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Secure Source Coding Resilient Against

Compromised Users via an Access Structure
Hassan ZivariFard and Rémi A. Chou

Abstract—Consider a source and multiple users who observe
the independent and identically distributed (i.i.d.) copies of
correlated Gaussian random variables. The source wishes to
compress its observations and store the result in a public database
such that (i) authorized sets of users are able to reconstruct the
source with a certain distortion level, and (ii) information leakage
to non-authorized sets of colluding users is minimized. In other
words, the recovery of the source is restricted to a predefined
access structure. The main result of this paper is a closed-form
characterization of the fundamental trade-off between the source
coding rate and the information leakage rate. As an example,
threshold access structures are studied, i.e., the case where any
set of at least t users is able to reconstruct the source with some
predefined distortion level and the information leakage at any
set of users with a size smaller than t is minimized.

Index Terms—Distributed source coding, secure source coding,
secure data storage, equivocation-rate, capacity, side information,
rate-distortion region, access structure, compromised users.

I. INTRODUCTION

A
SOLUTION to the storage of private data that is

resilient to compromised users is secure distributed

storage via traditional cryptographic solutions such as secret

sharing [2], [3]. Specifically, a solution based on secret sharing

consists in encoding the private data and distributing parts of

the encoded data among multiple users, via individual secure

channels, such that any t users that pool their information

together can reconstruct the private data, while any z(< t)

colluding users cannot learn any information about the private

data. The set of all sets of users capable of reconstructing the

private data is referred to as the access structure. For instance,

the users could represent servers.

A. Problem Overview

In this paper, we aim to propose a secure distributed data

storage strategy that solely relies on a public database and
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accounts for side information at the users by considering three

main modifications of the secret sharing solution described

above. First, we do not assume that secure channels are

available to transmit the encoded private data to the users,

as secure channels come with a cost in practice, instead, we

solely rely on the availability of a public database. Second,

we consider that the users have side information about the

private data. While this consideration is not relevant in the

original secret sharing problem where the secret is an arbitrary

sequence of symbols and does not represent information, it

becomes relevant in a data storage context. Not accounting

for the fact that the users can have side information raises

the following two challenges that cannot be addressed with

results for traditional secret sharing: (i) it leads to overes-

timating the security guarantees of the protocol, and (ii) it

leads to inefficiency in terms of data storage size. Third,

in our proposed setting, we relax the lossless reconstruction

constraint of traditional secret sharing to a lossy reconstruction

constraint [4].

Two distinct bodies of work on secure data storage are

related to our model. The first one is secret sharing, which

specifically addresses the presence of access structures – we

refer to [5] for a comprehensive literature review. The second

one is secure source coding [6], [7], [8], [9], [10], [11], [12],

[13], which mainly addresses the presence of side information

at the users, but in the absence of access structures. By

contrast, in this paper, we propose to simultaneously address

the presence of an access structure and side information at

the users within a single framework. Specifically, we consider

a source and multiple users who observe the i.i.d. copies of

correlated Gaussian random variables. The source wants to

compress its observations and store the result in a public

database such that (i) only pre-defined sets of authorized users

can reconstruct, up to a prescribed distortion level, the source

by pooling all their available information, and (ii) information

leakage about the source to any other sets of colluding users

is minimized. The main result of this paper is a closed-form

characterization of the fundamental trade-off between source

coding rate and information leakage rate. Our result indicates

that if the source is more correlated, in a sense that we

make precise in the sequel, with the side information of the

authorized sets of users than with the side information of any

unauthorized set of users, then the optimal information leakage

rate grows linearly with the optimal source coding rate. On

the other hand, if this is not the case, the optimal information

leakage rate grows non-linearly with the optimal source coding

rate. Additionally, for threshold access structures, i.e., when a
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fixed number of users, denoted by t, are needed to reconstruct

the source (independently of the specific identities of those

users), we show that the capacity region is, in general, not a

monotonic function of the threshold t.

B. Novelties and Main Challenges

Next, we discuss the novelties and main challenges of

the main result of this paper, which is a characterization of

the optimal rate-leakage region for the problem introduced in

the previous section. We first describe the main challenges of

our converse proof.

• The side information of each authorized or unauthorized

set of users is a vector Gaussian random variable, and

each component of this vector accounts for the side

information of one user of this set. In our study, we use

sufficient statistics [14, Sec. 2.9] to convert this vector

Gaussian side information to a scalar random variable

and facilitate the analysis of our setting. For the converse

proof, this conversion allows us to reduce the problem

to two cases. A first case (respectively second case), in

which the source is more (respectively less) correlated,

in a sense that we make precise in the sequel, with the

side information of any set of authorized users than with

the side information of any unauthorized set of users.

• Another key step in the proof of our converse is the proof

of the sufficiency of a single auxiliary random variable

in the outer region that we derive, to achieve minimum

information leakage at the unauthorized users for each of

the two cases discussed above.

• A particularly challenging aspect of our setting is the

compound structure of the problem, which arises as a

consequence of having multiple authorized and multiple

unauthorized sets of users. Specifically, in our achiev-

ability region, it leads to, first, an optimization over the

distribution of the involved auxiliary random variables

and, then, to an optimization over the sets of authorized

users and unauthorized users, whereas the order of these

two optimizations are reversed in our outer region. In

general, such a mismatch between the inner and outer

regions leads to a gap between the achievability and the

converse, e.g., as in [15] for compound wiretap channels.

In our setting, we obtain a capacity result by proving the

existence of a saddle point, which proves that the order

of the optimizations is irrelevant.

We now discuss the main challenges of our achievability proof.

• The achievability is first proved for discrete random vari-

ables and then extended to continuous random variables

through quantization. Note that one cannot consider a

specific quantization strategy at the unauthorized users

to ensure the leakage requirement in an information-

theoretic manner; therefore, a key step in this extension is

to prove that the leakage constraint holds for continuous

random variables.

• For the achievability proof, the use of sufficient statistics

also facilitates the evaluation of the achievable rate

region, in particular, the computation of the conditional

covariance of vector Gaussian sources.

C. Related Works

Of particular relevance to this paper, [6] have established

the first characterization of the rate at which an encoder may

compress a source such that an authorized user can recover

the source in a lossless manner while guaranteeing a minimum

information leakage at an unauthorized user who observes the

encoded source. Other variations of this problem are studied

in [7], [8], [9], [10], [11], [12]. This problem is generalized

to a scenario, in which the authorized user may recover the

compressed source with some predefined distortion in [9].

Specifically, [9] characterized the optimal tradeoff between

the rate, the desired distortion, and the information leakage

when both the authorized and unauthorized users observe

different i.i.d, side information sequences that are correlated

with the compressed source. The secure lossy compression of a

vector Gaussian source when both the authorized user and the

unauthorized user have vector Gaussian side information have

been studied in [13], which derives inner and outer regions on

the optimal trade-off between the rate, the desired distortion,

and the information leakage. References [16], [17] study this

problem in the case where the fidelity of the communication

to the authorized user is measured by a distortion metric and

the secrecy performance of the system is also evaluated under

a distortion metric, a line of study that was first initiated

in [18], [19]. Secure source coding when there is a shared

secret key between the legitimate terminals has also been

studied in [20], [21], [22], [23], [24]. Note that all these

previous works do not consider access structures and deal with

a source coding problem. The problem studied in this paper

subsumes the secure lossy compression of a scalar Gaussian

source when both the authorized user and the unauthorized

user have scalar Gaussian side information as well as the

secure lossy compression of a scalar Gaussian source when

both the authorized user and the unauthorized user have vector

Gaussian side information.

In [9, Sec. V.A] and [13, Example 1], the authors study

a single-user and single-eavesdropper Gaussian secure source

coding problem, which is a special case of the problem

studied in our paper. Indeed, the problem studied in this paper

involves multiple sets of authorized users and multiple sets of

unauthorized users (eavesdroppers). Specifically, in our setting,

we upper-bound the information leakage over all possible

sets of unauthorized users, and for the reconstruction of the

source we require that any set of authorized users can recover

the source with some fixed distortion level. As discussed

above, this creates additional challenges compared to a single

authorized and single unauthorized user. Note also that the

single-user single-eavesdropper case had not been fully solved,

as [13, Example 1] establishes the capacity region when the

compression rate is infinity, and [9, Sec. V.A] establishes the

capacity when the side information at the eavesdropper is a

degraded version of the legitimate receiver’s side information.

We note that the authors in [9, Remark 8] conjecture that their

achievability is optimal in the non-degraded case, however

they do not provide a converse proof.

In the context of secret sharing, another related work is [25],

where a function of a Gaussian source must be reconstructed

in a lossless manner by authorized sets of users and must

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on September 20,2024 at 02:22:16 UTC from IEEE Xplore.  Restrictions apply. 



480 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 5, 2024

Fig. 1. Secure source coding with three users, i.e., L = {1, 2, 3}, when any single user must not learn more than n� bits of information about the source

Xn, i.e., we set A = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, and B = {{1}, {2}, {3}}. ÆXn({i, j})
D
�Xn, for i, j ∈ {1, 2, 3} and i �= j, means that the distortion between the

reconstructed source by the users i and j together and the source sequence Xn must be less than D.

be kept secret from unauthorized sets of users, who all own

side information about the source. Finally, note that, in our

results, the length of the compressed data stored in the public

database and the source observation at the users scale linearly

with the number of source observations n and does not depend

on the number of participants but only on the access structure.

Specifically, the compressed data stored in the public database

must allow the reconstruction of the source for the group of

authorized participants that has the least amount of information

about the source in their side information. This contrasts with

traditional problems that involve access structures, e.g., secret-

sharing model [3], for which the best known coding schemes

require the share size to scale exponentially with the number

of participants for some access structures [5].

D. Paper Organization

The remainder of the paper is organized as follows. We

define the notation in Section II and formally define the

problem in Section III. We present our main results in

Section IV and provide the proofs in Section V. We provide

concluding remarks in Section VI.

II. NOTATION

Let N+ be the set of positive natural numbers, R be the

set of real numbers, and define R+ � {x ∈ R|x ≥ 0} and

R++ � R+\{0}. For any a, b ∈ R, define
∫

�a : b� �
[�a�, �b	] ∩ N+ and [a]+ � max{0, a}. Random variables are

denoted by capital letters and their realizations by lower case

letters. Vectors are denoted by boldface letters, e.g., X denotes

a random vector and x denotes a realization of X. EX(·) is

the expectation with respect to the random variable X, for

brevity, we sometimes omit the subscripts in the expectation

if it is clear from the context. The set of ε−strongly jointly

typical sequences of length n, according to PXY , is denoted by

T
(n)

ε (PXY) [26]. Superscripts denote the dimension of a vector,

e.g., Xn. X
j
i denotes (Xi, Xi+1, . . . , Xj), and Xn

∼i denotes the

vector Xn except Xi. The cardinality of a set is denoted by

| · |. The entropy of the discrete random variable X is denoted

by H(X), the differential entropy of the random variable X

is denoted by h(X), and the mutual information between

the random variables X and Y is denoted by I(X; Y). The

support of a probability distribution P is denoted by supp(P).

The n-fold product distribution constructed from the same

distribution P is denoted by P⊗n. Throughout the paper, log

denotes the base 2 logarithm.

III. PROBLEM STATEMENT

Consider a memoryless source (X×YL, PXYL
), where L �

�1 : L� and YL � (Y�)�∈L, that consists of L + 1 alphabets

X × YL and a joint distribution PXYL
over X × YL. Let A

be a set of subsets of L such that for any S ⊆ L, if S has a

subset that belongs to A, then S ∈ A, i.e., A has a monotone

access structure [27]. Then, define B � 2L\A to be the set

of all colluding subsets of users for which the information

leakage about the source Xn must be minimized (see Fig. 1).

Henceforth, for any A ∈ A and for any B ∈ B, YA and YB

denote (Y�)�∈A and (Y�)�∈B, respectively. Let d : X ×YA →
�0 : dmax� be a distortion measure such that 0 ≤ dmax < ∞.

Definition 1: A (2nR, n) source code for the memoryless

source (X × YL, pXYL
) consists of

• an encoding function f : xn �→ m, which assigns an index

m ∈ �1 : 2nR� to each xn ∈ X n. As depicted in Fig. 1, M

is stored in a public database;

• decoding functions ÆxA : m × yn
A

�→ Æxn(A) ∪ {e}, where

A ∈ A, which assigns an estimate Æxn(A) ∈ X n or an

error e to each m ∈ �1 : 2nR� and yn
A

∈ Yn
A

.

Definition 2: Let D > 0. A pair (R,�) ∈ R2
+ is achievable

if there exists a sequence of (2nR, n) source codes, such that,

max
A∈A

lim sup
n→∞

E
[

d
(

Xn, ÆXn(A)
)]

≤ D, (1a)

max
B∈B

lim
n→∞

1

n
I
(

Xn; M, Yn
B

)

≤ �, (1b)
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where the distortion between the sequences xn and Æxn(A) is

defined by

d
(

xn, Æxn(A)
)

�
1

n

n
∑

i=1

d
(

xi, Æxi(A)
)

. (1c)

The set of all achievable pairs is referred to as the rate-

leakage region and denoted by R(D,A).

Equation (1a) means that any set of authorized users A ∈ A

can reconstruct the source Xn within the distortion D from the

observation Yn
A

and the public data M, and (1b) means that any

colluding set of unauthorized users B ∈ B cannot learn more

than n� bits about the source Xn from the observation Yn
B

and M. In this paper, we consider PXYL
the joint distribution

of zero-mean jointly Gaussian random variables with a non-

singular covariance matrix. We denote the variance of X by

σ 2
X . Without loss of generality, for every A ∈ A and B ∈ B,

by [28, Th. 3.5.2], one can write

YA = hAX + NA, (2a)

YB = hBX + NB, (2b)

where hA ∈ R
|A|
++ and hB ∈ R

|B|
++ and NA and NB are zero-

mean Gaussian random vectors with identity covariance matrix

and independent of X. Equation (2) is proved in Appendix A.

Then, still without loss of generality, by normalizing (2), one

can consider the following source model

YA = 1AX + NA, ∀A ∈ A (3a)

YB = 1BX + NB, ∀B ∈ B (3b)

where NA and NB are zero-mean Gaussian random vectors

with covariance matrices �A � 0 and �B � 0, respectively,

that are independent of X and 1A is the all-ones vector with

size |A|. Without loss of generality, we can also consider

NA and NB independent, for A ∈ A and B ∈ B, since (1)

only depends on the marginal distributions (PXYA
)A∈A and

(PXYB
)B∈B. In this paper, the distortion of the reconstructed

sequence ( ÆXi(A))n
i=1 in Definition 2 is measured by the mean

square error as,

1

n
E

[

(

Xi − ÆXi(A)
)2
]

≤ D. (4)

Since the minimizer of the mean square error is the

Minimum Mean-Square Error (MMSE) estimator, which is

given by the conditional mean, we assume that the authorized

users choose this optimal estimator, i.e., the authorized users

in A ∈ A form ( ÆXi(A))n
i=1 as ÆXi(A) � E[Xi|Yn

A
, f (Xn)].

IV. MAIN RESULTS

Henceforth, for some A ∈ A, we assume 0 ≤ D ≤ σ 2
X|YA

,

where σ 2
X|YA

is the conditional variance of X given YA,

σ 2
X|YA

= E[(X − E[X|YA])2|YA]. If D ≥ σ 2
X|YA

for all A in

A, then R(D,A) = {(R,�) : R ≥ 0,� ≥ maxB∈B{I(X; YB)}},
because the achievability scheme that consists in setting M �
∅ implies

1

n
E

[

(

Xi − ÆXi(A)
)2
]

= σ 2
X|YA

.

A. Results for General Access Structures

The main result of this paper is a closed-form expression

for the optimal trade-off between the compression rate and the

leakage rate of the source, which is provided in the following

theorem.

Theorem 1: Let D > 0. For any access structure A,

R(D,A)

=

⎧

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

¬

(R,�) :

R ≥
[

1
2

log
σ 2

X

D
− 1

2
log

(

1 + σ 2
X

tr
(

�
−1
A�

)−1

)]+

� ≥
{

g1

(

A�,B�
)

when tr
(

�
−1
A�

)

≥ tr
(

�
−1
B�

)

g2

(

A�,B�
)

when tr
(

�
−1
A�

)

≤ tr
(

�
−1
B�

)

«

⎪

⎪

⎪

⎪

⎪

¬

⎪

⎪

⎪

⎪

⎪

­

,

(5)

where

g1

(

A�,B�
)

�

[

1

2
log

σ 2
X

D
− 1

2
log

(

1 + σ 2
X

tr
(

�
−1
A�

)−1

)]+

+ 1

2
log

(

1 + σ 2
X

tr
(

�
−1
B�

)−1

)

,

g2

(

A�,B�
)

�
1

2
log

([

σ 2
X

D
−
(

1 + σ 2
X

tr
(

�
−1
A�

)−1

)]+

+ 1 + σ 2
X

tr
(

�
−1
B�

)−1

)

,

A� ∈ argminA∈A{tr(�−1
A

)}, and B� ∈ argmaxB∈B{tr(�−1
B

)}.
The converse of Theorem 1 is provided in Section V.

The achievability proof of Theorem 1 is similar to that of

[9, Th. 3] and is omitted for brevity but is made available as

a supplementary file.

Remark 1 (Comparison With [13, Example 1] and [9,

Sec. V.A]): When there is only one authorized and one

unauthorized user, the problem setup in (1) with A � {1} and

B � {2} reduces to the problem setup in [13, Example 1]

and [9, Sec. V.A] and Theorem 1 yields the capacity region

R(D,A) =

⎧

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

¬

(R,�) :

R ≥
[

1
2

log
σ 2

X

D
− 1

2
log

(

1 + σ 2
X

σ 2
1

)]+

� ≥
{

g1 when σ 2
1 ≤ σ 2

2

g2 when σ 2
1 ≥ σ 2

2

«

⎪

⎪

⎪

⎪

¬

⎪

⎪

⎪

⎪

­

,

where

g1 �

[

1

2
log

σ 2
X

D
− 1

2
log

(

1 + σ 2
X

σ 2
1

)]+

+ 1

2
log

(

1 + σ 2
X

σ 2
2

)

,

g2 �
1

2
log

([

σ 2
X

D
−
(

1 + σ 2
X

σ 2
1

)]+

+ 1 + σ 2
X

σ 2
2

)

.

In the lower bound of the compression rate R in Theorem 1,

the term 1
2

log
σ 2

X

D
is the source coding capacity in the absence

of side information [26, Th. 3.6], and the term 1
2

log(1 +
σ 2

X

tr(�−1
A� )−1

) is the gain provided by the side information at

the authorized users. In the lower bound on the information
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Fig. 2. (R�, ��) represents the corner points of the rate-leakage region

R(D,A) characterized in Theorem 1, for fixed noise variances, when σ 2
X = 2,

D = 0.1, and tr(�−1
B� ) = 3.5.

leakage � in Theorem 1, the term (1+ σ 2
X

tr(�−1
B� )−1

) represents a

penalty coming from the side information at the unauthorized

users. When σ 2
X = 2, D = 0.1, and tr(�−1

B� ) = 3.5, the

leakage rate �� is depicted in Fig. 2 with respect to the

storage rate R�, where (R�,��) represents the corner points

of the region R(D,A) characterized in Theorem 1. As seen

in Fig. 2, the leakage does not grow linearly with the storage

rate R�, when tr(�−1
A�) ≤ tr(�−1

B� ). Intuitively, in this regime,

the storage rate R∗ decreases as tr(�−1
A�) grows but, since the

unauthorized users in B� have a “less noisy” side information

about the source than the authorized users in A� have, the

information leakage �∗ does not increase with the storage rate

R� as fast as it does when the authorized sets of users A�

have a “less noisy” side information about the source than

the authorized set of users B�. In Fig. 2, the corner point

C1 = ( 1
2

log
σ 2

X

D
, 1

2
log

σ 2
X

D
+ 1

2
log(1 + σ 2

X

tr(�−1
B� )−1

)) corresponds

to the case in which the side information at the authorized set

of users is not correlated with the source, i.e., tr(�−1
A�) → 0,

and therefore the communication rate is maximal. On the

other hand, the corner point C2 = (0, 1
2

log(1 + σ 2
X

tr(�−1
B� )−1

))

corresponds to the case in which the distortion between the

side information at the authorized sets of users and the source

is less than D, meaning that the encoder does not need to

generate M. Note that, in this case, from (14a), D ≥ σ 2
X|YA�

translates to, tr(�−1
A�) ≥ D−1 − σ

−2
X .

B. Results for Threshold Access Structures

In this section, we consider a special type of access

structure, which is known as the threshold access structure [3]

and defined, for a threshold t ∈ �1 : L�, as

At � {A ⊆ L : |A| ≥ t}. (6)

In other words, the threshold access structure is such that any

set of t users is able to reconstruct the compressed source

with some predefined distortion. Similar to the general case,

the complement of the set At is defined as Bt � 2L\At =

{B ⊆ L : |B| < t}, and we consider A�
t ∈ argminA∈At

tr(�−1
A

)

and B�
t ∈ argmaxB∈Bt

{tr(�−1
B

}). The following result

presents necessary and sufficient conditions to determine

whether the optimal trade-off between the compression rate

and the leakage rate is decreasing or increasing with the

threshold t.

Theorem 2: Let t ∈ �1 : L�, suppose that tr(�−1
A�

t
) < D−1 −

σ
−2
X , which means that the source Xn needs to be encoded to

satisfy (4) as discussed after Remark 1, and define R(D,At) �
min{R : (R,�) ∈ R(D,At)}. Then, we have,

• R(D,AL) ⊇ R(D,At) ⇔
σ

−2
X +tr

(

�
−1

A�
t

)

σ
−2
X +tr

(

�
−1

B�
t

) ≤
σ

−2
X +tr

(

�
−1

A�
L

)

σ
−2
X +tr

(

�
−1

B�
L

) ;

• R(D,At) ≥ R(D,At+i), for i ∈ �1 : L − t�.

Theorem 3: For any t ∈ �1 : L�, let �(D,At) �
min

{

� : (R,�) ∈ R(D,At)
}

, and suppose that tr
(

�
−1
A�

t

)

<

D−1 − σ
−2
X , which means that the source Xn needs to be

encoded to satisfy (4) as discussed after Remark 1. Then, for

any t ∈ �1 : L�, and i ∈ �1 : L − t�,

• when tr
(

�
−1
A�

t

)

≤ tr
(

�
−1
B�

t

)

and tr
(

�
−1
A�

t+i

)

≤ tr
(

�
−1
B�

t+i

)

,

�(D,At) ≥ �(D,At+i)

⇔ tr
(

�
−1
A�

t+i

)

− tr
(

�
−1
A�

t

)

≥ tr
(

�
−1
B�

t+i

)

− tr
(

�
−1
B�

t

)

;

• when tr
(

�
−1
A�

t

)

≥ tr
(

�
−1
B�

t

)

and tr
(

�
−1
A�

t+i

)

≥ tr
(

�
−1
B�

t+i

)

,

�(D,At) ≥ �(D,At+i)

⇔
σ

−2
X + tr

(

�
−1
B�

t

)

σ
−2
X + tr

(

�
−1
A�

t

) ≥
σ

−2
X + tr

(

�
−1
B�

t+i

)

σ
−2
X + tr

(

�
−1
A�

t+i

) ;

• when tr
(

�
−1
A�

t

)

≥ tr
(

�
−1
B�

t

)

and tr
(

�
−1
A�

t+i

)

≤ tr
(

�
−1
B�

t+i

)

,

�(D,At) ≤ �(D,At+i);
• when tr

(

�
−1
A�

t

)

≤ tr
(

�
−1
B�

t

)

and tr
(

�
−1
A�

t+i

)

≥ tr
(

�
−1
B�

t+i

)

,

�(D,At) ≥ �(D,At+i).

The proofs of Theorem 2 and Theorem 3 are available in

Appendix B.

Example 1: Consider an encoder and five users. Let D =
0.1, σ 2

X = 2, and �L =
[

1 0.8 0.9 0.7 0.6
]

ᵀ
.

From the definitions of �A�
t

and �B�
t
, we have �A�

5
=

diag(1, 0.8, 0.9, 0.7, 0.6) and �B�
5

= diag(0.8, 0.9, 0.7, 0.6).

Hence, tr
(

�
−1
A�

5

)

= 6.4563 and tr
(

�
−1
B�

5

)

= 5.4563. Plugging

these in Theorem 1 results to R ≥ 0.2618 and � ≥ 2.085.

When t = 4, �A�
4

= diag(1, 0.8, 0.9, 0.7) and �B�
4

=
diag(0.8, 0.7, 0.6). Hence, tr

(

�
−1
A�

4

)

= 4.7897 and tr
(

�
−1
B�

4

)

=
4.3452, and by Theorem 1, R ≥ 0.4594 and � ≥ 2.1282.

When t = 3, �A�
3

= diag(1, 0.9, 0.8) and �B�
3

=
diag(0.7, 0.6). Hence, tr

(

�
−1
A�

3

)

= 3.3611 and tr
(

�
−1
B�

3

)

=
3.0952, and by Theorem 1, R ≥ 0.6865 and � ≥ 2.1415.

Finally, when t = 2, �A�
2

= diag(1, 0.9) and �B�
2

= 0.6.

Therefore, tr
(

�
−1
A�

2

)

= 2.1111 and tr
(

�
−1
B�

2

)

= 0.6, and by

Theorem 1, R ≥ 0.9686 and � ≥ 2.1282.

This example verifies the relationships between the com-

pression rate and the leakage rate for different thresholds
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Fig. 3. The rate-leakage region for threshold access structures when D = 0.1,

σ 2
X = 2, and �L =

[

1 0.8 0.9 0.7 0.6
]

ᵀ
.

provided in Theorem 2 and Theorem 3. For instance, in

Theorem 3 for t = 3 and i = 1, we operate in the

second case and the condition
σ

−2
X +tr(�−1

B�
t
)

σ
−2
X +tr(�−1

A�
t
)

≥
σ

−2
X +tr(�−1

B�
t+i

)

σ
−2
X +tr(�−1

A�
t+i

)
is

satisfied so that �(D,At) ≥ �(D,At+i), which is consistent

with Fig. 3.

V. CONVERSE PROOF OF THEOREM 1

In Section V-A, we provide a general outer region on the

rate-leakage region R(D,A). In Sections V-B, V-C, and V-D,

we show that this outer region reduces to the region in

Theorem 1. Specifically, we convert the problem to a scalar

problem by using sufficient statistics in Section V-B. Then,

in Section V-C, we study the case when the side information

of any set of authorized users is more correlated, in a sense

that we make precise in the sequel, with the source than the

side information of any unauthorized set of users. Finally, in

Section V-D, we study the case when the side information

of the unauthorized sets of users is more correlated with the

source than with the side information of the authorized sets

of users.

A. A General Outer Region

We first provide a general outer region on the secure rate-

distortion region of the problem defined in Section III, which

is based on [9, Sec. III-B].

Theorem 4: For every (A,B), the region R(D,A) is

included in
⋂

(A,B)∈(A,B) RG(YA, YB), where

RG(YA, YB) �
⋃

U−V−X−(YA,YB)

E

[

σ 2
X|YA,V

]

≤D

⎧

«

¬

(R,�) :

R > I(V; X|YA)

� > I(V; X) − I(V; YA|U) + I(X; YB|U)

«

¬

­

.

Proof: Consider the secure source coding problem

in [9, Sec. III-B], which consists of a memoryless source

(

(X ,Y1,Y2), PXY1Y2

)

with three outputs Xn, at the encoder,

Yn
1 , at the legitimate terminal, and Yn

2 , at the eavesdropper.

In this setting, the encoder wishes to encode its observed

sequence in such a way that the legitimate receiver can

reconstruct the source sequence Xn with distortion D, and

the information leakage about Xn at the eavesdropper is

minimized. An (n, R)-code for source coding is defined by an

encoding function f : X n → �1 : 2nR� and a decoding function

g : �1 : 2nR�×Yn
1 → X n. In this problem, a pair (R,�) ∈ R2

+
is achievable if there exists a sequence of (n, R)-codes such

that,

lim sup
n→∞

E

[

d
(

xn, ÆX(f (Xn), Yn
1 )

)]

≤ D, (7a)

lim
n→∞

1

n
I
(

Xn; Vn, Yn
2

)

≤ �, (7b)

where Vn � f (Xn). The outer region derived for this problem

in [9, Sec. III-B] is RG(Y1, Y2). Now, consider the secure

source coding problem defined in Section III and the rate pair

(R,�) ∈ R(D,A) such that (1a) and (1b) are satisfied. In

particular, (7) is satisfied for any A ∈ A and B ∈ B when Yn
1

is replaced by Yn
A

and Yn
2 is replaced by Yn

B
. It means that for

any A ∈ A and B ∈ B, (R,�) ∈ RG(YA, YB) and Theorem 4

holds.

The proof that the distortion constraint in RG(YA, YB)

reduces to E

[

σ 2
X|YA,V

]

≤ D for Gaussian sources can be found

in Appendix C.

Remark 2 (Leakage Measure): In [9, Th. 3], the equivoca-

tion is used as a measure of leakage but, since we consider

continuous sources in our setting, to avoid a negative equiv-

ocation, we replace the equivocation with mutual information

leakage (see Definition 2).

B. Conversion to a Scalar Problem

To prove the converse part of Theorem 1, we use the notion

of sufficient statistics [14, Sec. 2.9] and the following lemma

from [29] to convert the problem in (3) to a problem in which

the encoder, the authorized users, and the unauthorized users

observe a scalar Gaussian source.

Lemma 1 [29, Lemma 3.1]: Consider the channel with

input X and output Y given by

Y = hX + N,

where N is a zero-mean Gaussian vector with covariance

matrix � and h ∈ Rn. A sufficient statistic to correctly

determine X from Y is the following scalar

Ỹ � hᵀ
�

−1Y.

Fix A ∈ A and B ∈ B. By Lemma 1, sufficient statistics to

correctly determine X from YA and YB in (3) are the following

scalars,

ỸA = 1
ᵀ

A
�

−1
A

YA, ỸB = 1
ᵀ

B
�

−1
B

YB. (8)

Hence, we have

Vn − Xn − Yn
A − Ỹn

A, (9a)

Vn − Xn − Ỹn
A − Yn

A, (9b)
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Vn − Xn − Yn
B − Ỹn

B, (9c)

Vn − Xn − Ỹn
B − Yn

B, (9d)

where

• the Markov chain in (9a) follows since Vn is a function

of Xn and Ỹn
A

is a function of Yn
A

;

• the Markov chain in (9b) follows since Vn is a function

of Xn and from [14, Sec. 2.9] Xn − Ỹn
A

− Yn
A

;

• the Markov chains in (9c) and (9d) are obtained similarly.

Next we rewrite (3) as

ỸA = hAX + ÑA, ỸB = hBX + ÑB, (9e)

where

hA � 1
ᵀ

A
�

−1
A

1A = tr
(

�
−1
A

)

, (9f)

hB � 1
ᵀ

B
�

−1
B

1B = tr
(

�
−1
B

)

, (9g)

ÑA = 1
ᵀ

A
�

−1
A

NA, ÑB = 1
ᵀ

B
�

−1
B

NB, (9h)

where (9g) follows since �A and �B are diagonal matrices.

We now show that the sufficient statistics in (8) preserves the

distortion constraint and the leakage constraint in Definition 2.

By the distortion constraint in Theorem 4, we have

D ≥ 1

n

n
∑

i=1

E

[

(

Xi − E[Xi|Vn, Yn
A]

)2
]

. (10)

Expanding the Right Hand Side (RHS) of (10) results to,

E

[

(

Xi − E[Xi|Vn, Yn
A]

)2
]

=
∫

xi

∫

vn

∫

yn
A

(

xi − E
[

Xi|vn, yn
A

])2
P
(

xi, vn, yn
A

)

dxidvndyn
A

=
∫

xi

∫

vn

∫

yn
A

∫

ỹn
A

(

xi − E
[

Xi|vn, yn
A

])2

×P
(

xi, vn, yn
A, ỹn

A

)

dxidvndyn
Adỹn

A

(a)=
∫

xi

∫

vn

∫

yn
A

∫

ỹn
A

»

¼

½
xi −

∫

x̃i

x̃iP(x̃i|vn, yn
A)dx̃i

¾

¿

À

2

× P
(

xi, vn, yn
A, ỹn

A

)

dxidvndyn
Adỹn

A

(b)=
∫

xi

∫

vn

∫

yn
A

∫

ỹn
A

»

¼

½
xi −

∫

x̃i

x̃iP(x̃i|vn, ỹn
A)dx̃i

¾

¿

À

2

× P
(

xi, vn, yn
A, ỹn

A

)

dxidvndyn
Adỹn

A

=
∫

xi

∫

vn

∫

ỹn
A

»

¼

½
xi −

∫

x̃i

x̃iP(x̃i|vn, ỹn
A)dx̃i

¾

¿

À

2

× P
(

xi, vn, ỹn
A

)

dxidvndỹn
A

= E

[

(

Xi − E[Xi|Vn, Ỹn
A]

)2
]

,

where

(a) follows since E[Xi|vn, yn
A

] =
∫

x̃i

x̃iP(x̃i|vn, yn
A

)dx̃i;

(b) follows from P(x̃i|vn, yn
A

) = P(x̃i|vn, yn
A

, ỹn
A

) =
P(x̃i|vn, ỹn

A
) by the Markov chains in (9a) and (9b).

Therefore, rewriting (3) as (8) preserves the distortion con-

straint. We now show that it also preserves the information

leakage,

I
(

Xn; M, Yn
B

)

= I
(

Xn; Vn, Yn
B

)

= I
(

Xn; Vn
)

+ I
(

Xn; Yn
B|Vn

)

(a)= I
(

Xn; Vn
)

+ I
(

Xn; Yn
B, Ỹn

B|Vn
)

(b)= I
(

Xn; Vn
)

+ I
(

Xn; Ỹn
B|Vn

)

= I
(

Xn; Vn, Ỹn
B

)

,

where (a) and (b) follow from (9c) and (9d), respectively.

Next, when tr(�−1
B

) ≤ tr(�−1
A

), we redefine ỸB as,

ỸB = hB

hA
ỸA + N′,

where N′ ∼ N (0, tr(�−1
B

)(1 − tr(�−1
B

)

tr(�−1
A

)
)). Note that after

redefining ỸB, the joint distribution between X and ỸA and the

joint distribution between X and ỸB are preserved, therefore

the constraints in Definition 2 are preserved. As a result,

we have the Markov chain X − ỸA − ỸB. Hence, when

tr(�−1
B

) ≤ tr(�−1
A

), without loss of generality, we can suppose

that X − ỸA− ỸB. In this first case, we informally say that the

authorized set of users have better side information. Similarly,

when tr(�−1
A

) < tr(�−1
B

), we can suppose that X − ỸB − ỸA.

In this second case, we informally say that the unauthorized

set of users have a better side information.

We now study each of these two cases separately in

Sections V-C and V-D.

C. When Authorized Users Have Better Side Information

Fix A ∈ A, and B ∈ B. Suppose tr(�−1
B

) ≤ tr(�−1
A

). In this

case, as discussed in Section V-B, the union in Theorem 4 can

be taken over (U, V, X, ỸA, ỸB) such that U − V − X − ỸA −
ỸB. Then,

� ≥ I(V; X) − I
(

V; ỸA|U
)

+ I
(

X; ỸB|U
)

(a)= I(V; X) − I
(

V; ỸA
)

+ I
(

U; ỸA
)

+ I
(

X; ỸB
)

− I
(

U; ỸB
)

(b)
≥ I(V; X) − I

(

V; ỸA
)

+ I
(

X; ỸB
)

(c)= I
(

V; X|ỸA
)

+ I
(

X; ỸB
)

,

where (a), (b), and (c) follow since U − V − X − ỸA − ỸB.

This implies that the region in Theorem 4 is included in the

following region

⋂

(A,B)∈(A,B)

⋃

V−X−ỸA−ỸB

E

[

σ 2

X|ỸA,V

]

≤D

⎧

«

¬

(R,�) :

R > I
(

V; X|ỸA
)

� > I
(

V; X|ỸA
)

+ I
(

X; ỸB
)

«

¬

­

.

(11)
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Optimizing the rate and the leakage constraints in (11) sep-

arately results in a larger region, i.e., an outer region. As a

result, the region in (11) is included in the following region,

⋂

(A,B)∈(A,B)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¬

(R,�) :

R > min
V−X−ỸA−ỸB

E

[

σ 2

X|ỸA,V

]

≤D

I
(

V; X|ỸA
)

� > min
V−X−ỸA−ỸB

E

[

σ 2

X|ỸA,V

]

≤D

[

I
(

V; X|ỸA
)

+ I
(

X; ỸB
)]

«

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

­

.

(12)

Since the source is Gaussian the term I(X; ỸB) is fixed, and

we know that the term I(V; X|ỸA) = h(X|ỸA) − h(X|ỸA, V)

is minimized by joint Gaussian (V, X, ỸA) [30, Lemma 1].

Hence, the region in (12) is again included in the intersection

of all (A,B) ∈ (A,B), i.e.,
⋂

(A,B)∈(A,B) of the following

region,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

¬

(R,�) :

R > min
σ 2

X|ỸA,V
≤D

1
2

log
σ 2

X|ỸA
σ 2

X|ỸA,V

� > min
σ 2

X|ỸA,V
≤D

[

1
2

log
σ 2

X|ỸA
σ 2

X|ỸA,V

+ 1
2

log
σ 2

X

σ 2

X|ỸB

]

«

⎪

⎪

⎪

⎪

⎪

⎪

¬

⎪

⎪

⎪

⎪

⎪

⎪

­

.

From the monotonicity of the log function, the region above

is included,

⋂

(A,B)∈(A,B)

⎧

⎪

⎪

⎪

«

⎪

⎪

⎪

¬

(R,�) :

R > 1
2

log
σ 2

X|ỸA
D

� > 1
2

log
σ 2

X|ỸA
D

+ 1
2

log
σ 2

X

σ 2

X|ỸB

«

⎪

⎪

⎪

¬

⎪

⎪

⎪

­

. (13)

Now we have,

σ 2

X|ỸA

= σ 2
X −

σ 2

X,ỸA

σ 2

ỸA

(a)= σ 2
X −

h2
A

σ 4
X

h2
A

σ 2
X + tr

(

�
−1
A

)

(b)= σ 2
X −

tr
(

�
−1
A

)

σ 4
X

tr
(

�
−1
A

)

σ 2
X + 1

= σ 2
X

tr
(

�
−1
A

)

σ 2
X + 1

, (14a)

where

(a) follows by calculating σ 2

X,ỸA

and σ 2

ỸA

from (8);

(b) follows since from (8) we have hA = tr
(

�
−1
A

)

.

Similarly, we have

σ 2

X|ỸB

= σ 2
X

tr
(

�
−1
B

)

σ 2
X + 1

. (14b)

Hence, the region in (13) can be written as the intersection of

all (A,B) ∈ (A,B), i.e.,
⋂

(A,B)∈(A,B) of the following region,

⎧

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

¬

(R,�) :

R > 1
2

log
σ 2

X

D
(

tr(�−1
A

)σ 2
X+1

)

� > 1
2

log
σ 2

X

D
(

tr(�−1
A

)σ 2
X+1

) + 1
2

log
(

tr(�−1
B

)σ 2
X + 1

)

«

⎪

⎪

⎪

⎪

¬

⎪

⎪

⎪

⎪

­

. (15)

Since the arguments of the log functions are decreasing in

tr
(

�
−1
A

)

and increasing in tr
(

�
−1
B

)

we can compute the

intersection in (15) and rewrite the region in (15) as follows,

.

⎧

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

¬

(R,�) :

R > 1
2

log
σ 2

X

D
(

tr(�−1
A� )σ 2

X+1
)

� > 1
2

log
σ 2

X

D
(

tr(�−1
A� )σ 2

X+1
) + 1

2
log

(

tr(�−1
B� )σ

2
X + 1

)

«

⎪

⎪

⎪

⎪

¬

⎪

⎪

⎪

⎪

­

,

where A� ∈ argminA∈A{tr(�−1
A

)} and B� ∈
argmaxB∈B{tr(�−1

B
)}. Note that we also have � ≥

I(X; YB�) = 1
2

log(1 + σ 2
X tr

(

�
−1
B�

)

), whence the definition of

g1, in Theorem 1.

D. When Unauthorized Users Have Better Side Information

Fix A ∈ A, B ∈ B, and suppose that tr(�−1
A

) < tr(�−1
B

).

We will need the following lemma.

Lemma 2: Consider Y = hX + N, where h is a constant,

and X and N are independent, zero-mean Gaussian random

variables with variance σ 2
X and σ 2

N , respectively. When D ≤
σ 2

X|Y and V is Gaussian, we have

•
σ 2

N

h2 − D > 0;

• σ 2
X|V,Y ≤ D ⇔ σ 2

X|V ≤ (D−1 − h2σ
−2
N )−1;

• σ 2
X|V,Y = D ⇔ σ 2

X|V = (D−1 − h2σ
−2
N )−1.

The proof of Lemma 2 is provided in Appendix D.

As discussed in Section V-B, the union in Theorem 4 can be

taken over (U, V, X, ỸA, ỸB) such that U −V −X − ỸB − ỸA.

Similar to Section V-C, optimizing the rate and equivocation

constraints in Theorem 4 separately results in a larger region,

i.e., an outer region. Optimizing the rate in Theorem 4 yields,

R ≥ min
V−X−ỸA

E

[

σ 2

X|ỸA,V

]

≤D

I
(

V; X|ỸA
)

≥ 1

2
log

σ 2
X

D
(

tr(�−1
A

)σ 2
X + 1

) , (16)

where the last inequality holds as in the derivation of (15).

Now optimizing the information leakage constraint in

Theorem 4 yields,

� > min
U−V−X−ỸB−ỸA

E

[

σ 2

X|ỸA,V

]

≤D

[

I(V; X) − I
(

V; ỸA|U
)

+ I
(

X; ỸB|U
)]

(a)= min
U−V−X−ỸB−ỸA

E

[

σ 2

X|ỸA,V

]

≤D

[

I(V; X) − I
(

V; ỸA
)

+ I
(

U; ỸA
)
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+ I
(

X; ỸB
)

− I
(

U; ỸB
)]

(b)= I
(

X; ỸB
)

+ min
U−V−X−ỸB−ỸA

E

[

σ 2

X|ỸA,V

]

≤D

[

I(V; X) − I
(

V; ỸA
)

− I
(

U; ỸB|ỸA
)]

(c)
≥ I

(

X; ỸB
)

+ min
U−V−X−ỸB−ỸA

E

[

σ 2

X|ỸA,V

]

≤D

[

I(V; X) − I
(

V; ỸA
)

− I
(

V; ỸB|ỸA
)]

= I
(

X; ỸB
)

+ min
V−X−ỸB−ỸA

E

[

σ 2

X|ỸA,V

]

≤D

[

I(V; X) − I
(

V; ỸA, ỸB
)]

(d)= I
(

X; ỸB
)

+ min
V−X−ỸB−ỸA

E

[

σ 2

X|ỸA,V

]

≤D

[

I(V; X) − I
(

V; ỸB
)]

(e)= min
V−X−ỸB−ỸA

E

[

σ 2

X|ỸA,V

]

≤D

C(V), (17)

where

(a) follows since U − V − X − ỸB − ỸA forms a Markov

Chain;

(b) follows since U − ỸB − ỸA forms a Markov Chain;

(c) follows since U − V − ỸB − ỸA forms a Markov Chain;

(d) follows since V − ỸB − ỸA forms a Markov Chain;

(e) follows by defining,

C(V) � I
(

X; ỸB
)

+ I(V; X) − I
(

V; ỸB
)

= h
(

ỸB|V
)

− h(X|V) + k1

= h

(

1

hB
ỸB|V

)

− h(X|V) + log|hB| + k1,

= h

(

1

hB
ỸB|V

)

− h(X|V) + k2, (18)

where k1 � I(X; ỸB)+h(ỸB)−h(X) is a constant which

is independent of V and k2 � log|hB| + k1.

Lemma 3: When X and ỸB are Gaussian random variables,

as defined in (9), and V − X − ỸB forms a Markov chain

C(V) � h

(

1

hB
ỸB|V

)

− h(X|V),

is minimized when the auxiliary random variable V is a

Gaussian random variable.

Proof: The proof follows from the extremal inequality [31]

and [32, Th. 1]. For completeness, we prove Lemma 3 in

Appendix E.

Hence, we can rewrite the RHS of (17) as follows,

min
V−X−ỸB−ỸA

E

[

σ 2

X|ỸA,V

]

≤D

C(V)

(a)= min
V−X−ỸB−ÇYA

V is Gaussian
σ 2

X|V, ÇYA
≤D

[

I
(

X; ỸB
)

+ I(V; X) − I
(

V; ỸB
)]

(b)= min
V−X−ỸB−ÇYA

V is Gaussian
σ 2

X|V≤FA(D)

[

I
(

X; ỸB
)

+ I(V; X) − I
(

V; ỸB
)]

(c)= min
σ 2

X|V≤FA(D)

[

1

2
log

h2
B
σ 2

X + σ̃ 2
B

σ̃ 2
B

+ 1

2
log

σ 2
X

σ 2
X|V

− 1

2
log

h2
B
σ 2

X + σ̃ 2
B

h2
B
σ 2

X|V + σ̃ 2
B

]

(d)
≥ 1

2
log

h2
B
σ 2

X + σ̃ 2
B

σ̃ 2
B

+ 1

2
log

σ 2
X

FA(D)

− 1

2
log

h2
B
σ 2

X + σ̃ 2
B

h2
B

FA(D) + σ̃ 2
B

(e)= 1

2
log

(

tr(�−1
B

)FA(D) + 1
)

+ 1

2
log

σ 2
X

FA(D)
, (19)

where

(a) follows from Lemma 3;

(b) follows from Lemma 2 with

FA(D) �
σ̃ 2
A

D

σ̃ 2
A

− h2
A

D
= D

1 − tr
(

�
−1
A�

)

D
; (20)

(c) follows by calculating the mutual information of the

random variables defined in (8) using the fact that ÑB is

independent of (X, V), specifically,

I
(

V; ỸB
)

= h
(

ỸB
)

− h
(

ỸB|V
)

= 1

2
log

(

2πe(h2
Bσ 2

X + σ̃ 2
B)

)

− 1

2
log

(

2πe(h2
Bσ 2

X|V + σ̃ 2
B)

)

= 1

2
log

h2
B
σ 2

X + σ̃ 2
B

h2
B
σ 2

X|V + σ̃ 2
B

;

(d) follows since
h2
B

σ 2
X|V+σ̃ 2

B

σ 2
X|V

is a monotonically decreasing

function in σ 2
X|V ;

(e) follows since from (8), hB = σ̃ 2
B

= tr
(

�
−1
B

)

.

Therefore, by (16), (17), and (19), the region in Theorem 4

is included in the intersection of all (A,B) ∈ (A,B), i.e.,
⋂

(A,B)∈(A,B) of the following region,

⎧

⎪

⎪

⎪

«

⎪

⎪

⎪

¬

(R,�) :

R > 1
2

log
σ 2

X

D
(

tr(�−1
A

)σ 2
X+1

)

� > 1
2

log
(

tr(�−1
B

)FA(D) + 1
)

+ 1
2

log
σ 2

X

FA(D)

«

⎪

⎪

⎪

¬

⎪

⎪

⎪

­

. (21)

Then, the region in (21) is included in the following region,
⎧

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

¬

(R,�) :

R > max
A∈A

1
2

log
σ 2

X

D
(

tr(�−1
A

)σ 2
X+1

)

� > max
(A,B)∈(A,B)

1
2

log

(

tr(�−1
B

)σ 2
X + σ 2

X

FA(D)

)

«

⎪

⎪

⎪

⎪

¬

⎪

⎪

⎪

⎪

­

.

Since the arguments of the log function for the bound on R is

decreasing in tr
(

�
−1
A

)

and the argument of the log function
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for the bound on � is decreasing in tr
(

�
−1
A

)

and increasing

in tr
(

�
−1
B

)

, we can compute rewrite the region in (21) as

follows,
⎧

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

¬

(R,�) :

R > 1
2

log
σ 2

X

D
(

tr(�−1
A� )σ 2

X+1
)

� > 1
2

log

(

tr(�−1
B� )σ

2
X + σ 2

X

FA� (D)

)

«

⎪

⎪

⎪

⎪

¬

⎪

⎪

⎪

⎪

­

,

where A� ∈ argminA∈A{tr
(

�
−1
A

)

}, B� ∈
argmaxB∈B{tr

(

�
−1
B

)

}, and FA�(D) = D

1−tr
(

�
−1
A�

)

D
.

Note that, from (1b), we have � ≥ I(X; YB) =
1
2

log

(

1 + σ 2
X

tr
(

�
−1
B�

)−1

)

. Therefore, we have the following

bound on the leakage rate,

� ≥ max

{

1

2
log

(

1 + σ 2
X

tr(�−1
B� )

−1

)

,

1

2
log

(

σ 2
X

D
+ σ 2

X

tr(�−1
B� )

−1
− σ 2

X

tr(�−1
A�)

−1

)}

,

which can be written as g2

(

A�,B�
)

defined in Theorem 1.

VI. CONCLUSION

In this paper, we study a secure source coding problem with

multiple users when the encoder and the users observe copies

of correlated scalar Gaussian random variables. Specifically,

the objective is to guarantee a given distortion level of recovery

of the source for some sets of authorized users and simul-

taneously minimize information leakage about the source for

some other sets of users. This can be seen as a secret-sharing

problem where perfect reconstruction of the secret is relaxed

to an approximate reconstruction, and the perfect security

requirement is relaxed to controlled information leakage. Our

main result is the characterization of the optimal trade-off

between the source compression rate, the desired distortion,

and the information leakage for this problem. We note that

characterizing this trade-off when the source is a vector

Gaussian random variable is an open problem.

APPENDIX A

PROOF OF EQUATION (2)

For the sake of completeness, we present the following

theorem from [28, Th. 3.5.2], which is essential in our proof.

Theorem 5 [28]: Let X and Y be zero-mean, jointly

Gaussian, and jointly non-singular. Then X can be expressed

as X = GY + V, where V is statistically independent of Y

and

G = KXYK−1
Y

KV = KX − KXYK−1
Y K

ᵀ

XY .

For every A ∈ A, by Theorem 5, we have

YA = �XYA
σ

−2
X X + N′

A, (22)

where �N′
A

� �YA
− �XYA

σ
−2
X �

ᵀ

XYA
and �N′

A
� 0

from [28, Eq. (3.43)], since the covariance matrix �N′
A

is

invertible. Next, we normalize (22) as follows. From Cholesky

decomposition, there exists an invertible matrix C ∈ R|A|×|A|

such that �N′
A

= CCᵀ, therefore, we can rewrite (22) as

follows

Y′
A = hAX + N′′

A,

where Y′
A

� C−1YA, hA � C−1
�XYA

σ
−2
X , and N′′

A
∼

N (0, I|A|). Similarly, for every B ∈ B, one can show that

Y′
B = hBX + N′′

B,

where Y′
B

� C−1YB, hB � C−1
�XYB

σ
−2
X , and N′′

B
∼

N (0, I|B|).

APPENDIX B

PROOF OF THEOREM 2 AND THEOREM 3

We first show that, there exist sets of authorized users

A�
t ∈ argminA∈At

tr
(

�
−1
A

)

and unauthorized users B�
t ∈

argmaxB∈Bt
tr
(

�
−1
B

)

such that for any t ∈ �1 : L − 1�, A�
t ⊂

A�
t+1 and B�

t ⊂ B�
t+1. Then, by using Theorem 1, we remark

that A�
t and B�

t also correspond to the sets that appear in the

expression of the optimal compression and the leakage rates

for the threshold access structure At. Ultimately, using the

monotonicity of the sets
(

A�
t

)

t∈�1 : L� and
(

B�
t

)

t∈�1 : L� and

Theorem 1, we compute necessary and sufficient conditions to

determine whether the optimal compression and leakage rates

increase or decrease with the threshold t.

Lemma 4: There exist sets
(

A�
t

)

t∈�1 : L� and
(

B�
t

)

t∈�1 : L�
such that, for any t ∈ �1 : L − 1�, we have A�

t ⊂
A�

t+1 and B�
t ⊂ B�

t+1, and for any t ∈ �1 : L�, A�
t ∈

argminA∈At
tr
(

�
−1
A

)

and B�
t ∈ argmaxB∈Bt

tr
(

�
−1
B

)

.

Proof: We write �L as diag(σ 2
1 , . . . , σ 2

L ). Without loss of

generality, suppose that σ 2
1 ≥ σ 2

2 ≥ · · · ≥ σ 2
L . For t ∈

�1 : L − 1�, let A�
t � �1 : t� and B�

t � �L − t + 2 : L�, since

A�
t ∈ argminA:|A|=t

∑

i∈A
σ

−2
i and B�

t ∈ argmaxB:|B|<t

∑

i∈B
σ

−2
i

we have A�
t ⊂ A�

t+1 and B�
t ⊂ B�

t+1.

When t = L, from Lemma 4 we have tr
(

�
−1
A�

L

)

> tr
(

�
−1
B�

L

)

,

therefore, the optimal leakage rate in Theorem 1 is,

�(D,AL) = 1

2
log

σ 2
X

D
− 1

2
log

»

½1 + σ 2
X

tr(�−1
A�

L
)−1

¾

À

+ 1

2
log

»

½1 + σ 2
X

tr(�−1
B�

L
)−1

¾

À (23a)

and for t ∈ �1 : L − 1� and tr
(

�
−1
A�

t

)

≥ tr
(

�
−1
B�

t

)

,

�(D,At) = 1

2
log

σ 2
X

D
− 1

2
log

»

½1 + σ 2
X

tr(�−1
A�

t
)−1

¾

À

+ 1

2
log

»

½1 + σ 2
X

tr(�−1
B�

t
)−1

¾

À. (23b)
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By (23a), (23b), and monotonicity of the log function, we have

�(D,AL) ≤ �(D,At)

⇔
σ

−2
X + tr

(

�
−1
A�

t

)

σ
−2
X + tr

(

�
−1
B�

t

) ≤
σ

−2
X + tr

(

�
−1
A�

L

)

σ
−2
X + tr

(

�
−1
B�

L

) . (23c)

Next, for t ∈ �1 : L�, and tr
(

�
−1
A�

t

)

≤ tr
(

�
−1
B�

t

)

,

�(D,At) = 1

2
log

»

½

σ 2
X

D
+

tr(�−1
B�

t
)

σ
−2
X

−
tr(�−1

A�
t
)

σ
−2
X

¾

À. (23d)

Using (23a), (23d), and monotonicity of the log function, we

have

�(D,AL) ≤ �(D,At)

⇔ 1

2
log

⎡

£

σ 2
X

(

σ
−2
X + tr(�−1

B�
L
)

)

D
(

σ
−2
X + tr(�−1

A�
L
)

)

¤

⎦

≤ 1

2
log

»

½

σ 2
X

D
+

tr(�−1
B�

t
)

σ
−2
X

−
tr(�−1

A�
t
)

σ
−2
X

¾

À

⇔ tr
(

�
−1
B�

L

)

− tr
(

�
−1
A�

L

)

≤ D
(

σ
−2
X + tr(�−1

A�
L
)

)(

tr(�−1
B�

t
) − tr(�−1

A�
t
)

)

, (23e)

which is always true since the RHS (23e) is positive and

the left-hand side of (23e) is negative because tr
(

�
−1
B�

L

)

≤
tr
(

�
−1
A�

L

)

.

Next, for i ∈ �1 : L − t�, by Theorem 1 and using that the

log function is increasing, we have

R(D,At) ≥ R(D,At+i) ⇔ tr
(

�
−1
A�

t

)

≤ tr
(

�
−1
A�

t+i

)

, (24)

and (24) is always true by Lemma 4. Note that (24) also proves

that for any t ∈ �1 : L�, R(D,At) ≥ R(D,AL).

We now prove Theorem 3. Let i ∈ �1 : L − t�. We consider

four cases. First, when tr
(

�
−1
A�

t

)

≤ tr
(

�
−1
B�

t

)

and tr
(

�
−1
A�

t+i

)

≤
tr
(

�
−1
B�

t+i

)

, we have

�(D,At) ≥ �(D,At+i)

⇔ 1

2
log

»

½

σ 2
X

D
+

tr(�−1
B�

t
)

σ
−2
X

−
tr(�−1

A�
t
)

σ
−2
X

¾

À

≥ 1

2
log

»

½

σ 2
X

D
+

tr(�−1
B�

t+i
)

σ
−2
X

−
tr(�−1

A�
t+i

)

σ
−2
X

¾

À

⇔ tr
(

�
−1
A�

t+i

)

− tr
(

�
−1
A�

t

)

≥ tr
(

�
−1
B�

t+i

)

− tr
(

�
−1
B�

t

)

.

(25)

Second, when tr
(

�
−1
A�

t

)

≥ tr
(

�
−1
B�

t

)

and tr
(

�
−1
A�

t+i

)

≥
tr
(

�
−1
B�

t+i

)

, we have

�(D,At) ≥ �(D,At+i)

⇔ 1

2
log

»

½

σ
−2
X + tr(�−1

B�
t
)

σ
−2
X + tr(�−1

A�
t
)

¾

À

≥ 1

2
log

»

½

σ
−2
X + tr(�−1

B�
t+i

)

σ
−2
X + tr(�−1

A�
t+i

)

¾

À

⇔
σ

−2
X + tr

(

�
−1
B�

t

)

σ
−2
X + tr

(

�
−1
A�

t

) ≥
σ

−2
X + tr

(

�
−1
B�

t+i

)

σ
−2
X + tr

(

�
−1
A�

t+i

) . (26)

Third, when tr
(

�
−1
A�

t

)

≥ tr
(

�
−1
B�

t

)

and tr
(

�
−1
A�

t+i

)

≤ tr
(

�
−1
B�

t+i

)

,

we have,

�(D,At) ≥ �(D,At+i)

⇔ 1

2
log

⎡

£

σ 2
X

(

σ
−2
X + tr(�−1

B�
t
)

)

D
(

σ
−2
X + tr(�−1

A�
t
)

)

¤

⎦

≥ 1

2
log

»

½

σ 2
X

D
+

tr(�−1
B�

t+i
)

σ
−2
X

−
tr(�−1

A�
t+i

)

σ
−2
X

¾

À

⇔ tr
(

�
−1
B�

t

)

− tr
(

�
−1
A�

t

)

≥ D
(

σ
−2
X + tr(�−1

A�
t
)

)(

tr(�−1
B�

t+i
) − tr(�−1

A�
t+i

)

)

, (27)

since tr
(

�
−1
B�

t

)

− tr
(

�
−1
A�

t

)

≤ 0 and tr
(

�
−1
B�

t+i

)

− tr
(

�
−1
A�

t+i

)

≥
0 the inequality in the RHS of (27) is never satisfied and

�(D,At) ≤ �(D,At+i). Fourth, when tr
(

�
−1
A�

t

)

≤ tr
(

�
−1
B�

t

)

and tr
(

�
−1
A�

t+i

)

≥ tr
(

�
−1
B�

t+i

)

, we have,

�(D,At) ≥ �(D,At+i)

⇔ 1

2
log

»

½

σ 2
X

D
+

tr(�−1
B�

t
)

σ
−2
X

−
tr(�−1

A�
t
)

σ
−2
X

¾

À

≥ 1

2
log

⎡

£

σ 2
X

(

σ
−2
X + tr(�−1

B�
t+i

)

)

D
(

σ
−2
X + tr(�−1

A�
t+i

)

)

¤

⎦

⇔ D
(

σ
−2
X + tr(�−1

A�
t+i

)

)(

tr(�−1
B�

t
) − tr(�−1

A�
t
)

)

≥ tr
(

�
−1
B�

t+i

)

− tr
(

�
−1
A�

t+i

)

, (28)

since tr
(

�
−1
B�

t

)

− tr
(

�
−1
A�

t

)

≥ 0 and tr
(

�
−1
B�

t+i

)

− tr
(

�
−1
A�

t+i

)

≤ 0,

the inequality in the RHS of (28) is always satisfied and

�(D,At) ≥ �(D,At+i).

APPENDIX C

DISTORTION CONSTRAINT IN THEOREM 4

We have,

D ≥ 1

n

n
∑

i=1

E
(

Xi − E
[

Xi|Yn
A, f (Xn)

])2
(29a)

= 1

n

n
∑

i=1

E

[

σ 2
Xi|Yn

A
,f (Xn)

]

(29b)

(a)
≥ 1

n

n
∑

i=1

E

[

σ 2

Xi|YA,i,Y
n
A∼i

,f (Xn),Yi−1
B

,Xi−1

]

(29c)

(b)= 1

n

n
∑

i=1

EYA,i,Vi

[

σ 2
Xi|YA,i,Vi

]

(29d)
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(c)=
n
∑

i=1

P(Q = i)EYA,Q,VQ|Q=i

[

σ 2
XQ|YA,Q,VQ,Q=i

]

(29e)

= EYA,Q,VQ,Q

[

σ 2
XQ|YA,Q,VQ,Q

]

(29f)

(d)= EYA,V

[

σ 2
X|YA,V

]

, (29g)

where

(a) follows since conditioning reduces MMSE [13,

Lemma 13];

(b) follows by defining Vi �
(

Yn
A∼i

, f (Xn), Yi−1
B

, Xi−1
)

,

which is consistent with the definition of Vi in the proof

of [9, Theorem 3];

(c) holds with Q uniformly distributed over �1 : n�;

(d) follows by defining X � XQ, YA � YA,Q, and V �
(VQ, Q) which is consistent with the definitions of these

random variables in the proof of [9, Th. 3].

APPENDIX D

PROOF OF LEMMA 2

We prove the first statement of Lemma 2 as follows. By [28,

Chapter 3], we have

σ 2
X|Y = σ 2

X − σ 2
XY

σ 2
Y

(a)= σ 2
X − h2σ 4

X

h2σ 2
X + σ 2

N

= σ 2
N

h2
− σ 4

N

(

h4σ 2
X + h2σ 2

N

)−1
. (30)

where (a) follows by calculating σXY = hσ 2
X and σ 2

Y = h2σ 2
X +

σ 2
N . Hence, by (30), the constraint D ≤ σ 2

X|Y can be expressed

as

D ≤ σ 2
N

h2
− σ 4

N

(

h4σ 2
X + h2σ 2

N

)−1
,

which can be rewritten as

0 < σ 4
N

(

h4σ 2
X + h2σ 2

N

)−1
≤ σ 2

N

h2
− D. (31)

Next, we prove the second statement of Lemma 2. Since

(V, X, Y) are jointly Gaussian and V is independent of N,

σ 2
X|V,Y is given by [28, Chapter 3]

σ 2
X|V,Y = σ 2

X

−
[

σXV hσ 2
X

]

[

σ 2
V hσXV

hσXV σ 2
Y

]−1
[

σXV hσ 2
X

]

ᵀ

,

where

[

σ 2
V hσXV

hσXV σ 2
Y

]−1

is provided at the bottom of this page,

in which (a) follows since

σ
−2
V

(

σ 2
Vσ 2

Y − h2σ 2
XV

)

= σ 2
Y − h2σ

−2
V σ 2

XV

= h2σ 2
X − h2σ

−2
V σ 2

XV + σ 2
N

= h2σ 2
X|V + σ 2

N,

where the last equality holds since σ 2
X|V = σ 2

X − σ
−2
V σ 2

XV .

Hence,

σ 2
X|V,Y =

σ 2
Nσ 2

X|V
h2σ 2

X|V + σ 2
N

. (32)

Then, by (32), the constraint σ 2
X|V,Y ≤ D can be expressed as

follows:

σ 2
Nσ 2

X|V
h2σ 2

X|V + σ 2
N

≤ D,

and, since
σ 2

N

h2 − D > 0 by (31), we have

σ 2
X|V ≤ σ 2

ND

σ 2
N − h2D

.

The last statement of the lemma holds because if D = σ 2
X|V,Y ,

then

D =
σ 2

Nσ 2
X|V

h2σ 2
X|V + σ 2

N

, (33)

where (33) follows from (32), and solving (33) for σ 2
X|V results

to σ 2
X|V = σ 2

N D

σ 2
N−h2D

.

APPENDIX E

PROOF OF LEMMA 3

Here, we show that for a given feasible V , we can construct

a feasible Gaussian random variable V̄ such that C(V) = C(V̄).

Thus, this implies that restricting V to be Gaussian does not

change the optimum value of the optimization problem. Next,

to study the difference of the two differential entropy in (18),

we need the following properties of the Fisher information and

the differential entropy.

Definition 3 [33, Definition 1]: Let X and U be ran-

dom variables with well-defined densities, and fX|U be the

corresponding conditional density. The conditional Fisher

information of X is defined by

J(X|U) = E

[

(

∂ log fX|U(x|u)

∂x

)2
]

,

[

σ 2
V hσXV

hσXV σ 2
Y

]−1

=
(

σ 2
Vσ 2

Y − h2σ 2
XV

)−1
[

σ 2
Y − hσXV

−hσXV σ 2
V

]

(a)=

⎡

⎢

£

σ
−2
V

(

h2σ 2
X|V + σ 2

N

)−1
(

h2σ 2
X + σ 2

N

)

− hσ
−2
V σXV

(

h2σ 2
X|V + σ 2

N

)−1

−hσ
−2
V σXV

(

h2σ 2
X|V + σ 2

N

)−1 (

h2σ 2
X|V + σ 2

N

)−1

¤

⎥

⎦
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where the expectation is over (U, X).

Lemma 5 [13, Lemma 18]: Let (V, X, G1, G2) be random

variables such that (V, X) and (G1, G2) are independent, and

let G1 and G2 be Gaussian random variables with variance

0 < σ 2
1 ≤ σ 2

2 . Then, we have

J(X + G2|V)−1 − σ 2
2 ≥ J(X + G1|V)−1 − σ 2

1 .

From [33, Lemma 3], we have

h

(

1

hB
ỸB|V

)

− h(X|V) = 1

2

∫

σ̃2
B

h2
B

0

J(X + N|V)dσ 2
N, (34)

where N is a zero-mean Gaussian random variable with

covariance σ 2
N ≥ 0. We now outer region (34) by substituting

G1 ← ∅ and G2 ← N in Lemma 5 as follows,

J(X + N|V) ≤
(

J(X|V)−1 + σ 2
N

)−1
. (35)

Substituting (35) in (34), we have,

h

(

1

hB
ỸB|V

)

− h(X|V) ≤ 1

2
log

J(X|V)−1 + σ̃ 2
B

h2
B

J(X|V)−1
. (36)

We can also lower bound the Fisher information in (34) by

setting G2 ← 1
hB

ÑB and G1 ← N in Lemma 5 as follows,

J

(

X + 1

hB
ÑB|V

)−1

−
σ̃ 2
B

h2
B

≥ J(X + N|V)−1 − σ 2
N,

for all σ 2
N ≤ σ̃ 2

B

h2
B

, which can be rewritten as

J(X + N|V) ≥
(

J(X + 1

hB
ÑB|V)−1 −

σ̃ 2
B

h2
B

+ σ 2
N

)−1

. (37)

Substituting (37) in (34), we have,

h

(

1

hB
ỸB|V

)

− h(X|V)

≥ 1

2
log

J

(

X + 1
hB

ÑB|V
)−1

J

(

X + 1
hB

ÑB|V
)−1

− σ̃ 2
B

h2
B

. (38)

Next, define, for 0 ≤ t ≤ 1,

g(t) � tJ(X|V)−1

+ (1 − t)

[

J

(

X + 1

hB
ÑB|V

)−1

−
σ̃ 2
B

h2
B

]

, (39)

f (t) �
1

2
log

g(t) + σ̃ 2
B

h2
B

g(t)
. (40)

Hence, (36) and (38) can be expressed as,

f (0) ≤ h

(

1

hB
ỸB|V

)

− h(X|V) ≤ f (1).

Since f is continuous, from the intermediate value theorem,

there exists a t� ∈ [0, 1] such that,

h

(

1

hB
ỸB|V

)

− h(X|V) = f
(

t�
)

= 1

2
log

g(t�) + σ̃ 2
B

h2
B

g(t�)
,(41)

where g(t�) is bounded as follows,

J(X|V)−1
(a)
≤ g

(

t�
) (b)

≤ J

(

X + 1

hB
ÑB|V

)−1

−
σ̃ 2
B

h2
B

(42a)

(c)
≤ J

(

X + 1

hA
ÑA|V

)−1

−
σ̃ 2
A

h2
A

, (42b)

where

(a) and (b) follow by (39) and therefore by substituting

G1 ← ∅ and G2 ← 1
hB

ÑB, in Lemma 5, we have,

J

(

X + 1

hB
ÑB|V

)−1

−
σ̃ 2
B

h2
B

≥ J(X|V)−1; (42c)

(c) follows by Lemma 5 with G1 ← 1
hB

ÑB and G2 ←
1

hA
ÑA.

Hence, (41) implies that if we choose V̄ to be a Gaussian

random variable which satisfies σ 2
X|V̄ = g(t�), then C(V̄) =

C(V). Now, we show that the Gaussian random variable V̄ is

feasible, i.e., σ 2

X|V̄,ỸA

≤ D. The following lemma connects the

conditional covariance with Fisher information.

Lemma 6: Let (V, X) be two arbitrary random variables

with finite second moments, and N be a zero-mean Gaussian

random variable with variance σ 2
N . Let, Y = X+N and assume

that V and X are independent of N. Then we have,

EY,V

[

σ 2
X|Y,V

]

= σ 2
N − σ 4

NJ(X + N|V).

A vector version of this lemma is stated in [13, Lemma 21]

without proof. For completeness, we prove Lemma 6 in

Appendix F. Using Lemma 6, we have,

σ 2

X|V̄,ỸA

= σ̃ 2
A − σ̃ 4

AJ
(

ỸA|V̄
)

. (43)

Then, we have,

J

(

1

hA
ỸA|V̄

)

(a)= σ
−2

1
hA

ỸA|V̄

(b)=
(

σ 2
X|V̄ + 1

h2
A

σ̃ 2
A

)−1

(c)
≥

(

J(X + 1

hA
ÑA|V)−1 −

σ̃ 2
A

h2
A

+
σ̃ 2
A

h2
A

)−1

= J

(

1

hA
ỸA|V

)

, (44)

where

(a) follows from [33, Lemma 2], which states that for

Gaussian random variables J(X|U) = σ
−2
X|U;

(b) follows since (V̄, X) and ÑA are independent;

(c) follows from (42b) since σ 2
X|V̄ = g(t�).

Next, using Lemma 7 below, (44) becomes

J
(

ỸA|V̄
)

≥ J
(

ỸA|V
)

, (45)

Lemma 7: Let X and U be arbitrarily correlated random

variables with well-defined densities. For any a ∈ R++,

J(aX|U) = 1

a2
J(X|U).
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The proof of Lemma 7 is available in Appendix G.

Therefore, combining (43) and (45) results to

σ 2

X|V̄,ỸA

≤ σ̃ 2
A − σ̃ 4

AJ
(

ỸA|V
)

(a)= σ 2

X|V,ỸA

(b)
≤ D, (46)

where

(a) follows from Lemma 6;

(b) follows since we assumed that V is feasible, i.e.,

σ 2

X|V,ỸA

≤ D.

Equation (46) means that the constructed Gaussian random

variable V̄ is feasible, which means that for each feasible V ,

there exists a feasible Gaussian V̄ such that C(V) = C(V̄).

APPENDIX F

PROOF OF LEMMA 6

We have,

1

2
J(X + N|V = v)

(a)= ∂

∂σ 2
N

h(X + N|V = v)

= ∂

∂σ 2
N

[I(X; X + N|V = v) + h(X + N|X, V = v)]

(b)= ∂

∂σ 2
N

[I(X; X + N|V = v) + h(N)]

= ∂

∂σ 2
N

[I(X; X + N|V = v)] + 1

2σ 2
N

(c)= ∂

∂σ 2
N

[

I
(

X; σ
−1
N X + N′|V = v

)]

+ 1

2σ 2
N

(d)= −σ
−4
N

∂

∂u

[

I
(

X;
√

uX + N′|V = v
)]

+ 1

2σ 2
N

(e)= −1

2
σ

−4
N EY|V=v

[

σ 2
X|Y,V=v

]

+ 1

2
σ

−2
N , (47)

where

(a) follows from [33, Lemma 3];

(b) follows since V and X are independent of N;

(c) holds with N′ a standard Gaussian random variable;

(d) follows by defining u � σ
−2
N ;

(e) follows from [34, Th. 1], with the input distribution

PX|V=v.

From (47), we have

EY|V=v

[

σ 2
X|Y,V=v

]

= σ 2
N − σ 4

NJ(X + N|V = v). (48)

Now let FV,Y be the cumulative distribution function of (V, Y),

therefore, from (48) we have

EY,V

[

σ 2
X|Y,V

]

=
∫

v

∫

y

σ 2
X|Y=y,V=vdFV,Y

=
∫

v

(

σ 2
N − σ 4

NJ(X + N|V = v)
)

dFV

= σ 2
N − σ 4

N

∫

v

J(X + N|V = v)dFV

= σ 2
N − σ 4

NJ(X + N|V).

APPENDIX G

PROOF OF LEMMA 7

Define Y � aX, then fY|U(y|u) = 1
|a| fX|U

( y
a
|u
)

, and from

Definition 3 we have

J(aX|U) = J(Y|U)

= E

[

(

∂ log fY|U(y|u)

∂y

)2
]

= E

[

(

∂

∂y
log(

1

|a| fX|U(
y

a
|u))

)2
]

= E

[

(

∂

∂y
log(fX|U(

y

a
|u))

)2
]

(a)= E

[

1

a2

(

∂

∂z
log(fX|U(z|u))

)2
]

= 1

a2
J(X|U),

where (a) follows by defining z � y
a
.
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