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Abstract— In general, deep neural network (DNN) pruning
methods fall into two categories: 1) weight-based determinis-
tic constraints and 2) probabilistic frameworks. While each
approach has its merits and limitations, there are a set of common
practical issues such as trial-and-error to analyze sensitivity
and hyper-parameters to prune DNNs, which plague them both.
In this work, we propose a new single-shot, fully automated
pruning algorithm called slimming neural networks using adaptive
connectivity scores (SNACS). Our proposed approach combines
a probabilistic pruning framework with constraints on the
underlying weight matrices, via a novel connectivity measure,
at multiple levels to capitalize on the strengths of both approaches
while solving their deficiencies. In SNACS, we propose a fast
hash-based estimator of adaptive conditional mutual information
(ACMI), that uses a weight-based scaling criterion, to evaluate
the connectivity between filters and prune unimportant ones.
To automatically determine the limit up to which a layer can be
pruned, we propose a set of operating constraints that jointly
define the upper pruning percentage limits across all the layers
in a deep network. Finally, we define a novel sensitivity criterion
for filters that measures the strength of their contributions to
the succeeding layer and highlights critical filters that need to be
completely protected from pruning. Through our experimental
validation, we show that SNACS is faster by over 17× the nearest
comparable method and is the state-of-the-art single-shot pruning
method across four standard Dataset-DNN pruning benchmarks:
CIFAR10-VGG16, CIFAR10-ResNet56, CIFAR10-MobileNetv2,
and ILSVRC2012-ResNet50.

Index Terms— Multivariate dependency measure, mutual
information (MI), neural network compression, pruning,
sensitivity.

I. INTRODUCTION

CRITICAL real-world applications like autonomous vehi-
cle navigation [1], [2] and simultaneous machine trans-

lation [3], [4] demand real-time response [5] without any
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compromise in performance. Proposed solutions in these appli-
cation domains are implicitly bound to constraints brought
forward by restricted space and memory availability on custom
hardware implementations. These factors are at odds with
the general research design goal of high performance in
deep neural networks (DNNs), which is often achieved by
increasing the overall size and capacity of the DNN. The trade-
off between these constraints has brought increased attention
to the field of DNN pruning [6], [7], the main objective of
which is to maintain an adequate level of performance, often
within a few percent of the original DNN, while only using a
fraction of its memory or FLOPs. Of course, the adequacy of
any level of performance depends on the specific application,
but the general goal nevertheless remains critical.
There are two main approaches to pruning: 1) deterministic

constraints on weight matrices [8], [9], [10] and 2) proba-
bilistic frameworks [11], [12], [13]. Methods based on deter-
ministic constraints on weight matrices are straightforward to
implement and leverage the underlying structure of the weight
matrices, but they often do not account for the downstream
impact of pruning filters. On the other hand, probabilistic
frameworks focus on reducing the redundancy between layers
using information theoretic measures or variational Bayesian
inference but are not fast or efficient at modeling the sensitivity
of filters at an individual level. In a sense, the two types
of methods are converses: one’s weakness is remedied by
the other. Yet, to the best of our knowledge, there has been
no recent work that combines both approaches and improves
upon them. Furthermore, there are many unresolved practical
issues among both approaches, e.g., the labor-intensive process
of analyzing the sensitivity of different layers to pruning or
imposing an upper limit on the pruning percentage for each
layer and the number of resources and time spent in iteratively
pruning DNNs.
To that end, we are able to unify the benefits of both

methods while mitigating their respective drawbacks: we pro-
pose slimming neural networks using adaptive connectivity
scores (SNACS) as a hybrid single-shot pruning approach.
In SNACS, we introduce the adaptive conditional mutual
information (ACMI) measure, which incorporates weights as
a scaling function within the framework of conditional mutual
information (MI) [14], [15]. The ACMI measure evaluates the
connectivity between pairs of filters across adjacent layers and
prunes unimportant filters. In this work, we explore weight and
activation-based scaling functions.
To remove the manual effort involved in setting the upper

pruning percentage limit of layers, we define a set of operating
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Fig. 1. Illustration of the three major components of SNACS that help prune connections between layer l and l + 1. First, we propose the hash-based ACMI
estimator to compute the connectivity scores between filters in layer l + 1 and all the filters in layer l. These connectivity scores are thresholded to obtain
the set of filters that need to be pruned. Next, to protect the network from being irregularly/excessively pruned, we use a custom set of operating constraints,
based on the degradation of activation quality at various pruning levels, to decide on the upper pruning percentage limit for layer l + 1. Finally, we compute
the sensitivity of filters in l + 1 as the sum of normalized weights between chosen filters in layer l + 1 and all the filters in layer l + 2. We sort and threshold
the sensitivity values to create a subset of sensitive filters that should be protected from pruning. Combining the information from all three components,
we prune layer l + 1.

constraints to automatically evaluate them. The constraints
are based on the degradation in quality of activations at
various levels of compression. Additionally, we encapsulate
the importance of a filter using our proposed Sensitivity crite-
rion, defined as the sum of a filter’s contributions (normalized
weights) to filters in the succeeding layer. Using this measure,
we curate a subset of relatively less sensitive filters that can
be pruned based on their connectivity scores, while we protect
highly sensitive filters from any form of pruning. We highlight
all the main components of SNACS in Fig. 1.
Overall, we summarize our contributions in this work as

follows.
1) We propose a hybrid single-shot pruning approach,

SNACS, which takes advantage of both a probabilistic
pruning framework and simple weight-based constraints.

2) In SNACS, we propose the use of ACMI as a way to
measure the connectivity between filters and derive its
hash-table-based implementation.

3) In the interest of simplifying the process of defining
upper pruning percentage limits of layers in a DNN,
we propose a set of operating constraints to help auto-
mate their definition.

4) We apply a custom notion of Sensitivity in filters, using
their contribution to succeeding layers, to prioritize the
pruning of largely insensitive filters while protecting
highly sensitive ones.

By incorporating our contributions within the SNACS frame-
work, we improve the overall run-time of the pruning
algorithm by upward of 17×, increase the accuracy of the esti-
mator, and create an entirely automated pruning pipeline while
offering state-of-the-art performance in single-shot pruning of
DNNs.

II. RELATED WORKS

In Section II, we discuss prior works in pruning and MI
estimators, as well as methods at their intersection. Among

pruning approaches there are two broad categories: 1) methods
that use a deterministic constraint on the weight matrices and
2) methods that use a probabilistic framework to reduce the
redundancy and maintain the flow of information between
layers. Within the first category of methods, there is a subset
that enforces sparsity by modifying the objective function
while the remaining directly apply constraints on the weight
matrices.

A. Deterministic Constraints on Weight Matrix

1) Direct Constraint on Weight Matrices: Some of the
earliest works in pruning use the second-order relationship
between the objective function and weights of the network
to evaluate and remove unimportant values [16], [17]. Since
then, several advancements in the form of directly thresholding
weights [10], [18] or using the || · ||1 constraint to define
the importance of filters [19] have been proposed. A more
recent subset of methods have adopted data-driven logic to
derive the importance of filter weights. Two such methods
are ThiNet [9] and NISP [20], where the reconstruction of
outcomes with the removal of weights is posed as a post-
training objective. By virtue of how direct constraints are
placed on weight matrices, they often do not account for the
downstream impact of pruning or are built on the assumption
of a purely deterministic relationship between filters. Instead,
we use the combination of a weight-based scaling function and
filter connectivity within a probabilistic framework to maintain
the flow of information between layers and overcome these
issues.
2) Modification of Objective Function: Inducing sparsity in

weight matrices by modifying the objective function involves
imposing a strong constraint on how weights develop during
training. Constraints range from simple methods, such as sin-
gle or multiple ln norms [21] on channel outputs, simple pat-
terned masks to regulate group sparsity [22], and optimization
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over group-lasso-based objective functions [8], [23], to more
complicated ideas like balancing individual versus group spar-
sity constraints [24], [25] and adding discrimination-aware
losses at intermediate layers to enhance and easily identify
important channels [26].
More recent methods combine the idea of modifying the

objective function with more abstract concepts like meta-
learning [27], where sparsity-inducing regularizers are used
to learn latent vectors that help decide on the weight values
directly or GANs, where an adversarial pruned network gen-
erator optimizes a loss based on the features derived from the
original network [28]. To provide a controlled setup to study
and compare the effects of pruning a network against its origi-
nal counterpart, we avoid strong comparisons against methods
that modify the objective function. Apart from optimizing
over a fundamentally different objective function, which are
harder to optimize, these methods require multiple iterations
of pruning and fine-tuning built-in to their setup, while we use
only a single pruning and retraining step to optimize a simple
objective function.

B. Probabilistic Frameworks

Pruning approaches that use probabilistic frameworks can
be divided into Bayesian and non-Bayesian methods. Bayesian
methods apply a variational Bayesian inference perspective to
pruning, with a focus on estimating the posterior distribution
of weights using ELBO [29], [30]. While they offer a theo-
retically sound perspective to pruning, they require a strong
assumption on the prior distribution of weights which induces
sparsity across the network. Furthermore, their performances
on large-scale datasets have more room to grow.
The non-Bayesian approach to pruning focuses on using

information-theoretic measures, with minimal assumptions and
widespread applicability when compared to the Bayesian
methods. These include Luo and Wu [13], in which entropy
of activations is used as a measure of the importance of a
filter, VIBNet [12], where the information bottleneck principle
is used to minimize the redundancy between adjacent layers
and MINT [11], in which geometric conditional MI is used to
determine the dependencies between filter pairs in adjacent
layers. While they are adept at reducing redundancy and
maintaining the flow of information between layers, they are
slow and inefficient at modeling the sensitivity of individual
filters to pruning. In SNACS, we propose the use of ACMI to
improve the speed of dependency computations for MI as well
as the accuracy of the estimates. Furthermore, by highlighting
sensitive filters that need to remain unpruned and jointly
defining the upper pruning percentage limit of layers we obtain
additional gains when pruning a DNN.

C. Multivariate Dependency Measures

Approaches for estimating multivariate dependencies using
MI can be broadly classified into two categories: plugin
and direct estimation. Plugin estimators like Kernel density
estimators (KDEs) [31], KNN estimators [32], and others [33],
[34] form the bulk of early works in computing multivariate
dependency. However, plugin estimators need to accurately

estimate the probability density function of input variables.
This, when combined with their large run-time complexity,
renders them highly un-scalable. To overcome these issues,
direct estimators for Renyi-entropy and MI [33], [34], and
Henze–Penrose divergence measure [35] have been proposed.
They provide manageable run-time complexity while avoid-
ing direct knowledge of the density function. Crucial to
the functioning of many direct estimation methods is the
use of graph-theoretic ideas, such as the nearest-neighbor
ratios [36], which uses the k-NN graph to estimate MI, and
the minimum spanning tree used to estimate the GMI [37].
These graph-based approaches help make the evaluation of
MI computationally tractable. While most methods fall into
either plugin or direct categories, recent work has focused on
the development of a hybrid approach [38]. This approach
combines the fast run-time implementation of hash-tables with
an error convergence rate akin to plugin methods, thus merging
the advantages of both the estimation approaches.

III. ALGORITHM AND COMPONENT DESCRIPTION

In the following sections, we outline SNACS’s algorithm.
We follow it by providing details of the ACMI measure
and the set of constraints that automatically define the upper
pruning percentage limits of layers in a DNN. The final section
explains our notion of sensitivity, which identifies and protects
important filters from being pruned.

A. Notation

We assume that a given DNN has a total of L layers, where

1) Sensitive filters(): Function that returns the indices of a
subset of filters that need to be protected from pruning,
as computed using sensitivity (Section III-E).

2) F (l+1)
i : Activations from the selected filter i in layer l+1.

We also overload this notation to represent the indexing
scheme of the selected filter.

3) N (l+1): Total number of filters in layer l + 1.
4) SF (l+1)

i
: The set of filter indices whose values are pruned

from the weight vector.
5) η(): Connectivity score between two filters computed

using ACMI (Section III-C).

6) F (l)
j : Activations from the set of all filters excluding F (l)

j
in layer l. We also overload this notation to represent the
indexing scheme of the selected filters.

7) δ: Threshold on connectivity scores to ensure only strong
connections are retained.

8) γ (l+1): Upper limit on pruning percentage for layer l +
1 defined using the constraints in Section III-D.

9) W (l+2): Weight matrix of layer l + 2.
10) W̃ (l+2)(i, j): Indexing element in i th row and j th col-

umn of the weight matrix of layer l + 2 averaged over
the height and width dimensions.

B. Algorithm

The overall goal of our algorithm is to find the set of filters
that contribute minimally to the flow of information between
layers and prune their values from the weight matrix. We apply
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Fig. 2. Illustrative example of computing ACMI, η(), between activations of filters in layers l + 1 and l. In each η() computation, the arrows indicate the
filters between which we compute the connectivity score while taking into consideration the activations from the remaining filters in layer l. We repeat these
steps for every possible pair of filters except for highly-sensitive filters in layer l + 1, where η need not be computed since their connections (lines between
filters) will not be pruned.

SNACS between every pair of adjacent layers in a pretrained
DNN where

1) We identify a subset of sensitive filters in layer l+1 that
need to be protected from pruning and iterate over the
remaining insensitive filters in layer l + 1.

2) To measure the connectivity score, η, between filters in
layers l and l + 1, we apply our proposed hash-based
ACMI estimator to the activations from each set of
filters. Fig. 2 shows an example of this process. The
connectivity score evaluates the strength of the relation-
ship between two filters in the context of contributions
from all the remaining filters in layer l.

3) If the connectivity score is lower than a threshold level
δ, and the number of pruned filters does not exceed the
predetermined upper limit, denoted by γ (l+1), we add
the index of the filter to SF (l+1)

i
. The weights for retained

and protected filters/neurons are untouched, while we
zero out the weights for the entire kernel/elements in
pruned filters/neurons.

In the practical implementation of Algorithm 1, we determine
the value of δ by thresholding η values from a chosen layer to
remove sufficient weights and match the predetermined γ l+1.
Once we prune the filters that contribute the least across all
the layers of the DNN, we proceed to retraining the network
using a setup that mirrors the training phase of the pretrained
DNN. Across Algorithm 1, we note that SNACS does not
contain a continual feedback loop to update weights when
pruning. Instead, we take only a single retraining pass after
pruning. Compared to iterative pruning approaches, which
often continually fine-tune to compensate for the performance
lost due to pruning, SNACS falls firmly in the domain of
single-shot pruning methods.

C. Adaptive Conditional Mutual Information

In this section, we introduce adaptive MI (AMI), a nonlinear
dependency measure that is based on the f -divergence
measure [15], [39], extend it to a conditional formulation,
and discuss the hash-table-based estimator used to compute
ACMI.

Algorithm 1: SNACS Pruning Between Filters of Layers
(l, l + 1)

for Every pair of layers (l, l + 1), l ∈ 1, 2, . . . , L − 1 do
Compute γ (l+1);
for F (l+1)

i , i ∈ {1, 2, . . . N (l+1)} \
SENSITIVE_FILTERS

({
1, 2, . . . N (l+1)

})
do

Initialize SF (l+1)
i

= ∅;
for F (l)

j , j ∈ 1, 2, . . . N (l) do

Compute η(F (l+1)
i , F (l)

j |F (l)
j );

if
(
η(F (l+1)

i , F (l)
j |F (l)

j ) ≤ δ and∑
i |SF (l+1)

i
|/(N (l+1)N (l)) < γ (l+1)

)
then

SF (l+1)
i

= SF (l+1)
i

∪ index(F (l)
j )

end
end

end
end

1) Definition: Let X and Y be Euclidean spaces and let PXY

be a probability measure on the space X × Y . Here, PX and
PY define the marginal probability measures. Similar to [14],
for given function (x, y) ∈ X × Y �→ ϕ(x, y) ≥ 0, the AMI,
denoted by Iϕ(X; Y ), is defined as

Iϕ(X; Y ) = E
PX PY

[
ϕ(X,Y )g

(
dPXY

d PX PY

)]
(1)

where (dPXY/dPX PY ) is the Radon–Nikodym derivative, and
g : (0,∞) �→ R is a convex function and g(1) = 0. Note that
when (dPXY /dPX PY ) → 1 then Iϕ → 0. The overall bounds
on the AMI measure are given by

0 ≤ Iϕ(X,Y ) ≤ 1

2
E

PX PY

[
ϕ(X,Y )

(
dPXY

d PX PY
+ 1

)]
. (2)

An explanation of how we arrive at these bounds is provided
in Appendix A.
2) Adaptive Conditional Mutual Information: Let X , Y ,

and Z be Euclidean spaces and let PXY Z be a probability
measure on the space X × Y ×Z . We presume PXY |Z , PX |Z ,
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and PY |Z are the joint and marginal conditional probability
measures, respectively. PZ defines the marginal probability
measure on the space Z . Following [14], the ACMI, denoted
by Iϕ(X; Y |Z), is defined as

Iϕ(X; Y |Z) = E
PZ PX |Z PY |Z

[
ϕ(X,Y, Z)g

(
dPXY |Z

d PX |Z PY |Z

)]
. (3)

In this article, we focus on the particular case of g(t) = ((t −
1)2/2(t+1)), introduced in [40]. Using this formulation allows
for Iϕ ∈ [0, 1] and symmetric behavior, which are critical to
the functioning of our algorithm, as well as a number of other
properties which allow for statistical analysis, as highlighted
in [41]. Note that when ϕ = 1, the ACMI in (3) becomes
the conditional geometric MI measure proposed in [37]. Next,
we propose a hash-based estimator of ACMI to approximate
the connectivity score between filters.
3) Hash-Based Estimator of ACMI: Consider N i.i.d sam-

ples
{
(Xi ,Yi , Zi)

}N
i=1 drawn from PXY Z , which is defined

on the space X × Y × Z . We define a dependence graph
G(X,Y, Z) as a directed multipartite graph, consisting of three
sets of nodes V , U , and W , with cardinalities denoted as
|V |, |U |, and |W |, respectively and with the set of all edges
EG . The variable W here is different from the DNN weight
matrix. Following similar arguments to [38], we map each
point in the sets X = {X1, . . . , XN }, Y = {Y1, . . . ,YN }, and
Z = {Z1, . . . , ZN } to the nodes in the sets V , U , and W ,
respectively, using the hash function H .
Here, H (x) = H2(H1(x)), where the vector valued

hash function H1 : R
d �→ Z

d is defined as H1(x) =
[h1(x), . . . , h1(xd)], for x = [x1, . . . , xd ] and h1(xi) = 
(xi +
b/ε)�, for a fixed ε > 0, and random variable b ∈ [0, ε]. The
random hash function H2 : Zd �→ F is uniformly distributed
on the output F = {1, 2, . . . , F} where for a fixed tunable
integer cH , F = cH N .
After the projection of values on to the dependence graph

G(X,Y, Z), we define the following cardinality:
Ni jk = #{(Xt,Yt , Zt) s.t. H (Xt) = i,

H (Yt) = j, H (Zt) = k} (4)

which is the number of joint collisions of the nodes
(Xt ,Yt , Zt) at the triple (vi , u j , ωk). Let Nik , Njk , and Nk be
the number of collisions at the vertices (vi , ωk), (u j , ωk), and
ωk , respectively. By using Ni jk , Nik , Njk , and Nk , we define
the following ratios:

ri jk := Ni jk

N
, rik := Nik

N
, r jk := Njk

N
, rk := Nk

N
. (5)

Finally, using the above ratios we propose the following
hash-based estimator of the ACMI measure (3):

Îϕ(X; Y |Z) =
∑

ei j k∈EG

ϕ(i, j, k)
rik r jk
rk

g

(
ri jk rk
rik r jk

)
(6)

summed over all edges ei jk of G(X,Y, Z) having nonzero
ratios.
Theorem 1: For given g(t) = ((t − 1)2/2(t + 1)) and

under the assumptions: (A1) The support sets X , Y , and Z
are bounded. (A2) The function ϕ is bounded. (A3) The

continuous marginal, joint, and conditional density functions
are belong to Hölder continuous class, [42]. For fixed dX , dY ,
and dY , as N → ∞ we have

Îϕ(X; Y |Z) −→ Iϕ(X; Y |Z), a.s. (7)

The proof of Theorem 1 is available in the Appendices.
4) Implementation: Overall, X,Y , and Z denote sets of

activations derived from different filters, and we obtain a
scalar value (connectivity score) as the outcome of the ACMI
estimator in (6). The flexibility in defining function ϕ offers a
way to connect the probabilistic framework of MI to existing
weight-based pruning approaches. In Section IV, we explore
a variety of options for ϕ and empirically determine that a
function defined on the weight matrix helps achieve the highest
pruning performance in our experiments.

D. Definition of Upper Pruning Percentage Limit of Layers

To protect different layers of the DNN from being exces-
sively pruned, we propose a set of operating constraints to
automate the joint definition of the upper pruning percentage
limits of every layer in the DNN. Our approach follows the
trends in degradation of the quality of activations when we
prune a layer to varying extents. At each layer, we collect the
performances of an SVM model with an RBF kernel (α(l)

c ),
trained on a subset of activations from the un-pruned version
of the layer and tested on the same subset from the pruned
version of the layer at various compression levels c, where
c ∈ {1, 2, 3, . . . , 99}. Here, we use the ground-truth labels
from the dataset to train the SVM model.
Once we have the performance of SVM models across all

layers, we cycle through them, from 100% to 0%, to find
the optimal threshold value such that the sum of compression
levels of all the layers dictated by the selected threshold
adds up to our overall target pruning percentage. Each layer’s
pruning percentage is dictated by the highest compression
level where the SVM model’s performance exceeds the cho-
sen threshold. The general trend we observe is higher the
compression level, the lower the SVM model’s performance.
Thus, picking smaller performance thresholds leads to the
selection of higher compression levels in a layer. We select
the highest compression level from a range of possible values
to compensate for noisy and inconsistent behavior in SVM
performances. Mathematically, we optimize

τ =
L∑

l=1

β(l)γ (l) (8)

where β(l) is the ratio of the number of parameters in layer
l to the total number of parameters across the entire DNN,
and τ denotes the desired pruning percentage across the
DNN. Fig. 3 illustrates this process using an example of four
layers. It is important to note that the statistics computed
from the SVM models across all layers can be executed in
parallel, at an average of 36 s per SVM model. The speed and
parallelism are important differences from prior work where
optimization involves computing the permutation of pruning
percentages across various layers (order of 99l). Across each
such permutation of pruning percentages, the entire network
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Fig. 3. Selection process for upper pruning percentage limits for each layer
of the DNN is based on using a fixed threshold (dotted line) over the SVM
models’ performances such that the weighted sum of Pruning (%) allocated
to each layer, the x-coordinate where the threshold intersects the curve latest,
matches the overall sparsity τ .

needs to be retrained/fine-tuned, which can take anywhere
from a couple of hours (CIFAR-10) to a week (ILSVRC-2012).
This cost is significantly higher when compared to the time
taken for a forward pass across the DNN and training an
RBF-SVM model. Our core contribution in this work is a
systematic approach to deciding the upper pruning percentage
limits across all layers of the DNN. Previous works often
relegate this information to the final chosen values without
disclosing how they arrived at them. We provide the γ -values
for all layers of each DNN architecture in our supplementary
materials.

E. Sensitivity of Filters

A common assumption made during pruning is that all filters
in a layer have the same downstream impact and hence can
be characterized solely using the magnitude of their weights.
In contrast, probabilistic pruning approaches like MINT [11]
aim to maintain the flow of information between a pair of
layers, but they consider all filters equally important. Taking
into account each filter’s impact on succeeding layers is an
effective tool to assess their importance and protect filters that
contribute the majority of information from being pruned.
We define a sensitivity criterion, λ(Fl+1

i ), that can be used to
sort filters in their order of importance. Using this, we curate a
subset of filters that are critical and hence need to be protected
from pruning, while the remaining filters are pruned using the
steps in Algorithm 1. To evaluate the sensitivity of filters in
layer l + 1, we look at the weight matrix of its downstream
layer l + 2, W (l+2) , and assess the contributions from filters
in l + 1 to those in l + 2. Here, W (l+2) ∈ R

N (l+2)×N (l+1)×H×W ,
where H,W are the height and width of the filters in layer
l + 2. For a given filter, the sum of normalized contributions
across all the filters in l+2 is its overall sensitivity, λ(F (l+1)

i ).
It is defined as

λ
(
Fl+1
i

) =
N (l+2)∑
fc=1

W̃ (l+2)( fc, i)
/C(l+2)( fc) (9)

where C(l+2)( fc) =
N (l+1)∑
f p=1

W̃ (l+2)( fc, f p). (10)

Here, C(l+2) is the normalization constant used to relate the
weights of filters from l + 1 contributing to the same filter in
l + 2 and W̃ (l+2) is the weight matrix of l + 2 averaged over
the height and width dimensions.
Once we obtain the order of sensitivity values for filters

in a given layer, we define a threshold of highly sensitive
filters that remain untouched after empirically comparing the
improvement in performance at similar pruning levels with and
without protecting sensitive filters. This comparison is critical
to ensure that only sensitive filters, which contribute the
majority of the information downstream, remain untouched.
This idea also helps improve the overall compression perfor-
mance since less sensitive filters can be pruned more without
compromising the quality of information flowing between
layers to a large degree. After empirically comparing the
degradation in performance of the SVM model, between the
case when all the filters are pruned and the case when we
protect a variable percentage of sensitive filters, we determine
the set of highly sensitive filters to protect from pruning, and
return their indices to Algorithm 1.

IV. EXPERIMENTAL RESULTS

We divide our results into three sections, formatted as an
ablative study. Section IV-A focuses on the evaluation of
run-time and choice of ϕ, to highlight the impact of using
our ACMI estimator in place of the MST-based estimator
used in MINT [11]. Here, the upper pruning limits are man-
ually defined, with the help of artificial limits placed on the
SVM model accuracy, to mimic prior work. In Section IV-B,
we detail the results of applying SNACS (ACMI + Auto-
mated upper pruning percentage limits) across four Dataset-
DNN combinations. Within this section, we focus on drawing
strong comparisons against single-shot pruning approaches
and highlight how competitive SNACS is amongst approaches
that use a modified objective function or iterative pruning.
Finally, in Section IV-C, we discuss the impact of adding our
sensitivity measure as a way to prioritize and fully protect
important filters from being pruned.
1) Dataset-DNN: We use four standard Dataset-DNN

combinations to evaluate and compare our approach to
standard baselines. They are, CIFAR10 [43]-VGG16 [44],
CIFAR10-ResNet56 [45], CIFAR10-MobileNetv2 [46], and
ILSVRC2012 [47]-ResNet50. A detailed breakdown of each
dataset and the experimental setup used in each experiment is
included in the supplementary materials.
2) Metric: We use the following metrics to compare

performances.

1) Pruning (%): The percentage of parameters removed
when compared to the total number of parameters in
the un-pruned DNN (Conv and FC only).

2) Test Accuracy (%): The best performance on the
testing set, upon training, for baseline networks, and
retraining, for pruning methods.

3) FLOPs Reduced (%): The percentage of FLOPs
reduced when compared to the un-pruned DNN.

Apart from the above metrics, we also use run-time to compare
speed of estimators. A high quality method must have high
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TABLE I

WE COMPARE THE MAXIMUM COMPRESSION PERFORMANCE OF A
VARIETY OF ϕ FUNCTIONS WHEN MAINTAINING A TEST ACCURACY

≥93.43%. ϕ = exp((−WEIGHTS2/2)) PERFORMS THE BEST, AND

WE USE THIS IN ALL FURTHER EXPERIMENTS

compression performance while maintaining a test accuracy
relatively close to the baseline.

A. Evaluation of Estimator

1) Run-Time Comparison: We compare the run-times taken
to compute the dependency scores across convolution layer
9 in VGG16 using our proposed ACMI estimator and the
MST-based estimator used in MINT [11]. For this experiment,
we use three distinct estimators, the MST-based estimator from
MINT, our ACMI estimator with ϕ = 1 and ϕ = ‖weight‖2.
Here, weight values are rescaled between [0, 1]. To provide
a fair comparison, we adopt the grouping concept introduced
in MINT. From Fig. 4, we make two important observations:
1) run-time increases with an increase in group size across
both estimators and 2) relative to the run-time from the MST-
based estimator, our estimator is faster by at least 17×. Thus,
we show that our estimator significantly reduces the overall
run-time required to compute conditional MI across a DNN.
Furthermore, we reduce the run-time for one of the largest
computational bottlenecks irrespective of the scaling function
used in ACMI.
2) Selection of ϕ: There are several potential functions that

we can associate with ϕ. In Table I, we illustrate a variety of
functions and their performance, w.r.t. the Pruning (%) while
maintaining an accuracy ≥93.43% in the VGG16-CIFAR10
setup. The main differences between Section IV-A and
MINT [11] are the inclusion of ACMI and the manual def-
inition of upper pruning percentage limits using artificially
capped SVM model accuracies (0.8). From Table I, we observe
that most variants of ϕ outperform MINT, including ϕ = 1.
Furthermore, we find that ϕ = exp((−weights2/2)) performs
the best when compared to all the options for ϕ we explore.
Thus, we set this as the default ϕ throughout all further
experiments.

B. Large-Scale Comparison

When compared to existing single-shot pruning methods,
from Table II, we observe that SNACS outperforms all of
them by a significant margin to establish new state-of-the-
art performances. Our consistently high results establish our
hybrid pruning framework as one of the top performing
single-shot algorithms. A combination of improved estimates
from the hash-based ACMI estimator (Table I) and the

Fig. 4. (a) When comparing run-times between the MST-based estimator used
in MINT [11] and our hash-based ACMI estimator, our estimator provides
up to 27× speedup in run-time. Run-time comparison across MST and
ACMI measures. (b) Across different selections of the scaling function in our
estimator, the run-times scale similarly as the number of groups increases.
Run-time comparison across various ϕ.

joint definition of upper pruning percentage limits for each
layer in the DNN are the main contributors to our high
performance.
Fig. 5 helps put SNACS’s performance in perspective of

pruning approaches that use either sparsity inducing objective
functions or iterative retraining setups. In general, we expect
a decrease in performance with an increase in the number
of parameters pruned. Often, iterative approaches achieve the
highest compression while suffering minimal drop in testing
accuracy, with methods that use joint optimization sprinkled
across the entire range of pruning (%) values. Single-shot
methods are often the weakest performers given that they get
the fewest attempts to account for the loss in accuracy after
pruning. However, across each dataset-DNN combination,
our algorithm is highly competitive with the best pruning
approaches regardless of variations in optimizers, iterative
pruning pipelines, modified objective functions or layer-by-
layer fine-tuning. SNACS remains competitive at high pruning
levels despite using a single prune-retrain step.
An important distinction between our pruning approach and

other single-shot methods we compare against is that we avoid
pruning early layers to a large extent, as shown in Fig. 6.
Given that a large portion of FLOPs are concentrated in
the early portion of the network, the percentage of FLOPs
reduced by our SNACS is slightly lower when compared to
methods like X-Nets [48], which preemptively prunes the
network before training, or SSS [23], which optimizes a
different objective function altogether. Interestingly, on closer
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TABLE II

USING A SINGLE TRAIN-PRUNE-RETRAIN CYCLE, SNACS IS AMONG THE TOP PERFORMERS ACROSS ALL THE DATASET-DNN
COMBINATIONS. BASELINES ARE ORDERED ACCORDING TO INCREASING PRUNING (%)

Fig. 5. Comparison of single-shot (green) versus nonsingle-shot (red) pruning approaches across our benchmarks. SNACS, despite being a single-
shot approach, is highly competitive with the best performing methods. (a) CIFAR10-VGG16. (b) CIFAR10-ResNet56. (c) CIFAR10-MobileNetv2.
(d) ILSVRC2012-ResNet50.

inspection of Fig. 6, we observe minimal correlation between
the patterns of high and low γ values achieved in MINT and

our work. While MINT showcases minimal pruning in the
early and middle set of layers, SNACS focuses on the middle

Authorized licensed use limited to: University of Maine. Downloaded on September 19,2024 at 21:38:50 UTC from IEEE Xplore.  Restrictions apply. 



3802 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 3, MARCH 2024

Fig. 6. On observing the compression performance per layer in the ILSVRC2012-ResNet50 experiment, SNACS is able to achieve high Pruning (%) while
focusing only on the middle and latter layers, avoiding the early layers. Interestingly, the pattern of pruning in MINT and SNACS is extremely different.

TABLE III

BY SAVING A SMALL PERCENTAGE OF SENSITIVE FILTERS, WE CAN FURTHER IMPROVE THE OVERALL

PRUNING (%) WHILE MAINTAINING HIGH TEST ACCURACY (%)

and final set of layers, avoiding the early layers. We believe
this variation stems from the fact that γ values in MINT
were co-opted from prior works which focus on individual
layers while in SNACS the joint definition of γ s helps capture
trends across multiple layers while trying to optimize the
performance-sparsity tradeoff.
We observe that when using SNACS, DNNs are more

forgiving when pruning layers closer to the output than input
since the retraining phase allows them to overcome the loss
of abstract concepts learned in later layers but not funda-
mental structures when compressing the earlier layers of the
network. Our observations are matched by the discriminant
scores in [49] and the median oracle ranking statistics per
layer from [51]. However, these observations are in direct
contrast to previous works that identify that portions of the
network closer to the input are often pruned first [23], [28].
We hypothesize that their outcomes stem from the modification
of the objective function and subsequent training of baseline
networks, whereas our approach and those in [50] and [52]
focus on removing filters based on a predefined criterion
without modifying the loss function.

C. Sensitivity-Based Pruning

Experiments in Sections IV-A and IV-B assume that all
filters contribute equally to the information flow downstream

TABLE IV

DEVIATING THE % OF FILTERS SAVED FROM OUR OPTIMAL CONSTRAINTS
FORCES LOWER SPARSITY LEVELS WITH BAD TESTING

PERFORMANCE. OPTIMAL VALUES ARE

HIGHLIGHTED IN BOLD

and hence, we only use the connectivity scores for pruning.
In this section, we highlight the impact of using the sensitivity
criterion to prioritize the pruning of relatively weaker filters
while protecting more sensitive filters from pruning on the
CIFAR10-ResNet56 experimental setup. In Fig. 7(a) and (b),
we illustrate the 2-D pruning masks generated by our
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Fig. 7. Illustrations of filters retained (white) and pruned (black) w/o and with sensitivity based pruning. When protecting important filters from pruning, all
its associate connections are maintained (red highlight). An interesting impact of sensitivity is that the connections pruned can be completely modified when
compared to its counterpart w/o pruning. This is illustrated by the pruning mask of convolution 46. (a) Convolution 35. (b) Convolution 46.

algorithm, where the colors black and white represent filters
that are removed and retained, respectively, and we observe
three distinct behaviors. First, when we protect a filter from
pruning, an entire row representing all of its associated con-
nections is retained. Second, we also observe an increase in the
number of weights pruned from filters that are not protected.
An overall increase in the number of black pixels illustrates
this idea. Finally, when we apply the sensitivity criterion to
layers that were previously not pruned to a large extent (Fig. 6
Convolution 32, 34, and many others) we observe a complete
restructure in the way filters are pruned. Fig. 7(b) highlights
this trend by showcasing an increase in the overall pruning of
the layer and a stark difference in how it is pruned. All these
observations put together lead to an overall improvement in the
Pruning (%) with the inclusion of sensitivity while maintaining
high test accuracy (%), as shown in Table III.
Across the results presented in Table III, we maintain the

percentage of filters protected from pruning at an optimal level.
We determine the optimal combination of high sparsity and
accuracy by constraining the % of filters saved to a value such
that SVM model performance is higher than the case when no
filters are protected. The performance comparison is restricted
to the SVM model only, and no retraining is necessary.
When we relax this constraint (Table IV), we observe that
the performance levels drop by a significant amount and the
sparsity level is lower than expected. This trend highlights the
necessity of maintaining our constraints to obtain the optimal
combination of high sparsity with accuracy.

V. CONCLUSION

Overall, we propose a novel DNN pruning algorithm
called SNACS which uses ACMI to measure the connectiv-
ity between filters, a simple set of operating constraints to
automate the definition of upper pruning percentage limits of
layers in a DNN, and a sensitivity criterion that helps protect
a subset of critical filters from pruning. SNACS provides a
faster overall run-time, improves accuracy in the estimation
process, and offers state-of-the-art levels of compression using
a single train-prune-retrain cycle, and the sensitivity criterion
can further boosts the compression performance. An important

direction of future work is to extend this algorithm to an
iterative approach and incorporate it into the training phase.
Doing so would help reduce the overall training time while
achieving extreme levels of sparsity. Additionally, character-
izing the pruned networks using a multitude of events like
adversarial attacks, calibration error, and many others could
shed light on how close such networks are to being deployed
in the real-world.

APPENDIX A
BOUNDS ON AMI

Recall the definition of AMI (1). For the particular case of
g, g(t) = ((t − 1)2/2(t + 1)), we have

Iϕ(X; Y ) = 1

2
E

PX PY

[
ϕ(X,Y )

(
dPXY

d PX PY
+ 1

)]
(11)

− 2 E
PX PY

[
ϕ(X,Y )h

(
dPXY

d PX PY

)]
(12)

where h(t) = (t/t + 1). When (dPXY /dPX PY ) = 1, then
the minimum value of Iϕ is zero. Further, when PXY and
PX PY have no overlapping space then the second term in (11)
becomes zero. Therefore, bounds on Iϕ is given as

0 ≤ Iϕ(X,Y ) ≤ 1

2
E

PX PY

[
ϕ(X,Y )

(
dPXY

d PX PY
+ 1

)]
. (13)

APPENDIX B
PROOF OF THEOREM 1

Recall our estimator in Section III-C

Îϕ(X; Y |Z) =
∑

ei j k∈EG

ϕ(i, j, k) αi jk g

(
ri jk
αi jk

)
(14)

where αi jk = (rik r jk/rk). The expectation of Îϕ is derived as

E

⎡⎣ ∑
ei j k∈EG

ϕ(i, j, k) αi jk g

(
ri jk
αi jk

)∣∣∣∣EG

⎤⎦ (15)

=
∑

ei j k∈EG

E

[
ϕ(i, j, k) αi jk g

(
ri jk
αi jk

)∣∣∣∣Ei jk

]
(16)
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where Ei jk is the event that there is an edge between the
vertices vi , u j , and ωk in the dependency graph G(X,Y, Z).
Let hash function H1 map the N i.i.d points Xk , Yk , and
Zk to X̃k , Ỹk , and Z̃k . Following the notations used in [38],
we denote E=1

i be the event that there is exactly one vector
from X̃ i that maps to vi using H2. Similarly, we define E=1

j

and E=1
k . We denote E=1

i jk := E=1
i ∩ E=1

j ∩ E=1
k and let E=1

i jk

be the complement set of E=1
i jk .

We simplify (16) by splitting it into two parts: without
collision and due to collision. Based on the law of total
expectation, we have

=
∑

ei j k∈EG

P
(
E=1
i jk

∣∣Ei jk
)

×E

[
ϕ(i, j, k) αi jkg

(
ri jk
αi jk

)∣∣∣∣E=1
i jk, Ei jk

]
+

∑
ei j k∈EG

P
(
E=1
i jk

∣∣∣Ei jk

)
×E

[
ϕ(i, j, k) αi jk g

(
ri jk
αi jk

)∣∣∣∣E=1
i jk, Ei jk

]
. (17)

Step 1 Bias on w/o Collision: Similar to [38, Lemma 7.3],
we derive

P
(
E=1
i jk

∣∣Ei jk
) = 1 − O

(
1

εd N

)
, d = dX + dY + dZ . (18)

This is because all three |V |, |U |, and |W | are upper bounded
by O(ε−d). Note that ε is a function of N . Additionally
from [38], we infer the following results:

E[αi jk] = E[rik] E[r jk]
E[rk] + O

(√
1

N

)
. (19)

Note that (19) is implied based on the fact that
V(αi jk) ≤ O(1/N) which is proven by applying
Efron-Stein inequality under assumptions (A1) and (A3),
similar to arguments in [38, Lemma 7.10]. In addition,
we have

E

[
ri jk
αi jk

]
= E[ri jk]

E[αi jk] + O

(√
1

N

)
(20)

E

[
ri jk
αi jk

]
= P

(
E≤1
i jk

)
E

[
ri jk
αi jk

∣∣∣∣E≤1
i jk

]
+ P

(
E>1
i jk

)
E

[
ri jk
αi jk

∣∣∣∣E>1
i jk

]
(21)

where by using similar arguments as in [38, eq. (56)],
we have P(E≤1

i jk) = 1− O(
√
1/(εd N)). Therefore, P(E>1

i jk) =
O((1/(εd N))1/2). Further the second term in (21) is the
bias because of collision of H , which will be proved
later in the current section, that is upper bounded by
O((1/(εd N))1/2).
Let xD and xC , respectively, denote the discrete and con-

tinuous components of the vector x , with dimensions dD and
dC . Also let fXC (xC) and pXD (xD) respectively denote density
and pmf functions of these components associated with the
probability measure PX . Let X have dC and dD, Y have

d ′
C , d

′
D, and Z have d ′′

C , d
′′
D as their continuous and discrete

components, respectively. Then it can be shown that

E

[
ri jk

∣∣∣E≤1
i jk

]
= P(XD = xD,YD = yD, ZD = zD)εdC+d ′

C+d ′′
C

× ( f (xC, yC , zC |xD, yD, ZD) + �(ε, q, γ ))

(22)

where densities have bounded derivatives up to the order q ≥ 0
and belong to the Hölder continuous class with smoothness
parameter γ . Note that �(ε, q, γ ) → 0 as N → ∞. Now
from [38, eqs. (50), (51), and (53)] and from (19), (20) above,
under assumptions (A1) and (A3), we derive

E

[
ri jk
αi jk

∣∣∣∣E≤1
i jk

]
= dPXY Z PZ

dPXZ PY Z
+ �̃(ε, q, γ ) + O

(√
1

N

)
(23)

where H (x) = i , H (y) = j , H (z) = k, and as N → ∞,
�̃(ε, q, γ ) −→ 0.
Step 2 Bias Because of Collision: Let X̃ = {X̃i}LX

i=1, Ỹ =
{Ỹi}LY

i=1, Z̃ = {Z̃i}LZ
i=1, respectively, denote distinct outputs of

H1 with the N i.i.d points Xk , Yk , and Zk as inputs. We denote
LXY Z := |X̃ ∪ Ỹ ∪ Z̃|, LXZ := |X̃ ∪ Z̃|, and LY Z := |Ỹ ∪ Z̃|

Bϕ : =
∑

ei j k∈EG

P
(
E=1
i jk

∣∣∣Ei jk

)
×E

[
ϕ(i, j, k) αi jk g

(
ri jk
αi jk

)∣∣∣E=1
i jk, Ei jk

]
≤

∑
i, j,k∈F

P
(
E>1
i jk

)
×E

[
1Ei j kϕ(i, j, k) αi jk g

(
ri jk
αi jk

)∣∣∣∣E>1
i jk

]
(24)

where E>1
i jk = E>1

i ∩ E>1
j ∩ E>1

k , and E>1
i is the event that

there are at least two vectors from X̃ i that map to vi using
H2. Once again, using the law of total expectation, then the
RHS of (24) becomes

=
∑

i, j,k∈F
P
(
E>1
i jk

)(
P
(
Ei jk

∣∣E>1
i jk

)
×E

[
ϕ(i, j, k) αi jkg

(
ri jk
αi jk

)∣∣∣∣E>1
i jk, Ei jk

]
+P

(
Ei jk

∣∣E>1
i jk

)
×E

[
ϕ(i, j, k) αi jk g

(
ri jk
αi jk

)∣∣∣∣E>1
i jk, Ei jk

])
=

∑
i, j,k∈F

P(Ei jk)P
(
E>1
i jk

∣∣Ei jk
)

×E

[
ϕ(i, j, k) αi jk g

(
ri jk
αi jk

)∣∣E>1
i jk , Ei jk

]
. (25)

The equality in (25) is obtained based on Bayes error and
g = 0 on the event Ei jk . Now, recalling (18), using (13) we
bound the last line in (25) by

O

(
1

εd N

) ∑
i, j,k∈F

P(Ei jk)

×E
[
ϕ(i, j, k)

(
ri jk + αi jk

)∣∣E>1
i jk , Ei jk

]
. (26)
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This implies that

Bϕ ≤ O

(
1

εd N

) ∑
i, j,k∈F

P(Ei jk)

× (
E
[
ϕ(i, j, k)ri jk

∣∣E>1
i jk, Ei jk

]
+E

[
ϕ(i, j, k)αi jk

∣∣E>1
i jk, Ei jk

])
= O

(
1

εd N2

) ∑
i, j,k∈F

P(Ei jk)

×
(
E
[
ϕ(i, j, k) Ni jk

∣∣E>1
i jk, Ei jk

]
+E

[
ϕ(i, j, k)

Nik N jk

Nk

∣∣∣∣E>1
i jk , Ei jk

])
. (27)

If we extend our discussion to all the possible mappings from
H1, we obtain

= O

(
1

εd N2

)∑
x̃,ỹ,z̃

pX̃,Ỹ,Z̃(x̃, ỹ, z̃)
∑

i, j,k∈F
P(Ei jk)

×
(
E
[
ϕ(i, j, k) Ni jk

∣∣E>1
i jk , Ei jk, X̃ = x̃, Ỹ = ỹ,

× Z̃ = z̃
]

+E

[
ϕ(i, j, k)

Nik N jk

Nk

∣∣∣∣E>1
i jk , Ei jk, X̃ = x̃, Ỹ = ỹ,

× Z̃ = z̃
])

. (28)

Let us define

Ai jk := {
r : H2(X̃r ) = i, H2(Ỹr ) = j, H2(Z̃r ) = k

}
,

Ak := {
r : H2(Z̃r ) = k

}
,

Aik := {
r : H2(X̃r ) = i, H2(Z̃r ) = k

}
,

A jk := {
r : H2(Ỹr ) = j, H2(Z̃r ) = k

}
. (29)

Let Mr be the number of the input points (X, Y, Z) mapped
to (X̃r , Ỹr , Z̃r ). Therefore, for i, j, k, we can rewrite Ni jk as

Ni jk =
LXY Z∑
r=1

1Ai j k (r)Mr . (30)

Similarly, M ′
r , M̃s , and Mt are defined the number of the input

points mapped to (X̃r , Z̃r ), (Ỹs , Z̃s), and Z̃t , respectively, and
we can write

Nik =
LXZ∑
r=1

1Aik (r)M
′
r , Njk =

LY Z∑
s=1

1A jk (s)M̃s (31)

Nk =
LZ∑
t=1

1Ak (t)Mt . (32)

Under the assumption that ϕ is bounded, we have

Bϕ ≤ O

(
1

εd N2

)∑
x̃,ỹ,z̃

pX̃,Ỹ,Z̃(x̃, ỹ, z̃)
∑

i, j,k∈F
P(Ei jk)

×
( LXY Z∑

r=1

P
(
r ∈ Ai jk

∣∣E>1
i jk , Ei jk, X̃ = x̃, Ỹ = ỹ, Z̃= z̃

)
× E

[
Mr

∣∣E>1
i jk , Ei jk, X̃= x̃, Ỹ= ỹ, Z̃= z̃

]

+
LXZ∑
r=1

LY Z∑
s=1

LZ∑
t=1

P
(
r ∈ Aik , s ∈ A jk, t ∈ Ak

∣∣E>1
i jk,

× Ei jk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)

× E

[
M ′

r M̃s

Mt

∣∣E>1
i jk , Ei jk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

])
.

(33)

Next, we find the probability terms

P
(
r ∈ Ai jk

∣∣E>1
i jk, Ei jk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

)
=

P
(
r ∈ Ai jk, E>1

i jk |X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)

P
(
E>1
i jk

∣∣∣X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
) . (34)

We first find the denominator of (34) first. We define
a = 1 when i = j = k and a = 3 for the case
i �= j �= k

P
(
E>1
i jk

∣∣X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)

= 1 − P
(
E=0
i jk

∣∣X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)

− P
(
E=1
i jk

∣∣X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)

= 1 −
(
F − a

F

)LXY Z

−
(
LXY Z

Fa

(
F − a

F

)LXY Z−a
)

= O

(
L2
XY Z

Fa+1

)
. (35)

Furthermore,

P
(
r ∈ Ai jk, E

>1
i jk

∣∣X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)

= P
(
r ∈ Ai jk

∣∣E>1
i jk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

)
× P

(
r ∈ Ai jk

∣∣X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)

=
(
1 −

(
F − a

F

)LXY Z−a
)(

1

F

)a

= O

(
LXY Z

Fa+1

)
. (36)

Combining (35) and (36) yields

P
(
r ∈ Ai jk

∣∣E>1
i jk, Ei jk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

)
= O

(
1

LXY Z

)
. (37)

Now, we simplify the following term:
P
(
r ∈ Aik, s ∈ A jk, t ∈ Ak

∣∣E>1
i jk , Ei jk,

X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)
. (38)

First, we assume that X̃v �= Ỹv �= Z̃v for v = r, s, t .
Then

P
(
r ∈ Aik, s ∈ A jk, t ∈ Ak

∣∣E>1
i jk , Ei jk, X̃ = x̃, Ỹ = ỹ,

Z̃ = z̃
)

≤ P
(
r ∈ Aik

∣∣E>1
ik , X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

)
× P

(
s ∈ A jk

∣∣E>1
jk , X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

)
× P

(
t ∈ Ak

∣∣E>1
k , X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

)
= O

(
1

LXZ LY Z LZ

)
. (39)
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Next, assume that X̃v = Ỹv = Z̃v for v = r, s, t ,
therefore, H2(X̃v ) = H2(Ỹv ) = H2(Z̃v), for v = r, s, t .
Then

P
(
r ∈ Aik , s ∈ A jk, t ∈ Ak

∣∣E>1
i jk, Ei jk, X̃ = x̃, Ỹ = ỹ,

Z̃ = z̃
) = δi jkO

(
1

LXY Z

)
. (40)

By using (40), (39), and (37) in (33), we obtain an upper
bound on bias with collision

Bϕ ≤ O

(
1

εd N2

)∑
x̃,ỹ,z̃

pX̃,Ỹ,Z̃(x̃, ỹ, z̃)
∑

i, j,k∈F
P(Ei jk)

(
O

(
1

LXY Z

) LXY Z∑
r=1

E
[
Mr

∣∣E>1
i jk, Ei jk, X̃ = x̃,

× Ỹ = ỹ, Z̃ = z̃
]

+
(
O

(
1

LXZ LY Z LZ

)
+ δi jk O

(
1

LXY Z

))
×

LXZ∑
r=1

LY Z∑
s=1

LZ∑
t=1

E

[
M ′

r M̃s

Mt

∣∣E>1
i jk, Ei jk, X̃ = x̃,

× Ỹ = ỹ, Z̃ = z̃
])

= O

(
1

εd N2

)∑
x̃,ỹ,z̃

pX̃,Ỹ,Z̃(x̃, ỹ, z̃)
∑

i, j,k∈F
P(Ei jk)

×
(
O

(
N

LXY Z

)
+

(
O

(
N

LXZ LY Z LZ

)
+ δi jk O

(
N

LXY Z

)))
. (41)

Rearranging the expectation term we get

= O

(
1

εd N2

)∑
x̃,ỹ,z̃

pX̃,Ỹ,Z̃(x̃, ỹ, z̃)

×
(
O

(
N

LXY Z

)
+
(
O

(
N

LXZ LY Z LZ

)
+ O

(
1

LXY Z

)))

×E

⎡⎣ ∑
i, j,k∈F

1Ei j k

⎤⎦
≤ O

(
1

εd N2

)∑
x̃,ỹ,z̃

pX̃,Ỹ,Z̃(x̃, ỹ, z̃)

×
(
O

(
N

LXY Z

)
+
(
O

(
N

LXZ LY Z LZ

)
+O

(
1

LXY Z

)))
LXY Z

≤ O

(
1

εd N

)
. (42)

Hence as N −→ ∞, the bias estimator due to collision tends
to zero, i.e., Bϕ −→ 0.

Step 3 Combine Results Let us denote N ′
i jk , N ′

ik ,
N ′

jk , and N ′
k , respectively, as the number of the input

points (X, Y, Z), (X, Z), (Y, Z), and Z mapped to the
bins (X̃ i , Ỹ j , Z̃k), (X̃ i , Z̃k), (Ỹ j , Z̃k), and Z̃k using H1.
We define the notations r(i) = H−1

2 (i) for i ∈ F and
s(x) := H1(x) for x ∈ X ∪ Y ∪ Z . Then, from (23),

we have

E

[
N ′
s(X )s(Y )s(Z)N

′
s(Z)

N ′
s(X )s(Z)N

′
s(Y )s(Z)

]

= dPXY Z PZ

dPXZ PY Z
+ �̃(ε, q, γ ) + O

(√
1

N

)
. (43)

We simplify the first term in (17) as∑
i, j,k∈F

P
(
E≤1
i jk

)
E

[
1Ei j kϕ(i, j, k) αi jk g

(
ri jk
αi jk

)∣∣E≤1
i jk

]
=

(
1 − O

(
1

εd N

)) ∑
i, j,k∈F

E

[
1Ei j kϕ(i, j, k) αi jk

× g

(
ri jk
αi jk

)∣∣∣∣E≤1
i jk

]
=

∑
i, j,k∈F

E

[
1Ei j kϕ(i, j, k)

Nik N jk

Nk N
g

(
Ni jk Nk

Nik N jk

)∣∣E≤1
i jk

]
+ O

(
1

εd N

)
=

∑
i, j,k∈F

E

[
1Ei j kϕ(r(i), r( j), r(k))

N ′
r(i)r(k)N

′
r( j)r(k)

N ′
r(k)N

× g

(
N ′
r(i)r( j)r(k)N

′
r(k)

N ′
r(i)r(k)N

′
r( j)r(k)

)]
+ O

(
1

εd N

)
. (44)

Let us denote

β(r(i), r( j), r(k)) = N ′
r(i)r( j)r(k)N

′
r(k)

N ′
r(i)r(k)N

′
r( j)r(k)

.

Therefore, the last line in (44) is equal to

= 1

N

∑
i, j,k∈F

E

[
ϕ(r(i), r( j), r(k))

N ′
r(i)r( j)r(k)

β(r(i), r( j), r(k))

× g
(
β(r(i), r( j), r(k))

)]
+ O

(
1

εd N

)

= 1

N
E

[
N∑
i=1

ϕ(s(X), s(Y ), s(Z))

β(s(X), s(Y ), s(Z))
g
(
β(s(X), s(Y ), s(Z))

)]

+ O

(
1

εd N

)
, (45)

where

β(s(X), s(Y ), s(Z)) = N ′
s(X )s(Y )s(Z)N

′
s(Z)

N ′
s(X )s(Z)N

′
s(Y )s(Z)

.

The expression in (45) equals

= EPXY Z

[
E

[
ϕ(s(X), s(Y ), s(Z))

β(s(X), s(Y ), s(Z))
g
(
β(s(X), s(Y )

× s(Z))
)∣∣∣X = x, Y = y, Z = z

]]
+ O

(
1

εd N

)
= EPXY Z

[
ϕ(X,Y, Z)h

(dPXY Z PZ

dPXZ PY Z

)]
+ �̃(ε, q, γ )
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+ O

(√
1

N

)
+ O

(
1

εd N

)
, (46)

where h(t) = g(t)/t and (46) is derived by borrowing [38,
Lemma 7.9]. Hence from (46) and (17), and the fact that
�̃(ε, q, γ ) −→ 0 as N → ∞, we conclude

E
[
Îϕ(X; Y |Z)

] −→ EPXY Z

[
ϕ(X,Y, Z)h

(
dPXY Z PZ

dPXZ PY Z

)]
as N → ∞. (47)

This completes the proof.
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