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Abstract— Noiseless private side information does not reduce
the download cost in Symmetric Private Information Retrieval
(SPIR) unless the client knows all but one file. While this is
a pessimistic result, we explore in this paper whether noisy
private side information available at the client helps decrease
the download cost in the context of SPIR with colluding and
replicated servers. Specifically, we assume that the client possesses
noisy side information about each stored file, which is obtained by
passing each file through one of D possible discrete memoryless
test channels. The statistics of the test channels are known by the
client and by all the servers, but the mapping M between the
files and the test channels is unknown to the servers. We study
this problem under two privacy metrics. Under the first metric,
the client wants to preserve the privacy of its file selection and
the mapping M, and the servers want to preserve the privacy
of all the non-selected files. Under the second metric, the client
is willing to reveal the index of the test channel that is associated
with its desired file. For both privacy metrics, we derive the
optimal common randomness and download cost. Our setup
generalizes SPIR with colluding servers and SPIR with private
noiseless side information. Unlike noiseless side information, our
results demonstrate that noisy side information can reduce the
download cost, even when the client does not have noiseless
knowledge of all but one file.

I. INTRODUCTION

Private Information Retrieval (PIR) consists in privately

downloading a file from one or multiple distributed servers

and was first introduced in [1], [2]. More recently, the PIR

problem has been reformulated by using information-theoretic

measures in [3]. The PIR problem only considers the privacy

of the file selection with respect to the servers and ignores the

privacy of the non-selected files with respect to the client.

However, it is often desired that the client does not learn

anything beyond the selected file. The resulting setting is

referred to as SPIR to emphasize the symmetry of privacy

requirements of the client and the servers.

SPIR is also known as oblivious transfer [4], which is a

fundamental primitive that generated considerable interest due

to its applications in cryptography [5]–[7]. Specifically, SPIR

has been shown to be an essential building block of many

problems that involve symmetric privacy requirements among

participating parties, such as in secure multiparty computation

or private set intersection [8], [9].

A. Motivation

It is well known [10, Theorem 2] that private noiseless side

information does not help to decrease the download cost in
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SPIR, except in the special case where the client has noiseless

knowledge of all but one file. While this is a pessimistic result,

in this paper, we investigate whether noisy side information

can help decrease the download cost. Specifically, in this

paper, we assume that the client has noisy side information

about each file, which contrasts with previous work (reviewed

in the next section), where only noiseless side information

about the files is considered. The client could have acquired

this noisy side information in several ways. For example,

the user could have acquired a noisy version of the files

opportunistically from other users in its network, overheard

them from a wireless noisy broadcast channel, or downloaded

them from other servers. Note that the availability of noisy side

information encompasses having obtained parts of the files, or

even entire files, in a noiseless manner. The noise could also

be the result of storing the files for a long period of time.
B. Overview of the problem studied in this paper

In this paper, we study the SPIR problem where a client

wishes to retrieve one of the K files that are replicated in

N servers and T of these servers may collude. As reviewed

in the next section, so far, only SPIR with noiseless side

information, where the client possesses a subset of the files,

has been studied in the literature. By contrast, in our setting,

the client has a noisy version of each file which is modeled by

passing each file through a discrete memoryless test channel.

We assume that there are D f K different test channels whose

statistics are public knowledge and known by the client and

the servers.1 We denote the mapping between the files and

the test channels by M. We study this problem under two

different scenarios. In both of these scenarios, the servers want

the client to learn no information about the files that have not

been requested. For the first scenario, the client wants to keep

the index of the desired file and the entire mapping M secret

from the servers. Note that when the client has a subset of the

files as side information [10], [11], then not keeping private

the mapping between the test channels and the files may reveal

to the servers the indices of the files that are available as side

information at the client. For the second scenario, the client

aims to keep the index of the desired file and the mapping M

secret from the servers, but the client is willing to reveal the

index of the test channel that is associated with the desired

file, i.e., M(Z), where Z is the index of the selected file. For

both scenarios, we derive the optimal normalized download

1We assume that the statistics of the D test channels are public information.
Note that the client has side information for each of the K files, which can
potentially be ∅, consequently, to model the side information available at the
client no more than K test channels are needed.
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cost and show that the second privacy metric can lead to a

lower download cost, for example when the desired file is

included in the side information and the client does not need

to download anything.

C. State of the art related to our model

We restrict our discussion to the SPIR models most re-

lated to our setting. The capacity of the SPIR problem is

derived in [12], which shows that the capacity of the SPIR

is smaller than the PIR capacity. Indeed, the SPIR problem

has one additional security constraint compared to the PIR

problem. Subsequently, this problem was extended to various

scenarios, as reviewed in detail in [13]. For instance, SPIR

from MDS coded database with non-colluding and colluding

servers is studied in [14]. The SPIR with colluding servers

in the presence of Byzantine adversaries and eavesdroppers

is studied in [15]. The SPIR problem when the client knows

part of the common randomness shared between the servers is

studied in [16]. The SPIR problem with private noiseless side

information, where the client knows a subset of the files in a

noiseless manner and wants to keep the identity of these files

private, is studied in [10]. More specifically, [10] shows that

private noiseless side information does not help to increase the

capacity of the SPIR problem, compared to the case where the

client has no side information unless the client has noiseless

knowledge of all but one file.

Note that the related PIR problem has also been studied

when side information is available at the client. In particular,

the PIR problem with private and non-private noiseless side

information is studied in [10], [11], [17]–[24]. Additionally,

the PIR problem with private noisy side information in which

the client has a noisy version of each file is studied in [25],

[26].

D. Main differences between our setting and previous settings

In our SPIR setting, the client has access to private noisy

side information about each file. Note that the side information

in the SPIR problem studied in [10] is noiseless, in the sense

that the side information at the client corresponds to a subset

of the files and the client knows which files are perfectly

available as side information. By contrast to [10], in this paper,

side information is noisy and, for instance, if the files are

binary and the test channels are Binary Symmetric Channels

(BSCs), then the client does not know which information bits

have been flipped by the BSCs and which ones have not been

flipped. Note that since we consider noisy side information

that is generated by passing the files through some Discrete

Memoryless Channels (DMCs), our problem setup recovers all

previous works by considering test channels that are Binary

Erasure Channels (BECs). Indeed, passing a file through a

BEC with parameter 0 means that the side information is

equal to the input file, and passing a file through a BEC

with parameter 1 means that no side information is available

for this file. For example, when there is only one BEC with

parameter 1, then our setting recovers the SPIR problem with

colluding servers in [14]. If we assume that there are two

BECs with parameters 0 and 1, then our setting recovers the

SPIR problem with colluding servers and private noiseless side

information [10, Section II.B].
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Fig. 1. The optimal normalized download cost and the optimal normalized
common randomness cost when K = 50, N = 2, T = 1 and the files’ length
is n = 500, plotted as a function of the number of bits that are known as
side information at the client. The plot for the noiseless side information case
is obtained from the results in [10, Theorem 2], when the side information is
a subset of the files. The plot for the noisy side information case is obtained
as the output of a BEC with parameter zero for one file and with parameter
ϵ2 varying between 1

K−1
and 1 for all the other files.

Recall that, except for the special case where the client

has noiseless knowledge of all but one file, noiseless side

information does not help to reduce the download cost for

the SPIR problem, compared to the case where the client has

no side information [10, Theorem 2]. By considering a more

general SPIR problem setup, where noisy side information

about each stored file is available at the client, our results

demonstrate that this noisy side information can be leveraged

to decrease the download cost. For example, the optimal

normalized download cost of the T -colluding SPIR problem

without any side information when all the files have the same

length, say n bits, is
(
1− T

N

)−1
and the servers need common

randomness with rate T
N−T

[14], which is also, the optimal

normalized download cost of the T -colluding SPIR problem

when the client knows K − 2 files as side information [10,

Theorem 2]. Hence, having (K−2)×n bits of side information

about the files does not help to decrease the download cost.

By contrast, when the side information about each file is

a noisy version of that file with erasure probability ϵ1 or

ϵ2, where ϵ1 < ϵ2 < 1, our results show that the optimal

normalized download cost is
(
1− T

N

)−1
ϵ2 and the servers

need common randomness with rate T
N−T

ϵ2. As an example,

let ϵ1 = 0 and only one file is passed through this binary

erasure test channel. Then, our results show that the noisy

side information can lower the normalized download cost from(
1− T

N

)−1
to
(
1− T

N

)−1
ϵ2, even though the client only has

n + (1 − ϵ2) × (K − 1) × n bits of noisy side information

instead of (K − 2) × n bits of noiseless side information.

We illustrate this example in Fig. 1. In this figure, the x-

axis represents the number of bits that the client knows. In

the noiseless side information case, the unit is the length

of one file such that the first points on the left for the

download cost and the common randomness cost correspond

to the case where the client knows exactly one file and the
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last point corresponds to the case where the client knows

K − 1 files. For the noisy side information case, the client

knows n + (1 − ϵ2)(K − 1)n ∈ [n, (K − 1)n] bits with ϵ2
varying between 1

K−1 and 1. As seen in Fig. 1, the download

cost for the noisy side information is always lower than the

download cost for the noiseless side information. Also, the

common randomness cost for the noisy side information is

always lower than the common randomness cost for noiseless

side information, except for the special case where the client

knows K−1 files as side information. This demonstrates that,

unlike noiseless side information, noisy side information can

help decrease the download cost and the common randomness

cost. Our main results generalize this example to arbitrary

noisy side information beyond the erasure model. We also

study the case where the client may reveal the index of the

test channel associated with its desired file, and show that this

can further reduce the download cost.

E. Notation

Let N∗ be the set of positive natural numbers, and R+ be

the set of positive real numbers. For any a, b ∈ R+, define

[a : b] ≜ [+a,, +b,]∩N∗ and [a] ≜ [1 : a]. Random variables are

denoted by capital letters and their realizations by lowercase

letters. Vectors and matrices are denoted by boldface letters,

e.g., Xn = [X1, X2, · · · , Xn]. For a set of indices I ¢ N∗,

XI denotes (Xi)i∈I . EX [·] is the expectation with respect to

the random variable X . The cardinality of a set is denoted by

| · |. For a mapping M : X → Y , the preimage of y ∈ Y
by M is denoted as M

−1(y) ≜ {x ∈ X : M(x) = y}. For

D ∈ N∗ and a mapping M : [D] → R+, we represent the

domain and co-domain of M as a matrix of dimension 2×D

as M =
(

1 2 ... D
M(1) M(2) ... M(D)

)
.

II. PROBLEM STATEMENT

Consider a client and N servers, where up to T of these N

servers may collude, and each server has a copy of K files

of length n. Additionally, consider a set of D test channels,

whose transition probabilities are known to the client and the

servers, and whose outputs take value in finite alphabets. We

assume that the client has noisy side information about all

the K files in the sense that each file is passed through one

of the D test channels, and the output of this test channel is

available at the client. The mapping M between the files and

the test channels is not known at the servers. The objective of

the client is to retrieve one of the files such that the index of

this file and the mapping M are kept secret from the servers.

A. Definitions

We now define the problem formally and provide some

intuitions about our problem setup.

Definition 1. Consider K,n,N, T,D ∈ N∗, (di)i∈[D] ∈ N
D
∗

such that
∑D

i=1 di = K, and D distinct test channels(
C(i)

)
i∈[D]

, with C(i) ≜ (X , P
(i)
Y |X ,Yi), where X and Yi,

i ∈ [K], are finite alphabets. Without loss of generality, assume

that H(X|Yi) f H(X|Yj), for i, j ∈ [D] such that i < j,

where X is uniformly distributed over X and Yi and Yj are

the outputs of C(i) and C(j), respectively, when X is the input.

A SPIR protocol with private noisy side information and pa-

rameters
(
K,n,N, T,D, (di)i∈[D] ,

(
C(i)

)
i∈[D]

)
consists of,

• N servers where up to T of them may collude;

• K independent random sequences Xn
[K] ≜ (Xn

i )i∈[K]

each of length n that are uniformly distributed over Xn,

which represent K files replicated at each of the N

servers;

• common randomness U ∈ U shared between the servers

but not the client; we also call normalized randomness

cost the following quantity R0 ≜
H(U)

max
i∈[K]

H(Xi)
= H(U)

n
;

• local randomness L ∈ L at the client;

• D distinct test channels
(
C(i)

)
i∈[D]

;

• a mapping M chosen at random from the set

M ≜
{
M : [K] → [D] : ∀i ∈ [D],

∣∣M−1(i)
∣∣ = di

}
;

this mapping is only known at the client and not at the

servers;

• for each file Xn
i , where i ∈ [K], the client has access to

a noisy version of Xn
i , denoted by Y n

i,M(i), which is the

output of the test channel C(M(i)) when Xn
i is the input;

• the random variable Z is uniformly distributed over [K]
and represents the index of the file that the client wishes

to retrieve, i.e., the client wants to retrieve the file Xn
Z .

• for i ∈ [N ], a query function Fi : [K]×L×M×Yn
[K] →

Qi, where Qi is a finite alphabet;

• for i ∈ [N ], an answer function Ei : Qi × U × XnK →[
2nR(Qi)

]
;

• a decoding function D : [K]×L×M×
[
2n

∑
N

i=1 R(Qi)
]
×

YnK → Xn;

and operates as follows,

1) the client creates the queries Qi ≜

Fi

(
Z,L,M,Yn

[K],M

)
, where Yn

[K],M ≜(
Y n
i,M(i)

)
i∈[K]

, and sends it to Server

i ∈ [N ]; with Q[N ] ≜ (Qi)i∈[N ], note that

H
(
Q[N ]

∣∣Yn
[K],M,L,M, Z

)
= 0;

2) then, for all i ∈ [N ], Server i creates the answer

Ai ≜ Ei
(
Qi, U,X

n
[K]

)
and sends it to the client; note

that H
(
Ai

∣∣Qi,U,Xn
[K]

)
= 0, ∀i ∈ [N ];

3) finally, the client computes an estimate of Xn
Z as X̂n

Z ≜

D
(
Z,L,M,A[N ],Y

n
[K],M

)
, where A[N ] ≜ (Ai)i∈[N ].

Hence, the probability of error at the client is, Pe ≜

lim sup
n→∞

P

[
X̂n

Z ̸= Xn
Z

]
. R

(
Q[N ]

)
≜
∑N

i=1 R (Qi) is the

normalized download cost of the SPIR protocol and is random

with respect to Q[N ], which makes the protocol a variable

length coding scheme. We also define the expected normalized

download cost of the protocol as R ≜ EQ[N]
[R
(
Q[N ]

)
]. Note

that the random variables (Z,L,M,U,Xn
[K]) are indepen-

dent.

We then consider two privacy metrics in Definitions 2 and 3.

For both metrics, all the files in the servers except the desired

file must remain secret from the client. However, for the first

metric, the index of the desired file Z and the mapping M

must remain private from the servers, whereas, for the second

metric, the index M(Z) is allowed to be revealed to the
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servers. As discussed next in Section III, these two privacy

metrics recover, as special cases, the SPIR settings previously

studied in the literature.

Definition 2 (Cost region CSPIR-PNSI for undisclosed side infor-

mation statistics of the desired file). An expected normalized

download cost R and normalized randomness cost R0, are

achievable with undisclosed side information statistics of the

desired file, if there exist SPIR protocols with private noisy

side information such that, for any set T ¦ [N ] of colluding

servers such that |T | = T , we have

Pe = 0, (1a)

I
(
QT ,AT ,X

n
[K],U;Z,M

)
= 0, (1b)

I
(
Xn

[K]\{Z};A[N ]

∣∣Z,L,M,Yn
[K],M

)
= 0. (1c)

The closure of the set of achievable cost pairs (R,R0) is

referred to as the SPIR optimal cost region with private noisy

side information and undisclosed side information statistics of

the desired file, and is denoted by CSPIR-PNSI.

Definition 3 (Cost region C∗
SPIR-PNSI for disclosed side infor-

mation statistics of the desired file). An expected normalized

download cost R and normalized randomness cost R0, are

achievable with disclosed side information statistics of the

desired file, if there exist SPIR protocols with private noisy

side information such that, for any set T ¦ [N ] of colluding

servers such that |T | = T , we have

Pe = 0, (2a)

I
(
QT ,AT ,X

n
[K],U;Z,M

∣∣M(Z)
)
= 0, (2b)

I
(
Xn

[K]\{Z};A[N ]

∣∣Z,L,M,Yn
[K],M

)
= 0. (2c)

The closure of the set of achievable cost pairs (R,R0)
is referred to as the SPIR optimal cost region with pri-

vate noisy side information and disclosed side informa-

tion statistics of the desired file, and is denoted by

C∗
SPIR-PNSI. Note that under the privacy metric (2b), we have

H
(
Ai

∣∣Qi,U,Xn
[K],M(Z)

)
= 0, ∀i ∈ [N ].

Observe that the privacy constraints in Definition 2 implies

the privacy constraints in Definition 3, i.e., (1b)⇒(2b), and

we will show that revealing the index of the test channel

associated with the desired file Xn
Z can result in a strictly

lower download rate.

III. MAIN RESULTS

In the following, we assume that at least one file is not

noiselessly known by the client, otherwise, the client would

know the entire database. We also define the following event

E ≜ {(K − 1) files are noiselessly known at the client},
which, with our notation, means that d1 = K − 1 and C(1) is

a BEC with parameter zero. Finally, we define the following

indicator function

1{Ec} ≜

{
1 if Event E is false

0 if Event E is true
. (3)

Theorem 1. Consider K g 2 files that are replicated in N g
2 servers, where up to T of them may collude. Then,

CSPIR-PNSI =





(R,R0) :

R g
(
1− 1{Ec} T

N

)−1
H(X1|Y1,D)

R0 g 1{Ec} T
N−T

H(X1|Y1,D)





.

Proof. The achievability proof of Theorem 1 is based on

source coding and the achievability scheme in [14, Sec-

tion VI.B]. As discussed in Definition 1, we assume that

the test channels are ordered in the sense that H(X|Yi) f
H(X|Yj), for i, j ∈ [D] such that i < j, where X is

distributed uniformly over X and Yi and Yj are the outputs of

the test channels C(i) and C(j), respectively, when the channel

input is X . In our scheme, the servers store the source code of

all the files in a new database denoted by X̃n
[K],D, which allows

the recovery of Xn
[K] when the available side information at the

decoder is obtained by passing all the files through the noisiest

test channel, i.e., C(D). Then, the client retrieves a source

coded version of the desired file from X̃n
[K],D by using the

scheme in [14, Section VI.B]. According to the Slepian-Wolf

theorem [27], [28], by accessing the side information and the

source-coded version of the desired file the client will be able

to retrieve the desired file. Our converse proof shows that this

scheme is optimal. Details for the achievability and converse

proofs of Theorem 1 can be found in [29, Section IV].

Remark 1 (Index of the random variables). Since all the files

are generated according to the uniform distribution over Xn,

one can change the index of X1 and Y1,D in Theorem 1 to Xi

and Yi,D, for i ∈ [K].

Remark 2. Note that the optimal normalized download cost

for PIR with noisy side information in [26, Theorem 1]

depends on the conditional entropy of all the test channels,

whereas our optimal result in Theorem 1 only depends on the

conditional entropy of the noisiest test channel.

Corollary 1 (Binary erasure test channels). Consider K g 2
files that are replicated in N g 2 servers and up to T of

these servers may collude. Furthermore, let the test channels

be BECs with parameters (ϵj)j∈[D] ∈ [0, 1]D such that ϵj <

ϵj′ for j, j′ ∈ N+ and j < j′. Then,

CSPIR-PNSI =





(R,R0) :

R g
(
1− 1{Ec} T

N

)−1
ϵD

R0 g 1{Ec} T
N−T

ϵD





.

Example 1 (SPIR without side information). If we set D = 1
and ϵ1 = 1 in Corollary 1, which corresponds to the case

where there is no side information about any files, then the

optimal cost region in Corollary 1 reduces to [14, Theorem 2],

i.e.,

CSPIR-PNSI =





(R,R0) :

R g
(
1− T

N

)−1

R0 g T
N−T





.

Example 2 (SPIR with noiseless side information). If we set

D = 2, ϵ1 = 0, and ϵ2 = 1 in Corollary 1, which corresponds

to the case where the client has access to d1 files in a noiseless
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manner as side information and has no side information about

the remaining d2 = K−d1 files, then CSPIR-PNSI in Corollary 1

reduces to [10, Theorem 2], i.e.,

CSPIR-PNSI =





(R,R0) :

R g
(
1− 1{Ec} T

N

)−1

R0 g 1{Ec} T
N−T





.

Theorem 2. Consider K g 2 files that are replicated in

N g 2 servers where up to T of them may collude. Then, the

optimal cost region C∗
SPIR-PNSI of the SPIR with private noisy

side information and disclosed side information statistics of

the desired file is

C∗
SPIR-PNSI =




(
R,R0

)
:

R g EV [R(V )] = 1
K

(
1− 1{Ec} T

N

)−1 D∑
v=1

dvH(X1|Y1,v)

R0 g EV [R0(V )] = 1{Ec} T
K(N−T )

D∑
v=1

dvH(X1|Y1,v)





(4a)

where,

R(V ) ≜

(
1− 1{Ec}

T

N

)−1

H(X1|Y1,V ), (4b)

R0(V ) ≜ 1{Ec}
T

N − T
H(X1|Y1,V ), (4c)

and V is distributed according to P[V = v] ≜ dv

K
, for v ∈ [D].

Proof. Similar to the achievability proof of Theorem 1, the

achievability proof of Theorem 2 is based on source coding

and the achievability scheme in [14, Section VI.B]. Specif-

ically, we use the same achievability scheme as that of

Theorem 1 by generating the source code of the files when the

side information of the files is generated according to C(M(Z))

instead of C(D). However, the converse proof of Theorem 2

does not follow from the converse proof of Theorem 1. One of

the main differences between the two converse proofs is that

when the index Z of the desired file and the index of the test

channel that is associated with the desired file are fixed, i.e.,

M(Z) = d for some d ∈ [D] and Z = z for some z ∈ [K],
changing the index z into another index z′ ̸= z may not be

possible as one may have M(z′) ̸= d, which complexifies the

proof. The details of the achievability and converse proofs are

available in [29, Section V].

Corollary 2 (Binary erasure test channels). Consider K g 2
files that are replicated in N g 2 servers and up to T of

these servers may collude. Furthermore, let the test channels

be BECs with parameters (ϵj)j∈[D] ∈ [0, 1]D such that ϵj <

ϵj′ for j, j′ ∈ N+ and j < j′. Then,

C∗
SPIR-PNSI =



(
R,R0

)
:

R g EV [R(V )] = 1
K

(
1− 1{Ec} T

N

)−1 D∑
v=1

dvϵv

R0 g EV [R0(V )] = 1{Ec} T
K(N−T )

D∑
v=1

dvϵv





,

where

R(V ) ≜

(
1− 1{Ec}

T

N

)−1

ϵV , R0(V ) ≜ 1{Ec}
T

N − T
ϵV ,

and V is distributed according to P[V = v] ≜ dv

K
, for v ∈ [D].

Example 3 (SPIR with noiseless side information). If we set

D = 2, ϵ1 = 0, and ϵ2 = 1 in Corollary 2, which corresponds

to the case where the client has access to d1 files in a noiseless

manner as side information and has no side information about

the remaining d2 = K − d1 files, then when M(Z) = 1 the

optimal download cost R(V ) in Corollary 2 is zero. When

M(Z) = 2 the optimal download cost in Corollary 2 reduces

to [10, Theorem 2], i.e.,





(
R,R0

)
:

R g
(
1− 1{Ec} T

N

)−1

R0 g 1{Ec} T
N−T





.

Example 4 (When there is only one test channel). If D = 1,

and therefore d1 = K, then the optimal download cost in

Theorem 1 and Theorem 2 reduces to

C∗
SPIR-PNSI =





(
R,R0

)
:

R g
(
1− T

N

)−1
H(X1|Y1,1)

R0 g T
N−T

H(X1|Y1,1)





.

Remark 3 (Comparing Theorems 1 and 2). The difference

between the normalized download cost in Theorem 1 and

Theorem 2 is

(
1− 1{Ec}

T

N

)−1
(
H(X1|Y1,D)−

1

K

D∑

v=1

dvH(X1|Y1,v)

)

=
1

K

(
1− 1{Ec}

T

N

)−1 D∑

v=1

dv
(
H(X1|Y1,D)−H(X1|Y1,v)

)

Therefore, the optimal normalized download cost in Theorem 2

is always smaller than or equal to the optimal normalized

download cost in Theorem 1. Similarly, the difference between

the optimal common randomness cost in Theorem 1 and

Theorem 2 is

1{Ec}
T

K(N − T )

D∑

v=1

dv

(
H(X1|Y1,D)−H(X1|Y1,v)

)
,

which shows that the optimal common randomness cost in

Theorem 2 is always smaller than or equal to the optimal

common randomness cost in Theorem 1. Hence, CSPIR-PNSI ¦
C∗

SPIR-PNSI, which shows that disclosing the index of the test

channel associated with the desired file leads to a smaller

download cost and a smaller common randomness cost.

Similar to the above, one can show that the difference

between (4b) and the optimal download cost in Theorem 1,

and the difference between (4c) and the optimal common

randomness cost in Theorem 1, are non-negative and increase

as the index of the test channel associated with the desired

file, i.e., M(Z), decreases.
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