 1013 GeV, X reaches equilib-
rium and freezes out at some temperature T < MX . De-
cay rates have a different temperature dependence than
annihilations.
The X-mediated ∆νR = 1 scattering cross sections

consist of s- and t-channel cross sections,

σs(LαLβ → eR,γνR,σ) =
|FαβG

∗
σγ |2

16π

s

(s−M2
X)2

, (C5)
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