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Abstract—Consider a scenario involving multiple users and
a fusion center. Each user possesses a sequence of bits and
can communicate with the fusion center through a one-way
public channel. The fusion center’s task is to compute the sum
of all the sequences under the privacy requirement that a set
of colluding users, along with the fusion center, cannot gain
more than a predetermined amount δ of information, measured
through mutual information, about the sequences of other users.
Our first contribution is to characterize the minimum amount
of necessary communication between the users and the fusion
center, as well as the minimum amount of necessary shared
randomness at the users. Our second contribution is to establish
a connection between secure summation and secret sharing by
showing that secret sharing is necessary to generate the local
randomness needed for private summation, and prove that it
holds true for any δ ⩾ 0.

I. INTRODUCTION

The study of distributed summation under security con-

straints is closely related to the problem of secure aggregation,

as evidenced by prior works such as [1]–[10]. This area

finds applications in distributed computing. Notably, secure

summation with zero information leakage has been extensively

explored in [5], [11]–[14].

In this paper, we extend the scope of secure sum compu-

tation to allow a controlled amount of information leakage.

Specifically, we consider L ⩾ 2 users, each owning a se-

quence, and a fusion center tasked with computing the sum

of these sequences. Our privacy requirement is to ensure that

any colluding set of users of size T , where T ⩽ L − 2 is

fixed, along with the fusion center, must not learn more than a

predetermined amount ¶ of information about the other users’

sequences. Furthermore, inspired by ramp secret sharing, e.g.,

[15], [16], we also introduce a private summation setting where

information leakage depends solely on the size of the colluding

user set and increases linearly with its size.

Our first contribution is deriving converse results on the

necessary communication rate of individual users to the fusion

center and the required rate of shared randomness among

users. These results are primarily established through combi-

natorial arguments. We also provide an achievability scheme

that simultaneously matches all individual converse bounds.

This work was supported in part by NSF grants CCF-2201824 and CCF-
2201825.

Our second contribution establishes a fundamental connection

between secret sharing and private summation. When ¶ = 0,

it had been established, e.g., [17] that secret sharing can

be employed to generate the local randomness at the users

for secure summation. In this study, we establish a stronger

connection between secure summation and secret sharing by

showing that secret sharing is necessary to generate the local

randomness needed for private summation, and prove that it

also holds true for any ¶ ̸= 0.

Related work: The closest related work is [17], which

corresponds to a special case where no information leakage

is allowed, and communication rate and local randomness rate

must be equal for all users. Other studies have explored secure

computation with interactive communication from arbitrarily

correlated randomness in various settings, e.g., [18]–[21]. We

note that computation from correlated randomness that allows

information leakage is also studied in [22], [23].

The remainder of the paper is organized as follows. The

problem statement is presented in Section II. Our main results

are summarized in Section III. The proofs of our converse

results are presented in Sections IV and V. Finally, concluding

remarks are presented in Section VI.

II. PROBLEM STATEMENT

Notation: Let N, R, and Q be the sets of natural, real, and

rational numbers, respectively. For a, b ∈ R, define Ja, bK ≜
[+a,, +b,] ∩ N, and [a] ≜ J1, aK.

Consider a fusion center and L users who have individual

sequences. The users communicate with the fusion center over

a one-way, public, and noiseless channel, with the aim that the

fusion center computes the sum of their sequences as described

next.

Definition 1. An (L, n, (R
(X)
l )l∈[L], R

(U), (R
(K)
l )l∈[L])

private-sum computation protocol consists of

• L users indexed in the set [L];
• L independent sequences (Sl)l∈[L], where Sequence Sl is

owned by User l ∈ [L] and is uniformly distributed over

the finite field Fn
2 ;

• A source of global randomness shared by the L users,

independent of the sequences (Sl)l∈[L], and described by

U uniformly distributed over FnR(U)

2 ;
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• L encoding functions el : F
nR(U)

2 → F
nR

(K)
l

2 ;

• L encoding functions e
(X)
l : F

nR
(K)
l

2 × Fn
2 → F

nR
(X)
l

2 ;

• A decoding function d :×l∈[L]
F
nR

(X)
l

2 → Fn
2 ;

and operates as follows:

1) User l ∈ [L] forms the local randomness Kl ≜ el(U);

2) User l ∈ [L] encodes the sequence Sl as Xl ≜

e
(X)
l (Kl, Sl) and sends Xl over the public channel;

3) The fusion center computes Σ̂[L] ≜ d(X[L]) an estimate

of Σ[L] ≜
∑

l∈[L] Sl, where X[L] ≜ (Xl)l∈[L].

Then, the desired requirements for an

(L, n, (R
(X)
l )l∈[L], R

(U), (R
(K)
l )l∈[L]) private-sum

computation protocol defined as in Definition 1 are as

follows.

Definition 2. Let ¶ ∈ Q+ and T ∈ J0, L − 2K. An

(L, n, (R
(X)
l )l∈[L], R

(U), (R
(K)
l )l∈[L]) private-sum computa-

tion protocol is (¶, T )-private if

Σ̂[L] = Σ[L], (1)

max
T ¢[L]
:|T |⩽T

I(S[L];X[L]|Σ[L]ST KT ) ⩽ ¶, (2)

where for any T ¢ [L], ST ≜ (Sl)l∈T and KT ≜ (Kl)l∈T .

Equation (1) means that the fusion center computes the

sum Σ[L] without errors. If the fusion center and a set T of

T users collude, then, Equation (2) quantifies the amount of

information that XT c leaks about ST c given the knowledge

of (Σ[L], ST ,KT ).

In this study, for protocols that satisfy the requirements

of Definition 2, we are interested in characterizing (i) the

minimum amount of global randomness U needed, (ii) the

minimum amount of public communication needed for each

user, (iii) the minimum amount of local randomness needed for

the users. To this end, we introduce the following quantities.

Definition 3. Let ¶ ∈ Q+ and T ∈ [0,K − 2] ∩ N. Let C be

the set of tuples Λ ≜ (R
(X)
l )l∈[L], R

(U), (R
(K)
l )l∈[L]) such that

there exist (L, n, (R
(X)
l )l∈[L], R

(U), (R
(K)
l )l∈[L]) private-sum

computation protocols that are (¶, T )-private. Then, define

R
(X)
l,⋆ ≜ inf

Λ∈C
R

(X)
l , ∀l ∈ [L],

R
(K)
l,⋆ ≜ inf

Λ∈C
R

(K)
l , ∀l ∈ [L],

R
(K)
Σ,⋆ ≜ inf

Λ∈C

∑

l∈[L]

R
(K)
l ,

R
(U)
⋆ ≜ inf

Λ∈C
R(U).

Remark. In the special case ¶ = 0, and when the local

randomness rates are assumed identical for all users (i.e.,

∃C1 ∈ R, R
(K)
l = C1, ∀l ∈ [L]), and the communication rates

are assumed identical for all users (i.e., ∃C2 ∈ R, R
(X)
l =

C2, ∀l ∈ [L]), then our model recovers the setting formalized

in [17].

Remark. In Definition 2, ¶ is a rational number. However,

note that by density of Q in R, for any ¶′ ∈ R+, for any

ϵ > 0, there exists ¶ ∈ Q+ such that |¶ − ¶′|⩽ ϵ.

Remark. In Definition 2, it is sufficient to consider T ∈
[0, L − 2] ∩ N. If T = L, then (2) is always satisfied as the

left-hand side is equal to zero. This is also true if T = L− 1,

as S[L] can be reconstructed from (Σ[L], ST ) for any T ¢ [L]
such that |T |= T .

III. MAIN RESULTS

We first show in Section III-A that Definition 2 can be

simplified without loss of generality. We then present our

converse and capacity results in Sections III-B and III-C,

respectively. Finally, we establish the connection between

secret sharing and shared randomness in private summation

in Section III-D.

A. Preliminaries

One can prove that in the privacy constraint (2) of Defini-

tion 2, it is sufficient to consider ¶ of the form ¶ = n³(L−1)
with ³ ∈ [0, 1] ∩Q, i.e., (2) can be replaced by

max
T ¢[L]
:|T |⩽T

I(S[L];X[L]|Σ[L]ST KT ) ⩽ n³(L− 1). (3)

B. Converse results

Theorem 1 (Converse). For any

(L, n, (R
(X)
l )l∈[L], R

(U), (R
(K)
l )l∈[L]) private-sum

computation protocol that is (¶ = n³(L − 1), T )-private,

³ ∈ [0, 1] ∩Q, we have

R
(X)
l ⩾ 1, ∀l ∈ [L], (4)

∑

l∈[L] R
(K)
l ⩾ (1− ³)L, (5)

R(U) ⩾ (1− ³)(L− 1). (6)

Proof. See Section IV. ■

We now derive a converse on the individual rate of local

randomness under the following leakage symmetry assump-

tion:

∀l ∈ J0, LK, ∃Cl ∈ R+, ∀T ¦ [L],

|T |= l =⇒ I(S[L];X[L]|Σ[L]ST KT ) = Cl, (7a)

(Cl)l∈J0,L−1K constantly decreases from n³(L− 1) to 0.

(7b)

Equation (7a) means that information leakage to a set

of colluding users solely depends on the size of this set,

rather than being influenced by the individual identities within

the set. Equation (7b) means that the information leakage

I(S[L];X[L]|Σ[L]ST KT ) constantly decreases from its max-

imal value n³(L − 1) to its minimal value 0, as the size

of the set T increases from 0 to L − 1. In other words,

there is a uniform consideration of all users, rendering them

indistinguishable in terms of their capacity to gain information

about other users. We remark that the leakage symmetry

condition (7) is similar to the leakage symmetry assumption
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defined for ramp secret sharing, e.g., [15], [16]. Indeed, (7)

implies that for any l ∈ J0, L− 1K, Cl = n³(L− l − 1).

Theorem 2 (Converse). Suppose that leakage

symmetry, i.e., (7), is required. Then, for any

(L, n, (R
(X)
l )l∈[L], R

(U), (R
(K)
l )l∈[L]) private-sum

computation protocol that is (¶ = n³(L − 1), T )-private,

³ ∈ [0, 1] ∩Q, we have

R
(X)
l ⩾ 1, ∀l ∈ [L],

R
(K)
l ⩾ 1− ³, ∀l ∈ [L],

R(U) ⩾ (1− ³)(L− 1).

Proof. See Section V. ■

C. Capacity results

Theorem 3. For any ³ ∈ [0, 1] ∩Q, we have

R
(K)
l,⋆ = (1− ³), ∀l ∈ [L],

R
(K)
Σ,⋆ = L(1− ³), when (7) holds,

R
(X)
l,⋆ = 1, ∀l ∈ [L],

R
(U)
⋆ = (1− ³)(L− 1).

Moreover, there exists a private-sum computation protocol that

is (¶ = n³(L − 1), T )-private and simultaneously achieves

(R
(X)
l,⋆ )l∈[L], R

(U)
⋆ , (R

(K)
l,⋆ )l∈[L]), R

(K)
Σ,⋆ .

The achievability proof can be obtained as a time-sharing

version of the coding scheme in [17], which proves that the

converse bounds of Section III-B are tight. The details are

omitted due to space constraints.

D. Connection between secret sharing and private summation

1) Preliminaries: We first review the notion of uniform

secret sharing with leakage, e.g., [24]–[27].

Definition 4 (Uniform secret sharing with leakage). Let ³ ∈
[0, 1]∩Q, t ∈ [L] and z ∈ [t− 1]. An (³, t, z)- secret sharing

scheme consists of

• A secret S uniformly distributed over {0, 1}ns ;
• A stochastic encoder e : {0, 1}ns × {0, 1}nr →

{0, 1}nsh , (S,R) 7→ (Hl)l∈[L], which takes as input the

secret S and a randomization sequence R uniformly

distributed over {0, 1}nr and independent of S, and

outputs L shares (Hl)l∈[L], with sum length nsh, that

are not necessarily of same length. For any S ¦ [L], we

define HS = (Hl)l∈S ;

and satisfies the two conditions

max
T ¦[L]:|T |=t

H(S|HT ) = 0, (Recoverability) (8)

max
U¦[L]:|U|⩽z

I(S;HU ) ⩽ ³H(S), (Privacy leakage) (9)

and the leakage symmetry condition

∀l ∈ [L], ∃Cl ∈ R+, ∀T ∈ [L], |T |= l =⇒
I(S;HT )

H(S)
= Cl.

(10)

As an example, a (t,∆, L) ramp secret sharing scheme,

e.g., [15], [16], is a coding scheme as in Definition 4 with

³ = 0, z = t−∆, and Cl ≜











0 if l ∈ J0, t−∆K
l−t+∆

∆ if l ∈ Jt−∆+ 1, tK

1 if l ∈ Jt+ 1, LK

,

meaning that any t shares can reconstruct S, any set of shares

less than or equal to t−∆ does not leak any information about

S, and for sets of shares with cardinality in Jt−∆+1, tK, the

leakage increases linearly with the set cardinality.

2) Private summation and ramp secret sharing: While it

was known that secret sharing can be employed to generate the

local randomness at the users for secure summation, e.g., [17],

Theorem 4 establishes a stronger connection between secure

summation and secret sharing by showing that secret sharing is

necessary to generate the local randomness needed for secure

summation. The proof is omitted due to space constraints.

Theorem 4 (Converse). Suppose that leakage symmetry,

i.e., (7) is required, and consider an optimal private-sum

computation protocol, i.e., for all l ∈ [L], R
(K)
l = (1 − ³),

R
(X)
l = 1, and R(U) = (1− ³)(L− 1). Then, (Kl)l∈[L] must

be the shares of a (L−1, L−1, L) ramp secret sharing scheme

where U is the secret.

IV. PROOF OF THEOREM 1

A. Communication rate converse: Proof of (4)

For any l ∈ [L], we have

nR
(X)
l

(a)

⩾ H(Xl)

(b)

⩾ H(Xl|S[L]\{l}K[L]\{l})

⩾ I(Xl; Σ[L]|S[L]\{l}K[L]\{l})

= H(Σ[L]|S[L]\{l}K[L]\{l})−H(Σ[L]|XlS[L]\{l}K[L]\{l})

(c)
= H(Σ[L]S[L]\{l}|S[L]\{l}K[L]\{l})

−H(Σ[L]|XlS[L]\{l}K[L]\{l})

(d)

⩾ H(Sl|S[L]\{l}K[L]\{l})−H(Σ[L]|XlS[L]\{l}K[L]\{l})

(e)
= H(Sl|S[L]\{l}K[L]\{l})−H(Σ[L]|X[L]S[L]\{l}K[L]\{l})

(f)
= H(Sl)

(g)
= n,

where (a) holds by Definition 1, (b) holds because con-

ditioning reduces entropy, (c) holds by the chain rule, (d)
holds by the chain rule and because Sl can be reconstructed

from (Σ[L], S[L]\{l}), (e) holds because X[L]\{l} is a function

of (S[L]\{l},K[L]\{l}), (f) holds by (1) and independence

between Sl and (S[L]\{l},K[L]\{l}), (g) holds by unifor-

mity of Sl.

B. Sum-rate converse on local randomness: Proof of (5)

For any i ∈ [L], we have

³n(L− 1)
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(a)

⩾ I(S[L];X[L]|Σ[L])

=
∑

l∈[L]\{i}

I(Sl;X[L]|S[l−1]\{i}Σ[L])

+ I(Si;X[L]|S[L]\{i}Σ[L])

(b)
=

∑

l∈[L]\{i}

I(Sl;X[L]|S[l−1]\{i}Σ[L])

⩾
∑

l∈[L]\{i}

I(Sl;Xl|S[l−1]\{i}Σ[L])

(c)
=

∑

l∈[L]\{i}

I(Sl;Xl|S[l−1]\{i}Σ[l:L]∪{i})

=
∑

l∈[L]\{i}

[I(Sl;XlS[l−1]\{i}|Σ[l:L]∪{i})

− I(Sl;S[l−1]\{i}|Σ[l:L]∪{i})]

(d)
=

∑

l∈[L]\{i}

I(Sl;XlS[l−1]\{i}|Σ[l:L]∪{i})

=
∑

l∈[L]\{i}

[I(Sl;Xl|Σ[l:L]∪{i})

+ I(Sl;S[l−1]\{i}|XlΣ[l:L]∪{i})]

(e)
=

∑

l∈[L]\{i}

I(Sl;Xl|Σ[l:L]∪{i})

=
∑

l∈[L]\{i}

[I(Sl;XlΣ[l:L]∪{i})− I(Sl; Σ[l:L]∪{i})]

(f)
=

∑

l∈[L]\{i}

I(Sl;XlΣ[l:L]∪{i})

⩾
∑

l∈[L]\{i}

I(Sl;Xl), (11)

where (a) holds by (3), (b) holds because Si can be

recovered from (S[L]\{i},Σ[L]), in (c) we used the notation

Σ[l:L]∪{i} ≜
∑

j∈{l,l+1,...,L}∪{i} Sj , (d) holds because

I(Sl;S[l−1]\{i}|Σ[l:L]∪{i}) ⩽ I(SlΣ[l:L]∪{i};S[l−1]\{i}) = 0
by independence of the users’ sequences, (e)
holds because I(Sl;S[l−1]\{i}|XlΣ[l:L]∪{i}) ⩽
I(SlΣ[l:L]∪{i}Xl;S[l−1]\{i}) ⩽ I(SlΣ[l:L]∪{i}Kl;S[l−1]\{i})
⩽ I(SlΣ[l:L]∪{i}U ;S[l−1]\{i}) = 0 by independence of the

users’ sequences and the global randomness, (f) holds by

uniformity of the users’ sequences and because l ̸= i.

Hence, by remarking that
∑

i∈[L]

∑

l∈[L]\{i}

I(Sl;Xl) = (L− 1)
∑

l∈[L]

I(Sl;Xl), (12)

from (11) and (12), we have
∑

l∈[L]

I(Sl;Xl) ⩽ ³nL. (13)

Then, we have

∑

l∈[L]

nR
(K)
l

(a)

⩾
∑

l∈[L]

H(Kl)

(b)
=

∑

l∈[L]

H(Kl|Sl)

⩾
∑

l∈[L]

I(Kl;Xl|Sl)

=
∑

l∈[L]

[H(Xl|Sl)−H(Xl|KlSl)]

(c)
=

∑

l∈[L]

H(Xl|Sl)

=
∑

l∈[L]

[H(Xl)− I(Xl;Sl)]

(d)

⩾ nL−
∑

l∈[L]

I(Xl;Sl)

(e)

⩾ nL− ³nL

= nL(1− ³),

where (a) holds by Definition 1, (b) holds by independence

between U and S[L], (c) holds by Definition 1, (d) holds

by (4), (e) holds by (13).

C. Converse on global randomness: Proof of (6)

We have

nR(U)

⩾ H(U)

(a)

⩾ H(K[L])

(b)

⩾ H(K[L]|S[L])

⩾ I(K[L];X[L]|S[L])

(c)
= H(X[L]|S[L])

= H(X[L])− I(X[L];S[L])

= H(X[L])− I(X[L]; Σ[L]S[L])

= H(X[L])− I(X[L]; Σ[L])− I(X[L];S[L]|Σ[L])

(d)

⩾ H(X[L])− I(X[L]; Σ[L])− ³n(L− 1)

= H(X[L])−H(Σ[L]) +H(Σ[L]|X[L])− ³n(L− 1)

(e)
= H(X[L])− n− ³n(L− 1)

=
∑

l∈[L]

H(Xl|X[l−1])− n− ³n(L− 1)

(f)

⩾
∑

l∈[L]

H(Xl|S[L]\{l}K[L]\{l}X[l−1])− n− ³n(L− 1)

(g)
=

∑

l∈[L]

H(Xl|S[L]\{l}K[L]\{l})− n− ³n(L− 1)

⩾
∑

l∈[L]

I(Xl; Σ[L]|S[L]\{l}K[L]\{l})− n− ³n(L− 1)

=
∑

l∈[L]

[H(Σ[L]|S[L]\{l}K[L]\{l})

−H(Σ[L]|XlS[L]\{l}K[L]\{l})]− n− ³n(L− 1)
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(h)
=

∑

l∈[L]

H(Σ[L]|S[L]\{l}K[L]\{l})− n− ³n(L− 1)

(i)
=

∑

l∈[L]

H(Σ[L]Sl|S[L]\{l}K[L]\{l})− n− ³n(L− 1)

⩾
∑

l∈[L]

H(Sl|S[L]\{l}K[L]\{l})− n− ³n(L− 1)

(j)
=

∑

l∈[L]

H(Sl)− n− ³n(L− 1)

(k)
= n(L− 1)(1− ³),

where (a) holds by Definition 1, (b) holds because condi-

tioning reduces entropy, (c) holds because X[L] is a function

of (K[L], S[L]), (d) holds by (3), (e) holds by uniformity of

the users’ sequences and (1), (f) holds because conditioning

reduces entropy, (g) holds because X[l−1] is a function of

(S[L]\{l},K[L]\{l}), (h) holds by (1) since X[L] can be recon-

structed from (Xl, S[L]\{l},K[L]\{l}), (i) holds by the chain

rule, (j) holds by independence between the users’ sequences

and the local randomness, (k) holds by uniformity of the users’

sequences.

V. PROOF OF THEOREM 2

Lemma 1. For any T ¦ [L], we have

C|T | = n(L− |T |−1{T ≠ [L]})−H(ST c |X[L]KT ST ).

The proof of Lemma 1 is omitted due to space constraints.

Fix l ∈ [L]. For t ∈ J0, L− 1K, define

Tt ≜

{

J1, tK if t < l

J1, t+ 1K\{l} if t ⩾ l
,

and TL ≜ [L].

Lemma 2. For t ∈ J0, L− 1K, we have

H(KlSl|KTt
STt

X[L])

= n1{t ̸= L−1}+Ct+1−Ct +H(Kl|KTt
S[L]X[L]).

Proof. For t ∈ J0, L− 2K, we have

H(KlSl|KTt
STt

X[L])

= H(KlSlST c
t
|KTt

STt
X[L])

−H(ST c
t
|KTt∪{l}STt∪{l}X[L])

= H(ST c
t
|KTt

STt
X[L]) +H(KlSl|KTt

S[L]X[L])

−H(ST c
t
|KTt∪{l}STt∪{l}X[L])

(a)
= n(L− t− 1)− Ct +H(Kl|KTt

S[L]X[L])

−H(ST c
t
|KTt∪{l}STt∪{l}X[L])

= n(L− t− 1)− Ct +H(Kl|KTt
S[L]X[L])

−H(ST c
t
\{l}|KTt∪{l}STt∪{l}X[L])

(b)
= n(L− t− 1)− Ct +H(Kl|KTt

S[L]X[L]) + Ct+1

− n(L− (t+ 1)− 1)

= n+ Ct+1 − Ct +H(Kl|KTt
S[L]X[L]),

where (a) and (b) hold by Lemma 1. Moreover, we have

H(KlSl|KTL−1
STL−1

X[L])

(a)
= H(Kl|KTL−1

S[L]X[L])

(b)
= CL − CL−1 +H(Kl|KTL−1

S[L]X[L]),

where (a) holds by (1), (b) holds because CL−1 = 0 = CL.

■

Then, we have

H(Kl)

(a)

⩾ H(Kl) + n−H(Xl)

(b)
= H(Kl) +H(Sl)−H(Xl)

(c)
= H(KlSl)−H(Xl)

(d)
= H(KlSlXl)−H(Xl)

= H(KlSl|Xl)

(e)

⩾ H(KlSl|KT0
ST0

X[L])

⩾ H(KlSl|KT0
ST0

X[L])−H(KlSl|KTL−1
STL−1

X[L])

=

L−2
∑

i=0

[H(KlSl|KTi
STi

X[L])−H(KlSl|KTi+1
STi+1

X[L])]

(f)
=

L−3
∑

i=0

[Ci+1 − Ci − Ci+2 + Ci+1 +H(Kl|KTi
S[L]X[L])

−H(Kl|KTi+1
S[L]X[L])]

+ [n+ CL−1 − CL−2 +H(Kl|KTL−2
S[L]X[L])− CL

+ CL−1 −H(Kl|KTL−1
S[L]X[L])]

(g)

⩾ n+

L−2
∑

i=0

[Ci+1 − Ci − Ci+2 + Ci+1]

(h)
= n(1− ³),

where (a) holds by (4), (b) holds by uniformity of the users’

sequences, (c) holds by independence between the users’

sequences and the local randomness, (d) holds by Defini-

tion 1, (e) holds because conditioning reduces entropy, (f)
holds by Lemma 2, (g) holds because H(Kl|KTi

S[L]X[L]) ⩾
H(Kl|KTi+1

S[L]X[L]) for i ∈ J0, L − 2K since conditioning

reduces entropy, (h) follows from CL−1 = 0 = CL and (7).

VI. CONCLUDING REMARKS

We have studied the problem of private summation from

distributed users over a one-way, public, and noiseless channel.

Our setting generalizes the problem of secure summation

by allowing a controlled amount of information leakage for

a given set of colluding users. We have characterized the

minimum amount of required communication and shared

randomness at the users. We have also established a strong

connection between secret sharing and private summation by

showing that secret sharing is necessary to generate the local

randomness at the users.
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