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Abstract— Noiseless private side information does not reduce
the download cost in Symmetric Private Information Retrieval
(SPIR) unless the client knows all but one file. While this is
a pessimistic result, we explore in this paper whether noisy
private side information available at the client helps decrease
the download cost in the context of SPIR with colluding and
replicated servers. Specifically, we assume that the client possesses
noisy side information about each stored file, which is obtained by
passing each file through one of D possible discrete memoryless
test channels. The statistics of the test channels are known by the
client and by all the servers, but the mapping M between the
files and the test channels is unknown to the servers. We study
this problem under two privacy metrics. Under the first metric,
the client wants to preserve the privacy of its file selection and
the mapping M, and the servers want to preserve the privacy
of all the non-selected files. Under the second metric, the client
is willing to reveal the index of the test channel that is associated
with its desired file. For both privacy metrics, we derive the
optimal common randomness and download cost. Our setup
generalizes SPIR with colluding servers and SPIR with private
noiseless side information. Unlike noiseless side information, our
results demonstrate that noisy side information can reduce the
download cost, even when the client does not have noiseless
knowledge of all but one file.

I. INTRODUCTION

Private Information Retrieval (PIR) consists in privately
downloading a file from one or multiple distributed servers
and was first introduced in [1], [2]. More recently, the PIR
problem has been reformulated by using information-theoretic
measures in [3]. The PIR problem only considers the privacy
of the file selection with respect to the servers and ignores the
privacy of the non-selected files with respect to the client.
However, it is often desired that the client does not learn
anything beyond the selected file. The resulting setting is
referred to as SPIR to emphasize the symmetry of privacy
requirements of the client and the servers.

SPIR is also known as oblivious transfer [4], which is a
fundamental primitive that generated considerable interest due
to its applications in cryptography [5]-[7]. Specifically, SPIR
has been shown to be an essential building block of many
problems that involve symmetric privacy requirements among
participating parties, such as in secure multiparty computation
or private set intersection [8], [9].

A. Motivation

It is well known [10, Theorem 2] that private noiseless side
information does not help to decrease the download cost in
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SPIR, except in the special case where the client has noiseless
knowledge of all but one file. While this is a pessimistic result,
in this paper, we investigate whether noisy side information
can help decrease the download cost. Specifically, in this
paper, we assume that the client has noisy side information
about each file, which contrasts with previous work (reviewed
in the next section), where only noiseless side information
about the files is considered. The client could have acquired
this noisy side information in several ways. For example,
the user could have acquired a noisy version of the files
opportunistically from other users in its network, overheard
them from a wireless noisy broadcast channel, or downloaded
them from other servers. Note that the availability of noisy side
information encompasses having obtained parts of the files, or
even entire files, in a noiseless manner. The noise could also
be the result of storing the files for a long period of time.

B. Overview of the problem studied in this paper

In this paper, we study the SPIR problem where a client
wishes to retrieve one of the K files that are replicated in
N servers and T of these servers may collude. As reviewed
in the next section, so far, only SPIR with noiseless side
information, where the client possesses a subset of the files,
has been studied in the literature. By contrast, in our setting,
the client has a noisy version of each file which is modeled by
passing each file through a discrete memoryless test channel.
We assume that there are D < K different test channels whose
statistics are public knowledge and known by the client and
the servers.! We denote the mapping between the files and
the test channels by M. We study this problem under two
different scenarios. In both of these scenarios, the servers want
the client to learn no information about the files that have not
been requested. For the first scenario, the client wants to keep
the index of the desired file and the entire mapping M secret
from the servers. Note that when the client has a subset of the
files as side information [10], [11], then not keeping private
the mapping between the test channels and the files may reveal
to the servers the indices of the files that are available as side
information at the client. For the second scenario, the client
aims to keep the index of the desired file and the mapping M
secret from the servers, but the client is willing to reveal the
index of the test channel that is associated with the desired
file, i.e., M(Z), where Z is the index of the selected file. For
both scenarios, we derive the optimal normalized download

'We assume that the statistics of the D test channels are public information.
Note that the client has side information for each of the K files, which can
potentially be @, consequently, to model the side information available at the
client no more than K test channels are needed.
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cost and show that the second privacy metric can lead to a
lower download cost, for example when the desired file is
included in the side information and the client does not need
to download anything.

C. State of the art related to our model

We restrict our discussion to the SPIR models most re-
lated to our setting. The capacity of the SPIR problem is
derived in [12], which shows that the capacity of the SPIR
is smaller than the PIR capacity. Indeed, the SPIR problem
has one additional security constraint compared to the PIR
problem. Subsequently, this problem was extended to various
scenarios, as reviewed in detail in [13]. For instance, SPIR
from MDS coded database with non-colluding and colluding
servers is studied in [14]. The SPIR with colluding servers
in the presence of Byzantine adversaries and eavesdroppers
is studied in [15]. The SPIR problem when the client knows
part of the common randomness shared between the servers is
studied in [16]. The SPIR problem with private noiseless side
information, where the client knows a subset of the files in a
noiseless manner and wants to keep the identity of these files
private, is studied in [10]. More specifically, [10] shows that
private noiseless side information does not help to increase the
capacity of the SPIR problem, compared to the case where the
client has no side information unless the client has noiseless
knowledge of all but one file.

Note that the related PIR problem has also been studied
when side information is available at the client. In particular,
the PIR problem with private and non-private noiseless side
information is studied in [10], [11], [17]-[24]. Additionally,
the PIR problem with private noisy side information in which
the client has a noisy version of each file is studied in [25],
[26].

D. Main differences between our setting and previous settings

In our SPIR setting, the client has access to private noisy
side information about each file. Note that the side information
in the SPIR problem studied in [10] is noiseless, in the sense
that the side information at the client corresponds to a subset
of the files and the client knows which files are perfectly
available as side information. By contrast to [10], in this paper,
side information is noisy and, for instance, if the files are
binary and the test channels are Binary Symmetric Channels
(BSCs), then the client does not know which information bits
have been flipped by the BSCs and which ones have not been
flipped. Note that since we consider noisy side information
that is generated by passing the files through some Discrete
Memoryless Channels (DMCs), our problem setup recovers all
previous works by considering test channels that are Binary
Erasure Channels (BECs). Indeed, passing a file through a
BEC with parameter 0 means that the side information is
equal to the input file, and passing a file through a BEC
with parameter 1 means that no side information is available
for this file. For example, when there is only one BEC with
parameter 1, then our setting recovers the SPIR problem with
colluding servers in [14]. If we assume that there are two
BECs with parameters 0 and 1, then our setting recovers the
SPIR problem with colluding servers and private noiseless side
information [10, Section II.B].
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Fig. 1. The optimal normalized download cost and the optimal normalized
common randomness cost when K = 50, N = 2, T' = 1 and the files’ length
is n = 500, plotted as a function of the number of bits that are known as
side information at the client. The plot for the noiseless side information case
is obtained from the results in [10, Theorem 2], when the side information is
a subset of the files. The plot for the noisy side information case is obtained
as the output of a BEC with parameter zero for one file and with parameter
€2 varying between Kl_ and 1 for all the other files.
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Recall that, except for the special case where the client
has noiseless knowledge of all but one file, noiseless side
information does not help to reduce the download cost for
the SPIR problem, compared to the case where the client has
no side information [10, Theorem 2]. By considering a more
general SPIR problem setup, where noisy side information
about each stored file is available at the client, our results
demonstrate that this noisy side information can be leveraged
to decrease the download cost. For example, the optimal
normalized download cost of the 7T'-colluding SPIR problem
without any side information when all the files have the same
length, say n bits, is (1 — %) ~! and the servers need common
randomness with rate NTT [14], which is also, the optimal
normalized download cost of the 7T-colluding SPIR problem
when the client knows K — 2 files as side information [10,
Theorem 2]. Hence, having (K —2) xn bits of side information
about the files does not help to decrease the download cost.
By contrast, when the side information about each file is
a noisy version of that file with erasure probability €; or
€2, where €7 < ey < 1, our results show that the optimal
normalized download cost is (1 — %)_1 €5 and the servers
need common randomness with rate %62. As an example,
let ¢, = 0 and only one file is passed through this binary
erasure test channel. Then, our results show that the noisy
side infor_n}ation can low_e{ the normalized download cost from
(1—%) to(1—%) e, even though the client only has
n+ (1 —e) x (K — 1) x n bits of noisy side information
instead of (K — 2) X n bits of noiseless side information.
We illustrate this example in Fig. 1. In this figure, the x-
axis represents the number of bits that the client knows. In
the noiseless side information case, the unit is the length
of one file such that the first points on the left for the
download cost and the common randomness cost correspond
to the case where the client knows exactly one file and the
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last point corresponds to the case where the client knows
K — 1 files. For the noisy side information case, the client
knows n + (1 — e2)(K — 1)n € [n, (K — 1)n] bits with €
varying between ﬁ and 1. As seen in Fig. 1, the download
cost for the noisy side information is always lower than the
download cost for the noiseless side information. Also, the
common randomness cost for the noisy side information is
always lower than the common randomness cost for noiseless
side information, except for the special case where the client
knows K —1 files as side information. This demonstrates that,
unlike noiseless side information, noisy side information can
help decrease the download cost and the common randomness
cost. Our main results generalize this example to arbitrary
noisy side information beyond the erasure model. We also
study the case where the client may reveal the index of the
test channel associated with its desired file, and show that this
can further reduce the download cost.

E. Notation

Let N, be the set of positive natural numbers, and R be
the set of positive real numbers. For any a,b € R, define
[a:b] = [|a], [b]]NN, and [a] £ [1:a]. Random variables are
denoted by capital letters and their realizations by lowercase
letters. Vectors and matrices are denoted by boldface letters,
e.g., X" = [X1,Xs, -+, X,]. For a set of indices Z C N,,
Xz denotes (X;);ez. Ex|[] is the expectation with respect to
the random variable X. The cardinality of a set is denoted by
| - |. For a mapping M : X — ), the preimage of y € Y
by M is denoted as M~ '(y) £ {z € X : M(z) = y}. For
D € N, and a mapping M : [D] — R, we represent the
domain and co-domain of M as a matrix of dimension 2 x D

as M = (/th(l) A42(2) o M[()D)) .
II. PROBLEM STATEMENT

Consider a client and N servers, where up to 7" of these NV
servers may collude, and each server has a copy of K files
of length n. Additionally, consider a set of D test channels,
whose transition probabilities are known to the client and the
servers, and whose outputs take value in finite alphabets. We
assume that the client has noisy side information about all
the K files in the sense that each file is passed through one
of the D test channels, and the output of this test channel is
available at the client. The mapping M between the files and
the test channels is not known at the servers. The objective of
the client is to retrieve one of the files such that the index of
this file and the mapping M are kept secret from the servers.

A. Definitions

We now define the problem formally and provide some
intuitions about our problem setup.

Definition 1. Consider K,n,N,T,D € N., (di);c;p; € N?
such that Zil d; = K, and _D distinct test channels
(CD) e ipp with CO 2 (X, P{) V), where X and ,
i € [K, are finite alphabets. Without loss of generality, assume
that H(X|Y;) < H(X|Y;), for i,j € [D] such that i < j,
where X is uniformly distributed over X and Y; and Y; are
the outputs of C") and C'9), respectively, when X is the input.

A SPIR protocol with private noisy side information and pa-
rameters (K,n,N, T,D, (di)iE[D] ; (C(l))ie[D}

o N servers where up to T’ of them may collude;

o K independent random sequences X = (X?)ie[ K]
each of length n that are uniformly distributed over X,
which represent K files replicated at each of the N
servers;

o common randomness U € U shared between the servers
but not the client; we also call normalized randomness

cost the following quantity Ry = maf(HU()Xi) = H;U) ;

consists of,

o local randomness L € L at the client;

o D distinct test channels (C(i))ie[m ;

e a mapping M chosen at random from the set
m £ (M:[K]— [D]:Vie [D],|M (i) =d};
this mapping is only known at the client and not at the
servers;

o for each file X7, where i € [K], the client has access to
a noisy version of X', denoted by YZLM(Z.), which is the
output of the test channel CMO) \when X7 is the input;

o the random variable Z is uniformly distributed over K|
and represents the index of the file that the client wishes
to retrieve, i.e., the client wants to retrieve the file X7.

o fori € [N], a query function F; : [K]x L X x Vi) —
Q;, where Q; is a finite alphabet;

e for i € [N], an answer function & : Q; x U x XK —

[27R(Q0)];
e adecoding function D : [K]x £LxMx [27 X R(Qi)} X
ynK N Xn’.
and operates as follows,
1) the client  creates the  queries Q; £
fi(Z,L,M,YE}(],M), where YFK]»M =
and sends it to Server

L ) ,
M) ) ek

1 € [N], with Q[N] =
H(Qun|Yfi) pa: 1o M, Z) = 0;

2) then, for all i € [N], Server i creates the answer
A =6 (Qi7 U, XELK]) and sends it to the client; note
that H (AZ-|QZ-,U,X?K]) =0, ¥iel[N];

3) finally, the client computes an estimate of X', as ﬁ% =
D (Z, L, M, A[NMY[’}(]TM), where Ay 2 (Aq)icpy

(Qi)ie[N]’ note that

Hence, the probability of error at the client is, P, =
1imsup1p[xg7éxg] R(Qu) 2 YN, R(Q) is the

n—
ngrmOZIized download cost of the SPIR protocol and is random

with respect to Q(nj, which makes the protocol a variable
length coding scheme. We also define the expected normalized
download cost of the protocol as R = Eq,,[R (Qn)]- Note
that the random variables (Z,L,M,U,X?K]) are indepen-
dent.

We then consider two privacy metrics in Definitions 2 and 3.
For both metrics, all the files in the servers except the desired
file must remain secret from the client. However, for the first
metric, the index of the desired file Z and the mapping M
must remain private from the servers, whereas, for the second
metric, the index M(Z) is allowed to be revealed to the
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servers. As discussed next in Section III, these two privacy
metrics recover, as special cases, the SPIR settings previously
studied in the literature.

Definition 2 (Cost region Cgspir-pns1 for undisclosed side infor-
mation statistics of the desired file). An expected normalized
download cost R and normalized randomness cost R, are
achievable with undisclosed side information statistics of the
desired file, if there exist SPIR protocols with private noisy
side information such that, for any set T C [N] of colluding
servers such that |T| =T, we have

Pe=0, (1a)
1(Qr, A7, X7, U; Z,M) =0, (1b)
I(Xfep 2y A |2, Lo M Y i pq) = 0. (T0)

The closure of the set of achievable cost pairs (R, Ry) is
referred to as the SPIR optimal cost region with private noisy
side information and undisclosed side information statistics of
the desired file, and is denoted by Cspir_pnsI-

Definition 3 (Cost region Cgprpns; for disclosed side infor-
mation statistics of the desired file). An expected normalized
download cost R and normalized randomness cost R, are
achievable with disclosed side information statistics of the
desired file, if there exist SPIR protocols with private noisy
side information such that, for any set T C [N] of colluding
servers such that |T| =T, we have

P, =0, (2a)
1(Qr A7, X[, U; Z M[M(2)) =0, (2b)
I(X{ip 2y A Z. LM Y pq) = 0. (20)

The closure of the set of achievable cost pairs (R, Rp)
is referred to as the SPIR optimal cost region with pri-
vate noisy side information and disclosed side informa-
tion statistics of the desired file, and is denoted by
Céprpnst- Note that under the privacy metric (2b), we have
H(Aini,U,Xf}ﬂ,M(Z)) =0, Viel[N].

Observe that the privacy constraints in Definition 2 implies
the privacy constraints in Definition 3, i.e., (1b)=(2b), and
we will show that revealing the index of the test channel
associated with the desired file X7 can result in a strictly
lower download rate.

IIT. MAIN RESULTS

In the following, we assume that at least one file is not
noiselessly known by the client, otherwise, the client would
know the entire database. We also define the following event
& £ {(K —1) files are noiselessly known at the client},
which, with our notation, means that d; = K — 1 and c s
a BEC with parameter zero. Finally, we define the following
indicator function

1{&} £ {

1 if Event & is false

. . . 3
0 if Event & is true

Theorem 1. Consider K > 2 files that are replicated in N >
2 servers, where up to T' of them may collude. Then,

(R, Ro) :
Csprpnst = § R > (1 — ]1{50}%)_1 H(X:|Y1.p)
Ro > 1{&°} 5o H(X|Y1,0)

Proof. The achievability proof of Theorem 1 is based on
source coding and the achievability scheme in [14, Sec-
tion VI.B]. As discussed in Definition 1, we assume that
the test channels are ordered in the sense that H(X|Y;) <
H(X\Y;), for i,j € [D] such that ¢ < j, where X is
distributed uniformly over X and Y; and Y} are the outputs of
the test channels C'® and C'), respectively, when the channel
input is X. In our scheme, the servers store the source code of
all the files in a new database denoted by X"K], p» which allows
the recovery of XFK when the available side information at the
decoder is obtained by passing all the files through the noisiest
test channel, i.e., CP), Then, the clien~t retrieves a source
coded version of the desired file from X"KL p by using the
scheme in [14, Section VI.B]. According to the Slepian-Wolf
theorem [27], [28], by accessing the side information and the
source-coded version of the desired file the client will be able
to retrieve the desired file. Our converse proof shows that this
scheme is optimal. Details for the achievability and converse
proofs of Theorem 1 can be found in [29, Section IV]. ]

Remark 1 (Index of the random variables). Since all the files
are generated according to the uniform distribution over X",
one can change the index of X1 and Y1 p in Theorem I to X;
and Y; p, for i € [K].

Remark 2. Note that the optimal normalized download cost
for PIR with noisy side information in [26, Theorem 1]
depends on the conditional entropy of all the test channels,
whereas our optimal result in Theorem 1 only depends on the
conditional entropy of the noisiest test channel.

Corollary 1 (Binary erasure test channels). Consider K > 2
files that are replicated in N > 2 servers and up to T of
these servers may collude. Furthermore, let the test channels
be BECs with parameters (Ej)jG[D] € 0,1 such that €¢; <
€y for 3,7 € Ny and j < j'. Then,

(R, Ryp) :
Cspirpnst = § R > (1 — 1{50}%)71 €D
Ry > 1{&} w5 7en
Example 1 (SPIR without side information). If we set D = 1
and €1 = 1 in Corollary 1, which corresponds to the case
where there is no side information about any files, then the

optimal cost region in Corollary 1 reduces to [14, Theorem 2],
ie.,

(R7 RO)
Cspir-pNst = { R > (1 — %) 1
Ro > 55

Example 2 (SPIR with noiseless side information). If we set
D =2 ¢ =0, and e2 = 1 in Corollary 1, which corresponds
to the case where the client has access to dy files in a noiseless
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manner as side information and has no side information about
the remaining do = K —d, files, then Cspir_pnst in Corollary 1
reduces to [10, Theorem 2], i.e.,

(R, Ry) :
R>(1-1{&}5)
Ry > 1{&) 17
Theorem 2. Consider K > 2 files that are replicated in
N > 2 servers where up to T' of them may collude. Then, the
optimal cost region Ciprpnsi Of the SPIR with private noisy

side information and disclosed side information statistics of
the desired file is

-1
Cspir-pNsI =

* p—
CSPIR—PNSI -

(R, Ry) :
R>Ey[R(V)] =& (1-1{e} %)

D
RO > EV[RO<V)] = ]l{gc}m 21 de(X1|Y1,v)

D
Z dUH(X1|Y1,U>
v=1

(4a)
where,
T —1
R(V) £ <1 - 1{50}]\,) H(Xy|Y1,v), (4b)
Ry(V) £ 1{&%} H(X1|Y1,v), (40)

N-T

and V is distributed according to P[V = v] £ % forv € [D].

Proof. Similar to the achievability proof of Theorem 1, the
achievability proof of Theorem 2 is based on source coding
and the achievability scheme in [14, Section VI.B]. Specif-
ically, we use the same achievability scheme as that of
Theorem 1 by generating the source code of the files when the
side information of the files is generated according to C'(*M(%))
instead of CP). However, the converse proof of Theorem 2
does not follow from the converse proof of Theorem 1. One of
the main differences between the two converse proofs is that
when the index Z of the desired file and the index of the test
channel that is associated with the desired file are fixed, i.e.,
M(Z) = d for some d € [D] and Z = z for some z € [K],
changing the index z into another index z’ # z may not be
possible as one may have M (z’) # d, which complexifies the
proof. The details of the achievability and converse proofs are
available in [29, Section V]. ]

Corollary 2 (Binary erasure test channels). Consider K > 2
files that are replicated in N > 2 servers and up to T of
these servers may collude. Furthermore, let the test channels
be BECs with parameters (€;);cp € [0, 1P such that €¢; <
€jr for j,j' € Ny and j < j'. Then,

C;PIR—PNSI =
(R, Ro) :

R>Ev[R(V)] = £ (1-1{e}E)""

dy€y

it

D
RO > EV[RO(V)] = ﬂ{gc}% 2—31 dvev

where

T
€
*TV7

RV) 2 (1 - n{eff}]f,)_ v RolV) £ 1{7)

and V is distributed according to P[V = v] & %, forv € [D].

Example 3 (SPIR with noiseless side information). If we set
D =2 ¢ =0, and e2 = 1 in Corollary 2, which corresponds
to the case where the client has access to d; files in a noiseless
manner as side information and has no side information about
the remaining do = K — d; files, then when M(Z) = 1 the
optimal download cost R(V) in Corollary 2 is zero. When
M(Z) = 2 the optimal download cost in Corollary 2 reduces
to [10, Theorem 2], i.e.,

(R, RO) :
R>(1-1{&} %)
Ry > 1{50}%

Example 4 (When there is only one test channel). If D =1,
and therefore diy = K, then the optimal download cost in
Theorem 1 and Theorem 2 reduces to

(R, RO) :
% -1
Cspr-pnst = § R > (1 - Z) (X1|Y1,1)
Ry > 5 H(X1|Y1,1)

Remark 3 (Comparing Theorems 1 and 2). The difference
between the normalized download cost in Theorem 1 and
Theorem 2 is

(1_11{56};)_1( (X2[Yip) —
12(1_1{5" )_12D:d

Therefore, the optimal normalized download cost in Theorem 2
is always smaller than or equal to the optimal normalized
download cost in Theorem 1. Similarly, the difference between
the optimal common randomness cost in Theorem 1 and
Theorem 2 is

Zdemn>

H(X1|Y1,p) — H(X1|Y1,))

1{5c N T Zd”( X1|YLD)—H(X1|Y1,U))7

which shows that the optimal common randomness cost in
Theorem 2 is always smaller than or equal to the optimal
common randomness cost in Theorem 1. Hence, Cspr-pnst C
Cépirpnsy Which shows that disclosing the index of the test
channel associated with the desired file leads to a smaller
download cost and a smaller common randomness cost.

Similar to the above, one can show that the difference
between (4b) and the optimal download cost in Theorem 1,
and the difference between (4c) and the optimal common
randomness cost in Theorem 1, are non-negative and increase
as the index of the test channel associated with the desired
file, i.e., M(Z), decreases.
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