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The energy partition in high Mach number collisionless shock waves is central to a wide range of high-

energy astrophysical environments. We present a new theoretical model for electron heating that accounts

for the energy exchange between electrons and ions at the shock. The fundamental mechanism relies on the

difference in inertia between electrons and ions, resulting in differential scattering of the particles off a

decelerating magnetically dominated microturbulence across the shock transition. We show that the self-

consistent interplay between the resulting ambipolar-type electric field and diffusive transport of electrons

leads to efficient heating in the magnetic field produced by the Weibel instability in the high Mach number

regime and is consistent with fully kinetic simulations.
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High Mach number collisionless shocks shape the

electromagnetic signatures of many astrophysical environ-

ments. From parsec-scale young supernova remnants to

megaparsec-scale virial rings of galaxy clusters, the emis-

sion relies on the efficient acceleration of electrons and ions

to highly relativistic speeds at the interface between a

supersonic flow and a weakly magnetized plasma. The

injection of electrons into acceleration processes [1–6] and

the interpretation of observations [7–9] directly depend on

the electron heating efficiency and properties. The mech-

anisms that underpin the energy transfer and the temper-

ature ratio between electrons and ions thus constitute one of

the most fundamental open questions in our understanding

of these blast waves.

Left as a free parameter from the Rankine-Hugoniot jump

conditions, the electron-to-ion temperature ratio is inferred

via various observational probes [10,11], from radio and

x-ray synchrotron emissions within young supernova rem-

nant shocks (MA ≳ 102) [12] to in situ measurements at

Earth’s bow shock (MA ≲ 10) [13]. The latter allowed for

direct characterization of the shock dynamics with essential

results on the structure gleaned from the Magnetospheric

Multiscale (MMS) spacecraft [14], but the direct charac-

terization of the temperature ratio for MA ≳ 102 remains

elusive. In parallel, rapid developments in high-power

lasers, such as at OMEGA and the National Ignition

Facility, are opening valuable opportunities to investigate

high Mach number collisionless shocks in controlled labo-

ratory experiments for direct measurement of particle

energization processes [15–18].

These observational and experimental studies are sup-

ported by significant joint numerical efforts to self-consis-

tently model the shock dynamics through multidimensional

kinetic simulations, providing a detailed characterization of

the plasma processes at play over limited timescales. These

simulations cover various regimes of magnetosonic Mach

numbers [19–29]. Despite all these substantial efforts,

identifying and modeling the dominant source of electron

heating in highmagnetosonicMach number shocks remains

a critical challenge.

In this Letter, we present a model for electron transport

and heating in self-generated microturbulence that can

accurately capture the electron-ion temperature ratio

observed in fully kinetic simulations of high Mach number

shocks. The generality of the approach presented here opens

new avenues for modeling energy partition in systems

governed by magnetically dominated turbulence.

We start by analyzing the typical structure of high Mach

number collisionless shocks from the results of large-

scale fully kinetic plasma simulations, which can self-

consistently capture the dynamics of shock formation and

particle heating. We have performed a series of 2D particle-

in-cell (PIC) simulations with the relativistic electromag-

netic code TRISTAN-MP [30]. We initialize an electron-ion

plasma at rest and set the left reflecting and conducting wall

of our simulation box in motion along þx̂. The interaction
between the reflected beam and the stationary plasma

results in the formation of a shock. Our simulations are

performed in the upstream frame. All quantities are

then transformed and presented in the shock-front frame.
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Amoving injector gradually recedes from the left wall at the

speed of light. Space and time coordinates are normalized to

the ion plasma skin depth c=ωpi and frequency ωpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πn
∞
e2=mi

p

, with n
∞

the proper upstream density. We

adopt a resolution of 10 cells per electron skin depth, Δx ¼
Δy ¼ 0.1c=ωpe, and the time step is cΔt ¼ 0.45Δx. We use

32 particles per cell (ppc) and filter the current 32 times per

time step [30] in each direction. We tested convergence

varying ppc ¼ ½32; 128�, ðωpe=cÞΔx ¼ ½0.05; 0.1�, and

ju
∞
j ¼ ½0.075; 0.2�c, where u

∞
is the far upstream velocity

in the shock-front frame (see Supplemental Material [31]).

As a reference for the following discussion, we

consider a nonrelativistic shock in the limit of very high

Alfvén Mach number, i.e., initially unmagnetized, with

u
∞
¼ −0.075c, mi=me ¼ 49, and upstream ion temper-

ature kBTi;∞ ¼ 1.91 × 10−6mic
2. The results of the simu-

lation are illustrated in Fig. 1, where we look closely at the

shock structure and precursor region. We observe that the

interaction between the shock-reflected hot beam of ions

propagating at positive velocity and the incoming upstream

plasma drives a microturbulence via the Weibel, or current-

filamentation, instability [34,35] [Fig. 1(a)] and leads to

efficient electron heating [Figs. 1(f) and 1(g)] to an electron-

to-ion temperature ratio of Te=T i ∼ 0.3. Qualitatively, our

model captures the deceleration of the turbulence across the

shock and the associated charge separation between species

of different inertia. Electrons accelerate in the coherent

electrostatic field that ensues and isotropize over their short

scattering timescale through fast decoherence of the betatron

motion. This diffusive process leads to efficient energy

channeling between electrons and ions.

The microturbulence is magnetically dominated, so the

scalar E2
− B2 < 0 everywhere in the shock precursor and

downstream. This means one can always find a frame Rw

in which the electric field component vanishes locally. This

frame drifts at a velocity uw in the shock-front frame. For

statistically homogeneous turbulence transverse to the

shock normal, the instantaneous velocity of this frame

uw is a function of the longitudinal x coordinate only. The

scattering center frame Rw extracted from the fully hydro-

dynamic limit [36] shows good agreement of the average

proper motion of nonlinear structures, close to the electron

drift velocity [Fig. 1(g)]. Ions from the backstreaming beam

can be differentiated from the background—i.e., incoming

upstream flow—via a threshold set at ju − u
∞
j2 ≲ u2thr ≃

1

2
u2
∞

[Fig. 1(c)]. Across the shock transition, Rw does not

coincide with the drift velocity of the background ions

[Fig. 1(g)] and is, therefore, nonideal. Motivated by these

observations, we explore a theoretical description of

electron transport and heating in high Mach number shocks

to model the fraction of incoming energy density 1

2
n
∞
miu

2
∞

imparted to the electron distribution.

The equation of motion for a single charged particle in a

noninertial frame reads ṗ ¼ p · δΩ̂t þ qE −mu̇w, where

the first term accounts for pitch-angle variation in Rw, the

second term accounts for acceleration by the longitudinal

electric field E, and the last term for the noninertial nature

of Rw. This approach offers a natural way to disentangle

the contribution of the motional and electrostatic electric

fields. If one defines p · δΩ̂t as a random force with the

stochastic variables encoded in the form of the rotation

matrix δΩ̂t and keeps a self-consistent E-field contribution,

the above equation of motion reduces to a semidynamical

model of transport in a Langevin equation [37].

At this stage, the electric field contribution and origin

are still unclear. Following the same arguments as in

[36,38,39], we assume that the variation timescale of the

turbulent structures is much larger than the typical scatter-

ing time of the electrons off these quasimagnetostatic

structures. Therefore, we neglect the contribution of the

inductive electric field from the linear growth of plasma

instabilities. We constrain the electric field to be electro-

static and build a reduced description for electron heating

along those lines. The broadband longitudinal and

FIG. 1. The characteristic structure of an unmagnetized elec-

tron-ion collisionless shock wave with u
∞
¼ −0.075, kBT∞

¼
6.8 × 10−4 × 1

2
miu

2
∞

(M ≃ 40), and mass ratio mi=me ¼ 49, at

time ωpit ≈ 6.1 × 103. The turbulent magnetic field is shown in

(a), the x − ux phase-space profile is shown in (b) for the ions and
in (d) for the electrons. Insets (c) and (e) show the respective

momentum distribution corresponding to the shaded area of

panels (b) and (d). The circle in (c) differentiates the back-

streaming beam and background ions. The temperature profile,

shown in (f), shows the characteristic heating of the background

ions (solid blue line) and electrons (solid red line) up to the

downstream (shaded). For comparison, the total ion temperature

corresponds to the dot-dashed line. The velocity profile for each

species is shown in (g). The black line corresponds to the

numerical estimate of the turbulence frame.
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transverse spectra of Weibel modes excited in the shock

precursor, coupled with the nontrivial contributions of other

channels such as the definition of Rw and E, make the

statistical description of δΩ̂t challenging to compare with

fully kinetic simulations. The simplest nontrivial approxi-

mation assumes an isotropic Gaussian white noise process

where δΩ̂t is a linear combination of the generators of the

rotation group corresponding to pitch-angle scattering in

the turbulent magnetic field [40]. Based on these assump-

tions, we now aim at deriving a self-consistent relation for

the electrostatic coupling between electrons and ions.

In this limit, the stochastic differential equation of

motion is equivalent to a transport equation for the particle

distribution fs for the species s. In the shock-front frame,

where the system is assumed stationary, the transport

equation reads:

ðmuw þ pxÞ∂xfs −m∂xuwðmuw þ pxÞ∂pxfs

þmqEx∂pxfs ¼
m

2
∂¿½Àsð1 − ¿2Þ�∂¿fs; ð1Þ

where the right-hand side is the operator for elastic

scattering in Rw in 3D with ¿ ¼ cos θ the pitch-angle

cosine and Às is the scattering frequency [41]. For a two-

dimensional distribution, the operator reduces to ∂θÀ∂θfs.
In the nonrelativistic regime, the Larmor radius of electrons

remains small compared to the size of the scattering

centers. The scattering center frame Rw and the electron

bulk velocity are, therefore, drifting at similar speeds

[Fig. 1(g)]. In this diffusive limit, the distribution function

can be expanded in Legendre polynomials fsðp; ¿Þ ¼

f
ð0Þ
s ðpÞ þ ¿f

ð1Þ
s ðpÞ. Averaging Eq. (1) over the first two

Legendre polynomials and assuming a dominant contribu-

tion from the electric field, we obtain a kinetic closure

f
ð1Þ
e ≃−ð1=ÀeÞ½qeEx∂pf

ð0Þþðp=meÞ∂xf
ð0Þ� for the Fokker-

Planck equation accounting for momentum diffusion in the

electrostatic fields [31]:

uw∂xf
ð0Þ

−
p

3
∂xuw∂pf

ð0Þ ¼
1

3p2
∂pp

2
e2E2

x

Àe
∂pf

ð0Þ: ð2Þ

The right-hand side only accounts for the dominant term

responsible for the bulk heating of the electrons. This term

predicts heating proportional to the diffusion coefficient

Dpp ∼
1

3
e2E2

x=Àe [42].

Based on this picture, the development of a coherent

electric field across the shock transition leads to electron

stochastic heating. However, the origin of this electric field

is not explicit. With a rate proportional to the square of the

field amplitude, the heating mechanism we describe is

similar to Joule heating from ambipolar diffusion. The

decelerating scattering centers effectively act as a neutral

species on which electrons and ions elastically scatter at

different rates. An ambipolar electric field ensues from the

larger effective frictional drag of the decelerating micro-

turbulence on the electrons relative to the ions, leading to

efficient diffusive heating of the electrons in a Joule

process.

To capture the ambipolar nature of electron heating and

the self-consistent coupling between electrons and ions, we

combine a Monte Carlo (MC) method with a Poisson

(MC-P) solver to achieve a complete solution of the trans-

port equation [44]. We use a resolution Δx ¼ 0.1c=ωpe,

cΔt ¼ 0.99Δx, second-order spline interpolation between

particles and Ex field, with isotropic white noise statistics

for pitch-angle scattering. Electrons and ions are injected

from the right-hand side of the domain with an initial bulk

velocity u
∞
¼ −0.075c and a temperature matching the

initial conditions of PIC simulations. For a fair comparison

with PIC simulation, we used a 2D scattering operator.

Comparison between 2D and generalized 3D scattering

operators showed no significant differences up to realistic

mass ratios. Using our solver, we recover the Rankine-

Hugoniot jump conditions in the corresponding dimension.

In the MC-P solutions, the scattering frequency is assumed

constant, with values consistent with the analytical esti-

mates discussed below. While the scattering frequency

would have a spatial dependence due to the evolution of the

microturbulence, the heating is dominated by regions of

strong deceleration of Rw over the shock transition of

size Lsh.

We naturally expect two different scattering regimes to

emerge for electrons and ions dependingon themagnetization

of the respective species. For the typical observed magnetic

field strength, jeBj ∼ 0.06ðmi=meÞ
1=2meωpeju∞=cj, and

scale k⊥ ∼ ðmi=meÞ
−1=2ωpe=c, produced by the Weibel

instability [Fig. 1(a)], electrons moving at u
∞

have a

gyroradius much smaller than the size of the magnetic

structures and are thus trapped. An estimate of their scattering

frequency derives from the coherence time of the bounce

frequency ωβ in the filaments of radius r⊥ ¼ 2π=k⊥ and

length rk ¼ 2π=kk [45]. Explicitly, Àe ∼ Δα2e=Δte depends

on the angle of deflection squared, Δα2e ¼ ω2

β;er
2

⊥=u
2

th;e,

where uth;e is the thermal velocity, ωβ;e ∼ uth;e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k⊥=rg;e
p

is

the bounce frequency of an electron [46], and on the

coherence time Δte ¼ 2π=ðkkuth;eÞ. On the other hand,

scattering of the high-rigidity ions propagating in the turbu-

lence can be well approximated as a nonresonant process

associated with small pitch-angle scattering with the usual

estimate Δα2i ∼ r2⊥=r
2

g;i, with rg;i the ion Larmor radius, and

the shortest scattering time in the Weibel turbulence Δti ¼

2π=fmax½kk; k⊥�ju∞jg [31]. The interaction between the

beam and incoming ions drives the turbulence, but the

slowdown of the incoming ions defines the relevant scattering

length. Close to the shock, the velocity ui ∼ u
∞
, and thus

rg;i ∼miju∞=eBj. The analytical estimates for the scattering

frequencies are then
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Àe ≃ 2π
kk

k⊥

mi

me

ju
∞
j

rg;i
; ð3Þ

Ài ≃
r⊥ju∞j

r2g;i
max

�

kk

k⊥
; 1

�

: ð4Þ

In Fig. 2, we show the x − px phase-space distributions

for Àe ≃ Àimi=me obtained either from the full MC-P or MC

solutions. Essentially, the second case reduces to the

contribution of the purely motional electric field. In this

case, electrons heat up almost adiabatically, trapped and

compressed by the turbulence, ending with a negligible

downstream temperature: Te=Ti ≲me=mi. When the full

solution is considered, we observe that electrons are

predominantly heated by the longitudinal electrostatic field,

giving rise to a downstream temperature ratio Te=Ti ∼ 0.5,

consistent with the full PIC simulations. We note that the

transport equation assumes small pitch-angle scattering for

particles in microturbulence, which is valid for ions but not

necessarily for electrons due to their smaller Larmor radius.

We have checked that accounting for correlated scattering

for electron transport does not significantly affect the

dynamics [31].

The transport equation (1) captures the essential electron

dynamics. With the general goal of building a reduced

model for the shock profile and electron heating, we now

derive the set of fluid equations for the electron distribution.

We note that the following equations and the previously

introduced Fokker-Planck description are not supposed to

be valid for ion species for which the diffusive approxi-

mation would fail across the shock transition. However, a

closed form of the fluid equation for the electrons can be

derived in the diffusive approximation from the first

moments of the distribution. We decompose the total

stress-energy tensor Txx
ð0Þ ¼ τxxð0Þ þmuwj

x
ð0Þ in terms of

thermal pressure τxxð0Þ and number current jxð0Þ components.

In the thermal part of the distribution, we assume that the

scattering frequency is independent of the particle momen-

tum [47]. A more complex polynomial dependence of

ÀeðpÞ would be relevant to electron injection and

acceleration, which is left for future work. Neglecting

anomalous heat transport ð1=ÀmÞ∂2xτ
xx
0
, relevant to the

high-energy component of the distribution, we obtain a

solution for the conserved current across the shock

transition jxð0Þ=j
x
∞
¼ 1=½1 − ðeEx=ÀemeuwÞ�. Moments of

Eq. (1) then give

1

mi

∂xτ
xx
eð0Þ ≃

u
∞

uw

jx
eð0Þ

2

ϕ
∞

e2E2
x

Àemeuw
; ð5Þ

where ϕ
∞
¼ mij∞u∞ is the ram pressure at þ∞. With an

explicit form for the dominant nonadiabatic heating rate of

the electrons in terms of the amplitude of the coherent

electrostatic field, we now derive a closed form for the

electron-ion coupling.

The dynamics of electrons, trapped in the turbulence, is

well characterized by the diffusive approximation. We

distinguish two extreme regimes for the ions: diffusive

(Ài ≫ ∂xuw) and unscattered regimes (Ài ∼ 0). Unscattered

ions are only subject to the electric field deceleration and

fully isotropize in the downstream. As verified in PIC

simulations, quasineutrality between the reflected beam

charge density ρb and background contribution is observed

in the full shock precursor. Given a charge density profile

ρb for the reflected beam and background ion velocity ui,
we obtain eEx ≃ Àemefuw − ui½1=ð1þ ρbui=ðej∞ÞÞ�g [31].
The electric field then only results from the relative drift

between electrons and ions if ρb ≪ en
∞
.

Assuming a weak deceleration of ions across the shock

transition size Lsh and neglecting the beam contribution, the

system is fully parametrized by a single parameter ξ ¼
LshmeÀe=miju∞j that represents the number of electron

scattering events across the shock transition times the

electron-to-ion mass ratio. In the absence of another

relevant scale, ξ should be solely determined by the

FIG. 2. MC-P solution to the transport equation with Ài ¼
3.5 × 10−4ωpi and Àe ¼ 8.5 × 10−3ωpi constant along the shock

transition. The upstream four-velocity u
∞
¼ −0.075. The initial

temperature matches the PIC simulation. The top two panels

correspond to the full MC-P solution for the ions (a.1) and

electrons (a.2). Panels (b.1) and (b.2) show, respectively, the

equivalent MC solution in the absence of longitudinal electro-

static field. For reference and comparison to insets (d) and (e) of

Fig. 1, the insets (c) and (d) on the right show the corresponding

phase space distribution in the shaded area. The black circle

marks the boundary between the definition of the beam and the

background plasma.
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structure of the turbulent field. In such conditions, the

scattering frequency of the ions determines the typical

shock transition size Lsh ∼ ju
∞
j=Ài. Therefore, ξ corre-

sponds to the typical ratio between the electron and ion

scattering frequencies, i.e., ξ ∼meÀe=ðmiÀiÞ.
For a linear deceleration profile of Rw in x∈ ½−Lsh; 0�,

we obtain eEx=ðmeÀeu∞Þ ≃ ð3=4ξÞðeξx=Lsh − 1Þ [31]. One

can then derive the heating rate to the leading order in ξ:

j∂x=Lsh
τxx
eð0Þj ≃ ϕ

∞

� 3

16
ξ if ξ≲ 1

3

4
ξ−1 if ξ ≫ 1;

ð6Þ

giving a fair estimate of the average heating across the

shock transition when compared with the full integration.

Provided that ξ≲ 1, the downstream electron pressure is

therefore of the order of τxx
eð0Þ ∼ 0.2ξϕ

∞
. The full solution

for a linear deceleration, depicted in Fig. 3, confirms that

ξ ∼ 1 is necessary to recover downstream temperatures on

the order of a fraction of unity.

Interestingly, the scaling ξ ∼meÀe=miÀi is also observed

in the fully diffusive regime for electrons and ions, sug-

gesting generality of this scaling law. Equations (3) and (4)

provide direct estimates of the electron and ion scattering

frequencies for the Weibel instability. The ambipolar

heating parameter then becomes ξ ∼ k⊥rg;i min½ðkk=k⊥Þ; 1�.

Using the values for filament scale in the shock transition,

k⊥ ∼ kk ∼ ωpi=c [19,46,48], and the field amplitude set

by trapping, ωβ;i ∼ ju
∞
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k⊥=rg;i
p

∼ ju
∞
=cjωpi [49], we

obtain ξ ∼ 1, precisely in the range of parameters maxi-

mizing the downstream electron temperature in Fig. 3.

We note that the model developed here is general in

that it could also be applied to other nonlinear processes

changing the properties of the magnetic turbulence

upstream of the shock, such as nonresonant current-driven

instabilities [50], merging [51–53], cavitation [54], recon-

nection [55,56], or kink modes [46]. This would impact

Te=Ti primarily through the scale of the turbulent mag-

netic field—i.e., kk and k⊥. For example, if the field

saturates at the scale of the dominant Larmor radius of the

beam krg;b ∼ 1, untrapped ions result in ξ ∼ ðrg;i=rg;bÞ, and
the temperature ratio decreases with rg;b. However, if these

late nonlinear modes ultimately lead to efficient ion

trapping, then we naturally recover ξ ∼ 1, such that the

temperature ratio becomes weakly sensitive to subsequent

nonlinearities.

In summary, we have developed a self-consistent model

for the energy partition in high Mach number collisionless

blast waves. The heating results from the ambipolar electric

field that accelerates electrons, which are thermalized by

rapid scattering in the Weibel-mediated turbulence. We find

that the downstream temperature ratio can be expressed in

terms of a single dimensionless parameter determined by

the nature of the dominant instability. The heating rate and

temperature ratio between electrons and ions exhibit good

agreement with ab initio fully kinetic simulations, semi-

analytical MC-P solutions, and reduced analytical models.

Energy partition peaks around Te=T i ∼ 0.3 with a weak

dependence on higher-order effects in the statistics of

electron transport and nonlinear dynamics of the instability.

Our model gives a natural interpretation for the thermal

partition in shocks particularly relevant to weakly magnet-

ized astrophysical systems and to ongoing laboratory

experimental studies. More generally, these findings also

open promising avenues for studying electron transport in

magnetically dominated systems, for which Lsh is set by the

coherent Larmor gyroradius, and potential electron injec-

tion and acceleration in turbulent shocks.
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