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Abstract

@-balls are bound-state configurations of complex scalars stabilized by a conserved Noether
charge (). They are solutions to a second-order differential equation that is structurally identical
to Euclidean vacuum-decay bounce solutions in three dimensions. This enables us to translate
the recent tunneling potential approach to @Q-balls, which amounts to a reformulation of the
problem that can simplify the task of finding approximate and even exact (Q-ball solutions.



1 Introduction

Classical field theory of massive bosons can admit stable, localized solutions, so called non-topological
solitons [1]. This requires an attractive force to bind the particles together and a conserved Noether
charge () to forbid decays and self-annihilation. The minimal example is a complex scalar field
®(Z,t) with a U(1)-invariant potential U(|®|) that grows slower than |®|* in some range. In that case,
spherically symmetric localized solutions to the Klein-Gordon equation of the form ® = ¢(|Z])e™*/v/2
exist that can have the lowest energy per charge [2]. We shall denote all such objects as @-balls in
a slight generalization of Coleman’s definition. Similar solitons can arise in multi-field scenarios and
can be tackled with a similar approach as pursued below [3].

Q-balls are interesting examples of bound states that have been discussed in many different
contexts. While the Standard Model of particle physics does not provide any elementary complex
scalars that could condense into (Q-balls, many extensions do. For example, supersymmetry naturally
provides complex scalars (sfermions) charged under global U(1) symmetries (baryon and lepton
number) with attractive interactions in their potential, thus allowing for @-balls [4]. These stable
objects could form and grow in the early universe and make up dark matter [5].

Mathematically, @)-balls are described by a second-order differential equation for their radial
profile ¢(|Z]) [2]. Equation and boundary conditions are structurally identical to Euclidean vacuum-
decay bounce solutions in d = 3 dimensions [6], as originally noted by Coleman. We can therefore
adapt the recent reinterpretation and approximation of bounces by one of the authors (JRE) [7] to
the @-ball case, yielding a novel method to find exact and approximate soliton solutions.

The so-called tunneling potential approach [7] to the calculation of tunneling actions (which
control the decay of false vacua) is an alternative to the usual Euclidean approach. The new method
formulates the problem as a minimization problem for an action functional S[V;] (defined in field
space) that depends on the so-called tunneling function, V;(¢), which connects the false vacuum and
the basin of the true vacuum and describes the decay. The monotonicity of V; and the fact that
S[V;] is a minimum (rather than a saddle point) make the new approach powerful for numerical
applications, both for single-field [7] and multi-field [3] potentials in arbitrary dimensions. Moreover,
the method leads in a natural way to a new procedure to find potentials which allow for exact
solutions of the decay process. These appealing properties of the tunneling potential formalism can
be applied to the study of )-balls and is the main goal of this paper.

We introduce ()-ball terminology and notation in Sec. 2 and the reformulation in the tunneling
approach in Sec. 3. Approximations for the new sought-after function £(¢) are derived in Sec. 4 and
then applied and compared to numerical solutions in Sec. 5. In Sec. 6 we use the new formalism to
construct potentials that lead to exactly solvable Q-ball solutions. We conclude in Sec. 7. App. A is
devoted to a discussion of the large ()-ball limit in flat potentials, appropriate for potentials that do
not have a thin-wall limit.

2 (Q-Ball Basics

Using the notation established in the introduction, the O(3)-symmetric radial @-ball profile ¢(r)
satisfies a differential equation of the form

b42p=-v, (1)
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Figure 1: Left: example of a @-ball potential V(¢) (red), in which a particle rolls from ¢ to ¢ =0
under friction. &(¢) (blue) corresponds to the particle’s total energy. Right: the corresponding
solution ¢(r) as well as the change of total energy £ with “time” 7.

where a dot (prime) represents a derivative with respect to r (¢), with the boundary conditions

$(0) =0, ¢(c0) =04 . (2)
Here, ¢ is a local maximum of V', where the U(1) symmetry is unbroken, which we could set to zero
without loss of generality and V(¢) is an effective potential relevant for the description of Q-balls.
This V is different from the fundamental potential for the scalar field appearing in the Lagrangian,
U(|®]), with
_Lg ¢
V(9) = gwo U(\@) (3)
where w is the rotation frequency in internal space of the ()-ball solution. An example for a possible
potential is shown in Fig. 1 (left).

If we identify r with time, Eq. (1) describes the motion of a particle with position ¢ in the
potential V(¢), with a velocity and time-dependent friction force, left to roll from some initial
position ¢(0) = ¢g. The solution can be found by the undershoot/overshoot method, changing ¢
until the boundary condition at r — oo is satisfied [2].! We shall focus on ground-state solutions, for
which ¢(r) decreases monotonically. The example of Fig. 1 illustrates the main qualitative features
of ()-ball potentials and profiles.

The Noether charge ( counts the number of ¢ particles minus antiparticles and for a )-ball is
given by the integral

Qlo] = 47rw/ &*ridr . (4)
0
For a fixed charge ), the Q-ball profile ¢(r) minimizes the energy functional
oo 1 .
Blo) = wQ+ax [ |36 Vo + Vo) ar 5)
0
If ¢ satisfies the equation of motion, energy and charge are related through the differential relationship
dE dQ
== 6
do ~ Ydw’ (6)

Notice that this V has the opposite sign of a vacuum-decay potential [6].
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which also allows for an interpretation of w = dF/dQ as the chemical potential [8, 1]. We require
0 < wy < w < my for localized solutions, with w ~ wy corresponding to the limit of large @)-balls,
defined below.

We can distinguish two qualitatively different potentials and resulting solitons:

(A) V(¢) has a global maximum at some ¢_ > ¢, as the one illustrated in Fig. 1. The particle
can then spend a long time near this point before starting to roll, which implies an essentially
constant ¢(r) ~ ¢_ up to some potentially large radius R, [2]. Solitons with such a thin-wall
limit were dubbed @-balls by Coleman. Here, wy is the value of \/U(|®])/|®|? at its minimum,
which occurs at the non-zero finite value |®| ~ ¢_/v/2 [2].

(B) V(¢) does not have a global maximum but rather grows with w?¢?/2 for large ¢. This occurs
for U potentials that are approximately flat and predate Coleman’s Q-balls [9, 10]. Here, the
particle starts to roll immediately and the only way to make the ()-ball larger is to start ¢ at
higher and higher values. In the vacuum-decay analogy, this corresponds to tunneling into an
unbounded vacuum. Here, wy is simply zero.

Notice that neither case can be realized with a renormalizable bounded-from-below single-field po-
tential U(|®|), but both can be excellent effective descriptions of scenarios arising in renormalizable
multi-field cases. Both cases allow for arbitrarily large stable ()-balls that can be approximated with
relative ease by using the large radius as an expansion parameter.

In the thin-wall limit, the potential difference between the maxima, AV = V(¢_) — V(¢y), is
small compared to the depth of the minimum between them and the profile has a sharp transition
between ¢y ~ ¢_ for r < R, and ¢, for r > R., where the bubble radius R, can be calculated
analytically in terms of the surface tension

b
o V2V (o) = V(e)ldg (7)

o

as R. =20 /AV. In this thin-wall case the ()-ball charge and energy can be obtained analytically as

3
Qtw = %wng_Rz) 5 Etw = WQ + MTWAO—_W ) (8)
where w ~ wy is assumed to be non-zero and 03/AV? oc R? corresponds to the surface energy. For
large @-balls, stability is ensured because E ~ wy@ < m,Q [2]. The thin-wall limit works remarkably
well for @-balls of type A and can be systematically improved order by order in 1/R [11, 12].

Large @)-balls of type B in flat potentials are even simpler to describe because Eq. (1) becomes a
linear differential equation for large ¢ with solution sin(wr)/(wr). This leads to a markedly different
scaling in the large-R limit: Q oc R' oc E*3 [10]. Once again large Q-balls are stable because
E/(myQ) Q~'/* becomes smaller than one beyond some critical charge. We provide the large
(2-ball solution for this case in App. A for the convenience of the reader since it is not as widely
known as the thin-wall limit.

3 (@-Balls via the Tunneling Potential Approach

The application of the so-called tunneling potential approach to the study of @)-balls is based on the
fact that the equation for the @-ball profile, (1), has the form of a Coleman bounce equation in three
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dimensions. We can then borrow directly known V; results and properties [7]. Notice that, in what
follows, there is a flip in the signs of both V' and V; with respect to the tunneling-potential literature
in order to match the standard ()-ball notation.

With these sign flips in mind, the key quantity in the tunneling potential approach is

Vo) = 5 + V() )

where it is understood that ng above is expressed in terms of the field ¢ via the )-ball profile. V; is
nothing but the total particle energy in the mechanics analogy, which is monotonically decreasing
due to the friction term in the equation of motion. From now on, we use £(¢) instead of V; to make
this interpretation explicit.

The entire @)-ball problem can be rewritten in terms of £(¢) rather than ¢(r). £(¢) connects the
local maximum at ¢, to some ¢g such that the @-ball energy functional

i [ RE—V)PP
mel=wa+ = [T

3
is minimized (for fixed @), reproducing the @)-ball energy in (5). The integral here is the surface
energy of the ()-ball and corresponds to the Euclidean action integral in the vacuum-decay analogy.
The total charge of the @-ball can be written as

¢o _/ _
Q[€] = 167w ) %&w. (11)

One can remove altogether the reference to the @-ball profile and real space in favor of £(¢) as
follows. From (9),

do (10)

0 =—/2(6(0) = V(9)] . (12)

where the minus sign, chosen due to ¢, < ¢_, should be a plus if ¢, > ¢_. Eq. (12) allows to remove
derivatives of ¢ in terms of £ (and V'). The radial coordinate r can then be extracted from (1) as

=22 -V)/(&)2. (13)

Taking a derivative of the above with respect to r» we get a second-order differential equation for &:

(38 — 2V € = 4(E — V)E"], (14)

which also follows as the Euler-Lagrange equation from extremizing (10).? In the £-formulation of
the problem, one should find a ¢ and a £(¢) that solve (14) with boundary conditions

E(p4) =V(o+) . E(do) = V(do) - (15)
Assuming V'(¢4) = 0, Eq. (14) also leads to
E(¢+) =0, &'(do) =2V"(¢)/3 . (16)

It can be proven [7] that the £ that solves this Euler-Lagrange equation minimizes the integral in (10) for
monotonically increasing £’s.



At this point it is far from obvious why reformulating @-balls in terms of £(¢) is beneficial, but it
turns out to be quite simple to estimate £(¢) for a given potential to get an accurate approximation
to the @-ball energy using (10).

Equation (10) can be regarded as a generalization of the thin-wall approximation (in the sense that
the expression for the action involves just an integral in field space rather than in real space involving
the @-ball profile) that is valid for generic potentials. In the limit of quasi-degenerate maxima we
recover the thin-wall result in a very direct way as follows: Given the properties of &, for near
degenerate maxima one has & < |(V — &)'| — except at small regions around the point (V' — &) =0
and at the maxima ¢, where £ =V —so (14) can be reduced to the form (£ — V)& ~2(E —V)E".
This can be readily integrated to get

V2(E-V)~ €' (17)

with an integration constant C'. Integrating (17) in the interval (¢4, ¢o >~ ¢_) gives C in terms of
the wall tension ¢ and the potential difference AV as

o= ¢2 (¢)] dp ~ CAV . (18)
o
Plugging (17) and (18) in the energy integral (10) reproduces the correct thin-wall energy (8). More-
over, to get the critical bubble radius we just plug (17) in (13) to get r = R. = 2C, and using (18)
we get the correct result, R, = 20 /AV.

To sum up, £(¢) captures all the relevant information of the @-ball profile and has the appealing
property of being quite featureless [e.g. a potential with a bumpy barrier gives a P /2 that also
has bumps; both sets of bumps cancel out in £(¢)|, as can be seen in Fig. 1. This property can be
exploited to estimate the ()-ball energy as is shown next.

4 Estimates of the Energy

Let us give approximations for £ of increasing level of sophistication. The simplest is the linear one:

£1(6) = Vo% ,

where Vo = V(¢y), and it satisfies the boundary conditions (15). To also satisfy the boundary
condition (16) on &£'(¢y), one can use the quadratic approximation

K2

(19)

&) = &) + 30 5 (200 — 3V0) (¢ — do) (20)
0
where Vi = V'(¢p). One can go further, matching also £'(¢) using the cubic approximation
£a(0) = £4(6) + g (V] — 31%) (6~ ) 1)
0

So far, the previous approximations focus only on the boundary conditions at ¢, and ¢3. We can
add information about the local minimum between the maxima, forcing the £ approximation to
satisfy Eq. (14) at ¢p, the value at which V(¢) is minimal. This can be achieved with the quartic
approximation

Eu(9) = E(0) + asd® (¢ — ¢o)* | (22)

>



where

__Gor + \/a(2)T - ¢%‘¢(2)¢3TU3T

a4 = 2@5%@53@5(2)11 ) (23)
with ¢or = ¢ — o7, Usr = 3(Elp)? + 4(Vr — Esr)Er, Esr = E3(¢r) and
agr = 2(Vp — Es7)(6prdor — &) — 3dr(dor — ¢1)PorEsy + d700rExp- (24)

This approximation also satisfies the boundary conditions in Egs. (15) and (16).

More generally, one could pick a4 so that the differential equation is satisfied at some other value,
say at ¢g/n with n > 1 (or even leave a4 as a free parameter and minimize F with respect to ¢, and
a4). This might be necessary to make this approximation useful for type-B @Q-balls, where ¢y can be
much larger than ¢r, so ¢ is not a useful reference point. Matching at ¢, = ¢/ gives

Qon — \/a’gn - ¢%¢%¢3WU377
2020303, ’
with ¢o, = o — by, Usy = 3(E4,)% + 4(V, — Es,)Ep — 2VIE}

(25)

ay =

Esy = E3(y), Vi = V(6,) and

Qon = 2(‘/77 - 53n)(6¢77¢077 - Q%) + ¢n¢0n(¢0n - an)(vnl - nggT) + ¢%¢(2)n5§/n : (26)

The optimal choice of 17 depends on the potential V' and is particularly important for large )-balls,
where some 7 can lead to unphysical, e.g. non-monotonic, £. For small ()-balls, the exact value for
1 is much less important and the &£, approximation works remarkably well. This makes the above
procedure nicely complementary to the well-known large ()-ball approximations.

For an approximate ansatz &,(¢), (10) gives an approximate ()-ball energy FE, bigger than the
true E, see footnote 2. F, is a function of the end point ¢g whose minimum gives the best estimate
for E for the used ansatz.

As we will show in the next section, & already provides excellent approximations for typical
()-ball potentials. The direct outputs are ¢y and the integral in Eq. (10), essentially £ — w@. The
actual profile ¢(r) can be obtained via r(¢) from Eq. (13), which also provides the @-ball radius,
e.g. conveniently defined through ¢(R) = 2¢, [12]. Lastly, the charge @ is in principle defined
through &£ in Eq. (11). However, for large @-balls this integral is often not well approximated by this
method. Instead, one can make use of the @-ball relation dF/dw = wd@Q/dw to write

d
= — —F). 27
Q== Q- F) 27)
This allows us to obtain the @) integral directly from the well-approximated result for the surface

energy F — w(@, which works well even for large ()-balls. Unless noted otherwise, this is how we
obtain @) in the following.

5 Comparison with Numerical Solutions

In the following we will compare the £ approximations to numerical solutions of the ()-ball equations.
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Figure 2: Left: prediction of ¢g using the &, approximations of Sec. 4 for the potential from Eq. (29)
with (p,q) = (4,6), together with the actual value in black. Right: corresponding values for the
surface-energy integral. The red dashed line corresponds to the thin-wall prediction from Eq. (30).

5.1 Polynomial Potentials
A large class of -balls of type A can be described by polynomial potentials,

U(|6]) = mglol* — Blol” +€lol . (28)

with 2 < p < ¢ and positive coefficients mé, B, and &. The thin-wall limit of these cases has been
discussed extensively in Refs. [13, 12]. By redefining parameters one can bring Eq. (1) to the form

d Tp=aE =1Df(p)?® = (a=2)f(p)" +(p—2)f(p)?
df (p) 2(p—q) ’

with dimensionless radial coordinate p, dimensionless )-ball profile f(p), and 0 < xk < 1 playing the
role of w, with kK — 0 corresponding to the thin-wall limit.

In Fig. 2 (left) we show the ¢q prediction for (p,q) = (4,6) as a function of & for the four
increasingly sophisticated approximations of £ from the previous section, together with the true
value obtained from numerically solving Eq. (29) [12]. We can see that the £ predictions become
increasingly better, with £; reaching percent level accuracy. The corresponding predicted minimum
of the surface-energy integral is shown in Fig. 2 (right) together with the true result and the thin-wall
prediction [11]

(o) + %f%p) - (29)

1
/ 2 2 ~

/ [f ()P dp = 1= . (30)
For the surface-energy integral, the & prediction is at the per-mille level, as is the prediction for
the @ integral using Eq. (27). The Q)-ball radius is obtained from Eq. (13) and for &, agrees at the
percent level with the true values. Notice that the £ approximation is not restricted to the thin-wall
region of parameter space but works well even for small ()-balls, thus nicely complementing existing

analytical thin-wall results.
Using the results from Ref. [12] we have confirmed the above qualitative picture for many other
values of p and ¢ in Eq. (29). We find a similar excellent agreement between the &£; predictions
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and numerical results in all cases and thus expect this approach to be successful for all Q)-balls of
type A. When p and ¢ take on very large values, the minimum of V' moves closer to ¢y and the a4
matching at the minimum is no longer optimal. Instead, it becomes beneficial to match a4 at ¢g/2
using Eq. (25). The so-obtained &, is then an excellent approximation for essentially arbitrary p and
q; for large @-balls, a thin-wall prediction has been given in Ref. [12]. We stress that for large p and
q or k it is numerically challenging to solve the actual differential equations, so approximations of
the kind shown here are very useful to study those ()-balls.

5.2 Flat Potential

Having shown that the £ approach works remarkably well for @)-balls that have a thin-wall limit,
let us investigate solitons that are qualitatively different and do not have a global V' maximum. An
example for a flat U potential that generates such @-balls was given long ago by Rosen [9],

U(¢) = miA° (1 — e_|¢|2/A2) , (31)

and corresponds to the smoothed-out version of the simple piecewise quadratic potential [14]

(32)
miA*,  for [p(r)] > A,

mglol*,  for [o(r)| < A,
U(p) = { 5
argued to arise in gauge-mediated MSSM potentials [15]. Another simple renormalizable realization
of flat potentials can be found in the Friedberg—Lee—Sirlin model [8, 16]. Upon rescaling, this scenario
can be brought to a similar form as above, involving only dimensionless quantities:

, 2, . 1 d b 2
£0)+ 50 = =5 gy W) = 1 1), (33)

Even though these solitons do not have a thin-wall limit, they become large and stable for small x
with ¢o ~ 7/k and [[f'(p)]*p*dp ~ 73 /2>, as shown in App. A.

We restrict ourselves to the &£; prediction here. Since in this potential the position of the V'
minimum is at ¢ = /log k=2, the distance to ¢g becomes arbitrarily large for small x and matching
a4 at the minimum is not ideal. Instead, we matched at ¢y/3 and also left a4 as a free minimization
parameter, which is numerically more challenging but should give the best results. In Fig. 3, we
compare these &, predictions with the numerical results. As expected, leaving a4 free gives the best
results but matching at ¢q/3 also gives a good approximation. For small @)-balls, both approaches
for £, work just as well as for thin-wall )-balls, i.e. with percent level accuracy. For small &, i.e. large
(Q-balls, the approximations become worse and should be replaced by the approximation derived in
App. A. Alternatively, one could approximate £ with higher-order polynomials to allow more freedom
in the &£ shape.

6 Potentials with Exactly Solvable ()-Balls

Another application of the £ approach is that it allows to generate in a straightforward manner
potentials (or pieces of them) that lead to analytic solutions of the -ball problem. Instead of starting
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Figure 3: Left: prediction of ¢, using the £, approximations of Sec. 4 for the potential from Eq. (33),
together with the actual value in black. Two different methods for a4 are presented, one where ay
matches the differential equation at ¢, = ¢o/3, and one where a4 is varied freely to minimize the
energy. Right: corresponding values for the surface-energy integral. The red dashed line shows the
large Q-ball approximation from App. A.

from V' and solving for £, one postulates a given £ and integrates (14) to obtain the corresponding
V as

Vo) =20+ SEor [ A (34)
%o 5,<¢)

When an approximate ansatz for £ is used for a given potential V' (¢), formula (34) can also be used
to check how close is the potential derived from the ansatz to the original potential.

6.1 Periodic &

As a first example, consider
E(p) =sin’¢ , (35)

for simplicity in conveniently chosen units, although mass parameters can be put back easily if
necessary. Using (34), the corresponding potential is

(36)

V(¢) = sin® ¢ [1 + cos? ¢ log tan ¢ ] )

tan ¢0

The profile of the @-ball can be obtained, by integrating (12), as the simple function
$(r) = cot™* (eTQ/Q cot (;50) = arctan (e(RQ’Q’j)/‘L\/ el?/2 — 2) , (37)

where the last expression is written in terms of the Q-ball radius, defined in this case by ¢(R) = ¢o/2.
Figure 4 shows the potential and tunneling potential for the two choices ¢g = 7/4,7/2 — 1077,
(corresponding to R = 1.33 and R = 5.68 respectively), the last one being in the thin-wall regime.
The corresponding field profiles are given in the bottom plot.
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Figure 4: For the analytic example of (35), upper plots: potential, V', (blue curve) and tunneling
potential, £ (orange curve) for ¢g = m/4 (left plot) and ¢y = 7/2 — 1077 (right plot). Lower plot:
corresponding @)-ball profiles ¢(r).

6.2 Cubic &

Another example is

E(¢) = ¢*(da — 9) (38)
which is the solution for the potential
QSQ { 2 (2¢a - 3¢)¢0
V(p)=— A (P — ¢q o — log —————1| .
() = =g |10a(6 = 6u) + (260 = 30 log (50 —0 55 (39)
The profile of the ()-ball can also be obtained as
P(r) = % [1 — tanh (¢,r*/4 — B)], (40)
with . 2%
po (2 1), "

so that ¢(0) = ¢o. In terms of the @-ball radius R, defined by ¢(R) = ¢o/2, the profile can be

written as
2¢a <€¢aR2/2 _ 2)

d)(/r) — 3 (e¢aR2/2 + e¢ar2/2 _ 2) .
This case also admits a thin-wall limit, for B > 1.

(42)
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Figure 5: For the analytic example of (43): Potential, V', and tunneling potential, £ for m; = ¢. =
w =1, (left plot) and @-ball charge and energy as functions of w for m; = ¢. = 1 (right plot).

6.3 Quadratic &

The previous two examples (of type A potentials) are simple enough but one does not have the
freedom of changing w (and therefore )). This can be done in the next example, which is even
simpler:
1 1 1
&= §mf¢2 , V= §mf¢2 log(¢/dc) + 5002@52 : (43)
where m;, ¢. and w are free parameters (actually ¢. can be absorbed into w, but we want w to be a
separate adjustable parameter). Now we can keep U(¢) = —%m?qbz log(¢/¢.) fixed and vary w and

this will change the value of the starting value ¢q, which is given by

do(w) = ¢ el=w/mi (44)
The -ball profile can also be obtained as
d(r) = do(w) e ™/ (45)

This result reproduces an exact solution that was already discussed in Refs. [17, 14]. From this profile
it is clear that this example does not have a thin-wall limit. Indeed, the value of the potential at the
minimum, V},, is related to the value of the potential at the initial point, 1}, as

1

1
Vi = —4—69,7”?(?3(00) =53 (46)
and one cannot have |Vy| > AV =V, — V},. Alternatively, one can notice that V' (¢) does not have
a maximum for ¢ > 0.

The charge and energy of the ()-balls can be calculated analytically as

_ 2/ 2132w (w) - 73242 (w)
Qw) = - , Fw)=w@(w)+ —\/ﬁmt , (47)

which satisfy the identity dE/dw = wd@/dw. Figure 5 shows V' and £ in this example as well as
Q(w) and E(w) (for my = ¢. = 1). The dashed line at w = m;/2, where @ is maximal, marks the
value below which d@)/dw > 0 and the @-balls are unstable.
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6.4 Quartic &£

In the analysis of the tunneling problem (with d = 4) there is a simple (scale-independent) potential,
V = —\¢*/4, which admits an infinite family of bounces [18], corresponding to V; = —A¢go¢® /4 with
arbitrary ¢g. The tunneling action is ¢y independent and given by S = 872/(3)). We can then ask
if there is a similar example for ()-balls. The formal solution does exist and is given by

by 6 by 4 12
Vo) = E) =000 (13)

However, it can be checked that this example is unphysical, as it would give a divergent charge Q).
Indeed, at small ¢, the integrand in (11) goes like 1/¢?, leading to a divergent integral for ¢ — 0.

This divergence can be cured by introducing an additional mass term in £ that acts as an infrared
cutoff (at ¢ — 0). We take then

)\¢4 2
£(¢) = 226 + 2550 (19)
where we have written the mass in terms of w for later convenience. For this £ we get
P20t 2 (1+ C)¢?
o, 2.2 0 2 2/ .12\2 42
where C' = \¢j/(A%w?). The Q-ball profile is
bo
o(r) = . 51
) V(C 4 1) — C (51
For w/¢y < 1, this potential is well approximated, at large ¢, as
AW g 2wy Ly AT,
~ = —-— — - ~— 4 — 2
V(¢) <A2 2¢é>¢+ A T v T (52)

which is independent of ¢, has an adjustable w parameter and takes the form (48) up to a small IR
cutoff correction. For small ¢, one has

V(¢) ~ w? 24 log(1 + C) + 2log(¢/¢o)] ¢ . (53)
This form leads to the existence of a shallow minimum at

¢ -~ (bo -~ wA
T2/ T+ O 63/2\/X¢0 '

Nevertheless, the parameter w only approximately works as it should. In particular, the relation
dE/dw = wd@/dw breaks down as w — 0, although it holds for larger w when C' < 1.

(54)

7 Conclusion

In this article we used the mathematical similarity between )-balls and vacuum-decay bounces to
reformulate the @-ball problem in the tunneling potential approach of Ref. [7]. Rather than tracking
¢(r) — or particle position ¢ as a function of time r in the rolling-particle analogy — we can track the
particle’s energy £ as a function of position, £(¢). Since the latter is monotonically decreasing due to
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the friction term in the equation of motion these two are equivalent formulations. One advantage of
the £(¢) formulation is that £(¢) can be approximated fairly accurately with low-order polynomials,
providing simple numerical estimates for ()-ball properties that work especially well in the small Q-
ball regime that is usually inaccessible via approximations. We have shown that this works very well
for essentially all kinds of single-field @)-ball potentials. Furthermore, the £(¢) formulation provides
a new angle to find exactly solvable ()-ball potentials, as we have illustrated with several examples.
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A Large (Q-Balls in Flat Potentials

In this appendix we derive the large ()-ball behavior for the flat potential case, as approximated
through the exactly solvable potential of Eq. (32), repeated here for the convenience of the reader:

_ Jmilel?, for |o(r)| < A,
Ule) = {miAQ, for |p(r)| > A.

By rescaling the field (¢(Z,t) = Ae™'f(]Z])) and spatial coordinate (p = my|Z|) we arrive at the
differential equation

L=r)flp), f<1,
_KQf(p>7 f>17

where kK = w/m,, is the only remaining variable, with values x € (0,1). Demanding the solution to
be continuous and differentiable, we find

£"(0) + %f’(p) - { (55)

o froe. p<R, 5
£(0) L oxp (VI—KA(R—-p)), p>R,
where the matching radius is given by
R:W—arcsinﬁzz_l_(l)(lg)‘ (57)

K Y

The overall prefactor f(0) is not fixed by the linear differential equation but its w or £ dependence
can be obtained by demanding dF/dw = wd@Q/dw to hold, E and @) being calculated through the
integrals

= 2COS_1(I$)+7T+%

/dppzf2 = f(O)2< " ﬁ) ,

0. (58)
5 (2cos™H(k) + )

[aois® = )

0

4k
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dE/dw = wd@/dw can be translated into the relation

/dpp2f2 = —3%% dpp?(f')?, (59)

which is satisfied by f(0) = ¢ (7 — arcsin k)/rk, where ¢ is a k-independent constant that is fixed to
¢ = 1 by calculating the energy lost to friction and equating it to the potential difference [19, 11],

V)= V() = = [ an>(r, (60

We hence find the relations f(0) = R and also f(R) = 1, which complete the solution to our
differential equation (55). Energy and charge are then given by the integrals in Eq. (58). In particular,
we find that these solitons are stable, & < myQ, for k < 0.84, i.e. once their charge exceeds the
critical value
A2
Qurit ~ 435.44 — . (61)
Mg

Our classical-field-theory calculation of course breaks down for small ) and needs to be replaced by
a quantum-mechanical treatment, beyond the scope of this article. Notice that the physical radius
satisfies R 2 1/m,, in agreement with Ref. [20].

Let us focus on the large (Q-ball case, since this is the region where the above solution is a good
approximation to the continuous potential of interest in the main text. For small w, we have

4Amim?2 A2 2w w? w
¢
o~ 1—- — 2
@ wt mem * mZm? o my (62)
and
4m
EXQ):-gq/%nw\QW4—2wAQ”2+CD@f“). (63)

While the general scaling with w agrees with the literature [10, 15] we provide prefactors and higher-
order corrections here.
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