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Secure Source Coding Resilient Against
Compromised Users via an Access Structure

Hassan ZivariFard

Abstract—Consider a source and multiple users who observe
the independent and identically distributed (i.i.d.) copies of
correlated Gaussian random variables. The source wishes to
compress its observations and store the result in a public database
such that (i) authorized sets of users are able to reconstruct the
source with a certain distortion level, and (ii) information leakage
to non-authorized sets of colluding users is minimized. In other
words, the recovery of the source is restricted to a predefined
access structure. The main result of this paper is a closed-form
characterization of the fundamental trade-off between the source
coding rate and the information leakage rate. As an example,
threshold access structures are studied, i.e., the case where any
set of at least ¢ users is able to reconstruct the source with some
predefined distortion level and the information leakage at any
set of users with a size smaller than ¢ is minimized.

Index Terms—Distributed source coding, secure source coding,
secure data storage, equivocation-rate, capacity, side information,
rate-distortion region, access structure, compromised users.

I. INTRODUCTION

SOLUTION to the storage of private data that is

resilient to compromised users is secure distributed
storage via traditional cryptographic solutions such as secret
sharing [2], [3]. Specifically, a solution based on secret sharing
consists in encoding the private data and distributing parts of
the encoded data among multiple users, via individual secure
channels, such that any ¢ users that pool their information
together can reconstruct the private data, while any z(< f)
colluding users cannot learn any information about the private
data. The set of all sets of users capable of reconstructing the
private data is referred to as the access structure. For instance,
the users could represent servers.

A. Problem Overview

In this paper, we aim to propose a secure distributed data
storage strategy that solely relies on a public database and
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accounts for side information at the users by considering three
main modifications of the secret sharing solution described
above. First, we do not assume that secure channels are
available to transmit the encoded private data to the users,
as secure channels come with a cost in practice, instead, we
solely rely on the availability of a public database. Second,
we consider that the users have side information about the
private data. While this consideration is not relevant in the
original secret sharing problem where the secret is an arbitrary
sequence of symbols and does not represent information, it
becomes relevant in a data storage context. Not accounting
for the fact that the users can have side information raises
the following two challenges that cannot be addressed with
results for traditional secret sharing: (i) it leads to overes-
timating the security guarantees of the protocol, and (ii) it
leads to inefficiency in terms of data storage size. Third,
in our proposed setting, we relax the lossless reconstruction
constraint of traditional secret sharing to a lossy reconstruction
constraint [4].

Two distinct bodies of work on secure data storage are
related to our model. The first one is secret sharing, which
specifically addresses the presence of access structures — we
refer to [5] for a comprehensive literature review. The second
one is secure source coding [6], [7], [8], [9], [10], [11], [12],
[13], which mainly addresses the presence of side information
at the users, but in the absence of access structures. By
contrast, in this paper, we propose to simultaneously address
the presence of an access structure and side information at
the users within a single framework. Specifically, we consider
a source and multiple users who observe the i.i.d. copies of
correlated Gaussian random variables. The source wants to
compress its observations and store the result in a public
database such that (i) only pre-defined sets of authorized users
can reconstruct, up to a prescribed distortion level, the source
by pooling all their available information, and (ii) information
leakage about the source to any other sets of colluding users
is minimized. The main result of this paper is a closed-form
characterization of the fundamental trade-off between source
coding rate and information leakage rate. Our result indicates
that if the source is more correlated, in a sense that we
make precise in the sequel, with the side information of the
authorized sets of users than with the side information of any
unauthorized set of users, then the optimal information leakage
rate grows linearly with the optimal source coding rate. On
the other hand, if this is not the case, the optimal information
leakage rate grows non-linearly with the optimal source coding
rate. Additionally, for threshold access structures, i.e., when a
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fixed number of users, denoted by 7, are needed to reconstruct
the source (independently of the specific identities of those
users), we show that the capacity region is, in general, not a
monotonic function of the threshold t.

B. Novelties and Main Challenges

Next, we discuss the novelties and main challenges of
the main result of this paper, which is a characterization of
the optimal rate-leakage region for the problem introduced in
the previous section. We first describe the main challenges of
our converse proof.

o The side information of each authorized or unauthorized
set of users is a vector Gaussian random variable, and
each component of this vector accounts for the side
information of one user of this set. In our study, we use
sufficient statistics [14, Sec. 2.9] to convert this vector
Gaussian side information to a scalar random variable
and facilitate the analysis of our setting. For the converse
proof, this conversion allows us to reduce the problem
to two cases. A first case (respectively second case), in
which the source is more (respectively less) correlated,
in a sense that we make precise in the sequel, with the
side information of any set of authorized users than with
the side information of any unauthorized set of users.

« Another key step in the proof of our converse is the proof
of the sufficiency of a single auxiliary random variable
in the outer region that we derive, to achieve minimum
information leakage at the unauthorized users for each of
the two cases discussed above.

o A particularly challenging aspect of our setting is the
compound structure of the problem, which arises as a
consequence of having multiple authorized and multiple
unauthorized sets of users. Specifically, in our achiev-
ability region, it leads to, first, an optimization over the
distribution of the involved auxiliary random variables
and, then, to an optimization over the sets of authorized
users and unauthorized users, whereas the order of these
two optimizations are reversed in our outer region. In
general, such a mismatch between the inner and outer
regions leads to a gap between the achievability and the
converse, e.g., as in [15] for compound wiretap channels.
In our setting, we obtain a capacity result by proving the
existence of a saddle point, which proves that the order
of the optimizations is irrelevant.

We now discuss the main challenges of our achievability proof.

« The achievability is first proved for discrete random vari-
ables and then extended to continuous random variables
through quantization. Note that one cannot consider a
specific quantization strategy at the unauthorized users
to ensure the leakage requirement in an information-
theoretic manner; therefore, a key step in this extension is
to prove that the leakage constraint holds for continuous
random variables.

« For the achievability proof, the use of sufficient statistics
also facilitates the evaluation of the achievable rate
region, in particular, the computation of the conditional
covariance of vector Gaussian sources.

C. Related Works

Of particular relevance to this paper, [6] have established
the first characterization of the rate at which an encoder may
compress a source such that an authorized user can recover
the source in a lossless manner while guaranteeing a minimum
information leakage at an unauthorized user who observes the
encoded source. Other variations of this problem are studied
in [7], [8], [9], [10], [11], [12]. This problem is generalized
to a scenario, in which the authorized user may recover the
compressed source with some predefined distortion in [9].
Specifically, [9] characterized the optimal tradeoff between
the rate, the desired distortion, and the information leakage
when both the authorized and unauthorized users observe
different i.i.d, side information sequences that are correlated
with the compressed source. The secure lossy compression of a
vector Gaussian source when both the authorized user and the
unauthorized user have vector Gaussian side information have
been studied in [13], which derives inner and outer regions on
the optimal trade-off between the rate, the desired distortion,
and the information leakage. References [16], [17] study this
problem in the case where the fidelity of the communication
to the authorized user is measured by a distortion metric and
the secrecy performance of the system is also evaluated under
a distortion metric, a line of study that was first initiated
in [18], [19]. Secure source coding when there is a shared
secret key between the legitimate terminals has also been
studied in [20], [21], [22], [23], [24]. Note that all these
previous works do not consider access structures and deal with
a source coding problem. The problem studied in this paper
subsumes the secure lossy compression of a scalar Gaussian
source when both the authorized user and the unauthorized
user have scalar Gaussian side information as well as the
secure lossy compression of a scalar Gaussian source when
both the authorized user and the unauthorized user have vector
Gaussian side information.

In [9, Sec. V.A] and [13, Example 1], the authors study
a single-user and single-eavesdropper Gaussian secure source
coding problem, which is a special case of the problem
studied in our paper. Indeed, the problem studied in this paper
involves multiple sets of authorized users and multiple sets of
unauthorized users (eavesdroppers). Specifically, in our setting,
we upper-bound the information leakage over all possible
sets of unauthorized users, and for the reconstruction of the
source we require that any set of authorized users can recover
the source with some fixed distortion level. As discussed
above, this creates additional challenges compared to a single
authorized and single unauthorized user. Note also that the
single-user single-eavesdropper case had not been fully solved,
as [13, Example 1] establishes the capacity region when the
compression rate is infinity, and [9, Sec. V.A] establishes the
capacity when the side information at the eavesdropper is a
degraded version of the legitimate receiver’s side information.
We note that the authors in [9, Remark 8] conjecture that their
achievability is optimal in the non-degraded case, however
they do not provide a converse proof.

In the context of secret sharing, another related work is [25],
where a function of a Gaussian source must be reconstructed
in a lossless manner by authorized sets of users and must
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Secure source coding with three users, i.e., £ = {1, 2, 3}, when any single user must not learn more than nA bits of information about the source
D

X", ie., we set A = {{1,2}, {1,3},{2,3},{1,2,3}}, and B = {{1}, {2}, {3}}. )A(”({i,j}) <X", fori,je{l,2,3} and i # j, means that the distortion between the
reconstructed source by the users i and j together and the source sequence X" must be less than D.

be kept secret from unauthorized sets of users, who all own
side information about the source. Finally, note that, in our
results, the length of the compressed data stored in the public
database and the source observation at the users scale linearly
with the number of source observations n and does not depend
on the number of participants but only on the access structure.
Specifically, the compressed data stored in the public database
must allow the reconstruction of the source for the group of
authorized participants that has the least amount of information
about the source in their side information. This contrasts with
traditional problems that involve access structures, e.g., secret-
sharing model [3], for which the best known coding schemes
require the share size to scale exponentially with the number
of participants for some access structures [5].

D. Paper Organization

The remainder of the paper is organized as follows. We
define the notation in Section II and formally define the
problem in Section III. We present our main results in
Section IV and provide the proofs in Section V. We provide
concluding remarks in Section VI.

II. NOTATION

Let NT be the set of positive natural numbers, R be the
set of real numbers, and define Ry £ {x € R|x > 0} and
Ryt £ Ry\{0}). For any a,b € R, define [[a : b] =
[la], TP N NT and [a]t £ max{0, a}. Random variables are
denoted by capital letters and their realizations by lower case
letters. Vectors are denoted by boldface letters, e.g., X denotes
a random vector and x denotes a realization of X. Ex(-) is
the expectation with respect to the random variable X, for
brevity, we sometimes omit the subscripts in the expectation
if it is clear from the context. The set of € —strongly jointly
typical sequences of length n, according to Pyy, is denoted by
7;(") (Pxy) [26]. Superscripts denote the dimension of a vector,
e.g., X" X{ denotes (X;, Xi+1,...,X;), and X’Li denotes the

vector X" except X;. The cardinality of a set is denoted by
| - |. The entropy of the discrete random variable X is denoted
by H(X), the differential entropy of the random variable X
is denoted by h(X), and the mutual information between
the random variables X and Y is denoted by I(X;Y). The
support of a probability distribution P is denoted by supp(P).
The n-fold product distribution constructed from the same
distribution P is denoted by P®". Throughout the paper, log
denotes the base 2 logarithm.

III. PROBLEM STATEMENT

Consider a memoryless source (X xY, Pxy,), where £ £
[1:L] and Y, = (Y¢)eer, that consists of L+ 1 alphabets
X x Y. and a joint distribution Pyy, over X x Y . Let A
be a set of subsets of £ such that for any S C L, if S has a
subset that belongs to A, then S € A, i.e., A has a monotone
access structure [27]. Then, define B £ ZL\A to be the set
of all colluding subsets of users for which the information
leakage about the source X" must be minimized (see Fig. 1).
Henceforth, for any A € A and for any B € B, Y 4 and Yg
denote (Yy)gea and (Y¢)een, respectively. Let d : X x Y 4 —
[0 : dmax] be a distortion measure such that 0 < dpyax < 00.

Definition 1: A (2”R ,n) source code for the memoryless
source (X x Y., pxy,.) consists of

« an encoding function f : x" > m, which assigns an index
m e [1:2"R] to each x" € X". As depicted in Fig. 1, M
is stored in a public database;

o decoding functions X4 : m x y' +— ¥"(A) U {e}, where
A € A, which assigns an estimate X"(A) € X" or an
error ¢ to each m € [1 : 2"K] and Yy €Yy

Definition 2: Let D > 0. A pair (R, A) € Rﬁ_ is achievable
if there exists a sequence of (2”R , n) source codes, such that,

max lim supIE[d(X",)A(”(.A))] <D, (1a)
AeA  pnsoo
1

lim —I(X"; M, Y%) <A, 1b

Byl (X M V) < v
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where the distortion between the sequences x" and x"(A) is
defined by

d(¥", 2'(A) & - de,,x,(A))

i=1

(o)

The set of all achievable pairs is referred to as the rate-
leakage region and denoted by R(D, A).

Equation (1a) means that any set of authorized users A € A
can reconstruct the source X” within the distortion D from the
observation Y”; and the public data M, and (1b) means that any
colluding set of unauthorized users 3 € B cannot learn more
than nA bits about the source X" from the observation Yj
and M. In this paper, we consider Pxy . the joint distribution
of zero-mean jointly Gaussian random variables with a non-
singular covariance matrix. We denote the variance of X by
a)%. Without loss of generality, for every A € A and B € B,
by [28, Th. 3.5.2], one can write

Y4 =hyX+ Ny,
Yp =hBX+NB,

(2a)
(2b)
where hyq € le‘ and hg € R'B + and N 4 and Npg are zero-
mean Gaussian random vectors with identity covariance matrix
and independent of X. Equation (2) is proved in Appendix A.

Then, still without loss of generality, by normalizing (2), one
can consider the following source model

VAe A
VB eB

YaA=14X+Ny,
Y = 13X + N3,

(3a)
(3b)

where N 4 and Np are zero-mean Gaussian random vectors
with covariance matrices X 4 > 0 and X > 0, respectively,
that are independent of X and 1 4 is the all-ones vector with
size |A|. Without loss of generality, we can also consider
N4 and Npg independent, for A € A and B € B, since (1)
only depends on the marginal distributions (Pxy ) 4ca and
(Pxyy)Bep- In this paper, the distortion of the reconstructed
sequence (Xi(A))?Z] in Definition 2 is measured by the mean
square error as,

%E[(x,- ~ X,-(A))z] <D. @)

Since the minimizer of the mean square error is the
Minimum Mean-Square Error (MMSE) estimator, which is
given by the conditional mean, we assume that the authorized
users choose this optimal estimator, ie., the authorized users
in A e A form (X; (AL, as Xi(A) £ E[X: Y%, f(X)].

IV. MAIN RESULTS
Henceforth, for some A € A, we assume 0 < D < O'X‘YA
where GX‘Y is the conditional variance of X given Y 4,
chlYA =E[(X — E[X|YAD?Y4l. If D > cr)%ly for all A in
A, then R(D, A) = {(R, A) : R > 0, A > maxpep{l(X; Yr)}},
because the achievability scheme that consists in setting M £
¢ implies

1 o 2
;IE[(X,» —Xi(A) } = oxpy -

A. Results for General Access Structures

The main result of this paper is a closed-form expression
for the optimal trade-off between the compression rate and the
leakage rate of the source, which is provided in the following
theorem.

Theorem 1: Let D > 0. For any access structure A,

R(D, A)
(R, A) :

+
o2
log———log 14+ —%*—
= r (ZAI*) ’

g1 (.A*, B*)

A> when tr (EA*) >t B
- gz(A*, B*) when tr (EAI) <tr (Eg,l)
©)
where
2 2 +
sy e |t 1 ox
gi(A*, BY) & [210 > 2log<1+tr(2Al)_1):|

A* e argminAeA{tr(E;\l)}, and B* € argmaxBeB{tr(Egl)}.

The converse of Theorem 1 is provided in Section V.
The achievability proof of Theorem 1 is similar to that of
[9, Th. 3] and is omitted for brevity but is made available as
a supplementary file.

Remark 1 (Comparison With [13, Example 1] and [9,
Sec. V.AJ): When there is only one authorized and one
unauthorized user, the problem setup in (1) with A £ {1} and
B £ {2} reduces to the problem setup in [13, Example 1]
and [9, Sec. V.A] and Theorem 1 yields the capacity region

(R, A):
0'2 +
X 1 X
R(D.A) = |: log log(l + >i| 7
A> g1 when 0’12 < 022
B ) when 012 > 022
where

. ; 1 2\T 1 o2
=X _ - 1+ X —log| 1+ %],
g1 D 2og +012 +20g +(722

2 2\ o2
o o
og( | X -1+ || +1+3
D of 2

In the lower bound of the compression rate R in Theorem 1,

A
82 =

Il
=
l\)l'—‘

2
the term %log %X is the source coding capacity in the absence
of side information [26, Th. 3.6], and the term 1 5 log(1 +

tr(;ﬁ) is the gain provided by the side information at
A*

the authorized users. In the lower bound on the information
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A* (bits per source observation)

1.4

0 0.4 0.8 1.2 1.6 2 24
R* (bits per source observation)
Fig. 2. (R*, A*) represents the corner points of the rate-leakage region

R(D, A) characterized in Theorem 1, for fixed noise variances, when O’)% =2,
D=0.1, and tr(Z ) = 3.5.

leakage A in Theorem 1, the term (1 + ) represents a

2

(z;‘> !
penalty coming from the side information at the unauthorized
users. When 0 = 2, D = 0.1, and tr(¥3!) = 3.5, the
leakage rate A* is depicted in Fig. 2 with respect to the
storage rate R*, where (R*, A*) represents the corner points
of the region R(D, A) characterized in Theorem 1. As seen
in Fig. 2, the leakage does not grow linearly with the storage
rate R*, when tr(X A*) <tr(X B*) Intultlvely, in this regime,
the storage rate R* decreases as tr(X A*) grows but, since the
unauthorized users in 5* have a “less noisy” side information
about the source than the authorized users in A* have, the
information leakage A* does not increase with the storage rate
R* as fast as it does when the authorized sets of users A*
have a “less noisy” side information about the source than
the authorized2 set of users B*. In Fig. 2, the corner point
Ci = (3logF, 3log Z + 3log(l + 5
to the case in which the side information at the authorized set
of users is not correlated with the source, i.e., tr(E;ll) — 0,
and therefore the communication rate is maximal. Op the
other hand, the corner point C, , % log(1 + #))
corresponds to the case in which the distortion betweBe*n the
side information at the authorized sets of users and the source
is less than D, meaning that the encoder does not need to

generate M. Note that, in thls case, from (14a), D > UX|YA*

- -2
translates to, tr(X A*) >D7 —oy”.

)) corresponds

B. Results for Threshold Access Structures

In this section, we consider a special type of access
structure, which is known as the threshold access structure [3]
and defined, for a threshold 7 € [1 : L], as

L2(ACL: Al =1 (6)

In other words, the threshold access structure is such that any
set of ¢ users is able to reconstruct the compressed source
with some predefined distortion. Similar to the general case,
the complement of the set A; is defined as By £ ZL\At =

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 5, 2024

{B < L:|B| <1}, and we consider A} € argmin 4, tr():A )
and B} € argmaxpgcp, {tr():B }). The following result
presents necessary and sufficient conditions to determine
whether the optimal trade-off between the compression rate
and the leakage rate is decreasing or increasing with the
threshold ¢.

Theorem 2: Lett € [1 :

oy 2, which means that the source X" needs to be encoded to
satisfy (4) as discussed after Remark 1, and define R(D, A;) £
min{R : (R, A) € R(D, A,)}. Then, we have,

e« R(D,A) DR(D,A) &

L], suppose that tr():;é) <D -

*2+xr():*‘) o724t 2:4]2 .
oy 4 (2 ) ~ oy +tr(zl;£)’
. R(D A) = RD, Awy), for i e [1: L—1].

Theorem 3: For any t € [l: ﬂ let A(D, A))
min{A (R, A) € R(D, A,)}, and suppose that tr (2;‘1)
1
D! — ox 2, which means that the source X" needs to be
encoded to satisfy (4) as discussed after Remark 1. Then, for
any r€ 1 :L],and i€ [l :L—1],
-1 —1 —1 1
e when tr (Z.A,*) <tr (ZB?) and tr ():A?H) <tr ():B* )

t+i

<

AD, Ay = AD, Aryy)

o tr(ZAl* ) — tr(Z;l]*) > tr(ZB*1 ) tr(ZBE),

1+i t t+i
« when tr ():;\?) > tr (Zl},l) and tr (2;1* )=t (ZB* ),
t t+i t+i

A, Ay) > AD, Aryy)

+tr( B*) o 2
>

+tr( A,) a

e Wwhen tr (Z;‘},) >tr (ZB;) and tr (ZAl ) <tr (Z !

<:>

A(Da At) = A(D7 At+i)7
« when tr (E;@) <tr (El_g,l) and tr (E;ll ) > tr (ZB,I
t t t+i

t+i

)
AW, Ay = AD, A

The proofs of Theorem 2 and Theorem 3 are available in

Appendix B.

Example 1: Consider an encoder and five users. Let D
0.1, 0 =2,and T, =[1 08 09 07 06]"

From the definitions of X 4+ and Xp:, we have X Az
diag(1,0.8,0.9,0.7,0.6) and Xp: = diag(OS 0.9,0.7,0.6).
Hence, tr (ZA*) = 6.4563 and tr( ) = 5.4563. Plugging
these in Theorem 1 results to R > 0. 2618 and A > 2.085.

When ¢t = 4, ZA* diag(1, 0.8,0.9,0.7) and ZB*
diag(0.8,0.7,0.6). Hence, tr( X7 ) = 4.7897 and tr (2 ;) =
4.3452, and by Theorem 1, R > 64594 and A > 2. 1282,

When ¢ 3, ZA~ diag(1, 0.9,0.8) and EB*
diag(0.7,0.6). Hence, tr (EA*) 3.3611 and tr (ZB,)
3.0952, and by Theorem 1, R > 0.6865 and A > 2. 1415

Finally, when ¢ = 2, ZA* = diag(1,0.9) and EBE = 0.6.
Therefore, tr (2,4*) = 2.1111 and tr (X B*) = 0.6, and by
Theorem 1, R > 0.9686 and A > 2.1282.

This example verifies the relationships between the com-
pression rate and the leakage rate for different thresholds
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A (bits per source observation)
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Fig. 3. The rate-leakage region for threshold access structures when D = 0.1,
ofg=2and X.=[1 08 09 0.7 0.6]T.

provided in Theorem 2 and Theorem 3. For instance, in

Theorem 3 for + = 3 and i = 1, we operate in the

oy Hu(Egl) oy (g )

second case and the condition — —— > — —+

ox HI(E ) T ooy (. )

. L i

satisfied so that A(D, A;) > A(D, A,4;), which is consistent
with Fig. 3.

I

V. CONVERSE PROOF OF THEOREM 1

In Section V-A, we provide a general outer region on the
rate-leakage region R(D, A). In Sections V-B, V-C, and V-D,
we show that this outer region reduces to the region in
Theorem 1. Specifically, we convert the problem to a scalar
problem by using sufficient statistics in Section V-B. Then,
in Section V-C, we study the case when the side information
of any set of authorized users is more correlated, in a sense
that we make precise in the sequel, with the source than the
side information of any unauthorized set of users. Finally, in
Section V-D, we study the case when the side information
of the unauthorized sets of users is more correlated with the
source than with the side information of the authorized sets
of users.

A. A General Outer Region

We first provide a general outer region on the secure rate-
distortion region of the problem defined in Section III, which
is based on [9, Sec. III-B].

Theorem 4: For every (A,B), the region R(D,A) is
included in m(A,B)e(A,]B) Rc(Y 4, YRB), where

RG(Ya,Yp) £ U
U—V—X—(Y 4,YB)
E[J)%\YA,V]SD
(R, A) :
R > I(V; X|Y»4)
A>IV;X)—1(V;YAU) +1(X; YB|U)

Proof: Consider the secure

source coding problem
in [9, Sec. III-B], which consists of a memoryless source

((X s V1, ), Pxy, yz) with three outputs X", at the encoder,
Y7, at the legitimate terminal, and Y7, at the eavesdropper.
In this setting, the encoder wishes to encode its observed
sequence in such a way that the legitimate receiver can
reconstruct the source sequence X" with distortion D, and
the information leakage about X" at the eavesdropper is
minimized. An (n, R)-code for source coding is defined by an
encoding functionf : X" — [1 : Z"R]] and a decoding function
g: [1:2"”]x Y} — X" In this problem, a pair (R, A) € R
is achievable if there exists a sequence of (n, R)-codes such
that,

lim sup E[d(x",f((f(xn), Y;’))] <D, (7a)
n— o0
1
lim —/(X"; V", Y})) < A, (7b)

n—oo n

where V" £ f(X™). The outer region derived for this problem
in [9, Sec. III-B] is Rg(Y1, Y2). Now, consider the secure
source coding problem defined in Section III and the rate pair
(R, A) € R(D, A) such that (la) and (1b) are satisfied. In
particular, (7) is satisfied for any A € A and B € B when Y7
is replaced by Y’ and Y7 is replaced by Yjz. It means that for
any A € A and B € B, (R, A) € Rg(Y 4, Yp) and Theorem 4
holds.

The proof that the distortion constraint in Rg(Y 4, YB)
reduces to E[G)%lYA,V:I < D for Gaussian sources can be found
in Appendix C. u

Remark 2 (Leakage Measure): In [9, Th. 3], the equivoca-
tion is used as a measure of leakage but, since we consider
continuous sources in our setting, to avoid a negative equiv-
ocation, we replace the equivocation with mutual information
leakage (see Definition 2).

B. Conversion to a Scalar Problem

To prove the converse part of Theorem 1, we use the notion
of sufficient statistics [14, Sec. 2.9] and the following lemma
from [29] to convert the problem in (3) to a problem in which
the encoder, the authorized users, and the unauthorized users
observe a scalar Gaussian source.

Lemma 1 [29, Lemma 3.1]: Consider the channel with
input X and output Y given by

Y =hX+N,

where N is a zero-mean Gaussian vector with covariance
matrix X and h € R". A sufficient statistic to correctly
determine X from Y is the following scalar

Y2hTrly.

Fix A € A and B € B. By Lemma 1, sufficient statistics to
correctly determine X from Y 4 and Yz in (3) are the following
scalars,

Ya=133,'Ya Vp=1L3;'Ys. ©)
Hence, we have
VXY T,
Vn _Xi‘l _ Y:Z4 _ 214’

(9a)
(9b)
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Vn
V}’l

X" n
B

n Vi

X B

(%0)
(9d)

v
Bv
n
B’

where

o the Markov~ chain in (9a) follows since V" is a function
of X" and YZ\ is a function of Y”A;

o the Markov chain in (9b) follows sin~ce V" is a function
of X" and from [14, Sec. 2.9] X" — — Y'j4;

« the Markov chains in (9¢) and (9d) are obtained similarly.
Next we rewrite (3) as

YA=haX+Na, Yg=hgX+Ng, (%)
where

ha 210 =u(z), (9f)

hs 2 1525 s = wr(25'), (99)

Na=143'Ns Ng=1}52;'Ng, (9h)

where (9g) follows since X 4 and X are diagonal matrices.

We now show that the sufficient statistics in (8) preserves the
distortion constraint and the leakage constraint in Definition 2.
By the distortion constraint in Theorem 4, we have

AN
Expanding the Right Hand Side (RHS) of (10) results to,
n ])2]

ff / Xj — X WV, y" ])ZP(x,-, Ve, y”A)dxidV”dyZl

1] [

xXi vty ot

YaYa

1 & .
D= - ;E[(Xi —E[X;|V", (10)

E[(X- —E[X;|V",

E[Xi", y])°

XP(xi, V', ¥y, 3 ) dxidv' dy"y d5'y

2
@ e
[/f/ xi—fxiP(xAv,yA)dx,-
xl Vn )l "” -’x'.l
X P(xl-, LY Vi) dxidV' dy"y d5'y
2
b e in e e
2//// xz-—/xz-P(xz-IV",y'A)dxi
X VUYLV By
X P(xi, v, ¥y 30 ) dxidv" dy'y d5"y
2
/f/ Xi — fxip(iiIV"J"A)dii
Xl Vrl "'n

X P(xi, % ,yA)dxidv”dS)”A
= E[ (X — £V, 740)° ],

= [ TPV, yiy)dii;

Xi

where
(a) follows since E[X;[V", y"]
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(b) follows from P(x[V",y") PGV, ¥ Yy)

P V", &"A) by the Markov chains in (9a) and (9b).
Therefore, rewriting (3) as (8) preserves the distortion con-
straint. We now show that it also preserves the information
leakage,

I(X"; M, Yg) = I(X"; V", Yg)
= 10 V) £ 1K Y1V
9 p(xm vy 4+ 1(xXm Y, 7V
LI v) (X TV
= I(X"; V", Yg).

where (a) and (b) follow from (9¢) and (9d) respectively.
Next, when tr(X ) <t(X, ) we redefine Y as,

- hi ~
5 h—BYA+N’,
A

where N' ~ N(0,tr(Zp Ha - %L)) Note that after

redefining Y3, the joint distribution between X and ¥ 4 and the
joint distribution between X and Yz are preserved, therefore
the constraints in Definition 2 are preserved. As a result,
we have the Markov chain X — ¥ A — 173. Hence, when
r(Xg h < tr(): 1, without loss of generality, we can suppose
that X — Y A — YB In this first case, we informally say that the
authorized set of users have better side information. Similarly,
when tr(EA ) < tr():B ), we can suppose that X — YB YA
In this second case, we informally say that the unauthorized
set of users have a better side information.

We now study each of these two cases separately in
Sections V-C and V-D.

C. When Authorized Users Have Better Side Information

Fix A € A, and B € B. Suppose tr(X5') < tr(Z ). In this
case, as discussed in Section V-B, the union in Theorem 4 can
be taken over (U, V, X, f/A, f/lg) such that U -V — X — I?A —
f’B. Then,

A>I(V;X)—1(V; Y4

@ 1I(V; X) —1(V;

\U) +1(X; Y5|U)

YA)+1(U; Ya) +1(X; YB) — I(U; Y3)
¢ 1(V;X) —1(V; Y4) + 1(X; YB)
Q (Vi X1T4) + I(X: 78).

where (a), (b), and (c) follow since U —V — X — ¥4 — V3.

This implies that the region in Theorem 4 is included in the
following region

(R, A)
N U R>1(V;X|V.4)
(AB)edB) v_x—7,-75 | A > I(V; XIY4) + I(X; YB)
U}%\?A,V]fD
(11)
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Optimizing the rate and the leakage constraints in (11) sep-
arately results in a larger region, i.e., an outer region. As a
result, the region in (11) is included in the following region,

(R, A) :
R > min I(V;X|I7A)
V-X-Y4-V3
ﬂ IE|:<72 - <D
X|Y 4.V
ABeaB | A>  min _ [I(V;X|V4) +1(X; ¥5)]
V-X-YA—YB
E|:G§|17A,V:|SD

(12)

Since the source is Gaussian the term /(X 173) is fixed, and
we know that the term I(V; X|¥ 4) = h(X|Y4) — h(X|Y 4, V)
is minimized by joint Gaussian (V, X, Y 4) [30, Lemma 1].
Hence, the region in (12) is again included in the intersection
of all (A, B) € (A,B), ie., ﬂ(.A,B)e(A,IB%) of the following
region,

(R, A) :
O'2~
R > , min % log GzﬂL
O‘XI).’A‘VSD XIV 4.V
2
A > 2min [%log;)(#—i-%log;’? :|
O S X7 4.V X735

From the monotonicity of the log function, the region above
is included,

R, A) :
02.
XY

R > %log—'A-

ﬂ D .13
1 X7 o2
ABEAB) | A > 1log “54 + 7 log —
XY
Now we have,
2
o~ -~
2 _ 2 X.Ya
%7, — X T "2
Ya
@ 0%
o +u(z)
-1\ .4
® tr():A )ax
ST TN
tr():A )Ux +1
2
- % (14a)
tr(ZJ:\l)a}% +1
where
(a) follows by calculating o2_ and o}%A from (8);
(b) follows since from (8) we have hy = tr():;‘l).
Similarly, we have
2
2 Ox
%7 = (14b)

tr():l_gl)o}% + i

Hence, the region in (13) can be written as the intersection of
all (A4, B) € (A, B), i.e., ﬂ(A,B)e(A,IB) of the following region,

(R, A) :

2
2 gD(tr(zj)a)%H) . (15)
2
A > Ylog T 4 Llog(ur(Z5)oF +1)
Z 2708 D(w(zZhog+1) +ylog(r(Xp oy +
Since the arguments of the log functions are decreasing in
tr(E;ll) and increasing in tr():g]> we can compute the

intersection in (15) and rewrite the region in (15) as follows,
R, A) :
2

R > l lo U—X
2708 D(tr(E of+1)

) + %1og(tr(>:;3})a§ + 1)

e
D(tr():;\l,,)a§+l

A>%lo

where  A* € argminAeA{tr():;ll)} and B* €
argmaxBeE{tr(Zzgl)}. Note that we also have A >
I(X;Yp) = %log(l + a)% tr (Zl_g*l)), whence the definition of
g1, in Theorem 1.

D. When Unauthorized Users Have Better Side Information

Fix A € A, B € B, and suppose that tr():;tl) < tr()Jg,l).
We will need the following lemma.

Lemma 2: Consider Y = hX + N, where h is a constant,
and X and N are independent, zero-mean Gaussian random
variables with variance o)% and 01\2,, respectively. When D <
GJ%IY and V is Gaussian, we have

o a)%W’Y <D<& U)%lv < (D’1 — hzaﬁz)’l;

e oFyy=D&of, =D -y
The proof of Lemma 2 is provided in Appendix D.

As discussed in Section V-B, the union in Theorem 4 can be
taken over (U, V, X, f’A, )73) such that U —V —X — 173 — f’A.
Similar to Section V-C, optimizing the rate and equivocation
constraints in Theorem 4 separately results in a larger region,
i.e., an outer region. Optimizing the rate in Theorem 4 yields,

R > min  [(V; X|Y4)
V*X*)./_A
2
|:UX|?A.V =
1 o2
> - log - , (16)

D(tr(z 3o} +1)

where the last inequality holds as in the derivation of (15).
Now optimizing the information leakage constraint in
Theorem 4 yields,

A > min

U-V-X-Y5-Y4
2
E[UX\?A.V] <D
@

= min
U-V—-X-Yp—Y4g

2
E[UX\?A.V] <D

[1(V; X) — I(V; YA|U) + 1(X; Y5|U)]

[1(V:X) —I(V; Y4) + I(U; Y 1)
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+1(X; Yg) — 1(U; Y3)]

Qg+ min [IViX)—1(V:T4)

U-V-X-Y3-Y4
]E|:O‘§|?A‘V:| <D
—I(U; Y81Y.4)]
(c) ~
> 1(X: ¥p) +

min _ [I(V; X) —I(V; Y4)

U-V-X-Yp-Y4

2
E|:0X|yA’Vi|§D

—1(V; YglY.4)]
=I1(X;¥g)+ min _ [I(V;X)—I(V; V4, 75)]
V-X-Yp—Y4
E[O-;WA,V}ED
D)+ min _ [1(V;X) — I(V; ¥g)]
V-X-Yp—Y4
U;\}_’A,V:|§D
©  min W), 17)
V-X-YB—Y4g

E[“}?WA,V}SD
where y ;
(a) follows since U —V — X — Yg — Y4 forms a Markov
Chain;

(b) follows since U — Y3 —~f/ A fgrms a Markov Chain;
(¢) follows since U — V—Yg—Y4 forms a Markov Chain;
(d) follows since V — Yg — Y 4 forms a Markov Chain;

(e) follows by defining,
C(V) £ I(X; Yg) + 1(V; X) — I(V; ¥)

=h(¥glV) — hX|V) + ki

1.
_ ]h(h_y3|v> — h(X|V) + log|hg| + ki,
B

=1h(i?3|v> —h(X|V) + k2, (18)
hp
where k; £ I(X; Y5) +h(¥Yg) —h(X) is a constant which
is independent of V and k, £ log|hg| + k1.
Lemma 3: When X and Y, B are Gaussian random variables,
as defined in (9), and V — X — Y5 forms a Markov chain

c(w) & h(imv) —hX|V),
hi

is minimized when the auxiliary random variable V is a
Gaussian random variable.

Proof: The proof follows from the extremal inequality [31]
and [32, Th. 1]. For completeness, we prove Lemma 3 in

Appendix E. |
Hence, we can rewrite the RHS of (17) as follows,
min _ C(V)
V-X-Yp—-Y4g
G)%W _A.V] =D
@ min [1(X; ¥) + 1V X) — 1(V; )]
V—X—IN/B—IV/_A

V is Gaussian

o L <
XI\V.Y o™
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(b) .
= m~1n .
V—X-Yg—Ya
V is Gaussian
oxy<F.AD)

[1(X; Y5) +1(V; X) —1(V; V5)]

: 1 hgog+6g 1. o}
Q min 1 B{—zB — log TX
ady<Fam)| 2 o5 2 Toyy

1 h%a}% + 6123 ]
2" hgogyy + 63

2 2 ~2 2
2 % lo hBG’é; L %log FZ?D)
1 hiog + 6

h%F A(D) + G}

lo

2

2
@l log(tr(Zgl)FA(D) + 1) +ll0g % (19
2 2 T FaD)
where
(a) follows from Lemma 3;

(b) follows from Lemma 2 with

~2
Fapye A2 D
o4~ hAD 1-— tr(Z;ti)D

;o (20)

(c) follows by calculating the mutual information of the
random variables defined in (8) using the fact that Ng is
independent of (X, V), specifically,

I(V; ?B) = ]h(f’B) — ]h(l?B|V)
1 -
= > 10g<271e(h286)% + O‘B)>

1 -
—3 1og<2ne(hé0§|v + aé))
1 hpog + 65
2 2 ~2°
2 hBO'XW +op

2 2 ~2
hgoyy+o
2

(d) follows since is a monotonically decreasing

ox|v
function in U)%IV;
(e) follows since from (8), hg = 6123 = tr(Zl}l).
Therefore, by (16), (17), and (19), the region in Theorem 4
is included in the intersection of all (A, B) € (A, B), i.e.,
(Na.Byea.p) of the following region,

(R, A) :
2

R > 1 lo % @
2708 D(ur(x)oF+1)

2
A> %log<tr(2;31)FA(D) 4 1) + L log 725

. 2D

Then, the region in (21) is included in the following region,
(R, A):
2

R > max { log ———%

Ach 2 J D(tr(E;\l)a)%+l)

2
X % log (tr(Zl_gl)a)% + —Fj’(‘D)>

A > ma
(A,B)e(A,B)

Since the arguments of the log function for the bound on R is
decreasing in tr():;tl) and the argument of the log function
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for the bound on A is decreasing in tr():;ll) and increasing

in tr(Z;;l), we can compute rewrite the region in (21) as
follows,

(R, A) :

D(tr():;‘l,)o)%ﬂ) )

2
A > %]og(tr(zBl)U)% + FAG*X(D)>

where  A* € argminAeA{tr<):;‘1)}, B* €
argmaxBeB{tr<Zl_gl)}, and F 4«(D) = m.
—tr (2L

Note that, from (1b), we have A > IX;Yp) =

2

%log 1+ %
tr (EB*

bound on the leakage rate,

1 0)%
A > max{ - log 1—}——] ,
2 ()"

2 2 2
llog X + GXI - le ,
2 \D uEg)t wE@!

which can be written as g, (A*, B*) defined in Theorem 1.

. Therefore, we have the following

VI. CONCLUSION

In this paper, we study a secure source coding problem with
multiple users when the encoder and the users observe copies
of correlated scalar Gaussian random variables. Specifically,
the objective is to guarantee a given distortion level of recovery
of the source for some sets of authorized users and simul-
taneously minimize information leakage about the source for
some other sets of users. This can be seen as a secret-sharing
problem where perfect reconstruction of the secret is relaxed
to an approximate reconstruction, and the perfect security
requirement is relaxed to controlled information leakage. Our
main result is the characterization of the optimal trade-off
between the source compression rate, the desired distortion,
and the information leakage for this problem. We note that
characterizing this trade-off when the source is a vector
Gaussian random variable is an open problem.

APPENDIX A
PROOF OF EQUATION (2)

For the sake of completeness, we present the following
theorem from [28, Th. 3.5.2], which is essential in our proof.

Theorem 5 [28]: Let X and Y be zero-mean, jointly
Gaussian, and jointly non-singular. Then X can be expressed
as X = GY 4V, where V is statistically independent of Y
and

G = KyK;'
Ky = Kx — KyyK; 'KJ,.
For every A € A, by Theorem 5, we have

Y4 = Zxy, 05 X + N/, (22)

where Ty, £ Ty, — ZXYAUX_Z):;T(YA and Ty > 0
from [28, Eq. (3.43)], since the covariance matrix X/ is
invertible. Next, we normalize (22) as follows. From Cholesky
decomposition, there exists an invertible matrix C € RIMAIXIAI
such that ZN/A = CCT, therefore, we can rewrite (22) as
follows

"4 =hsX+ N,

where Y/A L2 Clyy, hy 2 C_IEXYAGX_Z, and N:’4 ~
N(0, I, 4)). Similarly, for every B € B, one can show that

B =hpX +Nj,

where Y’B £ C 'Y, hg & C_l):xygax_z, and N/K/g ~

N, T;3).

APPENDIX B
PROOF OF THEOREM 2 AND THEOREM 3

We first show that, there exist sets of authorized users
A} € argmin 4, tr(Z;ll) and unauthorized users B €

argmaxpcp, tr():%l) such that for any r € [1 : L—1], A} C
.AI*Jrl and B} C BI*H. Then, by using Theorem 1, we remark
that A and B} also correspond to the sets that appear in the
expression of the optimal compression and the leakage rates
for the threshold access structure A;. Ultimately, using the
monotonicity of the sets (Af), el L and (B}), e[l : 1] and
Theorem 1, we compute necessary and sufficient conditions to
determine whether the optimal compression and leakage rates
increase or decrease with the threshold 7.

Lemma 4: There exist sets (A;)te[[l . 7] and (B;‘)te[[l 1]
such that, for any + € [l:L—1], we have A C
A;‘H and Bf C By, and for any t € [1:L], Ay €
argmin ¢4, tr():;ll) and B} € argmaxpgcp, tr(El}])

Proof: We write X, as diag(alz, ceey UL2). Without loss of
generality, suppose that 012 > 022 > . > af. For t €
[:L—1],let A £[1:¢] and Bf £ [L—t+2: L], since
A € argmin g 4, D o7 and B € argmaxg. g« ). o2

j ieB

1SS
we have AF C A7, | and Bf C By, ;. u

When ¢ = L, from Lemma 4 we have tr(Z;&) > tr(Z[}]),
L L
therefore, the optimal leakage rate in Theorem 1 is,

1 o2 1 o2
AD, A;) = ~log X — —log| 1 + —X
(D Ar) = 5 log 7 = 5 log| 1+ r(Z )
L
1 0)%
+slog[ 14 —%*— (23a)
2 tr(Z )~ !
L

and for t € [1 : L — 1] and tr (Z;‘;) >tr (ZE;),

1 2 2
A(D,A,):—loga—x——log 1+G—X
2 °D 2 tr(E )
1 O')%
+ —log| 1 + — | (23b)
2 tr(Z )~
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By (23a), (23b), and monotonicity of the log function, we have
AD,Ar) < AMD,A)
o5t +u(Z5)
< <
o5’ +u(z5)

L], and tr (E;l*) <tr (EB*)

o5t +u(z
<

) .(23¢)

)

= [t —

oy + tr(z*
Next, for ¢t € [1 :

o2 u(Eg)

1
A, A) = = log| X + —
2 D g2 o

X X

tr(Z;&)
. (23d)

Using (23a), (23d), and monotonicity of the log function, we
have

o§<o;2 +1r(E ! ))

1
& —log 5 1
D(og +tr():j42))
-1 —1
1 (o2 wEghH  wELD
< —log| =+ - =

N tr():gl) — tr(Z;‘l)
< D( Fu(E A,)) (tr(zgi) tr():;é)), (23e¢)

which is always true since the RHS (23e) is posmve and
the left-hand side of (23e) is negative because tr (E B*) <

tr (E A*)
Next fori € [1 : L —¢], by Theorem 1 and using that the
log function is increasing, we have

R(D, A) > R(D, Api) @tr(Z A*> <tr(): ! ) 24)

and (24) is always true by Lemma 4. Note that (24) also proves
that for any ¢ € [1 : L], R(D, A;) > R(D, Ap).

We now prove Theorem 3. Let i € [1 : L — t]. We consider
four cases. First, when tr (E;l:*) <tr (Zg,;l) and tr (E;&H) <

tr (Zg;ﬂ_), we have

AD,Ay) = AD, Aryi)

1 o2 tr(zl;}) tr(Z;‘;)
eslgl S +—F - —5
2 D ox ox
-1 -1
L O e U e
> —log| =+ - = —
x,) ~u(zy) zu(zE ) - (=)
& tr(EA;H) tr(ZA;) tr EB;H tr ZB,* .

Second, when tr(Z;&) > tr(Zg;) and tr():A;+t) >
tr (El—g;ﬁ)’ we have
A(D, Ay) = AD, Aryi)
1 [ox+u(Eg)

& —log| ———F
2 ox + (T )
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0_2 + tr():_*1 )

2 +tr(): )
t+l
+tr(28*> o2 +u(2g )
@ > — 7’1+‘ . (26)
o +u(2) ot +u(z)

. -1 -1 -1 -1
Third, when tr (EA,*) > tr (EB,*) and tr (EA?+i) <tr (EB* )
we have,

AD,A) = AD, Aryy)
o2 (GX_Z + tr(Zé}}))

1
& —log
2 D<0X—2 + tr():‘l))
-1
{ P tr():B* ) tr(ZA* )
> —log X 4 — —
2 D Ox Ox

| V

o u(Zg) - u(z)
D(o? +u(zh) ((E5! ) - wE3, ). @)
since tr(ZB*) tr (EA*) <O0and tr (X5 B, ) tr(ZA, )=

0 the mequahty in the RHS of (27) is never satisfied and
A(D, Ay) = AD, Ary). Fourth, when tr(27,1) < tr(Ep!)
and tr (X AT+,~) >tr (X 37+,~) we have,
A, Ay) = AD, Aryi)
1 o2 tr(zg[}) tr():;é)
<3 log| =+ -

) )
D Ox Ox

: aX(aX + (T ))
D(o; + () _))

& Do + (T3 ) () — (2 h)
w(Zy,) - u(Z,)

since tr (ng) (ZA*) > (0 and tr (Zg} ) —tr (E;l{ ) <0,
! i t4i

the inequality in the RHS of (28) is zﬁways satisfied and

A, Ay = AD, Aryi).

[\
<)
03

(28)

v

APPENDIX C
DISTORTION CONSTRAINT IN THEOREM 4

We have,

n

D > % S E(X: - E[XY" fX)])? (292)
i=1
= ‘Z ["x Y f(X"] (29b)
@1 Z [ o e 1] (29¢)
® 1 - ZIEYA_i,Vi ["J%AYA,,-,v,-] (29d)
i=1
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n

© . P

= ZIP(Q = Z)EY.A,Q’VQlQ:iI:O-XQ‘Y‘A,Q,VQ,QZi:I (29e)
i=1

2
= Ex.40.v0.0| v a0.v0.0] (29)
@
© Evav|ofvar) (29)
where
(a) follows since conditioning reduces MMSE [13,
Lemma 13];

(b) follows by defining V; £ (Y . f(X"), Ygl, X1,
which is consistent with the definition of V; in the proof
of [9, Theorem 3];

(¢) holds with Q uniformly distributed over [1 : n];

(d) follows by defining X £ X0, Ya = Y40, and V =
(Vo, Q) which is consistent with the definitions of these
random variables in the proof of [9, Th. 3].

APPENDIX D
PROOF OF LEMMA 2

We prove the first statement of Lemma 2 as follows. By [28,
Chapter 3], we have

2
2 2 Oxy
Ox)y = 0x — 5
Oy
@ 2 _ oy
X hzo}%—}-a,%,
‘71% 4(,4 2 2.2
=2 - N(h o2 +h aN) (30)

where (a) follows by calculating oxy = ha)% and 0)% = hza,% +
01\2,. Hence, by (30), the constraint D < U)%I y can be expressed
as

1
Dg‘;—’zv (h4 2 4 Ko 2) ,

which can be rewritten as

1 0'2
<N _p.

3 31)

0 <oy (h4 + W0 )
Next, we prove the second statement of Lemma 2. Since
(V,X,Y) are jointly Gaussian and V is independent of N,
U)%IV,Y is given by [28, Chapter 3]

—1
Z  h . . .
where L o a)év is provided at the bottom of this page,
hoxy oy

c

in which (a) follows since

-2 2

—2 2 2

12 2 2 -2 2
= h"oy — h’oy, OXV—i—JN

_ 2.2 2
= oy + oy,

where the last equality holds since ‘7)%|V = o0} — oy 20%,
Hence,
2 2
oNO
2 N9x|v
OX\vYy =753 , 2 (32)
h O'le + UN

Then, by (32), the constraint O'XIV’Y < D can be expressed as
follows:
2.2

O\ O
NYX|V
V__ <D,

hz”}%w +oy
and, since -5 — D > 0 by (31), we have

2 GND
oy —hD

The last statement of the lemma holds because if D = O’)%lv’Y,
then
2.2
050
D= (33)
h X\ + oy

where (33) follows from (32), and solving (33) for O')%W results

2
2 _ _oyD
to x|y = o2-iD"

APPENDIX E
PROOF OF LEMMA 3

Here, we show that for a given feasible V, we can construct
a feasible Gaussian random variable V such that C(V) = C(V).
Thus, this implies that restricting V to be Gaussian does not
change the optimum value of the optimization problem. Next,
to study the difference of the two differential entropy in (18),
we need the following properties of the Fisher information and
the differential entropy.

Definition 3 [33, Definition 1]: Let X and U be ran-
dom variables with well-defined densities, and fx;y be the
corresponding conditional density. The conditional Fisher

o2 — g2 information of X is defined by
X|v,y = 9%
2 -1 9 log fiju (xlu) \ >
_ 2]| ov hoxv 2|7 JX|U) =E|| ———— ,
o ][] o ] =] (2
-1
oy hoxy ( 2 >_1 oy — hoxy
[thv O’% ] - UVUY h UXV —hUXV O"%
1 —1
@ (hz‘fxw + “N) (hz“')% + 01\2/) - hav_ZUXV (hza)%w + 01\2/)

-1
—hov oxv (h20X|V + O'N)

(h20X|V + O'N>_l
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where the expectation is over (U, X).

Lemma 5 [13, Lemma 18]: Let (V, X, G1, G) be random
variables such that (V, X) and (Gi, G) are independent, and
let G; and G, be Gaussian random variables with variance
0< 012 < 022. Then, we have

JX+GIV) ' =0 2 IX+GIV)™ = 0.

From [33, Lemma 3], we have

)

B
1 - 1 (2
]h<—YB|V) —hX|V) = = f”B JX + N[V)do, (34)
hB 2 0
where N is a zero-mean Gaussian random variable with

covariance 01\2, > 0. We now outer region (34) by substituting
G| < ¥ and G, < N in Lemma 5 as follows,

JX +N|V) < (J(X|V)_1 +01%,>71. (35)
Substituting (35) in (34), we have,
- IV~ + ZT%
]h(@YB|V> —hX|V) < Elog W)_IB. (36)

We can also loweir bound the Fisher information in (34) by
setting G <« #NB and G| < N in Lemma 5 as follows,

[ - 5 1 2
JI X+ —Ng|V — = >2JX+NIV)" —oy,
hp h%g

~2
o . .

for all 01\2] < Pﬁ’ which can be rewritten as
B

~2

[y -1_ 9B 2 -
JX+NIV) > J(X—F@NB“/) —h—+oN . (37)

2
B

Substituting (37) in (34), we have,
1 .
]h<—YB|V> — hX|V)
hs

- —1
.,]I(X+ %ngw)
>

log (38)

3

| =
|(Il

~ —1
JI(X+ iNB|V> -

[N

Next, define, for 0 <t <1,

g 2 Jx|v)™!

|
+(1—t)|:J<X+@NB|V) —%},

g+

8(1)
Hence, (36) and (38) can be expressed as,

(39)

SRS

f() = 3 log (40)

FO) < ﬂa(é?gw) — V) < (D).

Since f is continuous, from the intermediate value theorem,
there exists a * € [0, 1] such that,

~2
g + 7&
B

1. R
h(%ymv) —hX|V) =f(*) = = log e

> . (41)
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where g(r*) is bounded as follows,

L@ B 1.\ 63
JXW™ ' <g(*) <I(X+—NplV) —-=2 (42a)
hp h%
© |
S X+-—NglV) — ==, (42b)
ha hi\

where
(a) and (b) follow by (39~) and therefore by substituting
G < @ and Gy « %NB, in Lemma 5, we have,
=2
o
- B> J3xv)7h
hB

-1
J <X + iNB | V) (42¢)
hi

(c) follows by Lemma 5 with G; <« #NB and G, <«
R _

Hence, (41) implies that if we choose V to be a Gaussian

random variable which satisfies O’}%I‘—/ = g(), then C(V) =

C(V). Now, we show that the Gaussian random variable V is

feasible, i.e., o;‘ P < D. The following lemma connects the

conditional covariance with Fisher information.

Lemma 6: Let (V,X) be two arbitrary random variables
with finite second moments, and N be a zero-mean Gaussian
random variable with variance 01%,. Let, Y = X+ N and assume
that V and X are independent of N. Then we have,

Ev.v|ofy.y| =0k — odIX+ NIV).

A vector version of this lemma is stated in [13, Lemma 21]
without proof. For completeness, we prove Lemma 6 in
Appendix F. Using Lemma 6, we have,

2 ~ ~4
Ty, =04~ 04I(YalV) (43)
Then, we have,
I o N@ _»
_Y = - _
J(M AW) Uﬁ“'v
-1
(ON ) .,
= <0X|‘7+hTOA>
A
—1
© 1 - 5% &2
> (I + —Nan - A A
ha hy  hy
1 .
= J](—YA|V>, (44)
ha

where

(a) follows from [33, Lemma 2], which states that for
Gaussian random variables J(X|U) = crgl%];

(b) follows since (V, X) and N 4 are independent;

(c) follows from (42b) since o2, = g(t*).

X|V
Next, using Lemma 7 below, (44) becomes

I(YalV) = I(YalV),

Lemma 7: Let X and U be arbitrarily correlated random
variables with well-defined densities. For any a € R4,

(45)

1
J(@X|U) = —JX|U).
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The proof of Lemma 7 is available in Appendix G.
Therefore, combining (43) and (45) results to

2 ~2 =4
i, = AT GaI(YalV)
@ 2
= OXw.ia
(b)
<D, (46)

where

(a) follows from Lemma 6;

(b) follows since we assumed that V is feasible, i.e.,
02‘ 7 <D.

Equation’(£6) means that the constructed Gaussian random

variable V is feasible, which means that for each feasible V,

there exists a feasible Gaussian V such that C(V) = C(V).

APPENDIX F
PROOF OF LEMMA 6

We have,

1 )
SIX ANV =0 E R + NV =)
2 doy

9
= SUCGX 4NV =)+ hX+ NI, V =)
o2

N

b) 0

2 _Z[10G X+ NIV =v) + h(V)]
doy
9 [[(X; X +N|V )]+

= — 5 =V _—
801\2, 2(71%,

5 1
Q —[I(X; oy ' X+ NV = v)] +—
20

d 1
I(X; JuX + N'|V = —
gull (X VIXH NV =)+ 55
_ I _
= _EO—N4EYW=V|:U§|Y,V=V] + 50’ 2’ (47)
where
(a) follows from [33, Lemma 3];
(b) follows since V and X are independent of N;
(c) holds with N’ a standard Gaussian random variable;
(d) follows by defining u £ oy ?;
(e) follows from [34, Th. 1], with the input distribution
Pxy=y.
From (47), we have
EYW:VI:(T)%W’VZV] — 02— ol IX+NIV=1). (48)

Now let Fy y be the cumulative distribution function of (V, ¥),
therefore, from (48) we have

2 _ 2
EY,V[UXW,V] = //UX\Y:y,V:vdFV,Y
vy

= f (o8 — oI X+ NIV = v))dFy
v
=of— of\‘,/J(X—i—NlV = v)dFy

v

= 01%, —GIA\‘,J(X+N|V)~

APPENDIX G
PROOF OF LEMMA 7

Define Y £ aX, then fyy(y|u) = ﬁfxw(gm), and from
Definition 3 we have
J@X|U) = J(Y|U)

_<310ng|U(y|M)>2
dy

=E

9 1 2
—E (—log<—fxw<§|u>))

dy ~ lal

d y 2
=K <a_10g(fXU(—|“)))

(@) 1 /0 2
=E| = (— 10g(fX|U(Z|u)))
a-\ 0z

1
= ;J(XIU),

H LYy
where (a) follows by defining z = 7.
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