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ABSTRACT

We examine the properties of oblique coordinates. The coordinates, introduced by Zuiiiga et al. [J. Phys. B: At., Mol. Opt. Phys. 52, 055101,
(2019)], reduce vibrational mode-mixing and enhance the quality of vibrational assignments in quantum mechanical investigations of two-
dimensional model Hamiltonians. Oblique coordinates are obtained by making non-orthogonal rotations of the original coordinates that
convert the matrix representation of the quadratic Hamiltonian operator into a block-diagonal matrix where the blocks are distinguished by
the total quanta of vibrational excitation. Using techniques for the polar decomposition of matrices, we present a scheme for finding these
coordinates for systems of arbitrary dimensions. Several molecular examples are presented that highlight the advantages of these coordinates.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0181135

. INTRODUCTION

The choice of coordinates is central to optimal theoretical treat-
ments of molecular vibrations.' * Early works focused on improving
self-consistent field treatments of molecular vibrations by rotat-
ing the normal coordinates."” McCoy and Sibert’ compared the
convergence of perturbative results for curvilinear and rectilinear
normal coordinates of linear molecules, demonstrating the advan-
tages of the curvilinear representation in instances of strong cou-
plings. Mayrhofer and Sibert” extended those ideas by varying the
curvature of the coordinates. Bastida et al.!’ generalized a class
of orthogonal coordinates known as hyperspherical coordinates to
improve the vibrational assignments of the eigenstates of triatomic
molecules. Joubert-Doriol et al.,* focusing on multiconfiguration
time-dependent Hartree methods, considered a range of molecular
systems to illustrate the implications of these choices and the advan-
tages they incur. Cheng and Steele'' describe algorithms for defining
local modes and convincingly demonstrate the advantages of treat-
ing anharmonicities in these modes vs normal modes. In related
work, Molina et al.'” and Zimmerman and Smereka’ selected two
criteria for the optimal rotation of local coordinates that, in an unbi-
ased way, highlight the interplay between minimizing quadratic cou-
plings via the normal modes and minimizing anharmonic couplings
via local modes.

The goal of all these studies is to find coordinates that lead
to enhanced separability of the molecular wavefunctions in order
to ease the interpretation of spectra and dynamics, as well as to
provide a Hamiltonian matrix that is easy to express and whose
lowest energy eigenfunctions are obtained with a minimal number
of basis functions. With this goal in mind, Zuniga et al.”* exam-
ined a set of coordinates, which they call the oblique coordinates.
In contrast to many of the above-mentioned studies, which focused
on orthogonal rotations of coordinates, these latter studies explic-
itly focused on how one might scale or skew the coordinates in
order to minimize couplings. A distinguishing feature of the oblique
coordinates is that the Hamiltonian matrix is block-diagonal at the
harmonic level; each block contains states with the same total num-
ber of vibrational quanta of excitation. This feature reduces the
mixing due to the quadratic terms. In addition, the avoidance of
coordinate rotation from the initial internal coordinates leaves the
large anharmonic couplings, which are mostly diagonal in internal
coordinates, as diagonal couplings in the oblique coordinates. These
authors clearly demonstrate the advantages of this coordinate set
for two-dimensional systems but have not yet extended the idea to
multiple dimensions. In this paper, we do just that.

This paper is organized as follows. In Sec. II, we define oblique
coordinates in terms of linear transformations from internal coor-
dinates. In Sec. III, we present the equations for these coordinates
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using techniques for the polar decomposition of matrices. We use
the formaldehyde and ammonia molecules to illustrate the proper-
ties of these coordinates in Sec. IV and summarize our findings in
Sec. V.

Il. BACKGROUND

We take as our starting point the classical form for a harmonic,
internal coordinate Hamiltonian expressed in internal coordinates r
and conjugate momenta p using the notation of Wilson et al.,"

H-= %[pTgp + rTfr]. (1)

If we scale the coordinates R; = [ fii/gii] /41, this leads to a Hamilto-
nian with the same form

H-= %[PTGP + RTFR], @)

but with

w;i = Fii = Gii = \/ fugii. (3)

Writing the above Hamiltonian in terms of raising and
lowering operators

Ri = [g]l/z(aj +ai), (4)

one obtains

N
rifh=3 afalas )+ 3 (Fy+ Gy)alay + ) 2
i=1 i#
+3 (Fj - Gy)(alal + aiaj) /2. (5)

i#j

The first term describes the diagonal harmonic contribution; the sec-
ond term describes the coupling between states with the same total
number of quanta; and the last term describes the coupling between
states differing in the total number of quanta by two. If F = G, then
the last term is zero, and the Hamiltonian matrix is block-diagonal.
As an example, states corresponding to the fundamentals are decou-
pled from all other states. In a local mode treatment, this scenario is
desirable since the coupling is restricted.””

To find a representation with the above-mentioned property,
we note that a linear transformation

R =AR; P =[A""]"P, (6)

leads to a Hamiltonian with a form identical to that of Eq. (2) but
with
G =AGA"; F =[A""]"Fa"". 7

As such, the goal of this work is to find transformations A that lead
toF =G'.

ARTICLE pubs.aip.org/aip/jcp

I1l. DERIVATION OF OBLIQUE COORDINATES

We note that if a Hamiltonian has F = G, then any orthogonal
transformation of the coordinates leads to a Hamiltonian that also
has this form. Zufiiga et al.” also recognized this flexibility in their
study of two-dimensional Hamiltonians. The best-known members
of this class of Hamiltonians are the scaled normal coordinates. If
R’ are the normal coordinates, then both the F’ and G’ matrices are
diagonal. The normal coordinates can then be scaled so that Fj; = GJ;.
With this approach, we can write

Ag= QYL (8)

where Q is a diagonal scaling matrix whose elements are the nor-
mal mode frequencies, and L is obtained following the methods of
Wilson et al."? A subscript Q has been added to the above A matrix
to indicate that this is a specific choice of all the possible A matri-
ces. This notation allows us to conveniently express all other possible
choices for A as

A=VAo, 9)

where V is an arbitrary orthogonal transformation.

A useful choice for V is to choose it so that it yields an A
that minimizes the differences between the R and R’ coordinates.
To find such a transformation, we turn to the concept of the polar
decomposition of matrices.'* Polar decomposition is a well-studied
technique for decomposing a matrix into a product form that has
been described as being analogous to writing a complex number
in the re” form. The central idea here is that any square matrix
A can be written in the form A = UP, where U is an orthogonal
transformation and

P=[ATA]/% (10)

is a positive semi-definite symmetric matrix. This matrix is read-
ily evaluated with standard techniques for finding square roots of
matrices. The most direct route for finding P follows from the sin-
gular value decomposition of A. Since A is positive semi-definite, the
matrix P is unique.

If A = Ag, then both U and P have important properties. Of
all possible orthogonal transformations V, the matrix U is the “best”
approximation for the transformation from the internal coordinates
R to the dimensionless normal coordinates. More specifically, the
orthogonal transformation V that minimizes the Frobenius norm

1/2
|A-V]r= [Z (A - Vij)2:| , (11)
i

can be shown to be V =U.
With the above in mind, we now consider a second choice for
A in addition to that of Eq. (8). We define

1/2

Ao=P-= [[L*]TQL*‘] (12)

We refer to the coordinates obtained via this transformation as the
oblique coordinates. If A = Ao in Eq. (11), then the orthogonal
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matrix V that best describes Ao is the identity matrix. Of all pos-
sible orthogonal transformations V, the identity matrix is the “best”
approximation for the transformation from the internal coordinates
R to the oblique coordinates.

The main ideas can now be summarized. Equation (9) defines
the linear transformations that lead to F’ = G’. The transformation
to scaled normal modes A is one of the possible choices for A, and
all other choices can be obtained by multiplying Aq by an orthogonal
matrix. The oblique coordinates are defined by the polar decomposi-
tion of Aq. This decomposition allows us to write the normal mode
transformation of Eq. (8) as a product of an orthogonal transforma-
tion U and a symmetric, positive, semi-definite matrix Ao. In order
to minimize the difference between the oblique coordinates and the
scaled internal coordinates, we choose the transformation matrix for
the oblique coordinates to be Ao.

The oblique coordinates are not unique. The oblique coordi-
nates, as we define them, are defined relative to the initial internal
coordinates R. Since there is more than one way to choose the inter-
nal coordinates of a molecule, there is also more than one way to
choose the oblique coordinates. All of the inherent advantages and
difficulties of choosing an initial set of internal coordinates extend
to the choice of oblique coordinates. The oblique coordinates sim-
ply provide a way to improve upon the initial choice of internal
coordinates.

IV. MOLECULAR EXAMPLES AND DISCUSSION

In this section and in the supplementary material, we show
several examples that illustrate that the oblique coordinates are
often similar to the internal coordinates yet offer the advantage of
reduced couplings. Two additional properties of this transformation
are that the transformation does not change the underlying symme-
try present in the initial internal coordinates, and if one chooses to
transform from the oblique coordinates to the normal coordinates,
then the mixing that occurs between the oblique coordinates is the
result of an orthogonal transformation.

In the examples that follow, the F matrices have been evaluated
at the MP2/aug-cc-pvDZ level of theory/basis using the Gaussian
16 software package,'” and the G matrices have been evaluated via
numerical differentiation of the internal coordinates.

A. H,CO example

To start, we consider the subspace of internal coordinates of
formaldehyde containing the OC stretch, the CH stretches, and
the OCH bends. The hydrogen out-of-plane motion has been
excluded from the analysis as it has different symmetry and,
therefore, does not mix with the other coordinates in this treat-
ment. The initial F and G matrices in dimensionless internal
modes are

17442 142.1 1421 196.7 196.7

3031.0 356 —52.0 -1384
F= 3031.0 -1384 -52.0 |, (13)
1478.8 513.0
1478.8

ARTICLE pubs.aip.org/aip/jcp

17442 -253.8 -253.8 -264.2 -264.2
3031.0 -105.6 -116.5 251.0

G-= 3031.0 251.0 -1165 |  (14)
1478.8 —188.2
1478.8

In these matrices, the first row is the OC stretch, the next two are
the CH stretches, and the remaining two are the OCH bends. By
definition, the diagonal elements of these two matrices are identical;
only the upper triangle is provided, as the matrices are necessarily
symmetric.

After applying a polar decomposition to the normal mode
transformation obtained by a Wilson FG analysis, we obtain the
oblique transformation

1.014 0.042 0.042 0.075 0.075
1.003 0.012 0.007 -0.038

Ao = 1.003 —0.038 0.007 |, (15)
1.002  0.125
1.002

that transforms F and G into

1694.7 —49.8 -49.8 -532 —53.2
3013.8 -40.7 -74.6 398

F =G = 3013.8 39.8 -746 | (16)
14117 1522
1411.7

The above symmetric matrix Ao is nearly the identity matrix—that
is, it introduces only a small skew to the internal coordinates.

As noted earlier, F' = G’ may be diagonalized to obtain an
orthogonal transformation to the normal mode coordinates. In addi-
tion, the oblique coordinates retain the symmetries of the internal
coordinates, i.e., the CH stretches remain degenerate, as do the OCH
bends, and the coupling between one CH stretch and its correspond-
ing OCH bend is identical to the coupling between the other CH
stretch and its corresponding bend. More concretely, if we define
symmetry coordinates S = UR where U is a unitary transformation
that leads to a block-diagonal matrix UFU', then UF'U" will also be
block-diagonal.

In many systems, the optimal choice of internal coordinates
depends on the problem one is trying to solve. We illustrate how
these choices affect the oblique coordinates for NH; directly below
and for the water dimer in the supplementary material. We also pro-
vide in the supplementary material a Python script that can be used
for carrying out the transformations described in this paper.

B. Ammonia

Ammonia has a natural set of symmetry preserving internal
coordinates, with three NH stretches and three HNH scissor modes
(bends),

J. Chem. Phys. 159, 234108 (2023); doi: 10.1063/5.0181135
Published under an exclusive license by AIP Publishing

159, 234108-3

£0:90:12 ¥202 Jequsides 61



The Journal
of Chemical Physics

3608.5 -27.7 -27.7 2550 255.0 43.3
3608.5 —-27.7 2550 43.3 255.0
3608.5 43.3 255.0 255.0
F= , (17)
1480.0 -132.9 -132.9
1480.0 -132.9
1480.0
3608.5 —-69.9 -69.9 -104.0 -104.0 84.4
3608.5 —69.9 -104.0 844 -104.0
3608.5 84.4 -104.0 —104.0
G-= . (18)
1480.0 -262.7 -262.7
1480.0 -262.7
1480.0

Applying an oblique transformation to these F and G matrices, one
obtains

35953 -544 -544 720 72.0 56.5

35953 -544 720 56.5 72.0

35953 56.5 72.0 72.0

F = . (19)
1464.0 —205.0 —205.0
1464.0 -205.0
1464.0

One can see that for this set of coordinates, one retains the inherent
symmetries on the NH stretches and HNH bends.

As an aside, we note that Hamiltonian matrices of the above-
mentioned form also appear in local mode treatments of CH
stretches and HCH bends.”'®'"” This form is desired due to its sim-
plicity for interpreting couplings while nearly retaining the equiv-
alency to normal mode results upon diagonalization of the local
mode Hamiltonian matrices. The slight difference from the normal
mode results is due to neglecting those terms analogous to those in
the last line of Eq. (5). This approximation is a good one for CH
stretches and HCH bends since the bilinear couplings are typically
smaller in magnitude (~30 cm™!) and the coupled states are dis-
tant in energy. For the above-mentioned case of the ammonia HNH
bend vibrations, the analogous couplings are substantially larger and
cannot be ignored. In order to express the local mode HNH vibra-
tions with small Hamiltonian matrices, it is necessary to use oblique
coordinates.

The transformation matrix

1.000 0.002 0.002 0.037 0.037 0.000
1.000 0.002 0.037 0.000 0.037

1.000 0.000 0.037 0.037

Ao = (20)
1.004 0.023 0.023
1.004 0.023

1.004

is similar to the identity matrix as it was for formaldehyde.

ARTICLE pubs.aip.org/aip/jcp

This choice of coordinates, however, cannot be written as a sin-
gle set of angle-bend-dihedral coordinates as encoded by a single
Z-matrix. Using a naive set of Z-matrix coordinates with three NH
stretches, two HNH bends, and one dihedral angle, the symmetry is
not preserved, as is evident in the following F and G matrices:

3608.5 -27.7 -=27.7 225.1 225.1 43.1
3608.5 -27.7 143.8 -57.0 253.9
3608.5 —-57.0 143.8 253.9
F= , @D
1646.2 196.2 —-692.0
1646.2 —692.0
1467.0
3608.5 -69.9 -69.9 -109.7 -109.7 0.0
3608.5 —-69.9 -109.7 89.0 -112.5
3608.5 89.0 -109.7 -112.5
G= . (22)
1646.2 —-292.3 244.6
1646.2 244.6
1467.0
This choice of coordinates leads to
3596.6 -53.0 -53.0 55.6 55.6 65.1
3596.7 -53.1 45.9 32.3 84.4
, 3596.7 32.3 459 84.4
F = , (23)
15459 -123.1 -2144
15459 -214.4
1296.2

for which there is a break in the degeneracy of the NH stretches.
While initially concerning, this symmetry breaking demonstrates
that the oblique transformation preserves the total symmetry of the
chosen coordinates, allowing breaks in symmetry to be detected
before the normal modes are constructed by mixing the coordinates.
As in the above-mentioned cases,

1.000 0.003 0.003 0.035 0.035 0.007
1.000 0.002 0.025 -0.011 0.039
1.000 -0.011 0.025 0.039

Ao = (24)
0.995 0.065 —0.169
0.995 -0.169
0.972

is similar to the identity matrix, despite the presence of much larger
off-diagonal couplings between the bends and dihedral angles.
Since the transformation from internal coordinates to oblique
coordinates is linear, the corresponding quantum mechanical
Hamiltonians have forms that are similar to the analogous forms
used for internal coordinates, whether they be defined as linear
combinations of Cartesian displacements, in which case one uses a
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Watson Hamiltonian,' or true bond/angle extension coordinates, in
which case one can follow the strategies of Meyer and Giinthard."”

V. SUMMARY

In this paper, we extend the work of Zuiiga et al,”” who
demonstrated the utility of a class of coordinates, which they call
oblique coordinates. They highlight many of the interesting proper-
ties of these coordinates and convincingly show that these coordi-
nates lead to reduced couplings in two-dimensional Hamiltonians.
These coordinates resemble internal coordinates but have the dis-
tinguishing feature that the off-diagonal quadratic couplings lead
to Hamiltonian matrices that are block-diagonal, where each block
is distinguished by the total number of vibrational quanta. In this
paper, we generalize their work to multi-dimensional Hamiltoni-
ans using ideas taken from the polar decomposition of matrices in
order to derive the linear transformation matrix between oblique
and internal coordinates. We have highlighted the properties of
the transformation and provided several examples to illustrate the
central ideas.

We have not illustrated the advantages of these coordinates
generally for treating anharmonicities, as we are building on the
previous studies of Zuiiga et al. on specific systems in which state
assignments are improved with these coordinates.”” We expect the
coordinates to be most useful when one wishes to examine dynamics
in local representations where anharmonic effects are not domi-
nant and where quadratic couplings are relatively large. The scissor
vibrations of ammonia were discussed as an example of such a
scenario.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional examples of
oblique coordinates as well as a Python script for finding these
coordinates.
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