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The Gaussian Multiple Access Wiretap Channel

With Selfish Transmitters: A Coalitional

Game Theory Perspective

Rémi A. Chou and Aylin Yener , Fellow, IEEE

Abstract— This paper considers the Gaussian multiple access
wiretap channel (GMAC-WT) with selfish transmitters, i.e., who
are each solely interested in maximizing their individual secrecy
rate. The question then arises as to whether selfish transmitters
can increase their individual secrecy rate by participating in a
collective, i.e, multiple access, protocol instead of operating on
their own. If yes, the question arises whether there is a protocol
that satisfies all the participating transmitters simultaneously,
in the sense that no transmitter has an incentive to deviate from
the protocol. Utilizing coalitional game theory, these questions
are addressed for the degraded GMAC-WT with an arbitrary
number of transmitters and for the non-degraded GMAC-WT
with two transmitters. In particular, for the degraded GMAC-
WT, cooperation is shown to be in the best interest of all
transmitters, and the existence of protocols that incentivize all
transmitters to participate is established. Furthermore, a unique,
fair, stable, and achievable secrecy rate allocation is determined.
For the non-degraded GMAC-WT, depending on the channel
parameters, there are cases where cooperation is not in the best
interest of all transmitters, and cases where it is. In the latter
cases, a unique, fair, stable, and achievable secrecy rate allocation
is determined.

Index Terms— Gaussian multiple access wiretap channel,
adversarial jamming, coalitional game theory.

I. INTRODUCTION

WE STUDY secure communication over a Gaussian mul-
tiple access wiretap channel (GMAC-WT) [2], [3]. The

information-theoretic problem formulation for secure commu-
nication over the GMAC-WT enables establishing fundamental
limits of achievable rate-tuples, under the assumption of altru-
istic legitimate entities. That is, the underlying assumption is
one of full cooperation where transmitters work together to
achieve the largest secure rate region. An equally valid sce-
nario could be that the transmitters are interested only in maxi-
mizing their individual secure rates. This can lead to a conflict
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of interests and fairness issues among transmitters as they try
to capture limited resources for their own benefit. Only certain
rate-tuples, if any, would be acceptable by selfish transmitters.
A large body of the literature has considered similar questions
in multiuser communication problems by means of game

theory, see, for instance, [4], [5], [6], [7], [8], [9] for Gaussian
multiple access channels and [10], [11], [12], [13], [14], [15],

[16], [17], and [18] for interference channels. We also refer

to [19], [20], and [21] and references therein for the treatment
of broader classes of multiuser communication problems.

Our contribution can be summarized as follows. (i) We cast
the problem of selfish transmitters over the GMAC-WT as a

coalitional game [22], [23], [24] in which the value function
is determined under information-theoretic guarantees, i.e.,
the value associated with a coalition is computed with no
restrictions on the strategies that the transmitters outside
the coalition can adopt. (ii) For the degraded GMAC-WT,
we show that there exist collective protocols for which no
transmitter has an incentive to deviate, i.e., it is in the best
interest for selfish transmitters to collaborate. In particular,
we show that the core of the game we have defined is
non-empty and intersects known achievable regions for
the GMAC-WT. Using an axiomatic solution concept,
we determine a unique, fair, stable, and achievable secrecy
rate allocation. (iii) For the non-degraded GMAC-WT with
two transmitters, we show that, depending on the channel
parameters, cooperation may or may not in the best interest
of all transmitters. When cooperation is in the best interest of
all transmitters, we generalize the axiomatic solution concept
used in the degraded case and determine a unique, fair, stable,
and achievable secrecy rate allocation.

A. Related Work

1) Related Work on the GMAC-WT: The GMAC-WT
has first been introduced in [2] for degraded channels to
account for the presence of an eavesdropper at the physi-
cal layer in multiple access communication, and to provide
information-theoretic security guarantees against such an
adversary. This model has further been studied in the case of
non-degraded channels in [3]. [2] and [3] and most subsequent
works focused on characterizing the capacity region for this
model under the assumption that all the transmitters are willing
to participate in a joint protocol. By contrast, in this paper,
we assume that the transmitters are selfish, i.e., will only agree
to participate in a joint multiuser protocol if it benefit them
through a higher communication rate. We treat this problem by
means of cooperative game theory. Note that the GMAC-WT
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with selfish transmitters is also considered in [8] but via
non-cooperative game theory and with the assumption that
all transmitters follow a pre-determined transmission strategy.

Our paper is also related to [25], as we characterize the worst
behavior that a group of transmitters can adopt to prevent
confidential communication between the other transmitters and
the legitimate receiver. Our study contrasts with [8] and [25],
as we allow any communication strategy for the transmitters
that might be unwilling to participate in a collective protocol.

2) Other Related Work: In this paper, we treat the problem
of selfish transmitters over the GMAC-WT by means of a
coalitional game theory framework. We refer to [22], [23], and
[24] for an introduction to coalitional game theory, and to [19]
for a review of some of its applications to telecommunications.
The coalitional game we define is inspired by the game
formulation of [4] for the Gaussian multiple access channel in
the absence of an eavesdropper and thus security constraints.
Hence, the setting in [4] is recovered as a special case of our
game. Our results show that, similar to the Gaussian multiple
access channel, for the degraded Gaussian multiple access
wiretap channel, the participation of all transmitters in a joint
protocol is in their best interest to maximize their secrecy rate.
However, our study contrasts this result by showing that, for
non-degraded Gaussian multiple access wiretap channels, this
is no longer always the case. Specifically, for a two-transmitter
non-degraded multiple access wiretap channel, we determine
sufficient conditions that ensure that the participation of all
the transmitters in a joint protocol is in their best inter-
est. Additionally, we provide an example of a non-degraded
channel for which the participation of both transmitters in a
joint protocol is not in their best interest. Finally, note that
a coalitional game theory approach to information-theoretic
security has also been used in the context of many-to-one

secret key generation in [26]. However, as a main difference,
the determination of the value function of the game in [26]
relies on information disclosure threats, whereas it relies on
jamming threats in this paper. Additionally, unlike in [26], the

resulting game in the present study is not convex [27], which
significantly complexifies its study, and a natural axiomatic
definition of fairness can be formulated and studied.

B. Organization of the Paper

The remainder of the paper is organized as follows. Before
we present our model for the GMAC-WT with selfish trans-
mitters, we review a pivotal auxiliary problem: the GMAC-WT
with adversarial jammers in Section II. This auxiliary problem
allows us to understand what is the worst case scenario
when transmitters refuse to cooperate. Our main problem, the
GMAC-WT with selfish transmitters is treated in Section III,
which deals with the degraded case, and in Section IV, which
deals with the non-degraded case. We end the paper with
concluding remarks in Section V.

C. Notation

Throughout the paper, define [[a, b]] ≜ [+a,, +b,] ∩ N. The
components of a vector, Xn, of size n ∈ N, are denoted by

subscripts, i.e., Xn ≜ (X1, X2, . . . , Xn). For x ∈ R, define

[x]+ ≜ max(0, x). The power set of S is denoted by 2S .
Unless specified otherwise, capital letters designate random
variables, whereas lowercase letters designate realizations of
associated random variables, e.g., x is a realization of the

random variable X . For R ⩾ 0, n ∈ N∗, Bn
0 (R) denotes

the ball of radius R centered in 0 in Rn under the Euclidian
norm. For any set S ¢ N, and any sequence (Rs)s∈S of real
numbers, the notation RS denotes the sum

∑
s∈S Rs.

II. AUXILIARY PROBLEM: GAUSSIAN MULTIPLE ACCESS

WIRETAP CHANNEL WITH ADVERSARIAL JAMMERS

We review in this section the GMAC-WT with adversarial
jammers. We present the model and review known results in
Sections II-A and II-B, respectively. This auxiliary problem
will be used in our model for the GMAC-WT with selfish
transmitters in Sections III, IV.

A. Model

Reference [2] introduces and studies a degraded Gaussian
multiple access wiretap channel with several transmitters in the
presence of an eavesdropper. We consider a similar Gaussian
multiple access wiretap channel with additional adversarial
jammers that help the eavesdropper to minimize the secrecy
rates between the legitimate transmitters and the receiver.
Specifically, we assume that the collective signal emitted by
the jammers is known by the eavesdropper, who is able to
cancel it out from its observations. We also assume that the
collective signal emitted by the jammers is prescribed by a
power constraint. However, the jamming strategy is arbitrary
and unknown to the legitimate transmitters and the receiver.

Such modeling is introduced in [28] and follows the works

in [29] for the Gaussian arbitrarily varying channel and in [4]
for the Gaussian arbitrarily varying multiple access channel.

For completeness, we review the model and specific results
of interests from [28] for our study. In the remainder of

the paper, we let L ≜ [[1, L]] denote the set of transmitters.
We consider the following channel model,

Y n ≜
∑

l∈L
Xn

l + Sn + Nn
Y , (1a)

Zn ≜
∑

l∈L

√
hlX

n
l + Nn

Z , (1b)

where Y n is the channel output observed by the legitimate
receiver, Zn is the modified channel output observed by the
eavesdropper after cancellation of the jamming signal Sn, Sn

is an arbitrary jamming sequence emitted by the eavesdropper

satisfying the power constraint ∥Sn∥2 ≜
∑n

i=1 S2
i ⩽ nΛ,

for l ∈ L, Xn
l is the signal emitted by transmitter l sat-

isfying the power constraint ∥Xn
l ∥2 ≜

∑n

i=1 X2
i ⩽ nΓl,

and Nn
Y and Nn

Z are sequences of independent and identi-
cally distributed Gaussian noises with unit variances Ã2

Y , Ã2
Z ,

respectively. We refer to this model as the Gaussian multiple
access wiretap channel with adversarial jammers (GMAC-WT-
AJ) with parameters ((Γl)l∈L, (hl)l∈L,Λ, Ã2

Y , Ã2
Z). When the

channel gains (hl)l∈L are all equal to h ∈ [0, 1[, we refer to
this model as the degraded GMAC-WT-AJ with parameters
((Γl)l∈L, h,Λ, Ã2

Y , Ã2
Z).

We define a coding scheme and achievable rates for our
channel model following the scheme over multiple encoding
blocks of [4] to allow time-sharing.

Definition 1: Let n, k ∈ N. A
(
(2nRl)l∈L, n, k

)
code Cn

for the GMAC-WT-AJ consists for each i ∈ [[1, k]] of

• L messages sets M(i)
l ≜ [[1, 2nR

(i)
l ]], l ∈ L;
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• L stochastic encoders, f
(i)
l : Ml → Bn

0 (
√

nΓl), l ∈ L,

which maps a uniformly distributed message M
(i)
l ∈

M(i)
l to a codeword of length n;

• One decoder, g(i) : Rn → ×l∈LM(i)
l , which maps a

sequence of n channel output observations to an estimate(
M̂

(i)
l

)

l∈L
of the messages

(
M

(i)
l

)

l∈L
;

where for any l ∈ L, Rl ≜ 1
k

∑k

i=1 R
(i)
l , and operates as

follows. For each i ∈ [[1, k]], Transmitter l ∈ L, encodes

the message M
(i)
l with f

(i)
l , and sends the encoded message

to the legitimate receiver over the channel defined by (1a),
(1b) with power constraint nΛ for the jamming signal Sn

i .
The legitimate receiver forms from his observations the esti-

mate of
(
M̂

(i)
l

)

l∈L
of the messages

(
M

(i)
l

)

l∈L
. We define

M̂L ≜
(
M̂

(i)
l

)

l∈L,i∈[[1,k]]
, ML ≜

(
M

(i)
l

)

l∈L,i∈[[1,k]]
, S ≜

(Sn
i )i∈[[1,k]], S ≜ {(Sn

i )i∈[[1,k]] : ∥Sn
i ∥2⩽ nΛ,∀i ∈ [[1, k]]}.

Definition 2: A rate tuple (2nRl)l∈L is achievable, if there
exists a sequence of ((2nRl)l∈L, n, k) codes Cn for the
GMAC-WT-AJ such that

lim
n→∞

sup
S∈S

P[M̂L ̸= ML] = 0 (reliability), (2a)

lim
n→∞

1

nk
H(ML|Zkn) ⩾

∑

l∈L
Rl (equivocation). (2b)

We assume the transmitters selfish. Hence, a transmitter that
cannot transmit at a positive secrecy rate will preserve power,
i.e., cooperative jamming [3] is ruled out. Note that the model
described in Definitions 1 and 2 recovers the model introduced
in [4] in the absence of the security constraint (2b).

B. Review of Known Results

Given Λ ∈ R+ and (Γl)l∈L, we define hΛ = (1 + Λ)−1,

L(Λ) ≜ {l ∈ L : Γl > Λ}, and Lc(Λ) ≜ L\L(Λ).
The following theorems provides an achievability region

and a sum-rate capacity result for the problem defined in
Section II-A.

Theorem 1 [28]: The following region is achievable for the
degraded GMAC-WT-AJ with parameters ((Γl)l∈L, h,Λ, 1, 1)

R =
⋃

(Pl)l∈L

:∀l∈L(Λ),Λ<Pl⩽Γl

{
(Rl)l∈L : ∀l ∈ Lc(Λ), Rl = 0 and

∀T ¦ L(Λ), RT ⩽

[
1

2
log

(
1 + hΛPT

1 + hPT (1 + hPT c)−1

)]+}
.

(3)

We also have the following optimality result.

Theorem 2 [28]: The maximal secrecy sum-rate RL ≜∑
l∈LRl achievable for the degraded GMAC-WT-AJ with

parameters ((Γl)l∈L, h,Λ, 1, 1) is

[
1

2
log

(
1 + hΛΓL(Λ)

1 + hΓL(Λ)

)]+
. (4)

Note that the optimal secrecy sum-rate is positive if and
only if hΛ > h and L(Λ) ̸= ∅.

Fig. 1. Degraded GMAC-WT with selfish transmitters in the presence of
adversarial jammers, where the transmitters form q coalitions. In the absence
of adversarial jammers, set Sn ← ∅.

III. DEGRADED GMAC-WT WITH SELFISH

TRANSMITTERS

We define in Section III-A a coalitional game for the
GMAC-WT when the transmitters are assumed selfish.
We study the properties of the game and its core in
Section III-B. In Section III-C, we propose a solution concept
for a fair allocation, and determine a unique solution that cor-
responds to an achievable secrecy rate allocation and belongs
to the core.

A. Problem Statement and Game Definition

We consider the GMAC-WT-AJ with parameters
((Γl)l∈L, h,Λ = 0, 1, 1), h ∈ [0, hΛ[, i.e., a degraded
GMAC-WT [2], i.e., the channel gains (hl)l∈L are all equal
to h ∈ [0, 1[. We assume that the transmitters are selfish, i.e.,
they are solely interested in maximizing their own secrecy
rate. The transmitters could potentially form coalitions to
achieve this goal as depicted in Figure 1 when Sn ← ∅,
in the sense that subsets of agents can agree on a multiple
access protocol before the actual information transmission to
the receiver occurs. As would be the case for GMAC-WT, the
members of a given coalition do not alter the multiple access
protocol they agreed on once transmission commences.

Remark 1: Choosing Λ ̸= 0 offers a generalization of
our result to the GMAC-WT with selfish transmitters in the
presence of adversarial jammers, whose setting is depicted
in Figure 1. In the following, we derive all our results for
Λ ̸= 0 to enable this generalization.

The questions we would like to address are as follows.

(i) Can the transmitters benefit from forming coalitions?
(ii) If yes, can the transmitters find a consensus about which

coalitions to form despite their selfishness?
(iii) If such consensus exists, how should the secrecy sum-rate

of each coalition be allocated among its transmitters?

To answer these questions, we adopt a coalitional game
theory framework, e.g., [22, Section 2.1], by associating with
each potential coalition of transmitters S ¦ L a worth v(S).
As detailed in Section III-B, such function v will allow us to
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study stability of coalitions formed by the transmitters, where
stability of a coalition means that there is no incentive to
merge with another coalition or to split in smaller coalitions.
This approach is similar to the approach taken in [4] in the
absence of security constraints. For completeness, we review
the definition of the value function. To this end, we first
define a game corresponding to our problem as follows. For
l ∈ L, let Al corresponds to the set of all the possible
strategies that transmitter l can adopt, and let Ãl(aL) be the
payoff of transmitter l, i.e., its secrecy rate, when the strategies
aL ∈ ×l∈LAl are played by all the transmitters. Two potential
choices for the worth v(S) of coalition S ¦ L are the

following, [30] and [31]

max
aS

min
aSc

∑

i∈S
Ãi(aS , aSc), (5)

min
aSc

max
aS

∑

i∈S
Ãi(aS , aSc), (6)

where the quantity in (5) corresponds to the payoff that
coalition S can ensure to its members regardless of the
strategies adopted by the member of Sc, and the one in (6)
to the payoff that coalition Sc cannot prevent coalition S to

receive. See, for instance, [32] for a detailed explanation of
the subtle difference between these two notions in general.
Observe that, for our problem, both quantities are equal since
for any S ¦ L, there exists a∗Sc ∈ ×i∈ScAi such that for any
strategies aS ∈ ×i∈SAi, we have

∑

i∈S
Ãi(aS , aSc) ⩾

∑

i∈S
Ãi(aS , a

∗
Sc).

Indeed, note that the signals of the transmitters in Sc

can be considered as a single signal of power up to
(
∑

l∈Sc

√
Γl)

2 from the receiver perspective. We can thus
consider the following strategy a∗Sc : the transmitters in Sc

collude against coalition S by acting as a mega jammer with
power upper bounded by (

∑
l∈Sc

√
Γl)

2 and by revealing
their transmitted sequences to the eavesdropper. Using the
terminology of [31], the game is clear, i.e., equality holds
between (5) and (6).

To summarize, we cast the problem as a coalitional game
(L, v) where the value function is defined as

v : 2L → R+,S 7→ max
aS

min
aSc

∑

i∈S
Ãi(aS , aSc), (7)

such that v(S) corresponds to the maximal secrecy sum-rate
achievable by coalition S when no specific strategy is assumed

for the transmitters in Sc, who act as jammers. Note that
the definition of the game is identical to the one in [4],
except that the value function now needs to account for our
security constraints. The characterization of this value function
is provided in Theorem 3.

B. Properties of the Game and Characterization of Its Core

We first show the following characterization of the value
function defined in (7), which is a consequence of Theorem 2.

Theorem 3: Let S ¦ L. We have

v(S) =

[
1

2
log

(
1 + hΛSc ΓS(ΛSc )

1 + hΓS(ΛSc )

)]+
, (8)

where for any S ¦ L, ΛSc ≜
(√

Λ +
∑

l∈Sc

√
Γl

)2

, hΛSc ≜

(1 + ΛSc)−1, S(ΛSc) ≜ {l ∈ S : Γl > ΛSc}, ΓS ≜
∑

l∈S Γl.
Observe that, as expected, the characterization of the value
function in Theorem 3 recovers the one in [4] by setting h = 0.
We now review the notion of superadditivity.

Definition 3: A game (L, v) is superadditive if v : 2L →
R+ is such that

∀S, T ¦ L,S ∩ T = ∅ =⇒ v(S) + v(T ) ⩽ v(S ∪ T ). (9)

Property 1: The game (L, v) defined in (7) is superadditive.
Proof: The secrecy constraints for coalitions S and T ,

with S ∩ T = ∅, implies a secrecy constraint for the coalition
S ∪ T :

I
(
MSMT ;ZknXkn

(S∪T )c

)
(10a)

= I
(
MS ;Z

knXkn
(S∪T )c

)
+ I

(
MT ;ZknXkn

(S∪T )c |MS
)

(10b)

⩽ I
(
MS ;Z

knXkn
(S∪T )c

)
+ I

(
MT ;ZknXkn

(S∪T )cXkn
S MS

)

(10c)

⩽ I
(
MS ;Z

knXkn
(S∪T )c

)
+ I

(
MT ;ZknXkn

(S∪T )cXkn
S

)
+ ϵ′n

(10d)

⩽ I
(
MS ;Z

knXkn
Sc

)
+ I

(
MT ;ZknXkn

T c

)
+ ϵ′n, (10e)

where (10d) holds by Fano’s inequality assuming that for any

n ∈ N, ϵ′n ≜ nkϵn +1 and P[M̂S ̸= MS ] ⩽ ϵn with ϵn
n→∞−−−−→

0, (10e) holds because S ∩ T = ∅.
Superadditivity implies that there is an interest in forming

a large coalition to obtain a larger secrecy sum-rate, however,
large coalition might not be in the individual interest of the
transmitters, and can thus be unstable. A useful concept to
overcome this complication is the core of the game.

Definition 4 (E.g. [33]): The core of a superadditive game
(L, v) is defined as follows.

C(v) ≜{
(Rl)l∈L :

∑

l∈L
Rl = v(L) and

∑

i∈S
Ri ⩾ v(S),∀S ¢ L

}
.

(11)

Observe that for any point in the core, the grand coalition,
i.e., the coalition L, is in the best interest to all transmitters,
since the set of inequality in (11) ensures that no coalition
of agents can increase its secrecy sum-rate by leaving the
grand coalition. Observe also that for any point in the core
the maximal secrecy sum rate v(L) for the grand coalition is
achieved. In general, the core of a game can be empty [24].
However, we will show that the game (L, v) defined in (7)
has a non-empty core.

Definition 4 further clarifies the choice of the value function
v. A coalition S wishes to be associated with a value v(S) as
large as possible, while the transmitters outside S wish v(S)
to be as small as possible to demand a higher share of v(L).
The latter transmitters achieve their goal by waiving a threat
argument, which consists in arguing that they could adopt the
strategy that minimizes v(S), whereas coalition S achieves its
goal by arguing that it can always achieve the secrecy sum-rate
of Theorem 2, irrespective of the strategy of transmitters in Sc.
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This formulation is generically termed as alpha effectiveness
or alpha theory [30], [31], [32]. It has also been used in [4] for
the Gaussian multiple access channel and in [26] for secret-key
generation in many-to-one networks.

Remark 2: The core can also be understood as a converse
for our problem since it provides upper bounds for RS ,
S ¦ L. More specifically, we have the following alternative
characterization of the core of the game (L, v).

C(v) =

{
(Rl)l∈L : ∀S ¦ L,

[
1

2
log

(
1 + hΛSc ΓS(ΛSc )

1 + hΓS(ΛSc )

)]+
⩽ RS

⩽
1

2
log

(
1 + hΛΓL(Λ)

1 + hΓL(Λ)

)
−
[
1

2
log

(
1 + hΛS

ΓSc(ΛS)

1 + hΓSc(ΛS)

)]+}
.

(12)

Proof: We obtain (12) from the following equivalences
(
∑

l∈L
Rl = v(L) and

∑

i∈S
Ri ⩾ v(S),∀S ¢ L

)
(13a)

⇐⇒
(
∑

i∈S
Ri = v(L)−

∑

i∈Sc

Ri

and
∑

i∈S
Ri ⩾ v(S),∀S ¢ L

)
(13b)

⇐⇒
(

v(L)− v(Sc) ⩾
∑

i∈S
Ri ⩾ v(S),∀S ¦ L

)
. (13c)

Note that the core may contain rates that are not achiev-
able. We next characterize a subset of the core that is
achievable by the transmitters, i.e., that is included in R
defined in Theorem 1 for the GMAC-WT-AJ with parameters
((Γl)l∈L, h,Λ, 1, 1). This characterization will later be useful
to prove that the stable and fair allocation found in the next
section is achievable and belongs to the core.

Theorem 4: (i) The core of the game (L, v) contains the
following rate-tuples

C∗(v) ≜

{
(Rl)l∈L : ∀l ∈ Lc(Λ), Rl = 0,

RL(Λ) =
1

2
log

(
1 + hΛΓL(Λ)

1 + hΓL(Λ)

)
, and

∀S ¢ L(Λ), RS ⩽
1

2
log

(
1 + hΛΓS
1 + hΓS

)}
. (14)

(ii) The rate-tuples in C∗(v) are achievable.
Proof: See Appendix A.

C. Stable and Fair Allocation

Although we have found in Theorem 4 achievable
rate-tuples that belong to the core of the game, the question
of choosing a specific point in the core remains. We use the
solution concept introduced in [4] to define a fair secrecy rate
allocation. We will then show (i) existence and uniqueness, (ii)
achievability, and (iii) belonging to the core of this allocation.

Definition 5 ([4]): A fair secrecy rate allocation
{R∗l (v)}l∈L should satisfy the following axioms.

(i) Efficiency: The maximal secrecy sum rate is achieved∑
l∈LR∗l (v) = v(L).

(ii) Symmetry: The labeling of the players should not influ-
ence the secrecy rate allocation. More specifically, let
Ã ∈ Sym(L), where Sym(L) is the symmetric group on
L, and let Ãv be the game with value function that maps
S ¦ L to v({Ã(s) : s ∈ S}). Then, for any Ã ∈ Sym(L),
for any l ∈ L, R∗l (v) = R∗

π(l)(Ãv).
(iii) Envy-freeness: For i, j ∈ L, if Γi > Γj and player

i decides to conserve energy and only use the power
Γj , then player i should receive the same secrecy rate
allocation than player j. More specifically, let vi,j be
the same game as v when the power constraint of player
i is Γj , then one should have R∗i (v

i,j) = R∗j (v). This

axiom is based on the notion of envy [34].

In Proposition 1, we show that for our problem there is a
unique secrecy rate allocation as axiomatized in Definition 5.

Proposition 1: There exists a unique secrecy rate allocation
{R∗l (v)}l∈L that satisfies the three axioms Efficiency, Symme-
try, and Envy-freeness of Definition 5. Moreover,

∀l ∈ Lc(Λ), R∗l (v) = 0, (15a)

∀l ∈ L(Λ),

R∗l (v) =
1

l

[
1

2
log

[
1 + hΛ(lΓl + Γl+1:L)

1 + h(lΓl + Γl+1:L)

]
−R∗l+1:L(v)

]
,

(15b)

where we have defined for l ∈ L,

Γl ≜

{
Γl, if l ∈ L(Λ)

0, if l ∈ Lc(Λ)
, (16)

and we have used the notation Γl+1:L ≜
∑L

i=l+1 Γl, and

R∗l+1:L(v) ≜
∑L

j=l+1 R∗j (v).
Proof: See Appendix B.

In Theorem 5, we prove that the secrecy rate allocation
{R∗l (v)}l∈L from Definition 5 is achievable and belongs to
the core. Note that in the absence of security constraints, i.e.,
h = 0, our results recovers [4].

Theorem 5: (i) The secrecy rate allocation {R∗l (v)}l∈L
defined in (15) is such that

∀S ¦ L(Λ), 0 ⩽ R∗S(v) ⩽
1

2
log

(
1 + hΛΓS
1 + hΓS

)
. (17)

(ii) By (i), {R∗l (v)}l∈L is in C∗(v) and is thus achievable by
Theorem 4.
(iii) By (ii), {R∗l (v)}l∈L belongs to the core because C∗(v) ¦
C(v) from Theorem 4.

Proof: See Appendix C.
In Proposition 2, we bound the ratio of the secrecy rates of two
transmitters by studying the influence of the noise level at the
legitimate receiver and at the eavesdropper. More specifically,
for É > 0, we make the following substitution in our model,
i.e., Equation (1a), Ã2

Y ← ÉÃ2
Y and Ã2

Z ← ÉÃ2
Z , É ∈ R+

such that after normalization for any l ∈ L, Γl ← É−1Γl

and Λ ← É−1Λ. Let v(ω) denote the game with these new
parameters.

Proposition 2: We assume the sequence (Γl)l∈L decreasing

by relabeling the players if necessary. Define L(Λ) ≜ |L(Λ)|.
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Fig. 2. Representation of a known achievable region [2] for the degraded
GMAC-WT, the core C(v) defined in Remark 2, a subset of the core
C∗(v) defined in Theorem 4, and the allocation (R∗

1
(v), R∗

2
(v)) defined in

Proposition 1 for two transmitters with power constraints (Γ1, Γ2) = (2, 1.4)
with h = 0.3 and Λ = 0.

For any l ∈ [[1, L(Λ)−1]] such that Γl ̸= Γl+1, É 7→ R∗
l (v(ω))

R∗
l+1(v

(ω))

from R∗+ to R is increasing and its image is
[
1, Γl′

Γl

]
. Hence,

the secrecy rate allocation {R∗l (v)}l∈L defined in (15) satisfies
for l, l′ ∈ L(Λ) such that Γl′ ⩾ Γl

1 ⩽
R∗l′(v)

R∗l (v)
⩽

Γl′

Γl

. (18)

Proof: See Appendix D.
Proposition 2 displays the same qualitative property as in [4,

Section 5.5], namely, when the signal-to-noise ratio is high for
all transmitters, they all obtain similar secrecy rates, whereas
when the signal-to-noise ratio is low, they obtain secrecy rates
proportional to their power constraints.

We illustrate Theorem 4, Proposition 1, and Theorem 5 in
Figure 2 with an example when L = 2 and Λ = 0. From
Figure 2, as stated in Theorem 4, we observe that all the rates
in C∗(v) are achievable and in the core C(v), however, this
inclusion is strict, in general. From Figure 2, we also see that
the core, characterized in Remark 2, may contain rates that
are not achievable. However, the unique fair allocation (that
satisfies Definition 5) and is characterized in Proposition 1 can
be seen to belong to C∗(v) in Figure 2, and is thus achievable
and in the core, which is formally proved in Theorem 5.

IV. NON-DEGRADED GMAC-WT WITH TWO SELFISH

TRANSMITTERS

We define in Section IV-A a coalitional game for the non-
degraded GMAC-WT with two selfish transmitters. The case
of more than two transmitters remains an open problem as
explained in Section IV-A. We study the properties of the
game and its core in Sections IV-B, IV-C. In particular,
we demonstrate in Section IV-B that unlike the degraded case
in Section III, cooperation might not always be in the best
interest of the transmitters. Then, we identify in Section IV-C
sufficient conditions to have a setting in which cooperation

is beneficial to both transmitters. In such settings, we also
propose as solution concept for a fair allocation, an achievable
secrecy rate allocation that is in the core and that satisfies a
series of axioms that generalizes Section III-C.

A. Problem Statement and Game Definition

In this section, we consider the two-transmitter GMAC-WT-
AJ with parameters ((Γ1,Γ2), (h1, h2),Λ = 0, Ã2

Y , Ã2
Z), i.e.,

a general GMAC-WT [3] with two transmitters. Additionally,
we assume that the transmitters are selfish.

Remark 3: Similar to Remark 1, choosing Λ ̸= 0 offers a
generalization of our result to the non-degraded GMAC-WT
with two selfish transmitters in the presence of adversarial
jammers. In the following, we derive all our results for Λ ̸=
0 to enable this generalization.

While one can adopt the same formalism as in Section II-A
to define a coalitional game, the non-degraded GMAC-WT
with selfish transmitters is challenging to deal with because a
characterization of the right hand side in (7) is unknown for
arbitrary L. Even for the case L = 2, a characterization of
v({1, 2}) is unknown.

We propose to define a game for L = 2 as follows. One
can choose v({1, 2}) as the best known achievable sum-rate by
two transmitters, denoted by R∗1,2, and still requiring for one
transmitter not to make any assumption on the communication
strategy of the other. Indeed, (i) the communication strategy
to achieve R∗1,2 must be known by both transmitters to be
implemented (if only one transmitter is aware of a strategy
that achieves a better sum-rate, then the strategy cannot be
implemented), and (ii) maxaS

minaSc

∑
i∈S Ãi(aS , aSc) can

be determined for S = {1} and S = {2} from Theorem 2.
Hence, similar to Section II-A, we define a coalitional game
to model a non-degraded multiple access wiretap channel
with two selfish transmitters (potentially in the presence of
adversarial jammers) by

v({1}) ≜ max
a{1}

min
a{2}

∑

i∈S
Ãi(a{1}, a{2}), (19a)

v({2}) ≜ max
a{2}

min
a{1}

∑

i∈S
Ãi(a{2}, a{1}), (19b)

v({1, 2}) ≜ R∗1,2. (19c)

B. Cooperation Might Not Be Beneficial to All Transmitters

We first give the following characterization of the
value function for the game defined in (19), which fol-

lows from [35], where it has been shown that R∗1,2 =[
1
2 log

(
1+hΛ(Γ1+Γ2)
1+h1Γ1+h2Γ2

)]+
. Theorem 6 is the counterpart of

Theorem 3 for the degraded case.
Theorem 6: The value function v of the game defined in

Section IV-A can be characterized as follows.

v({1}) = 1

{
Γ1 > (

√
Γ2 +

√
Λ)2
}

×



1

2
log




1 + Γ1

1+(
√

Γ2+
√

Λ)2

1 + h1Γ1








+

, (20a)

v({2}) = 1

{
Γ2 > (

√
Γ1 +

√
Λ)2
}
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×



1

2
log




1 + Γ2

1+(
√

Γ1+
√

Λ)2

1 + h2Γ2








+

, (20b)

v({1, 2}) =

[
1

2
log

(
1 + hΛ(Γ1 + Γ2)

1 + h1Γ1 + h2Γ2

)]+
. (20c)

In Proposition 3, stated next, we identify a range of param-
eter values for which the grand coalition might not be in the
best interest of both transmitters.

Proposition 3: When h1 /∈ [0, hΛ[ or h2 /∈ [0, hΛ[, the
grand coalition might not form.

Proof: It is sufficient to exhibit an example for which
h1 /∈ [0, hΛ[ or h2 /∈ [0, hΛ[ and v({1, 2}) < v({1}). We set
h1 = 0.1, h2 = 1.5, Γ1 = 1, Γ2 = 0.4, and Λ = 0.1. Observe
that Γ1 = 1 > 0.9 = (

√
Γ2 +

√
Λ)2. We numerically obtain

v({1, 2}) =
1

2
log

(
1 + hΛ(Γ1 + Γ2)

1 + h1Γ1 + h2Γ2

)
< 0.2095, (21)

0.2362 <
1

2
log




1 + Γ1

1+(
√

Γ2+
√

Λ)2

1 + h1Γ1



 = v({1}). (22)

Hence, v({1, 2}) < v({1}), and Transmitter 1 has no
interest in engaging in a collective protocol with Transmitter 2.

Note that for any parameters (h1, h2,Γ1,Γ2,Λ) such that
v({1, 2}) < v({1}) + v({2}), cooperation is not in the
best interest of the transmitters and the core of the game is
empty. It is possible to refine Proposition 3 and provide in
Proposition 4 a necessary and sufficient condition on the model
parameters for the core of the game to be empty.

Proposition 4: For l ∈ {1, 2}, define l̄ ≜ 3 − l. Assume
Λ = 0 and v({1, 2}) > 0. Cooperation is not in the best
interest of both transmitters and the core of the game is empty
if and only if

max
l∈{1,2}

min

[
Γl

Γl̄

,
1 + h1Γ1 + h2Γ2

(1 + hlΓl)(1 + Γl̄)

]
> 1. (23)

Proof: Observe that when Λ = 0, v({1}) +
v({2}) = max(v({1}), v({2})). (23) translates the condition
v({1, 2}) < max(v({1}), v({2})) using (20) and the fact that
v({1, 2}) > 0ô Γ1 + Γ2 > h1Γ1 + h2Γ2.

As a numerical example, we set Γ1 = 1, Γ2 = 0.4, and
Λ = 0.1. We then vary h1 and h2 between 0 and 2 with a
step size of 0.1, and plot in Figure 3 a red cross when the pair
(h1, h2) implies that cooperation between the two transmitters
is beneficial. However, it is an open problem to provide
a general closed-form formula that depends on the channel
parameters h1 and h2 to determine whether cooperation is
beneficial to the transmitters.

C. Stable and Fair Allocation When Cooperation Is in the

Best Interest of All

In the following, we focus on the case h1 ∈ [0, hΛ[,
h2 ∈ [0, hΛ[ and show that it is a sufficient condition for
cooperation to be in the best interest of both transmitters. Note
that, in general, additional values for h1 and h2 could lead
to cooperation being in the best interest of the transmitters,
as illustrated in Figure 3. We also assume that min(Γ1,Γ2) >
Λ, the problem is trivial otherwise. We further propose as
fair solution concept, a unique achievable rate in the core

Fig. 3. Fix Γ1 = 1, Γ2 = 0.4, and Λ = 0.1. h1 and h2 vary between
0 and 2 with a step size of 0.1. A red cross for the pair (h1, h2) indicates
that cooperation between the two transmitters is beneficial.

that satisfies a series of axioms. Note that Definition 5 is
not well-defined for a non-degraded GMAC-WT-AJ. Indeed,
the Envy-freeness axiom cannot be only defined through the
power constraints of the transmitters. More specifically, the
configuration associated with a transmitter does not only
depend on its power constraint but also on its channel gain with
respect to the eavesdropper. We thus propose the following
definitions.

Definition 6: For any i, for any Γ∗ ∈]0,Γi], for any let
vΓi←Γ∗,hi←h∗ be the same game as v where the power
constraint Γi of Transmitter i is replaced by Γ∗, and the
channel gain associated with Transmitter i at the eavesdropper
is replaced by h∗.

Definition 7: A fair secrecy rate allocation {R∗l (v)}l∈L
should satisfy the following axioms.

(i) Efficiency: Defined as in Definition 5.
(ii) Symmetry: Defined as in Definition 5.

(iii) Envy-freeness: For any i, j ∈ L, if there exists Γ∗i ∈
]0,Γi] such that vΓi←Γ∗

i
,hi←hi

(L) = vΓi←Γj ,hi←hj
(L),

then

R∗i (vΓi←Γ∗
i
,hi←hi

) = R∗j (v).

The meaning of this envy-freeness axiom is the fol-
lowing. If Transmitter i decides to conserve power by
transmitting with some power Γ∗i ∈]0,Γi], and if this Γ∗i
makes Transmitter i and Transmitter j contribute equally
to the grand coalition value, i.e., vΓi←Γ∗

i
,hi←hi

(L) =
vΓi←Γj ,hi←hj

(L), then Transmitter i receives the same
payoff as Transmitter j.

Note that our new definition of envy-freeness recovers as
special case the one in Definition 5 for degraded channels,
i.e., when h1 = h2. However, it is a priori unclear whether or
not this generalization will still lead to a unique solution that
is in the core and achievable. We first show in Lemma 1 that
either Γ∗1 or Γ∗2 exists, where Γ∗1, Γ∗2 are as in Definition 7.

Lemma 1: Suppose that h1 ∈ [0, hΛ[, h2 ∈ [0, hΛ[.
There exists Γ∗1 ∈]0,Γ1] such that vΓ1←Γ∗

1 ,h1←h1
(L) =

vΓ1←Γ2,h1←h2
(L), or there exists Γ∗2 ∈]0,Γ2] such

that vΓ2←Γ∗
2 ,h2←h2(L) = vΓ2←Γ1,h2←h1(L). Moreover,
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Fig. 4. Representation of the known achievable region Ra from [35],
the core C(v) defined in Definition 4, and the unique fair allo-
cation (R∗

1
(v), R∗

2
(v)) defined in Proposition 5 with the parameters

(Γ1, Γ2, h1, h2, Λ) = (1, 0.4, 0.6, 0.8, 0.1).

if (Γ∗1,Γ
∗
2) ̸= (Γ1,Γ2), then Γ∗1 ∈]0,Γ1] or (mutually exclusive

or) Γ∗2 ∈]0,Γ2].
Proof: See Appendix E.

Then, in Proposition 5, we show that there exists a unique
secrecy rate allocation as axiomatized in Definition 7, and that
this rate allocation is achievable, and belongs to the core.

Proposition 5: Suppose that h1 ∈ [0, hΛ[, h2 ∈ [0, hΛ[.
Assume that Γ∗1 ∈]0,Γ1] (Exchange the role of the two
transmitters if Γ∗2 ∈]0,Γ2]). The unique solution that satisfies
the three axioms of Definition 7 is

R∗2(v) =
1

2

[
1

2
log

(
1 + 2hΛΓ2

1 + 2 h2Γ2

)]
, (24a)

R∗1(v) =
1

2
log

(
1 + hΛ(Γ1 + Γ2)

1 + h1Γ1 + h2Γ2

)
−R∗2(v). (24b)

Proof: One immediately sees that the allocation described
in (24) satisfies the efficiency and symmetry axioms. One
can also see that the Envy-freeness axiom of Definition 7 is
satisfied using (57) derived in the proof of Lemma 1. Finally,
unicity is proved similar to the proof of Proposition 1.

Next, assume Γ1,Γ2 > Λ. Recall that an achievable
region for the two-transmitter GMAC-WT-AJ with parameters
((Γ1,Γ2), (h1, h2),Λ, Ã2

Y , Ã2
Z) is given by [35]

Ra ≜{
(R1, R2) : R1 ⩽

[
1

2
log

(
1 + hΛΓ1

1 + Γ1h1(1 + h2Γ2)−1

)]+
,

R2 ⩽

[
1

2
log

(
1 + hΛΓ2

1 + Γ2h2(1 + h1Γ1)−1

)]+
,

R1 + R2 ⩽

[
1

2
log

(
1 + hΛ(Γ1 + Γ2)

1 + Γ1h1 + Γ2h2

)]+}
. (25)

We show in Theorem 7 that (R∗1(v), R∗2(v)) defined in
Proposition 5 is not only the unique allocation that satisfies the
axioms of Definition 7, but also an allocation that is achievable
and belongs to the core.

Theorem 7: Consider (R∗1(v), R∗2(v)) as defined in Propo-
sition 5.

(i) (R∗1(v), R∗2(v)) belongs to Ra and is thus achievable.
(ii) (R∗1(v), R∗2(v)) belongs to the core.

Proof: (i) and (ii) are proved in Appendices F and G,
respectively.

We illustrate Theorem 7 in Figure 4 with an example
when (Γ1,Γ2, h1, h2,Λ) = (1, 0.4, 0.6, 0.8, 0.1). Similar to
the degraded case, we observe that some rates in the core
may not be achievable. However, as proved in Theorem 7,
we observe in Figure 4 that the unique fair allocation (that
satisfies Definition 7) characterized in Proposition 5 is achiev-
able and belongs to the core.

V. CONCLUDING REMARKS

We studied the Gaussian multiple access wiretap channel
with selfish transmitters. Although a collective protocol can
increase the individual secrecy rate of the transmitters, it can,
at the same time, lead to conflict of interests. We cast the
problem as a coalitional game in which the value function
is determined under information-theoretic guarantees, i.e., the
value associated with a coalition is computed with no restric-
tions on the strategies that the transmitters outside the coalition
can adopt.

We showed for the degraded Gaussian multiple access
wiretap channel that the grand coalition is in the best interest
of all agents and stable, in the sense that any coalition of
transmitters has a disincentive to leave the grand coalition.
We also determined a fair secrecy rate allocation that is unique,
achievable, and belongs to the core.

We also studied the non-degraded Gaussian multiple access
wiretap channel with two selfish transmitters and determined
that cooperation might not be in the best interest of all trans-
mitters. We determined a necessary and sufficient condition
for the core of the game to be non-empty. We also identified a
range of channel parameters for which cooperation is always
beneficial. In this case, we further proposed a solution concept
for a fair allocation that satisfies a series of axioms that
generalizes the one used for the degraded case, and determined
a unique solution that is achievable and belongs to the core.

An open problem is the treatment of non-degraded Gaussian
multiple access wiretap channels with an arbitrary number of
transmitters. While the same coalitional game theory frame-
work can still be applied to this case, the main difficulty lies
in the characterization of the value function.

APPENDIX A

PROOF OF THEOREM 4

(ii) follows from Theorem 1. We now show (i), i.e.,
C∗(v) ¦ C(v). Let S ¦ L and assume v(S) > 0, i.e.,

hΛSc > h. Define S(Λ) ≜ S ∩ L(Λ). Let (Rl)l∈L ∈ C∗(v),
we have

RS (26a)

= v(L)−RSc (26b)

⩾ v(L)− 1

2
log

[
1 + hΛΓSc(Λ)

1 + hΓSc(Λ)

]
(26c)

=
1

2
log

[
1 + hΛΓL(Λ)

1 + hΛΓSc(Λ)

1 + hΓSc(Λ)

1 + hΓL(Λ)

]
(26d)
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=
1

2
log

[(
1 +

hΛΓS(Λ)

1 + hΛΓSc(Λ)

)(
1 +

hΓS(Λ)

1 + hΓSc(Λ)

)−1
]

(26e)

⩾
1

2
log

[(
1 +

ΓS(Λ)

1 + Λ + ΓSc(Λ)

)(
1 + hΓS(Λ)

)−1
]

(26f)

⩾
1

2
log

[(
1 +

ΓS(Λ)

1 + ΛSc(Λ)

)(
1 + hΓS(Λ)

)−1
]

(26g)

⩾
1

2
log

[(
1 +

ΓS(ΛSc )

1 + ΛSc(Λ)

)(
1 + hΓS(ΛSc )

)−1
]

(26h)

⩾ v(S), (26i)

where (26b) and (26c) hold by definition of C∗(v), (26g) holds
by definition of ΛSc , (26h) holds because S(ΛSc) ¦ S(Λ) and

when hΛSc(Λ)
> h, x 7→ log

(
1+xhΛSc(Λ)

1+xh

)
is increasing, (26i)

holds because ΛSc ⩾ ΛSc(Λ). Hence, (Rl)l∈L ∈ C(v).

APPENDIX B

PROOF OF PROPOSITION 1

We consider Λ = 0 to simplify notation in the proof,
however, the case Λ ̸= 0 is treated similarly. The proof of
existence is similar to the one of [4, Theorem 5.1]. Define for
x ∈ [0, 1], for l ∈ L

ϕx,l(v) ≜
1
2 log [1 + x(lΓl + Γl+1:L)]−∑L

i=l+1 ϕx,i(v)

l
.

(27)

Some manipulations, similar to [4, Eq.(8)], gives that for any
x ∈ [0, 1], for any l ∈ L\{L}

ϕx,l(v)− ϕx,l+1(v) =
1

2l
log

[
1 + x(lΓl + Γl+1:L)

1 + x(lΓl+1 + Γl+1:L)

]
,

(28)

and, as shown in [4, Lemma 1], that for any x ∈ [0, 1], for
any l, l′ ∈ L such that Γl > Γ′l

ϕx,l(v
l,l′) = ϕx,l′(v). (29)

Define now the following secrecy rate allocation for l ∈ L
R∗l (v) ≜ ϕhΛ,l(v)− ϕh,l(v). (30)

From (30), efficiency is seen by choosing l = 1 in (27), sym-
metry follows from (28), and envy-freeness follows from (29).
The proof of uniqueness is identical to the proof of [4,
Theorem 5.1].

APPENDIX C

PROOF OF THEOREM 5

A. Preliminaries

We assume the sequence (Γl)l∈L decreasing by relabeling
the players if necessary. In the following we use the notation

Γi:j ≜
∑j

l=i Γl for any i, j ∈ N. We also define L(Λ) ≜
|L(Λ)|. We will use of the following lemma, which is proved
in Appendix H.

Lemma 2: Let k ∈ N∗, h1, h2 ∈ [0, 1[, such that h1 < h2,
a, b, c ∈ R+ such that b > a. The following functions are
non-increasing.

f
(1)
k,h1,h2,a : R+ → R,

x 7→ 1

2
log

[
1 + h1(kx + a)

1 + h2(kx + a)

]
, (31)

f
(2)
k,h1,h2,a,b : R+ → R,

x 7→ f
(1)
1,h1,h2,ka(x)− f

(1)
1,h1,h2,kb(x), (32)

f
(3)
k,h1,h2,a : R+ → R,

x 7→ (k + 1)f
(1)
k,h1,h2,a(x)

−kf
(1)
k+1,h1,h2,a(x), (33)

f
(4)
k,h1,h2,a,c : [0, c[→ R,

x 7→ f
(1)
k+1,h1,h2,a(x)

− (k + 1)f
(1)
1,h1,h2,a+ck(x). (34)

Consequently, we also have that ∀x ∈ R∗+, f
(3)
k,h1,h2,a(x) < 0,

since f
(3)
k,h1,h2,a(0) ⩽ 0.

B. Left-Hand Side of (17)

We first prove that for any l ∈ L(Λ), R∗l (v) > 0. For
l ∈ [[1, L(Λ)− 1]],

R∗l (v)−R∗l+1(v) (35a)

=
f

(1)
l,h,hΛ,Γl+1:L(Λ)

(Γl+1)− f
(1)
l,h,hΛ,Γl+1:L(Λ)

(Γl)

l
(35b)

⩾ 0, (35c)

where (35b) holds by (28) and (30), and (35c) holds because

Γl+1 ⩽ Γl and f
(1)
l,h,hΛ,Γl+1:L(Λ)

is non-increasing by Lemma 2.

Then,

R∗L(Λ)(v) = −f
(1)
L(Λ),h,hΛ,0(Γ(Λ)) (36a)

> 0, (36b)

where (36a) holds by (28) and (30), (36b) holds because h <
hΛ. Hence, by (35c) and (36b), we have by induction that for
any l ∈ L(Λ), R∗l (v) > 0.

C. Right-Hand Side of (17)

Next, we want to prove that

∀S ¦ L(Λ), R∗S(v) ⩽
1

2
log

(
1 + hΛΓS
1 + hΓS

)
. (37)

We prove (37) by induction. Clearly, (37) is true when L(Λ) =
1. We assume that (37) is true for L(Λ) = K ∈ N∗, we will
show that (37) is true for L(Λ) = K + 1. Let v be the game

with L(Λ) = K+1 transmitters. We let v(−j) denote the game
v by removing Transmitter j ∈ [[1, K + 1]]. We first show the
following lemma.

Lemma 3: We have for any l ∈ [[1, K + 1]], for any j ∈
[[1, K + 1]]\{l},

R∗l (v) < R∗l (v
(−j)). (38)

Proof: For any l ∈ [[j + 1, K]]

R∗l (v)−R∗l+1(v) (39a)

=
f

(1)
l,h,hΛ,Γl+1:K+1

(Γl+1)− f
(1)
l,h,hΛ,Γl+1:K+1

(Γl)

l
(39b)
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⩽
f

(1)
l−1,h,hΛ,Γl+1:K+1

(Γl+1)− f
(1)
l−1,h,hΛ,Γl+1:K+1

(Γl)

l − 1
(39c)

= R∗l (v
(−j))−R∗l+1(v

(−j)), (39d)

where (39b) and (39d) hold by (28) and (30), (39c) holds

because Γl+1 ⩽ Γl and f
(3)
l,h,hΛ,Γl+1:K+1

is decreasing by

Lemma 2.
For any l ∈ [[1, j − 2]]

R∗l (v)−R∗l+1(v) (40a)

=
f

(1)
l,h,hΛ,Γl+1:K+1

(Γl+1)− f
(1)
l,h,hΛ,Γl+1:K+1

(Γl)

l
(40b)

⩽
f

(1)
l,h,hΛ,Γl+1:K+1−Γj

(Γl+1)− f
(1)
l,h,hΛ,Γl+1:K+1−Γj

(Γl)

l
(40c)

= R∗l (v
(−j))−R∗l+1(v

(−j)), (40d)

where (40b) and (40d) hold as (39b), (40c) holds

because [f
(1)
l,h,hΛ,Γl+1:K+1

(Γl+1) − f
(1)
l,h,hΛ,Γl+1:K+1

(Γl))] −
[f

(1)
l,h,hΛ,Γl+1:K+1−Γj

(Γl+1) − f
(1)
l,h,hΛ,Γl+1:K+1−Γj

(Γl)] =

f
(2)
l,h,hΛ,Γl+1,Γl

(Γl+1:K+1) − f
(2)
l,h,hΛ,Γl+1,Γl

(Γl+1:K+1 − Γj)

and f
(2)
l,h,hΛ,Γl+1,Γl

is decreasing by Lemma 2.

When 1 < j < K + 1, we have for l = j

R∗l−1(v)−R∗l+1(v) (41a)

= R∗l−1(v)−R∗l (v) + R∗l (v)−R∗l+1(v) (41b)

=
f

(1)
l−1,h,hΛ,Γl:K+1

(Γl)− f
(1)
l−1,h,hΛ,Γl:K+1

(Γl−1)

l − 1

+
f

(1)
l,h,hΛ,Γl+1:K+1

(Γl+1)− f
(1)
l,h,hΛ,Γl+1:K+1

(Γl)

l
(41c)

⩽
1

l − 1
f

(1)
l−1,h,hΛ,Γl+1+Γl+1:K+1

(Γl+1)

− 1

l − 1
f

(1)
l−1,h,hΛ,Γl+1+Γl+1:K+1

(Γl−1) (41d)

⩽
f

(1)
l−1,h,hΛ,Γl+1:K+1

(Γl+1)− f
(1)
l−1,h,hΛ,Γl+1:K+1

(Γl−1)

l − 1
(41e)

= R∗l−1(v
(−j))−R∗l+1(v

(−j)), (41f)

where (41c) and (41f) hold as (39b), (41d) holds because

f
(1)
l−1,h,hΛ,Γl:K+1

(Γl)− f
(1)
l−1,h,hΛ,Γl:K+1

(Γl−1)

l − 1

+
f

(1)
l,h,hΛ,Γl+1:K+1

(Γl+1)− f
(1)
l,h,hΛ,Γl+1:K+1

(Γl)

l

−
f

(1)
l−1,h,hΛ,Γl+1+Γl+1:K+1

(Γl+1)

l − 1

+
f

(1)
l−1,h,hΛ,Γl+1+Γl+1:K+1

(Γl−1)

l − 1

=
1

l(l − 1)
(f

(4)
l−1,h,hΛ,Γl+1:K+1,Γl−1

(Γl)

− f
(4)
l−1,h,hΛ,Γl+1:K+1,Γl−1

(Γl+1)), (42)

and because f
(4)
l−1,h,hΛ,Γl+1:K+1,Γl−1

is decreasing by Lemma 2,

(41e) holds as (40c).

When j ̸= K + 1, we have

R∗K+1(v) = −
f

(1)
K+1,h,hΛ,0(ΓK+1)

K + 1
(43a)

< −
f

(1)
K,h,hΛ,0(ΓK+1)

K
(43b)

= R∗K+1(v
(−j)), (43c)

where (43b) holds because ∀x ∈ R∗+, f
(3)
K,h,hΛ,0(x) < 0 by

Lemma 2.
When j = K + 1, we have

R∗K(v)

=
1

K

[
−f

(1)
K,h,hΛ,ΓK+1

(ΓK) +
f

(1)
K+1,h,hΛ,0(ΓK+1)

K + 1

]
(44a)

⩽
1

K

[
−f

(1)
K,h,hΛ,0(ΓK)− f

(1)
K+1,h,hΛ,0(ΓK+1)

+f
(1)
K,h,hΛ,0(ΓK+1) +

f
(1)
K+1,h,hΛ,0(ΓK+1)

K + 1

]
(44b)

=
1

K

[
−f

(1)
K,h,hΛ,0(ΓK) + f

(1)
K,h,hΛ,0(ΓK+1)

−K
f

(1)
K+1,h,hΛ,0(ΓK+1)

K + 1

]
(44c)

< −
f

(1)
K,h,hΛ,0(ΓK)

K
(44d)

= R∗K(v(−j)), (44e)

(44a) and (44e) hold by (30) and (27), (44b) holds because

f
(1)
K,h,hΛ,0(ΓK) − f

(1)
K,h,hΛ,ΓK+1

(ΓK) + f
(1)
K+1,h,hΛ,0(ΓK+1) −

f
(1)
K,h,hΛ,0(ΓK+1) = f

(2)
1,h,hΛ,0,ΓK+1

(KΓK) −
f

(2)
1,h,hΛ,0,ΓK+1

(KΓK+1) ⩽ 0 and because f
(2)
1,h,hΛ,0,ΓK+1

is

decreasing by Lemma 2, (44d) holds because f
(3)
K,h,hΛ,0 is

strictly negative by Lemma 2.
Hence, by (39d), (40d), (41f), (43c) when j ̸= K + 1, and

by (39d), (40d), (44e) when j = K + 1, we have (38) for any
l ∈ [[1, K + 1]], for any j ∈ [[1, K + 1]]\{l}.
Finally, for any S ª [[1, K+1]], there exists jS ∈ [[1, K+1]]\S
such that

R∗S(v) < R∗S(v
(−jS)) (45a)

<
1

2
log

(
1 + hΛΓS
1 + hΓS

)
, (45b)

where (45a) holds by (38), and (45b) holds by induction
hypothesis.

APPENDIX D

PROOF OF PROPOSITION 2

A. Monotonicity

We will use of the following lemma, which is proved in
Appendix I, to prove by induction, that for any l ∈ [[1, L(Λ)−
1]],

R∗
l (v(ω))

R∗
l+1(v

(ω))
is an increasing function of É.

Lemma 4: Let a, b, c, d ∈ R∗+, h1, h2 ∈ [0, 1[, such that
h1 < h2. The following functions are non-decreasing.

f
(5)
h1,h2,a,b,c,d : R+ → R,
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É 7→
log
[

ω+h1(a+b+c)
ω+h2(a+b+c)

ω+h2(a+b+c+d)
ω+h1(a+b+c+d)

]

log
[

ω+h1a
ω+h2a

ω+h2(a+b)
ω+h1(a+b)

] ,

(46)

f
(6)
h1,h2,a,b : R+ → R,

É 7→
log
[

ω+h2(a+b)
ω+h1(a+b)

]

log
[

ω+h2a
ω+h1a

] . (47)

From (35b) and Lemma 4, we have that for any l ∈
[[1, L(Λ)−1]], l′ ∈ [[1, L(Λ)−2]], such that l′ > l, Γl′ ̸= Γl′+1,
and Γl ̸= Γl+1, we have

R∗l (v
(ω))−R∗l+1(v

(ω))

R∗l′(v
(ω))−R∗l′+1(v

(ω))
=

l′

l
f

(5)
h,hΛ,a,b,c,d(É), (48)

where a ≜ l′Γl′+1 + Γl′+1:L(Λ), b ≜ l′(Γl′ − Γl′+1), c ≜

l(Γl+1−Γl′)− (l′− l)Γl′ +Γl+1:l′ , d ≜ l(Γl−Γl+1). Observe
that a, b, c, d ∈ R∗+. Next, from (35b) and (15) we have

R∗
L(Λ)−1(v

(ω))

R∗
L(Λ)(v

(ω))

=
1

L(Λ)− 1
[−1

+ L(Λ)f
(6)
h,hΛ,L(Λ)ΓL(Λ),(L(Λ)−1)(ΓL(Λ)−1−ΓL(Λ))

(É)
]
.

(49)

Hence, by induction, using (48), (49), and Lemma 4 for any

l ∈ [[1, L(Λ)− 1]],
R∗

l (v(ω))

R∗
l+1(v

(ω))
is an increasing function of É.

B. Image

We now determine the image of É 7→ R∗
l (v(ω))

R∗
l+1(v

(ω))
. For any

l ∈ [[1, L(Λ)−1]], any l′ ∈ [[1, L(Λ)−1]] such that Γl′+1 ̸= Γl′ ,
we have

R∗l (v
(ω))−R∗l+1(v

(ω))

R∗l′(v
(ω))−R∗l′+1(v

(ω))

=
l′

l

f
(1)
l,h,hΛ,ω−1Γl+1:L(Λ)

(Γl+1

ω
)−f

(1)
l,h,hΛ,ω−1Γl+1:L(Λ)

(Γl

ω
)

f
(1)
l′,h,hΛ,ω−1Γl′+1:L(Λ)

(
Γl′+1

ω
)−f

(1)
l′,h,hΛ,ω−1Γl′+1:L(Λ)

(Γl′

ω
)

(50a)

ω→+∞−−−−−→ Γl+1 − Γl

Γl′+1 − Γl′
, (50b)

where (50a) holds as (39b), and (50b) is obtained with Taylor
series for log. Similar to (50b), we have

R∗
L(Λ)(v

(ω))

R∗
L(Λ)−1(v

(ω))

ω→+∞−−−−−→ ΓL(Λ)

ΓL(Λ)−1
, (51)

and by (50b) and (51), we have by induction for any l ∈
[[1, K − 2]]

R∗l+1(v
(ω))

R∗l (v
(ω))

ω→+∞−−−−−→ Γl+1

Γl

. (52)

Finally, we see from (15) that R∗
L(Λ)(v

(ω))
ω→0−−−→

1
2L(Λ) log hΛ

h
, then by induction and using (15) we get for

any l ∈ L(Λ)

R∗l (v
(ω))

ω→0−−−→ 1

2L(Λ)
log

hΛ

h
, (53)

such that for any l, l′ ∈ L(Λ)

R∗l+1(v
(ω))

R∗l (v
(ω))

ω→0−−−→ 1. (54)

APPENDIX E

PROOF OF LEMMA 1

If we define

Γ∗1 ≜ Γ2
hΛ − h2

hΛ − h1 + 2 hΛΓ2(h2 − h1)
, (55)

Γ∗2 ≜ Γ1
hΛ − h1

hΛ − h2 + 2 hΛΓ1(h1 − h2)
, (56)

then

vΓ1←Γ∗
1 ,h1←h1

(L) =
1 + hΛ(Γ∗1 + Γ2)

1 + h1Γ∗1 + h2Γ2

=
1 + 2hΛΓ2

1 + 2 h2Γ2

= vΓ1←Γ2,h1←h2(L), (57)

vΓ2←Γ∗
2 ,h2←h2(L) =

1 + hΛ(Γ1 + Γ∗2)

1 + h1Γ1 + h2Γ∗2

=
1 + 2hΛΓ1

1 + 2 h1Γ1

= vΓ2←Γ1,h2←h1(L). (58)

We now show by contradiction that Γ∗1 ∈]0,Γ1] or Γ∗2 ∈
]0,Γ2]. Assume that Γ∗1 /∈]0,Γ1] and Γ∗2 /∈]0,Γ2]. We consider
three cases.

Case 1: Γ∗1 > Γ1 and Γ∗2 > Γ2. We obtain a contradiction
as follows

Γ2(hΛ − h2)

> Γ1(hΛ − h1) + 2 hΛΓ1Γ2(h2 − h1)

(59a)

> Γ2(hΛ − h2) + 2 hΛΓ1Γ2(h1 − h2) + 2 hΛΓ1Γ2(h2 − h1)
(59b)

= Γ2(hΛ − h2), (59c)

where (59a) holds by (55) and because Γ∗1 > Γ1, (59b) holds
by (56) and because Γ∗2 > Γ2.

Case 2: Γ∗1 > Γ1 and Γ∗2 ⩽ 0. (The case Γ∗2 > Γ2 and Γ∗1 ⩽
0 is obtained similarly by exchanging the role of Transmitter
1 and Transmitter 2.) We have 0 ⩾ hΛ−h2+2 hΛΓ1(h1−h2)
by (56) and because Γ∗2 ⩽ 0 and hΛ > h1. Hence,

0

⩾ Γ2(hΛ − h2) + 2 hΛΓ1Γ2(h1 − h2) (60a)

> Γ1(hΛ − h1) + 2 hΛΓ1Γ2(h2 − h1) + 2 hΛΓ1Γ2(h1 − h2)
(60b)

= Γ1(hΛ − h1). (60c)

where (60b) holds as (59a). We thus obtain a contradiction
since hΛ > h1.
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Case 3: Γ∗1 ⩽ 0 and Γ∗2 ⩽ 0. Similar to (60a), we have

0 ⩾ Γ2(hΛ − h2) + 2 hΛΓ1Γ2(h1 − h2), (61)

0 ⩾ Γ1(hΛ − h1) + 2 hΛΓ1Γ2(h2 − h1), (62)

which combined together gives

0 ⩾ Γ2(hΛ − h2) + Γ1(hΛ − h1), (63)

which in turn contradicts that hΛ > h1, h2 and Γ1,Γ2 > 0.
Finally, assume that (Γ∗1,Γ

∗
2) ̸= (Γ1,Γ2). We obtain that

Γ∗1 ∈]0,Γ1] or (mutually exclusive or) Γ∗2 ∈]0,Γ2] by showing
that we cannot have Γ∗1 ∈]0,Γ1] and Γ∗2 ∈]0,Γ2]. Indeed,
assume that Γ∗1 ∈]0,Γ1] and Γ∗2 ∈]0,Γ2], then

Γ2(hΛ − h2)

⩽ Γ1(hΛ − h1) + 2 hΛΓ1Γ2(h2 − h1)

(64a)

⩽ Γ2(hΛ − h2) + 2 hΛΓ1Γ2(h1 − h2) + 2 hΛΓ1Γ2(h2 − h1)
(64b)

= Γ2(hΛ − h2), (64c)

where (64a) holds by (55) and because Γ∗1 ∈]0,Γ1] and hΛ >
h2, (64b) holds by (56) and because Γ∗2 ∈]0,Γ2] and hΛ > h1.
Since (Γ∗1,Γ

∗
2) ̸= (Γ1,Γ2), either (64a) or (64b) is a strict

inequality and we obtain a contradiction.

APPENDIX F

PROOF OF THEOREM 7.I

Clearly R∗2 ⩾ 0 and we have

1

2
log

(
1 + hΛΓ2

1 + Γ2h2(1 + h1Γ1)−1

)
(65a)

⩾
1

2
log

(
1 + hΛΓ2

1 + Γ2h2

)
(65b)

⩾
1

2

[
1

2
log

(
1 + 2hΛΓ2

1 + 2 h2Γ2

)]
(65c)

= R∗2(v), (65d)

where we have used in (65c) concavity of x 7→ log
(

1+hΛx
1+h2x

)
.

Next we show that R∗1 ⩾ 0.

R∗1(v) =
1

2
log

(
1 + hΛ(Γ1 + Γ2)

1 + h1Γ1 + h2Γ2

)

− 1

2

[
1

2
log

(
1 + 2hΛΓ2

1 + 2 h2Γ2

)]
(66a)

=
1

2
log

(
1 + hΛ(Γ1 + Γ2)

1 + h1Γ1 + h2Γ2

)

− 1

2

[
1

2
log

(
1 + hΛ(Γ∗1 + Γ2)

1 + h1Γ∗1 + h2Γ2

)]
(66b)

=
1

2
log

(
1 + hΛ(Γ1 + Γ2)

1 + h1Γ1 + h2Γ2

1 + h1Γ
∗
1 + h2Γ2

1 + hΛ(Γ∗1 + Γ2)

)

+
1

4
log

(
1 + hΛ(Γ∗1 + Γ2)

1 + h1Γ∗1 + h2Γ2

)
, (66c)

where (66b) holds by (57). Next, we show that
1
2 log

(
1+hΛ(Γ1+Γ2)
1+h1Γ1+h2Γ2

1+h1Γ
∗
1+h2Γ2

1+hΛ(Γ∗
1+Γ2)

)
⩾ 0. We have

1 + hΛ(Γ1 + Γ2)

1 + h1Γ1 + h2Γ2

1 + h1Γ
∗
1 + h2Γ2

1 + hΛ(Γ∗1 + Γ2)
⩾ 1 (67a)

ô (1 + hΛ(Γ1 + Γ2))(1 + h1Γ
∗
1 + h2Γ2)

− (1 + h1Γ1 + h2Γ2)(1 + hΛ(Γ∗1 + Γ2)) ⩾ 0 (67b)

ô (Γ1 − Γ∗1) (hΛ − h1 + Γ2hΛ(h2 − h1)) ⩾ 0. (67c)

We consider two cases.
Case 1: Assume (h2 − h1) ⩾ 0. Then

(Γ1 − Γ∗1) (hΛ − h1 + Γ2hΛ(h2 − h1)) ⩾ 0 because
hΛ > h1 and Γ1 ⩾ Γ∗1.

Case 2: Assume (h2 − h1) < 0. Then

(Γ1 − Γ∗1) (hΛ − h1 + Γ2hΛ(h2 − h1))

⩾ (Γ1 − Γ∗1) (hΛ − h1 + 2Γ2hΛ(h2 − h1)) (68a)

⩾ 0, (68b)

by using (55) with the fact that hΛ > h2 and Γ∗1 ⩾ 0.

We thus have that 1
2 log

(
1+hΛ(Γ1+Γ2)
1+h1Γ1+h2Γ2

1+h1Γ
∗
1+h2Γ2

1+hΛ(Γ∗
1+Γ2)

)
⩾ 0.

We also have 1
4 log

(
1+hΛ(Γ∗

1+Γ2)
1+h1Γ∗

1+h2Γ2

)
⩾ 0 by (57). We deduce

that R∗1 ⩾ 0.
Next, we have

R∗1(v)

=
1

2
log

(
1 + hΛ(Γ1 + Γ2)

1 + h1Γ1 + h2Γ2

)
− 1

2

[
1

2
log

(
1 + 2hΛΓ2

1 + 2 h2Γ2

)]

(69a)

=
1

4
log

[
(1 + hΛ(Γ1 + Γ2))

2

(1 + h2Γ2)2(1 + hΛΓ1)2
1 + 2 h2Γ2

1 + 2hΛΓ2

]

+
1

2
log

(
1 + hΛΓ1

1 + Γ1h1(1 + h2Γ2)−1

)
. (69b)

Then, we have

(1 + hΛ(Γ1 + Γ2))
2

(1 + h2Γ2)2(1 + hΛΓ1)2
1 + 2 h2Γ2

1 + 2hΛΓ2
⩽ 1

ô (1 + hΛ(Γ1 + Γ2))
2(1 + 2 h2Γ2)

− (1 + h2Γ2)
2(1 + hΛΓ1)

2(1 + 2hΛΓ2) ⩽ 0 (70a)

ô −Γ2

(
2Γ2

1h
3
Λ + 2Γ2

1Γ
2
2h

2
2h

3
Λ + 4Γ2

1Γ2h2h
3
Λ

+4Γ1Γ
2
2h

2
2h

2
Λ + 2Γ1h

2
Λ + Γ2

1Γ2h
2
2h

2
Λ + 4Γ1Γ2h2h

2
Λ

+2Γ1Γ2h
2
2hΛ + Γ2 (h2 − hΛ) (2Γ2h2hΛ + hΛ + h2)

)

⩽ 0. (70b)

By definition of Γ∗1 in (55) and because Γ∗1 ∈]0,Γ1], we have

Γ2(h2 − hΛ) ⩾ −Γ1(hΛ − h1 + 2 hΛΓ2(h2 − h1)). (71)

Hence, we have

− Γ2

(
2Γ2

1h
3
Λ + 2Γ2

1Γ
2
2h

2
2h

3
Λ + 4Γ2

1Γ2h2h
3
Λ

+4Γ1Γ
2
2h

2
2h

2
Λ + 2Γ1h

2
Λ + Γ2

1Γ2h
2
2h

2
Λ + 4Γ1Γ2h2h

2
Λ

+2Γ1Γ2h
2
2hΛ + Γ2 (h2 − hΛ) (2Γ2h2hΛ + hΛ + h2)

)

⩽ −Γ2

(
2Γ2

1h
3
Λ + 2Γ2

1Γ
2
2h

2
2h

3
Λ + 4Γ2

1Γ2h2h
3
Λ

+ 4Γ1Γ
2
2h1h2h

2
Λ + Γ1hΛ(hΛ − h2) + Γ2

1Γ2h
2
2h

2
Λ

+ 2Γ1Γ2h1h
2
Λ + Γ1h1hΛ + 4Γ1Γ2h1h2hΛ + Γ1h1h2

)

⩽ 0, (72a)

since hΛ > h2. We conclude with (69b) that

R∗1(v) ⩽
1

2
log

(
1 + hΛΓ1

1 + Γ1h1(1 + h2Γ2)−1

)
. (73)
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APPENDIX G

PROOF OF THEOREM 7.II

We first show that R∗1 ⩾ v({1}). We have

R∗1(v)− v({1})

=
1

2
log

(
1 + hΛ(Γ1 + Γ2)

1 + h1Γ1 + h2Γ2

)
− 1

2

[
1

2
log

(
1 + 2hΛΓ2

1 + 2 h2Γ2

)]

− 1

2
log




1 + Γ1

1+(
√

Γ2+
√

Λ)2

1 + h1Γ1



 (74a)

⩾
1

2
log

(
1 + hΛ(Γ1 + Γ2)

1 + h1Γ1 + h2Γ2

)
− 1

2

[
1

2
log

(
1 + 2hΛΓ2

1 + 2 h2Γ2

)]

− 1

2
log

(
1 + Γ1

1+Γ2+Λ

1 + h1Γ1

)
(74b)

=
1

4
log

[
(1 + hΛ(Γ1 + Γ2))

2

(1 + h1Γ1 + h2Γ2)2
1 + 2 h2Γ2

1 + 2hΛΓ2

]

+
1

4
log

[
(1 + Γ2 + Λ)2(1 + h1Γ1)

2

(1 + Γ1 + Γ2 + Λ)2

]
. (74c)

Next, we have

(1 + hΛ(Γ1 + Γ2))
2

(1 + h1Γ1 + h2Γ2)2
1 + 2 h2Γ2

1 + 2hΛΓ2

(1 + Γ2 + Λ)2(1 + h1Γ1)
2

(1 + Γ1 + Γ2 + Λ)2

⩾ 1 (75a)

ô
(1 + hΛ(Γ1 + Γ2))

2(1 + 2 h2Γ2)(1 + Γ2 + Λ)2(1 + h1Γ1)
2

− (1 + h1Γ1 + h2Γ2)
2(1 + 2hΛΓ2)(1 + Γ1 + Γ2 + Λ)2

⩾ 0 (75b)

ô 1
h2
Λ
Γ2 ((Γ1 + Γ2)hΛ + 1) 2

×
(
Γ2

1h
2
1

(
Γ2h

2
Λ + 2h2 (Γ2hΛ + 1) 2

)

+ 2Γ1h1

(
Γ2h

2
Λ + h2

(
2Γ2

2h
2
Λ + 2Γ2hΛ + 1

))

+ Γ2 (hΛ − h2) (h2 (2Γ2hΛ + 1) + hΛ)) ⩾ 0. (75c)

Since hΛ > h2, we deduce that R∗1 ⩾ v({1}).
We now show that R∗2 ⩾ v({2}). We have

R∗2(v)− v({2})

=
1

2

[
1

2
log

(
1 + 2hΛΓ2

1 + 2 h2Γ2

)]

− 1

2
log




1 + Γ2

1+(
√

Γ1+
√

Λ)2

1 + h2Γ2



 (76a)

⩾
1

2

[
1

2
log

(
1 + 2hΛΓ2

1 + 2 h2Γ2

)]
− 1

2
log

(
1 + Γ2

1+Γ1+Λ

1 + h2Γ2

)

(76b)

⩾
1

4
log

[
1 + 2hΛΓ2

1 + 2 h2Γ2

(1 + Γ1 + Λ)2(1 + h2Γ2)
2

(1 + Γ1 + Γ2 + Λ)2

]
. (76c)

Next, we have

1 + 2hΛΓ2

1 + 2 h2Γ2

(1 + Γ1 + Λ)2(1 + h2Γ2)
2

(1 + Γ1 + Γ2 + Λ)2
⩾ 1 (77a)

ô (1 + 2hΛΓ2)(1 + Γ1 + Λ)2(1 + h2Γ2)
2

− (1 + 2 h2Γ2)(1 + Γ1 + Γ2 + Λ)2 ⩾ 0 (77b)

ô 1
h2
Λ
Γ2

(
2Γ2

1h
3
Λ + 2Γ2

1Γ
2
2h

2
2h

3
Λ + 4Γ2

1Γ2h2h
3
Λ

+ 4Γ1Γ
2
2h

2
2h

2
Λ + 2Γ1h

2
Λ + Γ2

1Γ2h
2
2h

2
Λ + 4Γ1Γ2h2h

2
Λ

+ 2Γ1Γ2h
2
2hΛ + Γ2 (h2 − hΛ) (h2 (2Γ2hΛ + 1) + hΛ)

)

⩾ 0. (77c)

Similar to (71), we have

Γ2(h2 − hΛ) ⩾ −Γ1(hΛ − h1 + 2 hΛΓ2(h2 − h1)). (78)

We deduce

1
h2
Λ
Γ2

(
2Γ2

1h
3
Λ + 2Γ2

1Γ
2
2h

2
2h

3
Λ + 4Γ2

1Γ2h2h
3
Λ

+ 4Γ1Γ
2
2h

2
2h

2
Λ + 2Γ1h

2
Λ + Γ2

1Γ2h
2
2h

2
Λ + 4Γ1Γ2h2h

2
Λ

+ 2Γ1Γ2h
2
2hΛ + Γ2 (h2 − hΛ) (h2 (2Γ2hΛ + 1) + hΛ)

)

⩾ 1
h2
Λ
Γ1Γ2

(
2Γ1Γ

2
2h

2
2h

3
Λ + 2Γ1h

3
Λ + 4Γ1Γ2h2h

3
Λ

+ 4Γ2
2h1h2h

2
Λ + 2Γ2h1h

2
Λ + Γ1Γ2h

2
2h

2
Λ

+ 4Γ2h1h2hΛ + hΛ(hΛ − h2) + h1hΛ + h1h2) (79a)

⩾ 0, (79b)

since hΛ > h2. We conclude that R∗2 ⩾ v({2}).
APPENDIX H

PROOF OF LEMMA 2

For x ∈ R+, we have (80), (81), and (82), shown at the top
of the next page. For x ∈ [0, c[, we have (83), shown at the
top of the next page.

APPENDIX I

PROOF OF LEMMA 4

To prove that the two functions in Lemma 4 are non-
decreasing, we show that their derivatives are non-negative.

For É ∈ R+, we have

f
(5)′

h1,h2,a,b,c,d(É) =
− (h2 − h1)

log2
(

(ah1+ω)(h2(a+b)+ω)
(ah2+ω)(h1(a+b)+ω)

) ×A(É),

(91)

where A(É) is defined in (86), shown at the top of the next
page.

It is thus sufficient to show that A(É) ⩽ 0 to obtain

f
(5)′

h1,h2,a,b,c,d(É) ⩾ 0. We consider four cases and define for
convenience

B(É) ≜ (ah1 + É) (ah2 + É) (h1(a + b) + É)

× (h2(a + b) + É) (h1(a + b + c) + É)

× (h2(a + b + c) + É) (h1(a + b + c + d) + É)

× (h2(a + b + c + d) + É) ,

C(É) ≜ −bd (h2 − h1) É2,

D(É) ≜ 2 h2É(a(b + 2c + d) + (b + c)(b + c + d)).

Case 1: Assume that d(h1h2(a + b + c)(a + b + c + d) −
É2) ⩾ 0 and b

(
ah1h2(a + b)− É2

)
⩾ 0. Using that ∀x ∈

R∗+, 1 − x−1 ⩽ log(x) ⩽ x − 1, we have (87), shown at the
top of the next page.

Case 2: Assume that d(h1h2(a + b + c)(a + b + c + d) −
É2) < 0 and b

(
ah1h2(a + b)− É2

)
< 0. Using that ∀x ∈

R∗+, 1 − x−1 ⩽ log(x) ⩽ x − 1, we have (88), shown at the
top of the next page.

Case 3: Assume that d(h1h2(a + b + c)(a + b + c + d) −
É2) < 0 and b

(
ah1h2(a + b)− É2

)
⩾ 0. Using that ∀x ∈

R∗+, log(x) ⩽ x − 1, we have (89), shown at the top of the
next page.
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f
(1)′

k,h1,h2,a(x) =
− (h2 − h1) k

(h1(a + kx) + 1) (h2(a + kx) + 1)
< 0, (80)

f
(2)′

k,h1,h2,a,b(x) =
− (h2 − h1) k(b− a) (h1 (h2(ak + bk + 2x) + 1) + h2)

(h1(ak + x) + 1) (h2(ak + x) + 1) (h1(bk + x) + 1) (h2(bk + x) + 1)
⩽ 0, (81)

f
(3)′

k,h1,h2,a(x) =
− (h2 − h1) k(k + 1)x (h1 (h2(2a + 2kx + x) + 1) + h2)

(h1(a + kx) + 1) (h1(a + kx + x) + 1) (h2(a + kx) + 1) (h2(a + kx + x) + 1)
⩽ 0, (82)

f
(4)′

k,h1,h2,a,c(x) =
− (h2 − h1) k(k + 1)(c− x) (h1 (h2(2a + ck + (k + 2)x) + 1) + h2)

(h1(a + kx + x) + 1) (h2(a + kx + x) + 1) (h1(a + ck + x) + 1) (h2(a + ck + x) + 1)
⩽ 0, (83)

f
(6)′

h1,h2,a,b(É) =

− (h2 − h1)

(
(a+b) log

(

ah2+ω

ah1+ω

)

(h1(a+b)+ω)(h2(a+b)+ω) −
a log

(

h2(a+b)+ω

h1(a+b)+ω

)

(ah1+ω)(ah2+ω)

)

log2
(

ah2+ω
ah1+ω

) , (84)

f
(6)′

h1,h2,a,b(É) =
− (h2 − h1) (a + b)a (g(a)− g(a + b))

(ah1 + É) (ah2 + É) (h1(a + b) + É) (h2(a + b) + É) log2
(

ah2+ω
ah1+ω

) . (85)

A(É) ≜




b
(
ah1h2(a + b)− É2

)
log
(

(h1(a+b+c)+ω)(h2(a+b+c+d)+ω)
(h2(a+b+c)+ω)(h1(a+b+c+d)+ω)

)

(ah1 + É) (ah2 + É) (h1(a + b) + É) (h2(a + b) + É)

−
d
(
h1h2(a + b + c)(a + b + c + d)− É2

)
log
(

(ah1+ω)(h2(a+b)+ω)
(ah2+ω)(h1(a+b)+ω)

)

(h1(a + b + c) + É) (h2(a + b + c) + É) (h1(a + b + c + d) + É) (h2(a + b + c + d) + É)



 ,

(86)

A(É) ⩽
C(É)

[
h1

(
D(É) + ach2

2(a + b + c + d) + cÉ2
)

+ h2
1h2(a + b)(a + b + c)(b + c + d) + h2É

2(b + c + d)
]

B(É)

⩽ 0, (87)

A(É) ⩽
C(É)

[
h1

(
D(É) + h2

2(a + b)(a + b + c)(b + c + d) + É2(b + c + d)
)

+ ach2
1h2(a + b + c + d) + ch2É

2
]

B(É)

⩽ 0, (88)

A(É) ⩽
C(É)

[
h1

(
D(É) + h2

2(a + b)(b + c)(a + b + c + d) + É2(b + c)
)

+ ah2
1h2(c + d)(a + b + c) + h2É

2(c + d)
]

B(É)

⩽ 0, (89)

A(É) ⩽
C(É)

[
h1

(
D(É) + ah2

2(c + d)(a + b + c) + É2(c + d)
)

+ h2
1h2(a + b)(b + c)(a + b + c + d) + h2É

2(b + c)
]

B(É)

⩽ 0. (90)

Case 4: Assume that d(h1h2(a + b + c)(a + b + c + d) −
É2) ⩾ 0 and b

(
ah1h2(a + b)− É2

)
< 0. Using that ∀x ∈

R∗+, 1− x−1 ⩽ log(x), we have (90), shown at the top of the
page.

Next, for É ∈ R+, we have (84), shown at the top of the
page, which we rewrite as (85), shown at the top of the page,
where we have defined

g : R∗+ → R, x 7→
(xh1 + É)(xh2 + É) log

(
xh2+ω
xh1+ω

)

x
. (92)

Hence, to show that f
(6)′

h1,h2,a,b(É) ⩾ 0 , it is sufficient to
show that g is non-decreasing. We have for x ∈ R∗+,

g′(x) =

(
h1h2x

2 − É2
)
log
(

h2x+ω
h1x+ω

)
+ xÉ(h2 − h1)

x2
. (93)

We now show that g′(x) ⩾ 0. We consider two cases.

Case 1: Assume
(
h1h2x

2 − É2
)

< 0. Using that ∀x ∈
R∗+, log(x) ⩽ x− 1, we lower bound g′(x) by

h1 (h2 − h1) (h2x + É)

h1x + É
⩾ 0. (94)

Case 2: Assume
(
h1h2x

2 − É2
)

⩾ 0. Using that ∀x ∈
R∗+, 1− x−1 ⩽ log(x), we lower bound g′(x) by

(h2 − h1) h2 (h1x + É)

h2x + É
⩾ 0. (95)
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