
Baryon number violation involving tau leptons

Julian Heeck, Dima Watkins,

Department of Physics, University of Virginia, Charlottesville, Virginia 22904-4714, USA

E-mail: heeck@virginia.edu, bem8mq@virginia.edu

Abstract: Baryon number violation is our most sensitive probe of physics beyond the

Standard Model, especially through the study of nucleon decays. Angular momentum

conservation requires a lepton in the final state of such decays, kinematically restricted to

electrons, muons, or neutrinos. We show that operators involving taus, which are at first

sight too heavy to play a role in nucleon decays, still lead to clean nucleon decay channels

with tau neutrinos. While many of them are already constrained from existing two-body

searches such as p → π+ν, other operators induce many-body decays such as p → ηπ+ν̄τ
and n → K+π−ντ that have never been searched for.

ar
X

iv
:2

4
0
5
.1

8
4
7
8
v
2
  
[h

ep
-p

h
] 

 1
9
 J

u
l 

2
0
2
4

mailto:heeck@virginia.edu
mailto:bem8mq@virginia.edu


Contents

1 Introduction 1

2 Dimension-six operators 2

3 Dimension-seven operators 8

4 Operators of higher mass dimension 9

5 Conclusions 10

A Chiral perturbation theory 11

1 Introduction

The Standard Model (SM) of particle physics predicts baryon number B and lepton num-

ber L to be conserved in all interactions at the perturbative level [1]. Non-perturbative

effects generate ∆B = ∆L = 3 processes, but these are suppressed beyond observability

at zero temperature [2]. Physics beyond the SM can in principle violate both B and L,

famous examples being grand unified theories and supersymmetric SM extensions [3]. The

experimental signatures are spectacular: atomic matter would decay. Due to the relative

ease in collecting large amounts of matter and observing them over long periods of time,

lower limits on proton and neutron decays are unfathomably long, in some cases exceeding

the age of our universe by 24 orders of magnitude (i.e. 1034 yr [4]).

Any baryon-number-violating proton or neutron decay requires an odd number of

leptons in the final state to conserve angular momentum, e.g. in the form p → e+π0

or p → e−µ+µ+. While electrons, muons, and neutrinos are kinematically allowed final

states, taus are roughly twice as heavy as protons and hence cannot be produced. At

first sight, this makes tau decays such as τ+ → pπ0 the better ∆B signature to search

for. Alas, taus are rather difficult to produce and detect, rendering these searches [5, 6]

far less sensitive than proton-decay searches. The crucial observation was already made

by Marciano [7] almost three decades ago: any operator or new-physics model that would

lead to τ+ → pπ0 would also induce n → π0ν̄τ or p → π+ν̄τ , which are much more

sensitive [8] despite the unobservable final-state tau-neutrino. In the worst-case scenario,

one can expect comparable decay rates,

Γ(n → ν̄τπ
0) ∼ Γ(τ+ → pπ0) ≃ 1

1033 yr

BR(τ+ → pπ0)

10−53
, (1.1)

which would force the ∆B tau branching ratios at least 40 orders of magnitude below

any currently conceivable experimental limits [9]. Here, we quantify this connection more

carefully, identify scenarios that violate it and allow for faster tau decays, and emphasize

the importance of neutrino final states in nucleon decays to study tau operators [10].
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field chirality generations SU(3)C × SU(2)L × U(1)Y representation

Q left 3
(

3,2, 16
)

u right 3
(

3,1, 23
)

d right 3
(

3,1,−1
3

)

L left 3
(

1,2,−1
2

)

ℓ right 3 (1,1,−1)

H scalar 1
(

1,2, 12
)

Table 1. SM fields and quantum numbers; hypercharge is related to electric charge via Q = Y +T3.

2 Dimension-six operators

The Lagrangian of the Standard Model Effective Field Theory (SMEFT) consists of the

usual SM fields from Tab. 1 but allows for non-renormalizable higher-dimensional operators,

see Ref. [11] for a recent review; ∆B ̸= 0 operators start to appear at operator mass

dimension d = 6 [12]. These ∆B = ∆L = 1 operators can be written as

Ld=6 = y1abcdε
αβγ(d

C

a,αub,β)(Q
C
i,c,γεijLj,d) (2.1)

+ y2abcdε
αβγεilεjk(Q

C
i,a,αQj,b,β)(Q

C
k,c,γLl,d) (2.2)

+ y3abcdε
αβγ(Q

C
i,a,αεijQj,b,β)(u

C
c,γℓd) (2.3)

+ y4abcdε
αβγ(d

C

a,αub,β)(u
C
c,γℓd) + h.c. , (2.4)

where α, β, γ denote the color, i, j, k, l the SU(2)L, and a, b, c, d the family indices [12–

16]. Here, and in the following, the n-dimensional Levi–Civita symbols are normalized to

ε12...n = +1. Operators involving the two or three lightest quarks can be converted to

hadron operators using chiral effective field theory [3, 17] and lattice QCD [18], yielding

mass-mixing terms p̄Cℓ and n̄Cν as well as interaction terms with mesons. The Wilson

coefficients yj have mass dimension −2 and the first-generation entries are constrained

to be < (O(1015–16)GeV)−2 due to the induced two-body nucleon decays such as p →
e+π0 [10, 19].

Operators involving second or third-generation quarks do not seem to generate nucleon

decays, seeing as charm, bottom, and top quarks are all heavier than the proton. However,

since quark flavor is not conserved in the SM, loop amplitudes that lead to nucleon decays

can be constructed for any heavy-quark operator [20–22], or they could proceed through

off-shell heavy quarks [21, 23]. Conceptually, it is also difficult to imagine the absence

of light-quark operators, since any quark-flavor symmetry has to be broken in nature to

comply with the non-diagonal Cabibbo–Kobayashi–Maskawa mixing matrix. For these

reasons, we will mostly restrict ourselves to first-generation quarks in the following, except

for operators that would vanish in this one-generational limit.

The same argument does not apply to the lepton generations though. The three

individual lepton numbers, electron, muon, and tau, are conserved in the SM, so operators

with ∆Lτ = 1, for example, will never lead to ∆Lτ = 0 processes. Even the observation of

neutrino oscillations does not quantitatively change this conclusion: the continued absence
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∆(Lµ − Lτ)

p → µ+π0

τ+ → pµ+µ+

pµ+ → τ+τ+

pe+ → τ+τ+

τ → pµ+e−

p → µ+µ+e−τ+ → pµ+e+

p → e+π0

τ → pe+µ−

τ → pe+e+µ−µ−

p → e+e+µ−

τ+ → pe+e+

∆(Lµ + Lτ − 2Le)

pe− → e+µ+τ−τ−

τ → pπ0

Figure 1. Landscape of ∆B = ∆L = 1 operators organized by their lepton-flavor structure.

We only show one example process for each group, others are implied. Experimental limits for

p → e+π0, µ+π0 [4] and p → e+e+µ−, µ+µ+e− [28] come from Super-Kamiokande, for τ → pℓℓ

(except for the missing channel τ+ → p̄µ+e+) from Belle [6], and for τ → p̄π0 there exist 25-year-

old limits from CLEO [5].

of any charged-lepton flavor violation [24] can be taken as an indication that lepton flavor is

only violated through neutrino masses. If any and all lepton flavor violation is suppressed

by neutrino masses, the effects are near impossible to observe and render lepton flavor an

incredibly good approximate symmetry in the charged lepton sector. SMEFT operators

can then be organized according to their quantum numbers under the global SM symmetry

group U(1)B+L × U(1)B−L × U(1)Lµ−Lτ
× U(1)Lµ+Lτ−2Le

, seeing as these symmetries are

either extremely good approximate or even exact symmetries [25, 26]. An example is shown

in Fig. 1, organizing all ∆B = ∆L = 1 operators/processes by their lepton-flavor content.

Only the three groups closest to the origin (p → e+π0, p → µ+π0, and τ → p̄π0) arise

at d = 6, the others require d ≥ 10. It is easy to impose lepton numbers as global or

even local U(1) symmetries, broken only in the neutrino sector [26], that forbid all but

one group in Fig. 1. Similarly, we can easily construct models in which baryon number

is only broken together with some linear combination of lepton flavor [10, 27].1 This

is sufficient motivation for a dedicated study of ∆B operators involving taus, which are

usually ignored due to the kinematics but could well be the only baryon-number violating

processes in nature. For example, if we impose U(1)B−Lτ
on the d = 6 operators from

Eq. (2.4), we are left with tau operators.

Using the Chiral Perturbation Theory (ChPT) framework from Refs. [3, 17], sum-

marized in App. A, we can calculate the dominant baryon-number-violating tau decays

1This example is already realized in the SM, where ∆B/3 = ∆Le = ∆Lµ = ∆Lτ = 1 via instantons.
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Chiral Perturbation Theory Coefficient SMEFT Wilson Coefficient

Cντ
RL −y11113

Cντ
LL −y21113

Cτ
RL y11113

Cτ
LR −2y31113

Cτ
LL y21113

Cτ
RR y41113

Table 2. ChPT coefficient [3] relationship to our Wilson coefficients from Eq. (2.4); all carry units

of GeV−2.

induced by the four d = 6 operators:

Γ(τ+ → pπ0) ≃ 1
2Γ(τ

+ → nπ+)

≃
(|gπL|2 + |gπR|2)

(

m2
τ +m2

p −m2
π

)

− 4Re (gπRg
π∗
L )mτmp

32πm3
τ/
√

λ
(

m2
τ ,m

2
p,m

2
π

)

, (2.5)

Γ(τ+ → pη) ≃
(|gηL|2 + |gηR|2)

(

m2
τ +m2

p −m2
η

)

− 4Re
(

gηRg
η∗
L

)

mτmp

32πm3
τ/
√

λ
(

m2
τ ,m

2
p,m

2
η

)

, (2.6)

where λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz is the Källén polynomial,

gπL ≡ i
cL
[

(D + F + 1)m2
p + (D + F − 1)m2

τ

]

+ 2cR(D + F )mpmτ√
2fπ(m2

p −m2
τ )

, (2.7)

gηL ≡ i
c′R
(

m2
p −m2

τ

)

+ 2(D − 3F )mτ (cLmp + cRmτ )√
6fπ(m2

p −m2
τ )

, (2.8)

and gπ,ηR ≡ gπ,ηL (cL ↔ −cR; c
′
L ↔ −c′R), and the relevant linear combinations of Wilson

coefficients

cL ≡ αCτ
RL + βCτ

LL , c′L ≡ α (D − 3F + 1)Cτ
RL + β (D − 3F − 3)Cτ

LL , (2.9)

cR ≡ αCτ
LR + βCτ

RR , c′R ≡ α (D − 3F + 1)Cτ
LR + β (D − 3F − 3)Cτ

RR . (2.10)

Here and below, we kept the notation for the Wilson coefficients from Refs. [3, 17] for rela-

tive brevity, but use the relationship Cντ
AB = −Cτ

AB that arises from the SU(2)L symmetry

of our SMEFT operators; the mapping is given in Tab. 2. For numerical evaluations, we

use α ≃ −β ≃ −0.013GeV3 [18] from lattice QCD, D = 0.62, F = 0.44 from a chiral-

perturbation-theory analysis of hyperon decays [29], and all other parameters from the

Particle Data Group [30], in particular fπ ≃ 130MeV in our convention.

These ∆B = ∆Lτ = 1 tau decays are constrained by CLEO to rates Γ(τ+ → pπ0) <

1.5 × 10−5 Γτ ≃ 3.4 × 10−17GeV ≃ (2 × 10−8 s)−1 [5], and similarly for the η mode.

Judging by their results in Ref. [6], Belle could improve these bounds by three orders of

magnitude with their large existing data set, and Belle II could eventually improve them

by another two orders of magnitude [9, 31]. Translated into upper bounds on the SMEFT
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Process Cτ
RL [GeV−2] Cτ

LL [GeV−2] Cτ
LR [GeV−2] Cτ

RR [GeV−2]

τ+ → p+π0 6.9× 10−7 6.9× 10−7 6.9× 10−7 6.9× 10−7

τ+ → p+η 7.5× 10−7 3.9× 10−7 7.5× 10−7 3.9× 10−7

n → ντπ
0 3.1× 10−31 3.1× 10−31 N.A. N.A.

n → ντη 1.5× 10−29 1.2× 10−30 N.A. N.A.

p → ντπ
+ 3.7× 10−31 3.7× 10−31 3.8× 10−24 3.8× 10−24

p → e+νeντ 1.6× 10−23 1.6× 10−23 8.5× 10−24 8.5× 10−24

Table 3. Current upper limits on ∆B = ∆Lτ = 1 d = 6 Wilson coefficients from the processes in

the first column, assuming one non-vanishing operator at a time. See text for details. N.A. means

the process arises at loop level, not calculated here.

Wilson coefficients, we obtain limits of order |C| < (1.2TeV)−2 for the pion mode and

|C| < (1.2TeV)−2 or |C| < (1.6TeV)−2 for the eta channels from the CLEO constraints,

more detailed in Tab. 3. These limits probe viable SMEFT parameter space since the EFT

scale is clearly pushed above the electroweak scale. Belle II could conceivably improve the

reach to |C| < (20TeV)−2. Still, the limits are nowhere near typical proton-decay scales,

making it crucial to evaluate nucleon-decay channels mediated by the same operators.

Ld=6 operators involving left-handed taus unavoidably come with ντ operators that

directly lead to p → ν̄τπ
+ [see Fig. 2a) and b)], n → π0ν̄τ and n → ν̄τη, and we generically

expect the relationship of Eq. (1.1) to hold. This estimate is confirmed with the more

carefully calculated expressions for the nucleon decay rates

Γ(p → ν̄τπ
+) ≃ 2Γ(n → ν̄τπ

0) ≃ 1

32πf2
π

(m2
n −m2

π)
2

m3
n

(1 +D + F )2|cL|2 , (2.11)

Γ(n → ν̄τη) ≃
1

192πf2
π

(m2
n −m2

η)
2

m3
n

|c′L|2 , (2.12)

currently constrained by Super-K and IMB-3 to Γ(p → ν̄τπ
+) < (3.9 × 1032 yr)−1 [8],

Γ(n → ν̄τπ
0) < (1.1× 1033 yr)−1 [8], and Γ(n → ν̄τη) < (1.6× 1032 yr)−1 [32], respectively!

This forces the Wilson coefficients at least 24 orders of magnitude down compared to the

tau limits, assuming one non-zero Wilson coefficient at a time, see Tab. 3. Operators

involving right-handed taus do not directly come with ντ operators and thus seemingly

circumvent the dangerous nucleon decays into tau neutrinos; however, even these lead to

p → π+ν̄τ through an off-shell tau [see Fig. 2c)], as pointed out long ago by Marciano [7].

The off-shell tau propagator and required mass flip do not cause any suppression since

mτ ∼ mp, but the off-shell tau decay comes with a GF suppression, which gives roughly

Γ(p → ν̄τπ
+) ∼ (GF fπ)

2Γ(τ+ → pπ0) ≃ BR(τ+ → pπ0)(10−6 yr)−1, still forcing BR(τ+ →
pπ0) below 10−40. The full expression reads

Γ(p → ν̄τπ
+) ≃ 1

32πf2
π

(m2
p −m2

π)
2

m3
p

∣

∣

∣

∣

∣

(1 +D + F )cL −
√
2c1f

2
πGFmpmτ

m2
p −m2

τ

cR

∣

∣

∣

∣

∣

2

, (2.13)

with Cabibbo cosine c1 ≡ cos θc ≃ 0.97.
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τ̄

c)

ν̄τp

π+

a)

ν̄τp

π+

n

b)

p ν̄τ

π+

Figure 2. Proton decay into π+ν̄τ through various dimension-six operators, indicated with a cross.

The n → ν̄τ channels give limits on the left-handed Wilson coefficients between

(3× 1014GeV)−2 and (2× 1015GeV)−2 (see Tab. 3), probing scales at least eleven orders

of magnitude above current tau decay limits and ten orders of magnitude above future

ones. Despite the relative suppression by GF f
2
π ∼ 10−7 for the right-handed tau operators,

the resulting limits of order (5 × 1011GeV)−2 still far exceed any conceivable tau-decay

limits [20]. The proton–tau mixing operators also induce the fully leptonic three-body

decays

Γ(p → e+νeν̄τ ) ≃ Γ(p → µ+νµν̄τ ) ≃
G2

Fm
5
p

192π3
(

m2
τ −m2

p

)2 |cLmp − cRmτ |2 , (2.14)

with the same charged-lepton energy spectrum as in tau decays. A dedicated Super-

Kamiokande search for precisely such three-body decays has led to a limit Γ−1(p →
ℓ+νℓν̄τ ) > 2 × 1032 yr [33], which gives Wilson coefficient constraints of the same order

of magnitude as the two-body decays p → π+ν̄τ , see Tab. 3. At even higher order in

perturbation theory, p can decay into many other final states through an off-shell tau,

including the four-body decay p → e+νeντπ
0 recently carefully calculated in Ref. [34], al-

though these are far less important than p → ν̄τπ
+, both due to phase-space suppression

and lack of dedicated searches.

Importantly, all nucleon decays calculated so far only probe three linear combinations

of the four d = 6 Wilson coefficients, being notably independent of c′R. Setting cL = cR =

c′L = 0 – which leaves the operator (d
C
u)(uCPRτ) ∝ η pCPRτ – would then seemingly

allow for a large τ+ → pη decay rate without any competing nucleon decays.2 Even the

vector-meson final state p → ρ+ν̄τ vanishes in that limit [35]. Alas, the underlying operator

of course still generates some form of nucleon decay, for example the three-body proton

decay p → ηπ+ν̄τ . Compared to the two-body tau decay τ+ → pη, this proton decay rate

is suppressed by a phase-space factor m2
p/(32π

2m2
τ ) times partial phase-space closure from

the large η mass, and of course still the G2
F suppression from the off-shell tau decay. An

2The importance of η modes to probe this flat direction in the electron and muon cases has been pointed

out recently in Ref. [19].
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0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325
Eπ+ [GeV]

0

1

2

3

4

5

1 Γ

d
Γ
(p
→

η
π
+
ν̄
τ
)

d
E
π
+

[ 1 G
eV

]
Cherenkov Threshold

Figure 3. The normalized energy spectrum of the final-state π+ in the p → ηπ+ν̄τ mode; 73% of

the pions are above Cherenkov threshold in Super-Kamiokande.

analytical form for the decay rate can be obtained in the massless pion limit:

Γ
(

p → ηπ+ν̄τ
)

=
G2

F c
2
1|c′R|2m5

p

12288π3m2
τ

[

1 +
44

3

(

mη

mp

)2

− 12

(

mη

mp

)4

+ 4

(

mη

mp

)6

+
1

3

(

mη

mp

)8

− 8

(

mη

mp

)2
(

2 + 3

(

mη

mp

)2
)

log

(

mη

mp

)

]

. (2.15)

Keeping the pion mass suppresses this roughly by a factor of two:

Γ
(

p → ηπ+ν̄τ
)

≃
(

5.6× 10−19GeV−1
)

|c′R|2 ≃
1

200 yr

(

BR(τ → pη)

8.9× 10−6

)

. (2.16)

Even though no dedicated exclusive search for the three-body decay p → ηπ+ν̄τ exists,

ancient inclusive limits should exclude lifetimes below 1030 yr [10] and illustrate once again

the disparity between ∆B searches in nucleons and taus, forcing the ∆B tau branching

ratio into pη below 10−30. (Notice though the more than 20 orders of magnitude gain

compared to the generic left-handed operator analysis!) We encourage our experimental

colleagues from Super-Kamiokande to perform a dedicated search for p → ηπ+ν̄τ to improve

this limit by orders of magnitude, seeing as this mode is complementary to the typically

considered two-body decay modes. We provide the energy spectrum for π+ in Fig. 3; a

fraction of 73% are above the Cherenkov threshold, neglecting the possible slowdown of

protons decaying inside the oxygen nucleus. The η has a typical momentum of 0.2GeV

and decays dominantly to two photons or three pions (3π0 or π0π+π−), leading to a busy

signature that might benefit from DUNE’s tracking detector.

As an aside, the same cancellation can be employed with similar results for other

flavor indices. For example, non-zero y3,42113 induce a mixing of Σ− with the right-handed

tau, leading to τ → Σ−π0, Σ0π− as well as the competing decay p → K0π+ν̄τ through
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off-shell τ . However, we can adjust the two Wilson coefficients to cancel in the proton-

decay amplitude without affecting the tau decay. This forbids nucleon decays to order f−1
π

in tree-level strangeness-conserving ChPT while allowing for two-body ∆B tau decays,

albeit in channels that have never been investigated. Still, at order f−2
π we find tree-level

proton decays p → K+π−π+ν̄τ and p → K0π0π+ν̄τ that survive the Wilson-coefficient

cancellation; despite the f−2
π , GF and phase-space suppression – and the fact that only

weak inclusive limits for this decay exist – this will beat any conceivable tau decays.

This concludes our discussion of d = 6 operators. Assuming one non-zero operator

at a time, existing limits on two-body nucleon decays far outperform even optimistic ∆B

taus decays. This conclusion can be softened a bit by allowing for cancellations between

operators, which can relegate nucleon decays to overlooked three- or four-body channels,

but even they are indirectly constrained well enough to uphold the above conclusion.

3 Dimension-seven operators

Restricting ourselves to non-derivative operators for simplicity [14], there are four indepen-

dent baryon-number-violating operators at d = 7 [36, 37]:

Ld=7 = z1abcdε
αβγ(Q

C
i,a,αQj,b,β)(Li,cdd,γ)H

∗
j (3.1)

+ z2abcdε
αβγεij(u

C
a,αdb,β)(Li,cdd,γ)H

∗
j (3.2)

+ z3abcdε
αβγ(d

C

a,αdb,β)(ℓcQi,d,γ)H
∗
i (3.3)

+ z4abcdε
αβγ(d

C

a,αdb,β)(Lc,idd,γ)Hi + h.c. (3.4)

The Wilson coefficients zj now have mass dimension −3. Upon electroweak symmetry

breaking, H → (0, v/
√
2), with v ≃ 246GeV, these give ∆B = −∆L = 1 [14] four-fermion

operators that can be translated to hadronic operators using the ChPT from App. A.

z1 and z2 boil down to uddν̄τ , and thus n → ντπ
0 just like the d = 6 operators with

simple renaming ν̄τ → ντ and

y1 → v√
2
z1 , y2 → v√

2
z2 . (3.5)

This then gives limits |z1,21131| < (1011GeV)−3 and hopelessly suppressed ∆B tau decay

rates. The other two operators give dRdRdL,Rτ̄ , which vanish if all d quarks are from the

same generation. The leading operator is then dRsRdL,Rτ̄ , which leads to p → π+K+ℓ or

n → K+ℓ [14] at tree level; however, for the charged tau this is kinematically forbidden,

forcing us to go through an off-shell tau to p → π+K+π−ντ or n → K+π−ντ . This

competes with the two-body tau decay τ → Λ0π− constrained by Belle [38]:

Γ
(

n → K+π−ντ
)

≃
(

BR(τ → Λ0π−)

7.2× 10−8

)

{

1
1.3×105 yr

, z3 = 0 ,

1
7×103 yr

, z4 = 0 .
(3.6)

No experimental constraints exist for the neutron decay, except for ancient inclusive lim-

its [10], which push BR(τ → Λ0π−) below 10−30, analogous to Eq. (2.16). At loop level
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τ
ντp

µ+
K+

π−

νµ

K+

Figure 4. Proton decay into K+µ+νµπ
−ντ through the dimension-seven operator dsL̄τsH, indi-

cated with a cross.

in a UV-complete realization of these operators, we can turn the dsdτ̄ operators into

dsuν̄τ operators, which then give the cleaner two-body decay p → K+ντ , constrained to

Γ−1(p → K+ν) > 6×1033 yr [39]. However, the loop amplitude requires mass flips from the

tau and one of the quarks, leading to an amplitude suppression by yτyd/(16π
2) ∼ 2× 10−9

and limits of order |z| ∼ (108GeV)−3. A dedicated search for n → K+π−ντ could lead to

more stringent and reliable results.

Let us give one more example of how far one would have to suppress nucleon decays

to allow for testable ∆B = 1 tau decays. We take z41232, i.e. a dss operator, which induces

a mixing of τ− with Ξ−. This still allows for a kinematically allowed two-body tau decay

τ → Ξπ,3 but the double strangeness severely suppresses nucleon decays. Only at order

f−2
π do we find an operator τ̄PRpK

−K− βvz41232/(
√
2f2

π) that allows for proton decay with

emission of tau and two kaons. The tau is necessarily off-shell just like in previous examples,

but now even one of the kaons needs to be off-shell too! This is then a doubly GF suppressed

five-body proton decay, illustrated in Fig. 4, estimated to

Γ
(

p → K+µ+νµπ
−ντ

)

≃ 1

O(1028) yr

(

BR(τ → Ξ−π0)

10−8

)

, (3.7)

where we approximated the amplitude – also including a factor m2
πmµ/(m

2
τm

2
K) from the

derivative K and π vertices and K and τ propagators – as constant but included kaon, pion

and muon mass in the phase space integration. Still, even with this immense suppression

of nucleon decay due to G2
F and the five-body phase space we are falling short of realistic

viable lifetimes. Nevertheless, we urge our experimental colleagues to investigate ∆B tau

decays into hyperons as they have the most suppressed associated nucleon decays.

4 Operators of higher mass dimension

∆B operators at d = 8 have ∆B = ∆L = 1, just like the d = 6 ones. A linearly independent

basis of ∆B operators can be found in Refs. [40, 41]. By and large, the phenomenology

is similar to the d = 6 operators; one crucial difference is the occurrence of operators

involving charm quarks due to anti-symmetry. These either require a hadron framework

beyond our simple chiral perturbation theory or the inclusion of loops [22], which will once

again render the phenomenology similar if not identical to d = 6.

3Isospin gives approximately Γ(τ → Ξ0π−) ≃ 2Γ(τ → Ξ−π0).
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Dimension-nine operators involving taus and first-generation up quarks necessarily

violate ∆B = −∆L = 1, just like the d = 7 operators [10], and indeed many operators

share features with those from d = 7. The obvious exceptions are the d = 9 operators

involving three quarks, one lepton, and two anti-leptons, already discussed in Ref. [27]

because of their potentially unique lepton-flavor properties. As an example, consider the

operator dddℓℓ̄ℓ̄/Λ5; antisymmetry enforces once of the down quarks to be a strange, and

two different flavors of antileptons, e.g. dsdτ ēµ̄/Λ5. This gives τ → Σ+eµ, competing with

n → K+eµπ+ν̄τ through an off-shell tau, neither of which has been searched for of course.

Dimension-ten operators have been discussed in Refs. [10, 27], let us focus on one

example operator here, QQuℓℓ̄LH/Λ6. Upon electroweak symmetry breaking, this can give

uLdLuRτRℓαℓβ v/Λ
6; if α and β correspond to electrons or muons, this operator generates

the tau decays τ+ → p̄e+α e
+
β shown in Fig. 1, recently searched for in Belle [6]. The same

operator also generates p → e+α e
+
β π

−ντ through the off-shell tau:

Γ
(

p → e+α e
+
β π

−ντ

)

≃ 1

2× 104 yr

(

BR(τ− → pe−α e
−
β )

3× 10−8

)

. (4.1)

Despite the four-body vs three-body phase space suppression and the fact that no exclusive

limits on this channel exist, the proton decay will enforce a sufficient limit on the Wilson

coefficient as to make the ∆B tau decay completely unobservable.

5 Conclusions

Nobody knows if the conservation of baryon number in the SM is a fundamental feature or

a happy little accident that doesn’t survive SM extensions. On the one hand, life crucially

relies on sufficiently long-lived nuclei; on the other hand, the apparent asymmetry of matter

over antimatter in our universe seems to suggest that baryon number might be violated.

This is ultimately an experimental question that will hopefully be answered eventually, for

example by observing nucleon decays in detectors such as Super-Kamiokande or DUNE.

No positive signal for baryon number violation has been observed yet despite decade-long

efforts, which could, however, simply mean that we are not looking in the right spots. From

what little we know about the flavor structure of the SM, it could well be that baryon

number is mainly or even only broken together with tau number, which naively changes

the expected signatures since taus are heavier than nucleons. Indeed, searches for baryon-

number-violating tau decays such as τ → p̄π0 have been performed. As pointed out long ago

by Marciano, however, the underlying new physics will also generate nucleon decays such

as p → π+ν̄τ , which is far more sensitive. Here, we have studied the relationship between

∆B nucleon and tau decays quantitatively for a large number of new-physics operators to

confirm Marciano’s observation and scrutinize loopholes. As expected, we find that any

operator that leads to ∆B = 1 tau decays also leads to nucleon decays, the tau flavor

being carried away by tau neutrinos. However, it is not difficult to find examples in which

the nucleon only decays in channels that have never been explicitly searched for, which

significantly softens the relationship but does not practically change it, since even old weak

inclusive limits are sufficient to beat tau limits. We stress that this conclusion should in

– 10 –



no way discourage anyone from searching for ∆B tau decays; if anything, this is meant to

encourage broadening searches for nucleon decays, either by going beyond two-body final

states, e.g. p → ηπ+ν̄τ and n → K+π−ντ , or by improving inclusive searches [10].
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A Chiral perturbation theory

In this appendix we give a quick introduction to chiral perturbation theory to define our

notation. We follow closely the derivation of Refs. [3, 17, 42, 43] but in a more explicit

fashion that covers more operators. Vector mesons can be included as in Ref. [35], but since

their pole diagrams typically dominate [44], their branching ratios are suppressed compared

to the pseudo-scalar mesons and depend on the same linear combinations of operators.

Chiral perturbation theory provides an effective Lagrangian for the lightest hadrons –

those composed of up, down, and strange quarks – by utilizing the approximate symmetries

of the QCD Lagrangian, notably the global SU(3)L × SU(3)R symmetry under which

qL ≡ (uL, dL, sL) ∼ (3,1) and qR ≡ (uR, dR, sR) ∼ (1,3). Together with the QCD gauge

symmetry SU(3)C and the global Lorentz symmetry, we can then decompose products

of quark fields such as qLqLqL into irreducible representations. If we restrict ourselves to

color-singlet spin-12 combinations – which we can later identify with spin-12 baryons – the

products of quarks are forced to form an (8,1) under SU(3)L × SU(3)R, which can be

explicitly written as a traceless SU(3)L matrix

(qLqLqL)(8,1) =







(d
C

LsL)uL (sCLuL)uL (uCLdL)uL

(d
C

LsL) dL (sCLuL) dL (uCLdL) dL

(d
C

LsL) sL (sCLuL) sL (uCLdL) sL






, (A.1)

where (aCLbL) cL = −(b
C

LaL) cL ≡ εαβγ(aCL,αbL,β) cL,γ with the SU(3)C Levi-Civita symbol

εαβγ and the two spinors in parenthesis form a Lorentz scalar. Notice that the diagonal

entries can be written in different ways upon using the vanishing (1,1) trace

(d
C

LsL)uL + (sCLuL) dL + (uCLdL) sL = 0 . (A.2)

In complete analogy, we can obtain the SU(3)R matrix for the non-vanishing color-singlet

spin-12 piece (qRqRqR)(1,8) by simply replacing L → R in Eq. (A.1).

The product qRqRqL can be treated similarly, now the color-singlet spin-12 requirement

projects out the (3, 3̄) representation of SU(3)L×SU(3)R, which in matrix notation reads

(qRqRqL)(3,3̄) =







(d
C

RsR)uL (sCRuR)uL (uCRdR)uL

(d
C

RsR) dL (sCRuR) dL (uCRdR) dL

(d
C

RsR) sL (sCRuR) sL (uCRdR) sL






, (A.3)
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with non-vanishing trace. (qLqLqR)(3̄,3) can be obtained from the above by interchanging

L and R. This concludes the representation theory of color-singlet spin-12 three-quark

operators under the approximate global SU(3)L × SU(3)R symmetry. The components of

these matrices show up in the ∆B ̸= 0 operators discussed in the main text and need to

be mapped onto hadron operators with the same transformation properties. To this end

we define the spin-12 baryon matrix B as well as the pseudo-scalar meson matrix M and

its logarithmically related matrix ξ as

B =











√

1
2Σ

0 +
√

1
6Λ

0 Σ+ p

Σ− −
√

1
2Σ

0 +
√

1
6Λ

0 n

Ξ− Ξ0 −
√

2
3Λ

0











, (A.4)

M =











√

1
2π

0 +
√

1
6η

0 π+ K+

π− −
√

1
2π

0 +
√

1
6η

0 K0

K− K
0 −

√

2
3η

0











≡ −ifπ log ξ . (A.5)

With these, we can construct products that have the same quantum numbers and trans-

formation properties as our qqq operators, specifically

ξBLξ ∼ (3, 3̄) , ξ†BRξ
† ∼ (3̄,3) , ξBLξ

† ∼ (8,1) , ξ†BRξ ∼ (1,8) (A.6)

under SU(3)L×SU(3)R, where BL,R are the chiral components of B. These so-constructed

matrices should then be proportional to the qqq matrices with the same quantum numbers

found above. The proportionality factors contain the details of how quarks are confined

into hadrons [45] through SU(3)C and can be obtained via lattice QCD [18]; since QCD

conserves parity, only two are independent [18, 19],

(qRqRqL)(3,3̄) = α ξBLξ , (qLqLqR)(3̄,3) = −α ξ†BRξ
† ,

(qLqLqL)(8,1) = β ξBLξ
† , (qRqRqR)(1,8) = −β ξ†BRξ ,

(A.7)

and even those two are approximately connected via β ≃ −α [18, 45, 46]. The matrix equa-

tions in Eq. (A.7) provide us with a dictionary for replacing three-quark operators with

hadron operators, at least for the three lightest quarks and as a perturbation expansion in

large pion-decay constant fπ. Together with the baryon-number-conserving interactions of

the familiar ChPT Lagrangian [42] we can then calculate the effects of our ∆B operators in

low-energy hadronic systems. The SU(3)L × SU(3)R symmetry is of course only approxi-

mate in nature, so our Lagrangian should be supplemented with breaking-term corrections.

Here, we only implement the most basic SU(3)L×SU(3)R breaking by giving the hadrons

their measured non-degenerate masses.
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