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Abstract—In this paper, we propose a novel machine learning-
based approach, called PostPINN-EM, for solving the partial
differential equations for stress evolution in a confined metal
interconnect multi-segment trees during the post-voiding stage
for fast electromigration (EM) check for interconnects. The new
approach is based on an enhanced two-stage Physics-Informed
Neural Networks (PINN) framework in which the physics law for
a single wire is enforced first and then atomic flux conservation
and stress continuity at the inter-segment junctions of wire
segments are then fulfilled to reduce the number of variables
of loss functions for the fast training process. Existing two-stage
PINN method uses supervised learning method for modeling a
single wire under various atomic flux conditions for the first
stage, which turns out to be much more difficult for post-voiding
phase due to arbitrary non-zero initial conditions. To mitigate
this problem, we propose a new closed-form parameterized
formula for stress solution of single wires with variable bound-
ary conditions based on the Laplace transformation methods.
Furthermore, we derive the analytic solutions for wire segment
with and without voiding as not all the wire segments will have
voids during the post-voiding phase. Numerical results on some
synthesized multi-segment interconnects show that the proposed
PostPINN-EM can achieve more than 100X speedup compared
to FEM based tool COMSOL with the expense of less than 1%
accuracy. Compared to the state of the art tool EMspice v1.0 [1],
this method can achieve more than 25X speedup with similar
accuracy compared to golden results from COMSOL.

Index Terms—Electromigration (EM) postvoiding phase,
physics-informed neural network (PINN), multisegment intercon-
nect, hydrostatic stress assessment

I. INTRODUCTION

Electromigration (EM) remains a significant reliability con-
cern for copper-based interconnects in current and future
technology nodes as the current density increases and the
interconnects’ dimensions shrink. Therefore, it is critical to
accurately assess aging and reliability of both interconnects
and devices during the design process.

The well-accepted Black and Blech-based EM models [2],
[3] have faced growing criticism for being overly conservative
and only applicable to a single wire segment [4], [5]. To
address these issues, several physics-based EM models and
assessment techniques based on Korhonen’s equations [6] have
recently been proposed [7], [8], [9], [10], [11], [12], [13], [14],
(151, [16], [17], [18], [1], [19], [20].

Recent studies have shown that accurate circuit-level analy-
sis of EM stress requires tree-level modeling of wire segments
in an interconnect tree [21]. To achieve this, the partial
differential equation (PDE) of hydrostatic stress evaluation in
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multi-segment metal wires under blocking material boundary
conditions, known as Korhonen’s equation, must be solved.
However, solving Korhonen’s equation and other PDEs using
traditional numerical methods remains a significant challenge
due to their inherent limitations. Therefore, several physics-
based EM models and assessment techniques based on Ko-
rhonen’s equations have been proposed to address these limi-
tations.

Recently, the so-called physics-informed neural networks
(PINN) or physics-constrained neural networks (PCNN) have
been proposed to learn and encode physics laws expressed
by nonlinear partial differential equations (PDE) for complex
physical, biological or engineering systems [22], [23]. In
PINN method, the physics laws, boundary condition and
initial conditions of the PDEs are explicitly enforced via loss
functions in neural networks and have shown promising results
for small PDE problems with a small number of variables.
Another significant benefit of PINN/PCNN idea is that they
are mesh-free compared to traditional FEM or FDM based
methods.

PINN based approach has been applied to solve Korhonen’s
equation recently [24], [25], [26]. In [24], PINN has been used
directly to solve for the stress evolution in the confined metal
for simple straight interconnects. Jin et al. further developed
a hierarchical PINN method in which two training stages
are used to slow training and convergence issues of plain
PINN [25]. In this method, the first stage DNN model for a
single wire was built by supervised learning method. Recently
Hou et al. proposed to use some analytic formula in the
final loss functions of the PINN method [26]. However, all
of those PINN approaches are for nucleation phase analysis.
No analysis has been done for more complicated post-voiding
phase with more complicated boundary conditions and initial
non-zero stress conditions. Actually our initial study shows
that with non-zero initial conditions, it is very difficult, if not
impossible, to train a DNN model with sufficient accuracy
using the supervised learning method.

In this work, we try to mitigate the mentioned problem and
extend the two-stage PINN concept to solve the post-voiding
phase of EM failure processes in multi-segment interconnects
tree. Our new contributions in this work are as follows:

e First, we propose to apply two-stage PINN concept to
solve PDE for the post-voiding phase of the stress eval-
uation on the confined multi-segment interconnect metal
wires for the first time. Compared to the nucleation phase,
one challenge we face is to build accurate parameterized
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stress models for a single wire under various aomtic flux
boundary conditions and arbitrary non-zero conditions for
segement with and without voids.

e To mitigate the mentioned problem, instead of using
the supervised learning as done in [25], we propose
a closed analytic formula for single interconnect seg-
ment. This analytical solutions are obtained by solving
Korhonen’s equation using the Laplace transformation
method. Our analytical solution takes initial stress into
account. Furthermore, we derive analytical solutions for
both voidless segments and segments with void by taking
corresponding physics into consideration. The analytical
solutions we use depend totally on the physical and
material properties of the wires.

e For our second stage, we use PINN to enforce atomic
flux conservation and stress continuity at the inter-
segment junctions of wire segments based on the analytic
solution of single segments from the first stage. As we
only enforce the physics law at the a few inter-segment
junctions, this can lead to dramatic reduction of variables
in the loss functions and speedup of the training process.

e Experimental results on some synthesized multi-
segment interconnects show that the proposed PostPINN-
EM can achieve more than 100X speedup compared to
FEM based tool COMSOL with the expense of less
than 1% accuracy. Compared to the state of the art tool
EMspice v1.0 [1], this method can achieve more than
25X speedup with similar accuracy compared to golden
results from COMSOL.

The structure of this paper is as follows: Section II reviews
the physics behind the problem we are solving. Section III
reviews the existing tools that are being used to solve the EM
stress evolution. In Section IV the structure and underlying
principles of our proposed method is explained. Experimental
results to support our claims are presented in Section V.
Finally, section VI concludes this paper.

II. PROBLEM DEFINITION

Electromigration (EM) is a critical reliability issue in nano-
scale Very Large Scale Integration (VLSI) circuits. To ad-
dress this issue, researchers have been exploring physics-
based numerical and analytical techniques, which are gaining
popularity for EM stress assessment. In this section, we will
discuss the physics behind the nucleation and post-voiding
phase EM stress evolution in multisegment interconnect trees.
By examining these processes, we hope to gain insights into
how EM stress affects the reliability of VLSI circuits, and how
it can be analyzed through effective design and simulation
techniques.

In confined metal wires with high current density, atoms
migrate from the cathode to the anode ends due to the
momentum exchange between electrons and metal atoms [2].
This phenomenon is known as electromigration. As time goes
on, this migration of metal atoms from the cathode to the
anode can cause depletion of atoms at the cathode end and
accumulation of atoms at the anode end. This depletion and
accumulation can cause the formation of voids and hillocks
in the confined metal wires, which can jeopardize the perfor-
mance of the interconnect.

Many techniques have been proposed to assess the relia-
bility of metal interconnects due to electromigration (EM).
Blech’s limit [3] and Black’s MTTF equation [2] are the

two traditionally accepted methods for EM reliability analysis.
These techniques provide an estimate of when the intercon-
nects can fail. However, they are losing attention because
Black’s MTTF only works for a single line segment, and
none of these tools can provide an estimate of hydrostatic
stress evolution. Korhonen’s equation [6] defines the physics
of EM evolution in confined metal wires in terms of a set of
partial differential equations (PDEs). Korhonen’s equation can
be expanded to solve for hydrostatic stress in multisegment in-
terconnects [27], [18]. Equation (1) is the Korhonen equation
for multisegment interconnect for the nucleation phase.
Gaij(m,t) 8 |:I{ 5‘01-j(z,t)

ot Ox
BC : Oijy (.’E“t) = Jijz((Ei,t),t >0
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Here, o;;(x,t) is the stress on the interconnect segment %
connected to the nodes ¢ and j. In (1), G;; is the EM c}riving
force at segment ¢j, which is given by G;; = % with
Ji; being the current density on segment ij. The diffusivity
of stress, k;;, is defined as k;; = D, BQ/(kgT), where D,
is the effective atomic diffusion coefficient, B is the effective
bulk elasticity modulus, kg is the Boltzmann’s constant, 7" is
the absolute temperature, and E, is the EM activation energy.
e is the electron charge, p is the resistivity, Z* is the effective
charge. First BC in (1) states that the stress is continuous at
the inter-segment junction boundaries i.e. at x = x,. Second
BC represents atomic flux conservation at the inter-segment
junctions and the third BC is for blocking terminal boundaries
x = xp where the atomic flux is zero. The inward unit normal
direction of the interior junction node z, on the branch ij is
denoted by n,.. IC is the initial condition with states that the
initial stress distribution at segment 7 is given by o; 7.

In multisegment interconnect trees, a void is nucleated at the
cathode node where the steady-state nucleation stress exceeds
the critical stress o,;;. The time at which void is nucleated is
the nucleation time t¢,,,,.. For time ¢ > t,,,., the void continues
to grow and the physics of stress evolution is no more similar
to the nucleation phase. After the void is nucleated, the stress
at the void surface sharply reduces to zero under a large stress
gradient [28]. For the interconnect segment where the void is
nucleated, the set of equations during the post-voiding phase
is given by (2) [28]. This equation assumes x = 0 node to
be the cathode node of the wire where the void is nucleated.
For the case where void is nucleated at x = L, the BC’s can
be changed accordingly.

- ij( or +G1]):| 7t>0
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The equation presented assumes that the void interface has
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an effective thickness §, which is infinitely small compared
to other lengths in the interconnect tree. The analysis of
post-voiding stress is performed by counting time ¢ from
the nucleation time ¢,,., and the initial stress distribution
for this phase is assumed to be the stress distribution at
the time of void nucleation. This approach allows for the
modeling of stress evolution in a single confined wire after
void nucleation. For multisegment interconnect trees, there
can be cases where multiple cathode nodes exceed the critical
stress. In such case, a void is nucleated at the node with the
maximum stress [29]. To solve multisegment interconnects in
postvoiding phase, equation (2) can be used for the segment
containing the void, while other voidless segments can be
solved using equation (1) However, to obtain the stress
solution for the entire interconnect tree, boundary conditions
(BC) representing the continuity of stress and the conservation
of atomic flux should be employed [29].

In this work, we propose a hierarchical solver for the
postvoiding stress in interconnects using modern neural
network-based techniques. In the first stage, we use a Laplace
transform-based analytical solution to solve for single seg-
ments with or without void. In the second stage, stress
continuity and flux conservation are enforced using a physics-
informed neural network (PINN).

III. RELATED WORKS
A. Traditional numerical approaches for solving PDEs

Traditionally, conventional numerical and analytical meth-
ods are used to solve the PDEs represented by (1), and (2), to
solve for EM stress in nucleation and post-voiding phase [28],
[18], [16], [27], [1], [30], [19]. In spite of being satisfactorily
accurate, these methods suffer from issues like computational
complexity and scalability. For example, finite element based
method [16] and finite difference method [30] can accurately
solve for stress in complex multisegment structures. However,
the method requires discretization of time and space which
makes this method computationally costly. On the other hand,
analytical method like [19] is computationally very fast but
can only solve for straight line wires. The optimal trade-off
between speed and computational complexity is hard to find
using conventional numerical and analytical approaches.

B. Neural networks based approaches for solving PDEs

With the recent advancements in machine learning and deep
neural networks (DNN), the realm of pattern recognition has
witnessed a remarkable acceleration and simplification [31],
[32]. DNNs excel in accurately mapping complex non-linear
functions while offering substantial speed enhancements com-
pared to conventional tools. This capacity of DNNs has found
application in solving intricate partial differential equations
(PDEs) related to physical problems [33], [34]. Recently Jin
et al.[35] introduced a generative learning-based approach
named EM-GAN to address transient EM stress, exhibiting
promising gains in both speed and accuracy over traditional
methods. However, this method, being image-based, falls short
in adequately representing complex multisegment intercon-
nects, limiting its applicability to a broader range of problems.
In response, the EMGraph approach[36] was proposed, recti-
fying this limitation by introducing graphical representations
of interconnects and employing graph neural networks to
tackle EM stress.

While supervised neural network models like EM-GAN
and EMGraph demonstrate effectiveness, their reliance on

large training datasets poses a constraint. In contrast, un-
supervised techniques like “physics-informed neural net-
works” (PINNs) [37], [23] or “physics-constrained neural
networks” [38], [39] do not necessitate prior training datasets.
PINNSs utilize loss functions of DNNs to enforce the physical
laws relevant to the given problem, providing a powerful
means to address complex physical systems without the need
for extensive training data.

However, only very simple PDE problems were demon-
strated in [37], [40], [38], [41], [23] although some progress
were made for more complicated aerodynamics simulations
recently [42]. Recently, a PINN-based approach for EM anal-
ysis has been proposed [24]. The method tries to improve
the PINN method to better handle the temperature-dependent
diffusivities for metal atom migrations. It tries to add more
neurons representing some pre-determined allocation points
and time instances into the neural networks. This method
slightly improves the plain PINN method by achieving better
training accuracy at the cost of longer training time under the
same number of neurons. Jin et al proposed a hierarchical ap-
proach HeirPINN-EM [25], which solves the nucleation phase
EM problem more accurately than methods like EMGraph.
Recently Hou et al. further proposed hybrid PINN methods to
model the nucleation phase of EM failure process [26]. This
method adds some additional constraints in terms of analytical
formula of simplified solutions into the final loss functions to
reduce some variables.

IV. NEW TWO-STAGE PINN SOLVER FOR POST-VOIDING
PHASE

This section presents our solver for post-voiding phase
EM stress analysis for multi-segment interconnect wires. We
first present the overall flow of the proposed two-stage PINN
solving algorithm. Then we explain each stage in detail.

A. The overall algorithm flow

The proposed two-stage PINN solving algorithm is shown
in Fig 1. It consists of two stages, first stage is an analytical
solution for single wires with parameterized boundary condi-
tions as shown in the pink region. The second stage is the
rest of the modules in this figure. It is basically a PINN based
neural network framework where we use simple multilayer
perceptron (MLP) network.

As shown in Fig 1, PostPINN-EM takes a multisegment in-
terconnect tree as input. The MLP in the second stage takes the
features corresponding to each junction as input and predicts
f~(t) and fT(t) for the segments connected to the junctions
taking care of flux conservation. These flux information are
then passed to the first stage analytical solution. The analytical
solution also gets the physical properties and initial stress
distribution of each segment as shown in the figure. The first
stage analytical solution uses these information to calculate the
EM stress distribution on each segment. The calculated stress
is used in the loss function, which enforces stress continuity
at the inter-segment junctions. This loss function is used to
optimize the prediction of f~(¢) and f*(¢) through back-
propagation. After the MLP is trained, stress o(x,t) at a
given position x and aging time ¢t can be inferred using the
framework.

B. First stage: physics-law enforcement via analytical solution
for a single segment

In the first stage, we enforce the physics-law for stress
evaluation within a single wire segment under different bound-
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Fig. 1: PostPINN-EM framework.

ary conditions, atomic fluxes. This is achieved by solving
Korhonen’s equation for a single wire segment under those
complicated boundaries and initial conditions analytically.
Once we obtain this analytic solutions, then we can enforce
the physics-laws ( conserving atomic flux and stress continuity
) at the inter-segment junctions in the second-stage PINN
framework via the stochastic gradient descent method.

Void

J
Inter-segment location

junction or
terminal

boundary

Inter-segment

junction or
terminal w
—_—

boundary

L

(a) A single segment without
void.

(b) A single segment with void
at x = L.

Fig. 2: Single interconnect segments that are part of a multi-
segment interconnect tree in the postvoiding phase.

In a multi-segment interconnect tress at the postvoiding
phase there can be one segment with void and multiple
segments without void. Fig 2 illustrates the single segments
with voids and voidless segments. We remark that in this work,
we only assume on void in the whole multi-segment wire tree,
which is the dominant case for EM failure [43]. For a single
segment, we assume L to be its length, w to be its width and
J be the static or effective current density on the segment.
In our notation, a wire segment is defined from x = 0 to L,
where x = 0 is the preceding node (‘-’ superscript) and x = L
is the consequent node (‘+ superscript).

1) Analytical solution for a segment without void: We first
consider the wire segment without void as a void can only
nucleated in one segments in multi-segment tree. In this case,
the boundary ends of the segment without void can be either
an inter-segment junction or a terminal boundary as shown
in Fig 2a. Our goal is to derive the analytical solution for
these segments under variable atomic flux (stress gradients)
boundary and initial conditions. In other words, the boundary
condition becomes stress gradient variables. Specifically, we
define stress gradient variables at the left/bottom node as
¢~ (t) and at the right/top node as ¢ (t). As a result, the
Korhonen’s equation with adjustable (parametrized) boundary
conditions for a wire segment without void can be written as

3):
06 (z,t) ﬁ 06 (x,t)
PDE : 5 pe [”(ax +G)|,t>0,0<z<L
06 (x,t) B
BC': pe o~ (t),x=0
06 (x,t) _
BO: =50 — ot (1), 0 = L

IC (5’(213, O) = O'nuc(l';tnuc) = h(fﬂ)
3)

In Eq. (3), 6(x,t) denotes the new stress solution obtained
from the new Korhonen’s equation, ¢~ (¢) and ¢ (¢) are
adjustable boundary conditions equivalent to the spatial
gradients of the stress at the boundaries. We assume h(z) to
be the initial stress distribution, which actually is the stress
distribution at the nucleation time ¢,,,.. Turn out that (3) can
be solved by the Laplace transformation method, which leads
to the following analytic solution for o;(x,t) in the time
domain:

Z{—

(Cl(pvx L) ) + g((g(p,x, L)vt))

dt
- gb ( ) ( (Cl(pr,L)ﬂf) +9(C3(p,l‘,L),t))
N
" % *(9(G(psa, L), 1) + 9(Ca(p, @, L), 1))

+ ¢+(O) (g(CQ(p7 x7L)5 t) + g(@(p,x, L)vt))}

M

+ ng_:l(—l)m

L
></0 h(u) cos (mm(L —w)/L) du}

M cos(mmx/L)

“4)

Here, p and m are positive integers such that 0 < p < P
and 1 < m < M. For the value of P, it is suggested in
[44] to keep three dominant parts, i.e. P = 2. The value
of M is determined experimentally and discussed in detail
in the result section. In (4), the symbol * represents the
convolution operator defined by a(t fo
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7)dr. This convolution can be performed very fast using
the Gauss-Legendre quadrature algorithm [26]. Functions
Cl (pv z, L)7 §2(p7 z, L)7 Cd(pv z, L)» and C4(pa z, L) and 9(1.7 t)
are defined as follows:
Cl(lh% L) = (2]7 + 2)L -, CQ(pwra L) = (2p + 1)L -,
Gz, L)=2p)L+z, Gz, L)=(2p+1)L+u,

kt 7% 7 x
g(z,t) 2\/:6 1 T X erfc{rm} 5

2) Analytical solution for a segment with a void: Now we
consider the wire segment with a void. In this case, we assume
that one end of the segment can be an inter-segment junction
or a terminal boundary whereas another end is the void node.
Fig 2b shows a single segment with a void at * = L end.
At z = 0, which can be either an inter-segment junction or
a terminal boundary, an adjustable boundary condition in the
voidless case is used. We rewrite the boundary condition at
x =1L as 6(L,t) = 0. For a very small value of § in (2), BC
used in the equation at the void location is similar to BC used
here [45]. The boundary conditions for the segment with a
void at the consequent node of a wire segment, i.e., at x = L,
can be written as shown in (6).

C06(x,t) _
BC': e ¢ (t), =0 ©)
BC:6(x,t)=0, z=1L

Similar to the solution for the voidless segment, using the
Laplace transform method, the solution for the single segment
wigh a void at x = L is obtained:

G(x,t) =
P —
SO (4G £).6) ~ (G2, D).1)

+ (b_(O) (g(Cl(p,x, L>7t) - g(C?)(pa m,L)a t))}

M
> (=1 e M cos((m — 0.5)mz /L)

m=1
L

X / h(u)sin ((m — 0.5)7(L — u)/L) du}

" 7)
Similarly, for the condition where the void location is at the
preceding (left/bottom) i.e at z = 0 location, the boundary
condition is set to &(z,¢) =0 at z = 0 and % = ¢"(¢)
at x = L. Following the similar Laplace transform method we
can obtain the analytical solution for this case as well.

In (3) and (6), the integrals [, h(u)cos (mm(L — u)/L) du
and fOL h(u)sin ((m — 0.5)7(L — u)/L) du are calculated us-
ing the Gauss-Legendre quadrature algorithm for faster calcu-
lations. Equation (8) shows an example of how these integrals
are calculated using the Gauss-Legendre quadrature algorithm.

L
/O h(u) cos (mm(L — u)/L) du

LN ®)
=3 ]Z:(:) Ajh(uj)cos (mm(L —u;)/L)

Here u; = J:J(é) + £ and {Aj};'\gl and {xj};y:gl are the
Gaussian weights and zero points of Legendre polynomial.
Ny is the number of discrete integration series. The accuracy

of the integral value and hence the stress depends on N,
[26]. In this work the best value for N, for optimal accuracy
and speed is determined experimentally and presented in the
results section.

C. Second stage: PINN for stress continuity and flux conser-
vation at inter-segment junctions

In the second stage of our method, we estimate the com-
plex flux information at the inter-segment junctions of the
multisegment interconnect tree via the PINN-based solving
method. Basically, we design a DNN network so that its loss
function is built in such a way that stress continuity and
flux conservation are perfectly enforced at every boundary
and inter-segment junctions throughout the whole interconnect
tree as shown in Fig 1. Specifically, in PostPINN-EM, we
use the stochastic gradient descent method based on simple
multi-layer perceptron (MLP) networks to find the atomic flux
information at those inter-segment junctions while enforcing
atomic flux conservation and stress continuity. Fig 3 shows the

oG]

diR(t)

ir(t)

dib(t)

biL() $it (0

dip(t)

Fig. 3: General structure of the interconnects at the internal
junction

typical cross structure of the interconnects connected together
at the inter-segment junctions of a multisegment interconnect.
In the figure, C; is the ‘" inter-segment junction of the
multisegment interconnect. Note that the number of segments
that can be connected to the each node is less than or equal to
4. The segments connected to i*” junctions are differentiated
using subscript s = L, U, R, D, for segments connected to the
left, top, right, and bottom respectively. Here, qbi_s/ +(t) denote
the stress gradients of the segments at the position s connected
to junction 7. The initial values for d)i_s/ +(t) can be calculated
as [26]:

wrGRr +wyGy —wrGr —wpGp

+
T(0) = ,
¢ (0) wr, + WR + Wp + Wy
when i is on s= L or s=D position
_ wrGr +wpGp —wrGr — wyGy
¢; (0) = )

wr, + wr +wp +wy
when i is on s=R or s=U position
of/7(0) = -G,

at terminal boundary

Here, w, represents the width and G is the driving force
of segment s connected to node C;. The input parameters to
equations (4) and (7) are as follows: (a) physical parameters,
i.e. L,w, which are determined from the given interconnect
tree on a case by case basis, (b) initial stress, i.e. h(z),
which is extracted from the nucleation phase solution, (c) flux

information at the boundaries, i.e. ¢~ (0),¢*(0), 4@ () and

dt
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%. Eq (9) gives ¢; (0)/¢; (0). Thus, to get predictions
for each wire segment, f~(t) = %t(t) and fT(t) = W
are the only unknowns to be determined in the second stage.

As shown in Fig 1, our second stage PINN model uses an
MLP model to estimate f~(¢) and f*(t) for each segment
using the features at the junctions where these segments
are connected. The MLP takes i,t,Gr,Gy,Gr,Gp as input
features. Here, ¢ is the inter-segment junction label, ¢ is aging
time, Gr,Gy,GRr,Gp are driving forces corresponding to
left, upper, right and, lower segment connected to the junction
with label i. The output of the MLP are fr, fr, fp which
are atomic flux corresponding to the left, right, and lower
segment respectively. Atomic flux conservation given by BC
in (1) is enforced while calculating flux information fi; corre-
sponding to the upper segment by following the transformation
described in [25], [26]. Using f1, fr, fp. and fy at junctions,
f(t) and fT(t) are calculated for each segment and provided
to the first stage analytical solution. The correctness of these
predicted quantities is ensured through iterations of back-
propagations based on the following physics-informed loss
function:

N; K;

I = ﬁ ZZ(@'k(t) - &kfl(t))2

vi=1 k=2

(10)

where N denotes the number of inter-segment junctions in the
interconnects, K; represents the number of connected wires at
i-th junction, which ranges between 2 and 4. & (¢) is the k-th
predicted stress result for the current junction at aging time
t. The loss function is the mean squared error (MSE) of all
predicted stress at inter-segment junctions, which serves as a
measurement of stress discontinuity at boundaries. Here, the
loss function doesn’t use any pre-calculated data. It is rather
based on the physics behind stress continuity that is given by
BCin (1).

V. NUMERICAL RESULTS AND DISCUSSIONS

This section presents the implementation details, accu-
racy, and performance evaluation of the proposed method,
PostPINN-EM. The analytical solution and MLP model were
both implemented in Python 3.8.12 with PyTorch 1.7.1. The
training and testing were conducted on a Linux server with
2 Xeon E5-2699v4 2.2 GHz processors and an Nvidia Titan
RTX GPU. To update the parameters of the MLP, we used
Adam optimization with a learning rate of 10~3. Xavier initial-
ization was used to initialize the parameters of the MLP in the
second stage. The MLP used in this work consisted of 5 hidden
layers, and we found the optimal configuration of neurons
to be [6,100,100,100,100, 100, 3]. For all Gauss-Legendre
quadrature algorithm based integral calculation, N, = 8 is
used as a result of trade-off between calculation speed and
accuracy. It is observed that as N, increases the accuracy
tends to increase and the calculation time tends to increase
as well [26].

A. Data preparation and scaling

To obtain data related to the physical and material properties
of the interconnect segments, we first read the given multiseg-
ment interconnect structure. We extract the physical properties
of individual segment i, such as L;, w;, and G;, assuming s
is the same for all segments. We sample the spatial points x
between [0, L] and use temporal points ¢ = 0 to 1 x 10%s
with a step size of 1 x 107s for our study. For this work,

we assume that these interconnect structures have already
been solved for the nucleation phase using other methods. We
extract the initial stress information h(x) and void location
from the nucleation phase results.

The input parameters used by the analytical solutions and
the MLP have vastly different magnitudes. Therefore, data
scaling is necessary to regularize the parameters used by the
MLP. In this work, we use k, to scale x, k; to scale ¢, and
k., to scale o(x,t). Other parameters are scaled according to
the following equation:

ktfo'(xv t, K, G) :Usc(xsca tsc: Rscy Gsc)

k2 ko (11)
—O'SC(]{/’IZ’, ktt, Elﬁ, EG)

where e, tse, Kse, Gse, and o4 represent the scaled version
of z,t,k,G, and o. By performing scaling on the parameters
x,t,k, G, we can calculate the scaled stress os.. We then
restore this scaled stress to its original magnitude using k..
For this work, we have used k, =1 x 107°, k; = 1 x 1077,
and k, =1 x 1078.

B. Speed and accuracy of first stage analytical solver

The first-stage analytical solution provides accurate stress
solution when precise stress gradients are provided for bound-
ary conditions. To verify the accuracy of the first stage and
assess its speed, we compared it against results from COM-
SOL under various predefined stress gradients. We randomly
generated around 200 wire segments with lengths ranging
from 10um to 50um. Throughout this whole study we use
interconnects with equal widths of 1xm. These wire segments
were assigned current densities ranging from —5 x 10° A /m?
to 5 x 10194/m?2. Other constants were set to e = 1.6 x
10719C, Zz* = 10,E, = 1.1eV,B = 1 x 10*, Dy = 5.2 x
107°m? /s, p = 2.2x10780m, Q = 8.78 x 1073m3, 00piy =
5 x 108 Pa.

For analysis of our first stage solver, the wire segments
were assigned non-zero flux at the boundaries to model the
segments in the multisegment trees. For each segment, we
sampled 30 spatial position points z € [0, L] and used 100
temporal points ranging from 0 to 1 x 10® seconds for aging
time t. We solved these individual segments using COMSOL
and compared them against our analytical solution. We used
the root mean square error (RMSE) as a metric for error, with
the range of stress o(x, t) in this study found to be —1.1x 10%
to 4.6 x 108. Using our analytical solution, we observed an
average RMSE of 3.3 x 10%. This RMSE relates to an average
error of 0.006%. To solve for a single segment, the average
runtime of the analytical solution was observed to be 0.01
s, while the average runtime of the COMSOL program to
generate the stress solution for a segment is around 7.5 s. The
average runtime speedup of the analytical solution compared
to COMSOL can be inferred to be around 750X. These results
indicate that the first stage analytical solution is both very fast
and accurate when compared to FEM-based COMSOL.

Fig 4 shows the comparison of our analytical solution
against COMSOL for both voidless segments and segments
with void. We obtained these results using M = 5 in the
analytical solutions. The optimal value of M = 5 is deter-
mined experimentally and the same value is used throughout
this work.
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Fig. 4: Comparison of the solution obtained from analytical
solution with the solution from FEM-based COMSOL for
single interconnect segment.

C. Speed, accuracy, and scalability of PostPINN-EM

Now we evaluate the accuracy, speed, and scalability of
the whole PostPINN-EM method. To this end, we generated
500 multisegment interconnect lines. The multisegment in-
terconnect lines consisted of a varying number of segments
ranging from 5 to 250. For each segment, we sampled 30
spatial points from z € [0,L;], where L, is the length of
the ¢th segment. We used 100 equally spaced temporal points
ranging from 0 to 1 x 10° for aging time. We first solved
these multisegment interconnect structures using COMSOL
for the nucleation phase, and then extracted the initial stress
and void location information from the stress distribution for
our post-voiding phase analysis. It is important to note that
we did not consider nucleation phase metrics when analyzing
the accuracy and speed of our method, as our focus is solely
on the postvoiding phase stress evolution.

Analyzing solution of multisegment interconnect straight
lines, we observed that the range of stress o(x,t) was within
the range of —7.2x 108 Pa to 5.6 x 10® Pa. The average RMSE
error for the 500 multisegment interconnect lines was observed
to be 2.5 x 105Pa compared to COMSOL which relates
to an average error of 0.19%. To compare the performance
of our proposed method, we also solved the multisegment
interconnect structures using EMspice V1.0 (or EMspice) [1],
which resulted in an average RMSE of 8.9 x 10°Pa com-
pared to COMSOL. The average error of EMSpice compared
to COMSOL relates to 0.07 %. Fig 5 shows the o(x,t)
distribution calculated using COMSOL, EMspice, and our
proposed method at different values of the time. We observed
that the solution obtained from our proposed method agrees
very closely with COMSOL and EMspice even as the number
of segments increased, demonstrating the scalability of our
method. For the 500 multisegment straight interconnects, we
observed an average training speed of around 20 seconds. Fur-
thermore, the average inference speed of the proposed method
is 0.86 seconds. On the other hand, COMSOL’s average
runtime to solve for the interconnects, based on meshed FEM
methods, was noted to be around 1600 seconds. If we compare
the average runtime of the COMSOL, and the total time
(training+inference), the average speedup we see is around
76X. For EMSpice the average runtime is found to be 400
seconds. Hence compared to EMSpice, an average speedup
of 20X is observed. Table I presents the comparison of the
speed and performance of PostPINN-EM against EMspice and
COMSOL on multisegment straight lines. We can observe
from the table that as the number of segments increases, the
sum of the training and inference time of the proposed method
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(a) Ten-segment straight interconnect line.
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(b) Fifty-segment straight interconnect line.
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(c) Hundred-segment straight interconnect line.

Fig. 5: Comparison of results obtained from analytical solution
with FEM-based COMSOL and state-of-the-art EMspice for
multisegment straight interconnect lines.

becomes less than the runtime of EMspice and COMSOL.
This is because the proposed method requires less discrete
integration series compared to EMspice and COMSOL. In
terms of accuracy, the error percentage for PostPINN-EM
increases with the number of segments. The error percentage
is calculated using the RMSE against COMSOL. The accuracy
of the proposed method seems to follow the accuracy of
EMspice very closely as can be seen in the table.

To demonstrate the effectiveness of PostPINN-EM on non-
straight interconnect trees, we conducted experiments on an
additional 500 multisegment interconnect trees. The number
of segments for the trees ranged from 10 to 300 segments.
These multisegment trees are solved for postvoiding phase
stress using both COMSOL and our proposed method. The
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TABLE I: Performance and accuracy comparisons with exist-
ing methods on multisegment straight lines

# of wires [ COMSOL | EMspice | PostPINN-EM
Runtime | Error | Runtime | Error [ Inference | Training Speedup Speedup
(s) (%) (s) (%) time(s) time(s) vs. COMSOL | vs. EMSpice
5 21.9 0.04 8.4 0.07 0.1T 6.17 4.12X 1.37X
25 150.2 0.03 67.3 0.08 0.21 14.61 10.14X 4.54X
50 954.7 0.06 92.6 0.07 0.42 19.85 47.02X 4.56X
75 1556.4 0.07 120.2 0.11 0.63 22.63 66.79X 5.15X
100 1963.1 0.09 3203 0.13 0.84 26.83 71.38X 11.64X
150 2535.3 0.12 596.3 0.21 131 32.54 75.1X 17.6X
200 3645.3 0.14 891.5 0.26 1.59 36.22 96.4X 23.57X
250 4325.8 0.23 1056.6 0.31 1.82 39.76 104.2X 25.46X

performance and accuracy analysis of our method on multiseg-
ment trees compared to COMSOL is presented in Table II. The
results showed an average RMSE of 7.6 x 10°Pa compared
to COMSOL. The stress range for this case was found to
be in —9 x 108 Pa to 4 x 108 Pa. This results in an average
error of around 0.5%. Fig 6 illustrates the stress distribution

TABLE 1II: Performance and accuracy comparisons with ex-
isting methods on multisegment trees

# of wires | COMSOL PostPINN-EM
Runtime | Error | Inference | Training Speedup
(s) (%) time(s) time(s) vs. COMSOL
27 181.52 031 0.24 1591 112X
88 2136.7 0.52 0.76 24.72 83.8X
173 3235.9 0.85 1.47 35.54 87.4X
287 4668.4 1.06 1.91 48.61 96.7X

across different positions of the multisegment interconnect
tree at various time intervals. The figure shows that the
stress distribution obtained from our proposed method closely
follows the result obtained from COMSOL for interconnect
segments with varying numbers of segments at different times.
For multisegment interconnect trees, the average training time
is around 30 seconds, and the average inference time is 0.96
seconds, indicating the efficiency of the proposed method.
On the other hand, COMSOL takes a significantly longer
time to solve for interconnect trees at postvoiding stress, with
an average runtime of approximately 2700 seconds for our
experiments. From this observation, we can infer that in the
case of multisegment trees, the average speedup of PostPINN-
EM is 87X. Thus, PostPINN-EM can save a considerable
amount of computation time compared to COMSOL and
EMspice while solving multisegment interconnect structures
for the post-voiding phase. Another advantage of this method
is that both the first stage analytical solution and second stage
PINN depend entirely on the physical and material properties
of the interconnects. This completely eliminates the training
data requirement and makes our method highly generalizable.
Additionally, the use of this two-stage approach allows us to
calculate stress at any local position at a given aging time
without solving the whole interconnect at once.

VI. CONCLUSION

In this work, we proposed a new approach, called
PostPINN-EM, to solve the stress evolution in the multi-
segment interconnects. The new method is based on the en-
hanced two-stage Physics-Informed Neural Networks (PINN)
framework. Instead of using supervised learning method for
the first stage, which turns out to be a challenging problem
for post-voiding phase, we propose to use analytic solutions to
consider wires with and without voids. Numerical results on
some synthesized multi-segment interconnects show that the
proposed PostPINN-EM can achieve more than 100X speedup
compared to FEM based tool COMSOL with the expense
of less than 1% accuracy. Compared to state of the art tool
EMspice v1.0 [1], this method can achieve more than 25X
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Fig. 6: Comparison of the solution obtained from analytical
solution with solution from FEM based COMSOL for mul-
tisegment interconnect trees. The blue plane is where o = 0
added for readability.

speedup with similar accuracy compared to golden results
from COMSOL.
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