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We study the prospects of probing neutrino mass models at the newly proposed antimuon collider
µTRISTAN, involving µ+e− scattering at

√
s = 346GeV and µ+µ+ scattering at

√
s = 2TeV.

We show that µTRISTAN is uniquely sensitive to leptophilic neutral and doubly-charged scalars
naturally occurring in various neutrino mass models, such as Zee, Zee–Babu, cocktail, and type-II
seesaw models, over a wide range of mass and coupling values, well beyond the current experimental
constraints. It also allows for the possibility to correlate the collider signals with neutrino mixing
parameters and charged lepton flavor violating observables.

I. INTRODUCTION

The origin of neutrino mass and mixing remains one of
the important open questions in fundamental physics [1,
2]. It clearly requires the introduction of new particles
beyond the particle content of the Standard Model (SM).
Qualitatively, we can expect these new particles to induce
novel experimental signatures, such as lepton number vi-
olation (LNV) and charged lepton flavor violation (LFV),
which are either forbidden or highly suppressed in the
SM. Arguably, the cleanest method to identify the new
particle(s) would be via their direct production at a high-
energy collider. By studying the subsequent decays of
these new particles to SM particles, preferably involving
LNV and/or LFV to reduce SM background, one might
be able to pinpoint the underlying neutrino mass model.
A summary of existing collider constraints on various
neutrino mass models can be found in Refs. [3, 4]. Simi-
larly, a summary of the LFV constraints can be found in
Refs. [5, 6].
All past and current high-energy colliders constructed

so far [7] involve electron or proton beams and are there-
fore particularly sensitive to new particles that couple to
electrons or quarks. An entirely new class of couplings
could be probed using muon colliders, originally proposed
long ago [8]. The main advantage is that leptons pro-
vide a much cleaner collision environment than hadrons,
and muon beams suffer less synchrotron radiation loss
than electron beams, thus making muon colliders ca-
pable of reaching higher center-of-mass energies with a
reasonable-size circular ring design [9, 10]. They have
gained considerable attention in recent years [11–15], as
novel muon cooling techniques are now available [16], and
other technical difficulties related to the muon lifetime
and radiation seem solvable [15], making muon collid-
ers an increasingly realistic and desirable option. Most
work has been done in the context of future µ+µ− col-
liders [17], which would mimic LEP [18] and could reach
a center of mass energy of 10TeV or more.
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Here, we will focus on a different experimental setup,
µTRISTAN [19], which is a proposed high-energy lepton
collider using the ultra-cold antimuon technology devel-
oped at J-PARC [20]. It can run in the µ+e− mode with√
s = 346 GeV, and later, in the µ+µ+ mode [21] with√
s = 2 TeV or higher. It can serve as a Higgs factory

and do precision physics [22]. Other new physics studies
for the µ+e− and µ+µ+ collider options can be found in
Refs. [23–25] and [25–28], respectively. As we will show in
this article, the unique initial states of µTRISTAN make
it especially sensitive to neutrino mass models involving
leptophilic neutral and/or doubly-charged scalars, allow-
ing for direct production and study of these new scalars in
regions of parameter space otherwise untestable. We take
examples from both tree- and loop-level neutrino mass
models. Specifically, we use the Zee model [29], Zee–
Babu model [30, 31], cocktail model [32], and type-II see-
saw model [33–37] as concrete examples, and we consider
the cleanest final states (with the least SM background),
i.e., the LFV channels µ+e− → ℓ+α ℓ

−
β and µ+µ+ → ℓ+α ℓ

+

β

mediated by the scalars, as well as the associated pro-
duction of scalars with a photon or Z boson.1 We show
that µTRISTAN can provide unprecedented sensitivity
well beyond existing constraints and complementary to
future low-energy LFV searches.

The rest of this article is organized as follows: in Sec. II
we briefly describe the details of the µTRISTAN collider.
In Sec. III we go through several neutrino mass models
(both radiative and tree-level), derive µTRISTAN’s sen-
sitivity and compare to other LFV observables, notably
lepton flavor violation. We conclude in Sec. IV.

II. µTRISTAN

The ultra-cold antimuon technology developed for the
muon anomalous magnetic moment and electric dipole
moment experiment at J-PARC [20] uses laser ionization

1 All models under consideration also generate LNV signatures,
such as µ+ℓ±α → W+W±, but since these are typically sup-
pressed by a product of many couplings or even the neutrino
mass, we will focus on LFV processes.
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of muonium atoms to provide a low-emittance µ+ beam,
which can be re-accelerated to high energies [38]. Al-
lowing a 1TeV µ+ beam to collide with a high-intensity
e− beam at the TRISTAN (Transposable Ring Inter-
secting Storage Accelerators in Nippon [39]) energy of
30GeV in a storage ring of the same size as TRIS-
TAN (3 km circumference), one can realize the µ+e−

mode of µTRISTAN with a center-of-mass energy
√
s =

346GeV.2 Taking into account muon decay, the deliv-
erable instantaneous luminosity for a single detector at
any collision point in the storage ring is estimated as
4.6 × 1033 cm−2 s−1 [22], which translates to an inte-
grated luminosity of 100 fb−1 year−1.
Using the same 3 km storage ring and 1 TeV µ+ beams,

one can also consider a µ+µ+ collider [21] with
√
s =

2TeV (or 6 TeV for the larger ring option). The beam
intensity will be lower than in the µ+e− mode due to both
muons decaying in the storage ring. The instantaneous
luminosity is estimated as 5.7×1032 cm−2 s−1 [22], which
translates to an integrated luminosity of 12 fb−1 year−1.
The precise luminosity numbers depend on various effi-

ciencies for the muon production, as well as the detailed
designs of the muon accelerator and storage ring. For
instance, a higher luminosity is, in principle, achievable
with better focusing of the e− beam (compared to the
µ+ beam [20]), following the SuperKEKB design [40].
We will use the numbers given above from Ref. [22] as
realistic but conservative order-of-magnitude estimates
to work with. Assuming negligible SM background for
the LFV signals we study below, the above-mentioned
luminosities correspond to a minimum signal cross sec-
tion of 0.09 (0.75) fb in the µ+e− (µ+µ+) mode in order
to achieve 3σ sensitivity with 1 year runtime. To be con-
servative, we will use a signal cross section of 0.1 (1) fb in
the µ+e− (µ+µ+) mode to derive our sensitivity limits.
These limits can be easily scaled for a longer runtime.
For instance, 10 years of runtime with 1 ab−1 integrated
luminosity can achieve the same level of sensitivity with
a signal cross section ten times smaller, thus being capa-
ble of probing a larger model parameter space than what
is shown here.

Since the details of the µTRISTAN detector design
and acceptance efficiencies are currently unknown, we
will only impose basic trigger-level cuts on the transverse
momenta and pseudorapidity of the outgoing leptons and

photons, i.e., the default MadGraph5 cuts pℓ,γT > 10 GeV
and |ηℓ,γ | < 2.5 [41] while calculating the cross sections in
the µ+µ+ option. For the asymmetric beams in the µ+e−

option, we only keep the trigger-level pT cuts and remove
the η cuts because the final state particles are boosted
in the µ+ direction; the detector should be designed to
cover the small-angle region from the beam direction.

We will use unpolarized beams for both µ+e− and
µ+µ+ modes to derive our sensitivity limits. Although
the surface antimuons produced by the π+ decay are
100% polarized due to the V − A nature of the weak
interaction, the final polarization of the antimuon beam

2 A larger storage ring allows for higher-energy collisions. One can
reach

√
s = 775GeV with 50GeV electrons and 3TeV muons.

depends on a detailed understanding of the beam emit-
tance under the applied magnetic field, which in some
cases can reduce the polarization down to 25% [22]. Sim-
ilarly, the beam polarization option for the e− beam is
still under discussion for the SuperKEKB upgrade [42].
Including realistic beam polarization effects could mod-
ify our cross sections by a factor of few due to the chiral
nature of the scalar couplings.

III. NEUTRINO MASS MODELS WITH

LEPTOPHILIC SCALARS

The leptonic initial states and clean environment at
µTRISTAN provide an unprecedented opportunity to
directly probe heavy leptophilic particles with possible
LFV interactions. We will mainly focus on the leptophilic
neutral and doubly-charged scalars that arise in well-
known neutrino mass models, both tree-level and radia-
tive, such as the Zee model [29], Zee–Babu model [30, 31],
cocktail model [32], and type-II seesaw model [33–37].
If kinematically allowed, a neutral scalar H with siz-
able LFV coupling eµ can be resonantly produced in
µ+e− collisions either by itself or in association with a
photon or Z boson, as shown in Fig. 1(a) and (b) re-
spectively, thus providing unparalleled sensitivity to the
LFV scalar sector. Even for mH >

√
s, the dilepton

channels µ+e− → ℓ+α ℓ
−
β and µ+µ+ → ℓ+α ℓ

+

β , shown in

Fig. 1(c) and (d), respectively, are sensitive to the LFV
couplings of H and give rise to a contact-interaction-
type bound on the scalar parameter space. Similarly,
a doubly-charged scalar can be resonantly produced at
a µ+µ+ collider, either by itself or in association with a
photon or Z boson (see Fig. 3). The higher center-of-
mass energy of the µ+µ+ option at µTRISTAN allows us
to probe doubly-charged scalars beyond the current LHC
constraints [43]. We only focus on the LFV final states,
as they are free from the SM background (modulo lep-
ton misidentification, whose rate is negligible at lepton
colliders [44, 45]). Also, we do not consider processes in-
volving singly-charged scalars, as they necessarily involve
neutrinos in the final state, making it harder to separate
our signal from the SM background.

A. Zee model

In the Zee model [29], the SM scalar sector with one
Higgs doublet H1 is extended by adding a second Higgs
doublet H2 and an SU(2)L-singlet charged scalar η+.
The relevant Lagrangian terms are given by

L ⊃ µH1H2η
− − fL̄cLη+ − Ỹ ℓ̄LH̃1 − Y ℓ̄LH̃2 +H.c. ,

(1)

where the superscript c stands for charge conjugate and
H̃a ≡ iσ2H

⋆
a (a = 1, 2, σ2 is the second Pauli matrix). We

have suppressed the flavor and SU(2)L indices. Note that
the Yukawa coupling matrix f is anti-symmetric in flavor
space, while Y is an arbitrary complex coupling matrix.
We go to the Higgs basis [46, 47], where only H1 acquires

a vacuum expectation value, ⟨H1⟩ ≡ v/
√
2 ≃ 174GeV,
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and the charged leptons obtain a diagonal mass matrix
Mℓ = Ỹ v/

√
2. We work in the alignment limit [48], as

preferred by the LHC Higgs data [49], where the neu-
tral scalars of H2 (the CP-even H and the CP-odd A)
do not mix with the neutral Higgs contained in H1 that
can be identified as the SM Higgs boson. The µ term in
the Lagrangian (1) will induce a mixing of η+ with the
charged scalar contained in H2 upon electroweak symme-
try breaking; we denote the mixing angle by ϕ and the
two mass eigenstates by h+ and H+, see Refs. [50, 51]
for details.
The simultaneous presence of f , Y , and µ breaks lep-

ton number by two units and leads to a one-loop Majo-
rana neutrino mass matrix

Mν = κ
(

fMℓY + Y TMℓf
T
)

, (2)

with prefactor κ ≡ (16π2)−1 sin 2ϕ log(m2
h+/m2

H+). This
matrix is manifestly symmetric and can be diagonalized
as usual via

Mν = U diag(m1,m2,m3)U
T , (3)

where U is the unitary Pontecorvo–Maki–Nakagawa–
Sakata matrix and mj the neutrino masses. Through
neutrino oscillations we have obtained information about
the mass splittings and the three mixing angles in U .
The overall neutrino mass scale, ordering, and CP phases
are unknown, although their ranges are partially re-
stricted [52].
With the parametrization of Refs. [53, 54] we can

express Y in terms of Mν and f . The µ+e− run of
µTRISTAN will be uniquely sensitive to Yeµ and Yµe,
see Fig. 1(a)-(c), so we investigate Y textures where one
of these entries is non-vanishing, which is hardly a restric-
tion. The simultaneous presence of Yeµ and Yee (or Yµµ)
however would induce large LFV amplitudes, e.g. µ → eγ
and µ → 3e [55–59], leaving little parameter space for
µTRISTAN to probe. To evade LFV constraints and
simplify our analysis, we will set as many Y entries to
zero as possible, leading to the four benchmark textures

YA1
∝





0 1 0

0 0 − 2me

mµ

Mν

eτ

Mν
µµ

0 0 0



 ∼





0 1 0
0 0 0.0035
0 0 0



 , (4)

YB2
∝





0 1 0

−me

mµ

Mν

ee

Mν
µµ

0 0

0 0 0



 ∼





0 1 0
0.013 0 0
0 0 0



 , (5)

YB3
∝





0 0 1

− me

2mµ

Mν

ee

Mν
µτ

0 0

0 0 0



 ∼





0 0 1
0.0023 0 0

0 0 0



 , (6)

YB4
∝





0 1 0
0 0 0

− me

2mτ

Mν

ee

Mν
µτ

0 0



 ∼





0 1 0
0 0 0

0.00013 0 0



 . (7)

All these Y textures lead to viable two-zero textures in
Mν [60], indicated by their common name as a subscript,
following the nomenclature of Ref. [61]. The Mν two-
zero textures predict the unknown parameters in the neu-
trino sector, i.e., the lightest neutrino mass and the three

name texture zeros
∑

j mj/eV ⟨mββ⟩/eV δCP/
◦

A1 Mee, Mµe 0.062–0.071 0 44–341

B2 Mττ , Mµe > 0.13 > 0.036 85-90 ∧ 270-275

B3 Mµµ, Mµe > 0.16 > 0.047 87-90 ∧ 270-273

B4 Meτ , Mττ > 0.14 > 0.039 90-94 ∧ 266-270

TABLE I. Predictions for the sum of neutrino masses
∑

j mj ,

the effective 0νββ Majorana neutrino mass ⟨mββ⟩, and the
Dirac CP phase δCP from the texture zeros employed in the
Zee model, using the 3σ normal-ordering ranges for the oscil-
lation parameters from NuFit 5.2 [52].

phases. We show in Tab. I the predictions for the sum
of neutrinos masses

∑

j mj (testable via cosmology [62]),
the effective mass parameter for neutrinoless double beta
decay ⟨mββ⟩ =

∑

i U
2
eimi (testable in the next-generation

experiments [63]), and the Dirac CP phase (testable in
neutrino oscillation experiments [64, 65]). Notice that
the

∑

mν predictions of the B textures are already
in tension [66] with limits from cosmology,

∑

mν <
0.12 eV [67],3 but perfectly in line with laboratory con-
straints [71].

The many zeros in these four Y benchmarks ensure
highly suppressed LFV. Indeed, neither of them give rise
to the most stringent LFV modes, µ → eγ and µ →
3e, despite the non-zero eµ entry in Y . However, all
cases induce muonium–antimuonium oscillation [72–75]
through those eµ entries, which will turn out to be an
important constraint. In addition, all textures except for
YB2

also give rise to LFV tauon decays. Furthermore, all
textures contribute to (g−2)µ, although the 2σ-preferred
region turns out to be already excluded by the muonium
constraint.

The overall scale of Y is degenerate with f and κ from
Eq. (2) and can effectively be adjusted at will. The eµ
entry of Y is then a free parameter, subject only to per-
turbative unitarity constraints. The second non-zero en-
try of Y is not free, however, but rather predicted by
lepton masses and neutrino mass matrix entries. The lat-
ter are essentially predicted due to the two-zero textures
in Mν , allowing us to predict the Y entries, as already
shown above. For A1, B2, and B4, we find a large eµ
entry in Y that drives the H production at µTRISTAN,
plus a suppressed second Y entry that induces LFV. For
B3, the eτ entry dominates and µTRISTAN’s reach is
severely limited by tau LFV. Notice that we are focusing
on such extreme textures just for the sake of illustration
to emphasize µTRISTAN’s complementarity to other ex-
perimental probes.

Assuming H to be the lightest scalar, the textures YA1
,

YB3
, and YB4

lead to τ− → µ−µ±e∓, τ− → e−µ±e∓, and
τ− → e−e±µ∓, respectively, which give limits of order
|YταYβδ| < (mH/5TeV)2, as shown by the solid black
lines in Fig. 2. For all textures except B3 these are very
suppressed by the small Yτα entry. For those textures,

3 Even stronger limits have been obtained in Refs. [68, 69], while
mild indications of a nonzero sum of neutrino masses (in tension
with the stringent Planck limits) was suggested in Ref. [70].
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can cover almost the entire relevant parameter space for
µTRISTAN’s dilepton mode in the Zee model, offering
confirmation potential in case of a discovery.
In Fig. 2, we also show the existing collider constraints

from LEP e+e− → µ+µ− data (purple shaded) [85, 86]
and from LHC pp → eµ data (pink shaded) [87, 88].6

The future ILC sensitivity from e+e− → µ+µ−H is also
shown by the pink dashed curve [51, 89, 90] for compar-
ison with the µTRISTAN sensitivity. The green-shaded
region is excluded by demanding the H contribution to
(g − 2)µ not to exceed 5σ deviation between the world
average of the SM prediction [91] and the experimental
value [92].7

For the associated production of H with a photon or
a Z boson (cf. Fig. 1(b)), the cross sections for small
mH ≪ √

s take the form

σ(µ+e− → Hγ) ≃ αEM|Yeµ|2
8s

log

(

s

memµ

)

, (10)

σ(µ+e− → HZ) ≃ αEM|Yeµ|2 (s−m2
Z)

32s2wc
2
ws

2

[

s

4m2
Z

(11)

−(1− 2s2w + 4s4w)− (1− 4s2w + 8s4w) log

(

mHmZ

s−m2
Z

)]

,

where αEM is the electromagnetic fine-structure constant,
and sw ≡ sin θw (cw ≡ cos θw) is the (co)sine of the weak
mixing angle. These cross sections are typically larger
than the dilepton channel but are open only formH ≲

√
s

for the photon case (or
√
s − mZ for the Z case). The

photon cross section exhibits an infrared divergence for√
s → mH that is regulated by the cut pγT > 10GeV, re-

ducing the total cross section compared to the analytical
expression above. The Z cross section is well behaved
near the kinematic threshold but diverges for mH → 0,
not of any concern for us. As can be seen in Fig. 2, both
modes are important for µTRISTAN and cover parame-
ter space that cannot be probed with other colliders or
LFV.8 The H scalars subsequently decay promptly into
µ±e∓, half of which being background free even without
any momentum reconstruction.
The Zee model also makes predictions for µTRISTAN’s

µ+µ+ mode, as there are t-channel diagrams for µ+µ+ →
ℓ+ℓ′+ (cf. Fig. 1(d)). All textures except B3 induce the
background free µ+µ+ → e+e+, with testable allowed
cross sections for mH > 300GeV, as shown in Fig. 2
by the brown curve. We find that the H sensitivity in
this channel is worse than or comparable to the dilep-
ton channel in the µ+e− mode, so it can only be used
as a secondary channel for verifying any signal found in
µTRISTAN’s first run.
Before we move on to other neutrino mass models, let

us briefly comment on the discrepancy in the muon mag-

6 As noted in Ref. [78], the 3.8σ CMS excess in the eµ channel [88]
can be explained by H using lepton PDF, but only for mH ≃ mA

to avoid the muonium limit.
7 Taking the BMW result [93] instead of the world average [91] for
the SM prediction does not make much difference to our allowed
parameter space, which is dominated by the muonium limit.

8 The only exception is texture B3, for which only a tiny region
survives the tau LFV bound.

netic moment [92]. While the status of the SM predic-
tion is currently unclear, it is worthwhile to entertain
the possibility that the discrepancy is real and a sign for
new physics. The benchmark values taken above are in-
capable of explaining (g − 2)µ due to LFV constraints.
A recent study [54] has shown that the Zee model is in
principle able to explain (g − 2)µ, but this requires one
of the following textures:

Y =







0 0 0

0 × ×
0 × ×






or







× 0 ×
0 × 0

× 0 ×






. (12)

The first (second) requires Mν
ee = 0 (Mν

µµ = 0) and effec-
tively conserves electron (muon) number, which makes
it obvious that muon LFV is evaded, including muo-
nium conversion. The first texture could only show up in
µTRISTAN’s µ+µ+ run via µ+µ+ → µ+τ+ or τ+τ+; the
second texture can give µ+e− → µ+τ− in µTRISTAN’s
first run. A dedicated study of this scenario will be post-
poned until the (g − 2)µ anomaly is clarified.
Overall, we see that µTRISTAN could probe the Zee

model in regions of parameter space that are inaccessible
by other means. A exhaustive study of the Zee model
at µTRISTAN goes beyond the scope of this work but
the benchmarks discussed here indicate a very promising
situation.

B. Zee–Babu model

In the Zee–Babu model [30, 31], we extend the SM by
two SU(2)L-singlet scalars h

+ and k++ with hypercharge
1 and 2, respectively, which have the following couplings
relevant for neutrino masses:

−L ⊃ fL̄cLh+ + gℓ̄cℓ k++ + µh−h−k++ +H.c. (13)

The matrix g (f) is symmetric (antisymmetric) in fla-
vor space. Taken together, these couplings break lepton
number and generate a Majorana neutrino mass matrix

Mν ≃ 16µ I(mh,mk) fMℓg
∗Mℓf , (14)

where I(mh,mk) is a two-loop function [94, 95]. The
antisymmetry of f leads to detMν = 0 and thus predicts
one massless neutrino.

Similar to the Zee model, we can make the overall scale
of g as large as we want and compensate for that with a
smaller f matrix or µ coupling. For simplicity we assume
h+ to be very heavy and the f couplings to be small, ef-
fectively decoupling h+. This leaves us with the doubly
charged k++ with coupling matrix g. At µTRISTAN’s
µ+µ+ run, this k++ leads to dilepton and associated pro-
duction signatures as long as gµµ ̸= 0, see Fig. 3(a)-
(b). We show µTRISTAN’s reach and competing con-
straints in Fig. 4, having computed the cross sections
with MadGraph5 aMC@NLO [41] using the model file given
in Ref. [96].

µTRISTAN can easily probe a large region of parame-
ter space as long as geµ is somewhat suppressed compared
to gµµ to evade the µ → eγ constraint. This is hardly a
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channels. We have implemented the model file in
FeynRules [84] and computed the cross sections us-
ing MadGraph5 aMC@NLO [41]. To specify the production
Yukawa coupling Yµµ we set Mν

µµ = 0.05 eV; this sat-
isfies the cosmology bound

∑

mν < 0.12 eV [67], oth-
erwise we could go to larger Mν

µµ values and increase
the µTRISTAN cross sections without changing the LFV
bound.

The cross section σ(µ+µ+ → ℓ+α ℓ
+

β ) scales with

|Mν
µµ|2|Mν

αβ |2, at least away from the resonance. The

on-shell produced ∆++ has decay rates into charged lep-
tons proportional to |Mν

αβ |2. Our current lack of informa-
tion about the lightest neutrino mass and the CP phases
preclude us from making definite predictions for these
final states, but this will improve with future neutrino
data [118]. Generically, we expect final states with more
muons and tauons than electrons at µTRISTAN from
∆++ processes for normal-ordered neutrino masses. Di-
boson decays ∆++ → W+W+ are heavily suppressed by
v∆ in our region of interest [119–122]. Similarly, the cas-
cade decays of ∆++ involving neutral or singly-charged
scalars depend on the choice of mass spectrum and can
be ignored here.

Unlike for the doubly charged scalars in the Zee–Babu
or cocktail models, the ∆++ in the triplet model cannot
generate clean µ+e− → ℓ+ℓ′− signatures in µTRISTAN’s
first run, since this region of parameter space is already
excluded by µ → eγ (Fig. 5).

E. Other neutrino mass models

The µ+µ+ mode of µTRISTAN will also be uniquely
sensitive to the LNV/LFV signatures arising from other
neutrino mass models. For instance, the heavy neutral
leptons appearing in type-I [123–127] and type-III [128]
seesaw models will induce a clean LNV signal µ+µ+ →
W+W+ → jets, which is like an inverse neutrinoless dou-
ble beta decay e−e− → W−W− [129–132] but in the
muon sector [21]. This channel has been recently ana-

lyzed in Refs. [27, 133], so we will not repeat this anal-
ysis here. Similarly, the µTRISTAN sensitivities for the
neutral and/or doubly-charged scalars derived here can
also be applied to other models, such as the left–right
symmetric model [134–136], and other radiative neutrino
mass models [58], although the connection to neutrino
mass may not be as direct as in the models studied here.

IV. CONCLUSION

Neutrino masses provide the most convincing labo-
ratory evidence for physics beyond the SM, making
searches for the underlying new particles highly moti-
vated. In this article, we have shown that µ+e− and
µ+µ+ colliders in the vein of the recently proposed
µTRISTAN experiment offer a new way to search for
a variety of neutrino mass models. As exemplified by
several benchmark scenarios of the popular Zee, Zee–
Babu, cocktail, and triplet seesaw models, we showed
that µTRISTAN could probe regions of parameter space
that are out of reach of other experiments, be it future
hadron colliders or future low-energy LFV searches.
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