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Abstract—Consider a scenario involving multiple users and
a fusion center. Each user possesses a sequence of bits and
can communicate with the fusion center through a one-way
public channel. The fusion center’s task is to compute the sum
of all the sequences under the privacy requirement that a set
of colluding users, along with the fusion center, cannot gain
more than a predetermined amount ¢ of information, measured
through mutual information, about the sequences of other users.
Qur first contribution is to characterize the minimum amount
of necessary communication between the users and the fusion
center, as well as the minimum amount of necessary shared
randomness at the users. Our second contribution is to establish
a connection between secure summation and secret sharing by
showing that secret sharing is necessary to generate the local
randomness needed for private summation, and prove that it
holds true for any § > 0.

I. INTRODUCTION

The study of distributed summation under security con-
straints is closely related to the problem of secure aggregation,
as evidenced by prior works such as [1]-[10]. This area
finds applications in distributed computing. Notably, secure
summation with zero information leakage has been extensively
explored in [5], [11]-[14].

In this paper, we extend the scope of secure sum compu-
tation to allow a controlled amount of information leakage.
Specifically, we consider L > 2 users, each owning a se-
quence, and a fusion center tasked with computing the sum
of these sequences. Our privacy requirement is to ensure that
any colluding set of users of size T, where 7' < L — 2 is
fixed, along with the fusion center, must not learn more than a
predetermined amount ¢ of information about the other users’
sequences. Furthermore, inspired by ramp secret sharing, e.g.,
[15], [16], we also introduce a private summation setting where
information leakage depends solely on the size of the colluding
user set and increases linearly with its size.

Our first contribution is deriving converse results on the
necessary communication rate of individual users to the fusion
center and the required rate of shared randomness among
users. These results are primarily established through combi-
natorial arguments. We also provide an achievability scheme
that simultaneously matches all individual converse bounds.
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Our second contribution establishes a fundamental connection
between secret sharing and private summation. When 6 = 0,
it had been established, e.g., [17] that secret sharing can
be employed to generate the local randomness at the users
for secure summation. In this study, we establish a stronger
connection between secure summation and secret sharing by
showing that secret sharing is necessary to generate the local
randomness needed for private summation, and prove that it
also holds true for any ¢ # 0.

Related work: The closest related work is [17], which
corresponds to a special case where no information leakage
is allowed, and communication rate and local randomness rate
must be equal for all users. Other studies have explored secure
computation with interactive communication from arbitrarily
correlated randomness in various settings, e.g., [18]-[21]. We
note that computation from correlated randomness that allows
information leakage is also studied in [22], [23].

The remainder of the paper is organized as follows. The
problem statement is presented in Section II. Our main results
are summarized in Section III. The proofs of our converse
results are presented in Sections IV and V. Finally, concluding
remarks are presented in Section VI.

II. PROBLEM STATEMENT

Notation: Let N, R, and QQ be the sets of natural, real, and
rational numbers, respectively. For a,b € R, define [a,b] =
[la], [b]] NN, and [a] £ [1, a].

Consider a fusion center and L users who have individual
sequences. The users communicate with the fusion center over
a one-way, public, and noiseless channel, with the aim that the
fusion center computes the sum of their sequences as described
next.

Definition 1. An  (L,n, (R™))ciny, RV, (R 1cin)
private-sum computation protocol consists of

o L users indexed in the set [L];

o L independent sequences (S);c|r], where Sequence Sy is
owned by User | € [L]| and is uniformly distributed over
the finite field F7;

o A source of global randomness shared by the L users,
independent of the sequences (S)) leg 1), and described by

. - w
U uniformly distributed over F53% " ;
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(K)
; . () nR
e L encoding functions e, : F3% " — F, ™

(K) (X)
(X) . ]Fan nik
) :

o L encoding functions e 9 x Fy — F, ;

(x)
o A decoding function d : XlE[L] F;R‘ — F3;

and operates as follows:

1) User | € [L] forms the local randomness K; = e;(U);
2) User | € [L] encodes the sequence S; as X; =
el(X)(Kl, S1) and sends X, over the public channel;

3) The fusion center computes f)[ L) 2d(X (L)) an estimate

of L) £ Xieqp) St where X1 = (Xi)ie(r)-

Then, the desired requirements for an
X K .
(L, (RE i), R, (R )iern) private-sum
computation protocol defined as in Definition 1 are as
follows.

Definition 2. Let § € Qi and T € [0,L — 2]. An
(L,n, (RI(X))le[L],R(U), (RI(K))lE[L]) private-sum computa-
tion protocol is (0, T)-private if

DIEIPIR (1)

1S XSS K7) < 6, 2

max (St XX STKT) (2)
|TIST

where for any T C [L], St £ (S))ieT and K1 = (K))ieT-

Equation (1) means that the fusion center computes the
sum X7 without errors. If the fusion center and a set 7 of
T users collude, then, Equation (2) quantifies the amount of
information that X7. leaks about Sy given the knowledge
of (E[L], 57*7 KT).

In this study, for protocols that satisfy the requirements
of Definition 2, we are interested in characterizing (i) the
minimum amount of global randomness U needed, (ii) the
minimum amount of public communication needed for each
user, (iii) the minimum amount of local randomness needed for
the users. To this end, we introduce the following quantities.

Definition 3. Let § € Q4 and T € [0, K — 2] NN, Let C be
the set of tuples A £ (R;X))IG[L] ,RWU), (RI(K))le[L]) such that
there exist (L,n, (R;X))le[L], R, (R;K))IE[L]) private-sum
computation protocols that are (0, T)-private. Then, define

(R

R™) 2 inf RX vie (L],
S

lI>

R 2 inf R Vi€ (L),

. (K)
it > &
le[L]

2 inf RW),
AeC

m/_\
- 5 3
>

=
Cl
>

Remark. In the special case 6 = 0, and when the local
randomness rates are assumed identical for all users (i.e.,
aC; € R, RZ(K) = C41,Vl € [L]), and the communication rates
are assumed identical for all users (i.e., 3Cy € R, RZ(X) =

C,Vl € [L]), then our model recovers the setting formalized
in [17].

Remark. In Definition 2, § is a rational number. However,
note that by density of Q in R, for any ¢’ € Ry, for any
€ > 0, there exists 0 € Q4 such that |6 — 0'|< e.

Remark. In Definition 2, it is sufficient to consider T €&
0,L —2]NN. If T = L, then (2) is always satisfied as the
left-hand side is equal to zero. This is also true if T = L — 1,
as Sir) can be reconstructed from (X1, S7) for any T C [L]
such that |T|=T.

III. MAIN RESULTS

We first show in Section III-A that Definition 2 can be
simplified without loss of generality. We then present our
converse and capacity results in Sections III-B and III-C,
respectively. Finally, we establish the connection between
secret sharing and shared randomness in private summation
in Section III-D.

A. Preliminaries

One can prove that in the privacy constraint (2) of Defini-
tion 2, it is sufficient to consider ¢ of the form § = na(L —1)
with @ € [0,1] N Q, i.e., (2) can be replaced by

max I(S[L];X[LHE[L]STKT) < na(L— 1). (3)

TClL]
(TIST

B. Converse results

Theorem 1 (Converse).

b'e K
(LJ%(Rz( ))ZG[L]7R(U)7(R1( ))le[L])
computation protocol that is (6 =
a € 10,1 NQ, we have

For any
private-sum
na(L — 1),T)-private,

RX > 1,vielL), (4)
el RI(K) z (1-a)L, %)
RY) > (1—a)(L-1). (6)
Proof. See Section IV. [

We now derive a converse on the individual rate of local
randomness under the following leakage symmetry assump-
tion:

vl € [0,L],3C; € Ry, VT C [L],
ITI=1 = 1(Si); X2y SrE7) = Gy (Ta)

(C1)ie[o,L—1) constantly decreases from na(L — 1) to 0.
(7b)

Equation (7a) means that information leakage to a set
of colluding users solely depends on the size of this set,
rather than being influenced by the individual identities within
the set. Equation (7b) means that the information leakage
I(Siry; X112 )STKT) constantly decreases from its max-
imal value na(L — 1) to its minimal value 0, as the size
of the set T increases from O to L — 1. In other words,
there is a uniform consideration of all users, rendering them
indistinguishable in terms of their capacity to gain information
about other users. We remark that the leakage symmetry
condition (7) is similar to the leakage symmetry assumption
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defined for ramp secret sharing, e.g., [15], [16]. Indeed, (7)
implies that for any [ € [0,L — 1], C; = na(L — 1 —1).

that
Then,

Theorem 2 (Converse).  Suppose

symmetry, ie., (7), is required.
X K

(L7n7 (Rl( ))ZG[L]aR(U)a(Rl( ))ZG[L])

computation protocol that is (6 =

a €10,11NQ, we have

leakage
for any
private-sum

na(L — 1),T)-private,

RX > 1,vie(L],
RS >1- v elL)
RY) > (1-a)(L-1)
Proof. See Section V. [

C. Capacity results
Theorem 3. For any o € [0,1] N Q, we have

R =(1-a)vielL],
Rg,? = L(1 — a), when (7) holds,
R =1vie[L],

W =1 -a)L-1)

Moreover, there exists a private-sum computation protocol that
is (0 = na(L — 1),T)-private and simultaneously achieves

X U K K
(R iy B, (R ey, RES.

The achievability proof can be obtained as a time-sharing
version of the coding scheme in [17], which proves that the
converse bounds of Section III-B are tight. The details are
omitted due to space constraints.

D. Connection between secret sharing and private summation

1) Preliminaries: We first review the notion of uniform
secret sharing with leakage, e.g., [24]-[27].

Definition 4 (Uniform secret sharing with leakage). Let o €
[0,1]NQ, ¢t € [L] and z € [t — 1]. An (a,t, 2)- secret sharing
scheme consists of

o A secret S uniformly distributed over {0,1}"<;

e A stochastic encoder e {0,1}"= x {0,1}" —
{0,137+ (S, R) + (H))ie[r), which takes as input the
secret S and a randomization sequence R uniformly
distributed over {0,1}"" and independent of S, and
outputs L shares (H))ic(r), with sum length ngp, that
are not necessarily of same length. For any S C [L], we
define Hs = (H))ies;

and satisfies the two conditions

max ]1 S 11 T — 0 Re over abllllv 8
max 1 S lizl < ()él] S 1 reva leaka e 9

and the leakage symmetry condition
1(S; H)

+ —
Vie[L],3C;, e R VT € [L],|T|=1 = HS)

=C.
(10)

As an example, a (t, A, L) ramp secret sharing scheme,
e.g., [15], [16], is a coding scheme as in Definition 4 with

0 if 1€ [0,t—A]
a=0,z=t—A,and C; £ { =2 if [ e [t — A+1,1],
1 ifleft+1,1]

meaning that any ¢ shares can reconstruct S, any set of shares
less than or equal to t— A does not leak any information about
S, and for sets of shares with cardinality in [t — A +1,¢], the
leakage increases linearly with the set cardinality.

2) Private summation and ramp secret sharing: While it
was known that secret sharing can be employed to generate the
local randomness at the users for secure summation, e.g., [17],
Theorem 4 establishes a stronger connection between secure
summation and secret sharing by showing that secret sharing is
necessary to generate the local randomness needed for secure
summation. The proof is omitted due to space constraints.

Theorem 4 (Converse). Suppose that leakage symmetry,
i.e., (7) is required, and consider an optimal private-sum
computation protocol, i.e., for all | € [L], RZ(K) = (1-a),
RI(X) =1, and RY) = (1—a)(L —1). Then, (K)),e[r) must
be the shares of a (L—1, L—1, L) ramp secret sharing scheme
where U is the secret.
IV. PROOF OF THEOREM 1
A. Communication rate converse: Proof of (4)

For any [ € [L], we have

an(X)

(a)

> H(X))

®)

> H(Xi| Sy Kopqy)

> I(Xo; B[Sy oy Koy ay)

= H(Em) S K gy) — HEm I XeSipn i Ko ay)

©
= HEw SIS Ko qy)

— HE I XSy Ko y)
(d

)
= H(S|Siphar Kiepgy) — HE [ XS Kiopgay)
(©)

= H(S|Sip Kiepny) — HE ) [ XS Kiepy)
L H(s)

(9)

)

where (a) holds by Definition 1, (b) holds because con-
ditioning reduces entropy, (c¢) holds by the chain rule, (d)
holds by the chain rule and because .S; can be reconstructed
from (X(z;, Sizp\(13) (e) holds because X7\ ;3 is a function
of (Sizpgiy> Kizpqy)» (f) holds by (1) and independence
between S; and (S|zj\qy, Kizp\qi3)> (9) holds by unifor-
mity of ;.

B. Sum-rate converse on local randomness: Proof of (5)

For any ¢ € [L], we have

an(L —1)
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> 1(Siey; Xy 12n)

= > IS5 Xyl Si—i @y Siw)
le[L i}
+ 1(Ss; XSt ¢y Zizy)

> IS Xl Sy Si)
le[LI\ {4}

Z I(Sy; Xu|Sp—1p 6y 21zy)
le[L]\{i}
S
le[LI\ {4}
= > IS XiSu—na Snzoy)
le[L]\ {4}

— I(Sy; Sp—1\ (3| 2p:0jugiy)]

)
= Z I(Si; XoSp—pn gy 12 enjugiy)
le[LI\ {4}
= Z (S Xal X nyogiy)
le[LI\ {4}
+ 1S5 Sp—p\ a3 [ X2 p:nyugay)]

(e)
©) Z I(Sy; Xi|Ep.jugay)
le[LI\{i}

= > IS XSuhua) —
1e[L\{i}

(f) Z
lelL\{i}
> > IS5 X)),
lelL\{i}
where (a) holds by (3), (b) holds because S; can be
recovered from (S[z)\ (i}, X(z]), in (c) we used the notation
By = Je{LIt1, . LU} S;, (d) holds because
I(Su; -t Zenjoiy) < 1S Zpzjugy: Si—ipgy) = 0
by independence of the users’ sequences, (e)
holds because I(Sl; S[lfl]\{i} |Xlz[l:L]u{i})
IS 2oy X Sp—ingy) < IS1Zpenyogay Kis Sp—1\())
< 1(S23:0ugyUs Sp—1\qiy) = 0 by independence of the
users’ sequences and the global randomness, (f) holds by
uniformity of the users’ sequences and because [ # 1.

I(Sy; Xo|Sp—1p\ {6y Zp:jugay)

—

I(S1; Zpjugay)]

I(Sy; Xi¥p.0jugiy)

(1)

N

Hence, by remarking that

SN I(SuX)=(L-1)> I(S;X), (12
ie[L] le[L]\{i} le[L]
from (11) and (12), we have
> I(Si; X)) < anL. (13)

le[L]

Then, we have

ZnR K)

le[L]

ZHKl

le[L]

= > H(Ki|S)

le[L]

> > I(K; Xi|S)
le[L]

= > [H(X)|S) — H(X)| K1)
le[L]

S HxS)
le[L]

- Z Xl7Sl)]
le[L]

(d)

> nl — Z Xl,Sl)

le[L]

(e)

> nL —anL

=nL(1l - ),

where (a) holds by Definition 1, (b) holds by independence
between U and Sz, (c) holds by Definition 1, (d) holds
by (4), (e) holds by (13).

C. Converse on global randomness: Proof of (6)

We have

nRU)

> H(U)

(a)

> H(Kr))

b

> H(K1)|S1))

> I(Kz); X1011S11))

= H(X(1|Sm)

= H(X{r)) — I(X[13; Spwy)
= H(X] ) I(X )5 2101571)
= H (X)) — I(X); 2iz) — 1(X (25 S [2n)

(d)

> H(X[L]) — I(Xz); ) —an(L — 1)

= H(Xy) — HX) + H(E | X)) —an(L — 1)
9 H(Xy) - n—an(L-1)

=Y H(X)|Xy_y) —n—on(L - 1)
le[L]

f)
> Y H(Xi|Sy,

le[L]

)
LN HXSpp iy Kiupyy) —n — an(L — 1)
le[L]

> Z I(X1; 2

le[L]

=2 H

l€(L)

u Ko Xp-1) —n—an(L —1)

IS Kepnqiy) —n—an(L — 1)

IS Ky

H(X | XSy Kiopy)] = n — an(L — 1)
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=

H(E Sy Kiepgy) —n —an(L = 1)

=~

le[L)]

A
1=
=

H(E Sl Sy Koy qy) —n —an(L - 1)

le[L]

> Q2 HSISunnKung) —n—an(L—1)
le[L]

WS H(S) —n— an(L - 1)
le[L]

YL - 1)1 - ),

where (a) holds by Definition 1, (b) holds because condi-
tioning reduces entropy, (c) holds because Xz is a function
of (Kjz1,S(z)). (d) holds by (3), (e) holds by uniformity of
the users’ sequences and (1), (f) holds because conditioning
reduces entropy, (g) holds because X;_;; is a function of
(Sizpngiy> Kz qiy)» (R) holds by (1) since Xz can be recon-
structed from (X7, Sz 1y, K(z)\qi3)» (i) holds by the chain
rule, (5) holds by independence between the users’ sequences
and the local randomness, (k) holds by uniformity of the users’
sequences.

V. PROOF OF THEOREM 2
Lemma 1. For any T C [L], we have
Cir =n(L = |T|-{T # [L]}) — H(S7e

The proof of Lemma 1 is omitted due to space constraints.
Fix | € [L]. For t € [0, L — 1], define

X K757).

» ) [,1] if t <1
Pl Ity it
and 77, £ [L].

Lemma 2. For t € [0, L — 1], we have

H(KZSZ|K7;S7;X[L])
=nl{t # L—1}+Cpy1—Cy + H (K| K7, S X (1))

Proof. For t € [0,L — 2], we have

H(KS|KT7, 57, X))
= H(K;SS7:|K7,57, X))
— H(S7e |Kr00yST003 X(1))
= H(S7e|K7,S7:. X1) + H(K1S)| K7, 511 X (1))
— H(S7e|Kr,uiST013 X(1))
@ n(L—t—1)—Cy+ H(K| K7, 511 X[1))
— H(Ste|[Krupy St X))
=n(L —t—1) = Cy + H(K|K7,S1) X))
— H(Ste\u3 | Koy STy X(8))

b
(L —t—1) = C + HIK| K7 Sy Xjzy) + Crin

(L - (t+1)—1)
=n-+ Ct+1 —Cy + H(K”KTtS[L]X[L]),

where (a) and (b) hold by Lemma 1. Moreover, we have

H(KlSl|KTL—ISTL—1X[L])

@ H(Ki|K7,_, S X))

b
(:) Cp—-Cr_1+ H(KZ‘KTL—l‘S’[L]X[L])’

where (a) holds by (1), (b) holds because Cp,_1 = 0 = Cf.
"

Then, we have

H(K;)

(@
2

®)

H(K;) +n— H(X;)
H(Ki) + H(S) — H(X))
© H(KS1) — H(X))

d
D H(KS,X)) — H(X)

= H(K;S| X))

(e)
H(K S| K7, 87, X (1))

P

> H (K5 K757, X)) — HEKSI| K7y, S1, X (1))
L—2

= ) _[H(KS|K7,S7, X (1)) — H(KiSI| K74, 5704, X (1))

Sl
| o

3
[Cit1 — Ci = Cipa + Cipr + H(K| K7, S X 1)

~
=

-
Il
o

— H(Ki| K7, S X(r))]

+ [n +Cr_1—Cr_o+ H(K[|KTL72S[L]X[L]) -

+CLo1 — H(Ki| K7, Sy X))
(@) L=z
> n+ Z[Ci+1 —Ci = Ciyo+ Ciya]
i=0

@) n(l —a),
where (a) holds by (4), (b) holds by uniformity of the users’
sequences, (c¢) holds by independence between the users’
sequences and the local randomness, (d) holds by Defini-
tion 1, (e) holds because conditioning reduces entropy, (f)
holds by Lemma 2, (g) holds because H (K;|K; S X)) =
H(K|K7, ., Sy X)) for i € [0, L — 2] since conditioning
reduces entropy, (h) follows from Cr,_; = 0 = Cy, and (7).

VI. CONCLUDING REMARKS

We have studied the problem of private summation from
distributed users over a one-way, public, and noiseless channel.
Our setting generalizes the problem of secure summation
by allowing a controlled amount of information leakage for
a given set of colluding users. We have characterized the
minimum amount of required communication and shared
randomness at the users. We have also established a strong
connection between secret sharing and private summation by
showing that secret sharing is necessary to generate the local
randomness at the users.
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