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Abstract—Information-theoretically secure Symmetric Private
Information Retrieval (SPIR) is known to be infeasible over
noiseless channels with a single server. Previous solutions in-
volved additional resources such as database replication, shared
randomness, or noisy channels. This paper demonstrates that,
using a noiseless multiple access channel, SPIR with information-
theoretic security guarantees is feasible without shared random-
ness, a noisy channel, or data replication. Specifically, we leverage
a noiseless binary adder channel and employ two non-colluding
servers with independent content. Furthermore, we characterize
the optimal file rates, i.e., the file lengths normalized by the
number of channel uses, that can be transferred.

I. INTRODUCTION

Consider a client who wishes to download a file from
a server such that (i) their file selection is kept private
from the server and (ii) the client does not learn any other
information beyond the selected file. This setting is referred
to as Symmetric Private Information Retrieval (SPIR). SPIR
is also known as oblivious transfer [1], which is anterior to
SPIR and a fundamental cryptographic building block that is
sufficient to implement secure multiparty computation [2], [3].

Under information-theoretic security guarantees, which is
the focus of this paper, it is well known, e.g., [4], [5],
that SPIR between a client and a single server is infeasible
over a noiseless communication channel. To overcome this
impossibility result, two approaches have previously been con-
sidered. The first approach consists in considering additional
resources at the client and server in the form of correlated
randomness, which could, for instance, be obtained through a
noisy channel between the client and the server. Specifically,
for some classes of noisy channels, SPIR is known to be
feasible under information-theoretic security, e.g., [5]-[8]. The
second approach consists in replicating data in multiple servers
and assuming that the servers share randomness, e.g., [9]-[13].
Note that with this second approach, a necessary assumption
is that only a strict subset of servers can collude against the
client, otherwise SPIR is infeasible as the setting reduces to
the case of SPIR between a client and a single server over a
noiseless channel.

This work was supported in part by NSF grant CCF-2047913 and CCF-
2401373.

In this paper, we propose to perform SPIR under
information-theoretic security guarantees without shared ran-
domness, a noisy channel, or data replication. Instead, we
leverage a noiseless binary adder channel and employ two
non-colluding servers. Specifically, we consider SPIR between
one client and two non-colluding servers. We assume the
client wishes to obtain one file from each server such that
(i) the file selection remains private from the servers, (ii) the
unselected files remain unknown to the receiver, and (iii) one
server does not learn anything about the content of the other
server. As formally described in Section II, in our setting,
the servers and the client can communicate over a noiseless
channel and have access to a noiseless adder multiple-access
channel, but no noisy channels nor pre-shared correlated
randomness are available at the parties. While an information-
theoretically secure SPIR is impossible if the client engages in
independent protocols with each of the servers, we show that
a multiuser protocol between the client and the two servers
can enable information-theoretically secure SPIR with positive
rates for both servers simultaneously. Additionally, we fully
characterize the capacity region for this setting.

The remainder of the paper is organized as follows. We
formally introduce the setting in Section II and state our main
results in Section III. We prove our converse and achievability
results in Section IV and V, respectively. Finally, we provide
concluding remarks in Section VI

II. PROBLEM STATEMENT

Notation: For a,b € R, define [a,b] = [|a], [b]] N N. For
any z € {0,1}, define Z = 1 — 2. For a vector X™ of length
n, for any set S C [1,n], let X™[S] denote the components
of X™ whose indices are in S.

Consider a binary adder multiple access channel (MAC)
(Y, Py|x, x5, X1 X A2) defined by

Y £ X + Xo, )

where Y € Y £ {0, 1,2} is the output and X;, Xp € &} =
X, £ {0,1} are the inputs. In the following, we assume
that all the participants in the protocol are honest-but-curious,
i.e., strictly follow the protocol. The setting is summarized in
Figure 1 and formally described in the following definitions.
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Fig. 1. Dual-source symmetric private information retrieval between one client
and two servers who have access to a public channel and a binary adder MAC
as described in (1). The file selection of the clientis (Z1, Z2) € L£1 X L2, i.e.,
the client wish to obtain (F z, , F, z,) from the servers with the constraints
that the client must not learn information about (Fy .\ (213 P2, 00\{ ZQ}),
(Z1, Z2) must remain private from both servers, and Server 1 must not learn
information about Server 2’s content, and vice versa for Server 2.

Definition 1. An (n, Ly, Lo, 2"%1 2"F2) dual-source SPIR
protocol consists of

o Two non-colluding servers and one client;

e For i € {1,2}, L; independent random variables
(Fi1)iec, uniformly distributed over {0,1}"Fi, where
L; & [1, L], which represent L; files stored at Server i;

o Uy, Uy, Us, three independent random variables, which
represent local randomness available at the client, Server
1, and Server 2, respectively;

o 71, Za, two independent random variables uniformly
distributed over Ly and Lo, respectively, which repre-
sent the client file choice for Servers 1, and 2, i.e.,
(Z1,7Z3) = (i,7) means that the client is requesting the
files (Fy ;, Fs ;), where (i,7) € L1 x La;

and operates as follows from time t =1 to time t = n,

o The servers send ((X1)i,(X2):) € X1 x Xa over
the binary adder MAC (1) and the client observes
Y; £ (X1)¢ + (Xa);, where (X1); and (X2); are func-
tions of Viy & (Fiz,, U1, (A1)ieq1—1)) and Vay =
(F2,25, U2, (A24)iequ,i—1]) respectively;

e Next, the servers and the client are allowed to
communicate, possibly interactively in r; rounds of
communication, over a noiseless channel. Specifically,
for j € [1,74], Servers 1 and 2 form and publicly
send the messages M (j) and My (j), respectively,
which are functions of (Vis,(Mo1,:(m))mef,j—1])
and (Va,t,(Mo2,:(m))meq1,j—17), respectively. The
client forms and publicly sends the messages
Moa1.4(j) and Myoy(j), which are functions of
(Z1,Uos (A1i)ieqi—11, Y5 (M1, (m))meqn i) and
(227 Uo, (AQ,i)ie[[l,t—l]]7Yta (Mz,t(m))me[[l,j]]),
respectively. Let Ay £ (Moa,(5), M14(5))jeqim]
and Asy £ (Moy2,t(5), M2,¢(j))jeqi,r,] represent all

the messages publicly exchanged between the t-th and
t + 1-th channel use.

Define the entire public communication by A = (A1, Ay)
with Ay £ (A1) ieq1,n) and Az = (Agy)iei ng. Finally, the
client forms Fl,Zp an estimate of Fy z,, from (Y™, Uy, Ay),
and F27Z2, an estimate of Fy z,, from (Y™, Uy, Ag).

Definition 2. A rate pair (Ri,R3) is achievable if there
exists a sequence of (n, Ly, Lo, 2" 2782 dyal-source SPIR
protocols such that

nli_{I;oP [(ﬁl,ZNF\Q,Zg) # (Fl,Z17F2,Z2)] =0, (2
11&11 I(FL‘ClX{LUlA;leQ) == O, (3)
lim I (F27LZX2HU2A; leg) = 0, (4)
n—00
nl;rr;o I(Fl’ngIlUlA; FQ,L2) = 0, (5)
lim I(Fp.c, X3UsA; Fiz,) =0, (6)
nhan;oj (21Z2YnU0A;F17L1\{Z1}F27£2\{Z2}) =0. (7)

The set of all achievable rate pairs is called the dual-source
SPIR capacity region and is denoted by Csprz (L1, L2).

Equation (2) ensures that the client obtains the selected
files. Equations (3) and (4) ensure the client’s privacy by
keeping the file selection (Z7, Z5) private from Server 1 and
Server 2, respectively. Note that (F; ¢,, X, U;, A) represents
all the information available at Server ¢ € {1,2} at the end of
the protocol. Equation (5) (respectively Equation (6)) ensures
Server 2’s (respectively Server 1’s) privacy with respect to
Server 1’s (respectively Server 2’s). Equation (7) ensures the
servers’ privacy by keeping all the non-selected files private
from the client. Note that (Z;, Z2, Y™, Uy, A) represents all
the information available at the client at the end of the protocol

Note that, if the servers are colluding, then no positive
rates are achievable, as the setting reduces to an SPIR setting
between one client and one server over a noiseless channel, for
which it is known that information-theoretic security cannot
be achieved, e.g., [10].

ITII. MAIN RESULTS
Our main results provide a full characterization of the dual-
source SPIR capacity region.

Theorem 1. The dual-source SPIR capacity region is
Cspr2 (L1, L2)

1
= {(Rl»Rz) (L1 — )Ry + (Ly — )Ry < 2}.

Moreover, any rate pair in Csprz (L1, L2) is achievable with-
out time-sharing.

Proof. The converse and achievability are proved in Sec-
tions IV and V, respectively. [
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Fig. 2. The x-coordinate (resp. y-coordinate) of Cspir is defined as the
SPIR capacity between Server 1 (resp. Server 2) and client in the absence of
Server 2 (resp. Server 1), i.e., Cspir = (0,0). Cgpr2 (L1, L2) is the dual-
source SPIR capacity region.

Corollary 1. If Servers 1 and 2 have the same number of files,
ie, L1 =L = Lo, then

Cspir2 (L) = {(RhRQ) i Ri+ Ry < 2(L11)}

Moreover, if L1 = L = Lo and the files on both servers have
the same size, i.e, nR1 = nR = nRs, then

Cspr2 (L) = {(RR) PR < 4(Ll_l)} :

The results contrast with the case where the client performs
independent SPIR with each of the two servers, since in this
case it is known that information-theoretic SPIR is impossible
in the absence of additional resources such as shared random-
ness, a noisy channel, or data replication. We illustrate this
point in Figure 2.

Note that when L; = Ly = 2 and when the constraints (5)
and (6) are ignored, the capacity region of the associated
problem had been determined in our previous work [14].

IV. CONVERSE PART OF THEOREM 1

We first establish the following outer bound on the dual-
source SPIR capacity region.

Proposition 1. The dual-source SPIR capacity region is
such that

Cspr2 (L1, L2) C

{(Rl, Rg) : (Ll - 1)R1 +(L2 —1)R2 g max H(X1X2|Y)}

PX,1PXo

Proof. Consider a sequence of (n, Ly, Lo, 2" 27%2) dual-
source SPIR protocols that achieve the rate pair (R;, R2). We
prove the outer bound through a series of lemma.

Lemma 1. For any z1, 20 € L1 X Lo, we have

I(Fi . Y"Uo| XT A1, Z) = 21,20 = 23) = 0, ®)
I(F2722;YHU0|X§'A2, Zl = Zl,ZQ = 22) =0. (9)

Proof. 1t is sufficient to prove (8), as the proof of (9) can be
obtained by exchanging the roles of the servers. Define for

t e [Ln], i€ [1,m], Aveaa 2= (Moa,e(5), M1e(5)) e
the messages sent and received by Server 1 between the first
and the ¢-th communication exchanges with the client that
happen after the ¢-th channel use. Let A} £ (A1 1.0,)je,4]
be all the messages sent and received by Server 1 before the
t + 1-th channel use. Let ¢ € [1,n] and j € [1,7;]. For
convenience, we also write Z £ (Z;, Z,). Then, we have

I(Fy 0, U YU | XEAT Ay 14 7) (10)
= I(Fy,2,U; Y'Uo | X{ ATV Ay g 15— 1) Mo 1, () M1 () Z)
<I(Fy 2, Ui YUMo ()| XA Ay i1y Ma 1 () Z)

@ (e, Uy YU XA Ay 4 1,5-1) Mi 4 (5)Z)

<I(Fy 0, UMy (5); YU | XEAY Ay (-1 Z)
b

& I(Fye, U YU XA ALy Z) (11)
(c)

< I(Fy o, U YU | XA 2, Z,)

d _ _

D 1Py, U Y LU XA Z)

SI(Fy 2, Ul (X)) YT U XAV Z)

© [(Fye, U YU X1 A7), (12)
where (a) holds by the chain rule and be-
cause by definition My;,.(j) is a function of
(Zla227UOuYt7A§717Al,t,l:(j—l)le,t(j))3 (b) holds

by the chain rule and because M;,(j) is a function of
(FLLI,Ul,A‘i_l,ALt’l:(j,l)), (¢) holds by repeating j — 1
times the steps between Equations (10) and (11), (d) holds
because (Fy r,,U;) — (Y1 Uy, Xi, ALY Z) — Y; forms a
Markov chain, (e) holds by the chain rule and because (X1);
is a function of (Fy r,,U;, A{™'). Then, for any ¢ € [1,n],
we have

I(FLLI Ul; YtU0|X{AiZ)

(@)
< I(Fy o, U Y U XAV Z) (13)
(b)

< I(F12,U; Uo|Z)

=0, (14)

where (a) holds by taking j = r; in (12), (b) holds by using
t — 1 times (13). Next, for any 21, 22 € £1 X Lo, we have

I(Fy ;Y U | XT' A1, Z1 = 21, Zo = 22)
SI(Fi0, U Y "Uo| XT AL Zy = 21, 22 = 22)
< (P(Z1,Z2) = (21,22)]) M (Fy 2, U; Y"Uo| X7 AL Z)
pu— O7

where the last equality holds by taking ¢ = n in (14). L]

Next, using Lemma 1, we prove Lemma 2.

Lemma 2. We have

H(F17£1\{Z1}|X?AZ1Z2) = O(TL),
H(F27£1\{ZZ}|X§LAZ1Z2) = O(H)

15)
(16)
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Proof. 1t is sufficient to prove (15), as the proof of (16) can
be obtained by exchanging the roles of the servers. For any
21,22 € L1 X Lo, We write El\{zl} = {’}/,L' 11 E [[I,Ll — 2]]},
and we have

H(Fl,ﬁl\{z1}|X{LAa Iy =21,29 = 22)

S H(Fy £\ {20} |XT A1, 20 = 21, 22 = 20)

(a)
< H(F g\ (20} | XTAL 2y =71, Z2 = 23)

+ 6B VI 2y [I(Fy 2,0 () XT At Z122) + 1

(b)
< H(Fy o\ (2} [ X7 A1, Z1 = 71, Z2 = 22) + o(n)

(<) H(Fy £\ {20} | XT AL Z0 =71, 22 = 2)
+ H(F1 1, | XT A1, 21 =71, Z2 = 22) + o(n)

(@) Ll

< Y H(Fiy,| X7 Ay, 21 =i, Za = 22) + o(n)
Lo

DN H(F L, Y UXT AL 21 = yi, Zo = 22) + o(n)
=1

() = .

< Y H(PL Y VoA Py, 21 = i, Zo = 22) + o(n)
=1

(9)

< o(n), 17

where (a) holds by [8, Lemma 3], (b) holds by (3), (c) holds
by the chain rule and because conditioning reduces entropy,
(d) holds by repeating Ly — 2 times the steps between (a)
and (c), (e) holds by Lemma 1, (f) holds because for any
i € [1,Ly —2], F1,, is a function of (Y™, Uy, A4), (g) holds
by Fano’s inequality and (2). Finally, we have

H(Fy £\{z,}| X1 A12122)

=Y P((Z1,Z2) = (21, 20)]

%2 )X H(Fy g\ (2, )| XT A1, Zh = 21, Z2 = 29)

= O(”)?

where the last equality holds by (17).
n

Next, using Lemma 2 we obtain the following lemma.
Lemma 3. We have

H(Fy p)\(z3F2.c0\{2:}1212Z2) < H(XTXZ|Y") 4 o(n).
Proof. We have

H(Fy c)\(z3F2,c0\{2:}12122)
= H(F\ £\ (23 Fo,00\(2.1 Y AZ1Z5)

+ I(Fy oo\ {21 Fo.c\(2:};: Y Al Z1 Z5)
S H(Fy ez Fo.c\{z,}|Y"AZ1 Z5)

+I(Fy e\ gzy Fo,e0\§ 21 Y " AZ1 Z5)

(a)
< H(Fy ez Fo ez Y AZ1 Z2) + o(n)
S H(Fy ez Fo.c0\{z,) X1 X3 |Y"AZ1Z5) + o(n)

= H(X'XP|Y"AZ\Z,)
+ H(Fl,[,1\{Z1}F2,£1\{Z2} ‘X{LXSY”AZ1Z2) + O(TL)

(v)
< HXTXSY") + H(Fy£,\(2,}| X1 AZ122)

+ H(F27ﬁl\{22}|XgAzlzg) —+ O(TL)
(¢)
< H(XTXD|Y™) + o(n),

where (a) holds by (7), (b) holds by the chain rule and because
conditioning reduces entropy, (c¢) holds by Lemma 2. ]

Finally, we have
(Ll — 1)71R1 + (LQ - 1)TLR2
(a)
= H(Fy c\(z3F2,c0\{2:}12122)

(b)
< H(XPXZY™) + o(n)

3 (X0 (Xa)lY0) + o)

D H((X1) 1 (Xa)2|YoT) + o(n)

< nH((X1)r(X2)r[Yr) + o(n)

(e)

< n max H(X1X2|Y) + o(n),

PX1PXo

where (a) holds by independence and uniformity of the files,
(b) holds by Lemma 3, (¢) holds by the chain rule and because
conditioning reduces entropy, (d) holds by defining T as the
uniform random variable over [1,n], and in (e) we have
defined Y £ X; + Xo. =

By Proposition 1, it is sufficient to [14, Lemma 5] to obtain
the converse part of Theorem 1.

V. ACHIEVABILITY PART OF THEOREM 1
For clarity of presentation, we focus on the case L; = Lo.
Specifically, we present our coding scheme in Section V-B,
which shows that the case L; = Lo can be reduced to the
special case L; = Lo = 2, which we treat in Section V-A.

A. Special case L1 = Ly =2

Consider the coding scheme in Algorithm 1. Since (2), (3),
(4), (7) can be proved as in [14], we only have to prove (5)
and (6). Next, we have

I(F1 1 F1oXTA;F1Fa ) (18)

@ I(F1,1Fl,QX?M20M21Sél)S§1)552)59; F51F5 )
@,
where (a) holds because (Mjg,M;1) is a function of
(X{L7F1’17F172,S(()1),S§1)), (b) holds by a modified version
of the one-time pad lemma. By exchanging the roles of the
servers we also have

I(Fg’]_FQ)QXSA; F]_JF]_’Q) =0.
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Algorithm 1 Dual-source SPIR when L = Ly = 2

Require: ¢ < 1/2 and « € [0, 1].
1: The servers use the channel (1) as follows:

a: Consider (X7, X7) distributed according to the uniform
distribution over {0, 1}?"

b: Servers 1 and 2 send X7' and X7, respectively, over
the channel (1)

c: The client observes Y™ £ X7 + X7

2: Upon observation of Y, the client
a: Defines
G2 {ic[Ln]:Y;€{0,2}},B2 {ic[Ln]:Y,=1);
b: Defines M = min(|G|, |B]);

c: Constructs Gy, Gs such that G; UGs C G, G1 NGy = 0,
and (|G Ga) = (aM, aM):

d: Constructs By, By such that B; UBy C B, BiNBy =0,
and (|B1], |Bz2|) = (aM,aM);
e: Defines for ¢ € {1,2}

i i ifZ;=0 i B;
s e g s

Bi if ZZ =1 gi
Note that when Z; = 4, i € {0,1}, j € {1,2}, the client

can determine X' [SZ-(j )] .

3. If

it Z;=0
if Z; =1

S 19)

then the client sends to Servers 1 and 2 the sets
Sél), Sil), S(()z), S§2), otherwise the client aborts the pro-
tocol.

M_l‘gn—t

4: The public communication of the servers is as follows:

a: Server 1 sends to the client (Mg, M71) where
(Mg, M) 2 (XP[SV) @ Fry, XPIS{V) @ Fi ).

b: Server 2 sends to the client (Mag, Maq) where
(Mao, Ma1) 2 (X5[S$D) @ Fa1, X315 @ Fa).

5: The client obtains its file selection as follows:
a If Z; =4 € {0, 1}, then the client determines X7’ [Si(l)]
and computes M;; & X{L[Si(l)] = [ ;.
b: If Zy =i € {0,1}, then the client determines X7 [Si@)]
and computes Mo; ® XS[SZ@)] =Fy;.

s

B. Case L1 = Lo

The idea is to construct a coding scheme for the general
case by utilizing multiple times Algorithm 2 developed for
the case L = Lo = 2. This reduction idea is well known in
the context of oblivious transfer, e.g., [15]. Our coding scheme
is described in Algorithm 2. The analysis of Algorithm 2 is
omitted due to space constraints.

Algorithm 2 Dual-source SPIR when L; = Lo

Require: L — 2 sequences (Si,)ieq1,z—2] uniformly dis-
tributed over {0,1}"%, L — 2 sequences (S2,¢)sef1,1—2]
uniformly distributed over {0,1}"f2, the file selection
(Zl, ZQ) € £1 X EQ

1: Server j € [1,2] forms (C}t)seqr,L—17 as follows:

(Cja[1],Cia2) & (Fya, S5,1)
(Cja[1], Cial2]) 2 (Fjt @ Sje—1, 8501 @ Sjt)
(Cjp-1(1),Cj1-1[2) & (Fj.L-1©Sj 12,5 L—2®F; 1)

where t € [2,L — 2]. Then, For ¢t € [1,L — 1], define
Cja = (Ciel1], Cye[2])

2: The client forms (Z; ¢, Z;t)jeq,2],tef1,0—1] as follows:
Zis =1+ 1{t < Z;}, Vvt € [1,L —1],Vj € [1,2]

3 for te€[1,L —1] do

: The client and the two servers perform the SPIR
protocol in Algorithm 1 with the two sequences
(Cj,¢[1],C;4[2]) at Server j € [1,2] and the selection
(Z1,1, Za,) for the client.

The subscript ¢ is used in the notation of the random
variables (X7, X3';,Y/", Ay, Z14, Zo,¢) involved in this
SPIR protocol.

5: end for
6: By Lines 2-5, the client can form for j € [1, 2]

i {cj,zjm @2 Oul2l 7 <L
3,25 —

D7, Crul2] if Z; =1L

VI. CONCLUDING REMARKS

We studied information-theoretically secure SPIR in the
absence of shared randomness, a noisy channel, and data repli-
cation. Instead, we leveraged a noiseless binary adder channel
and two non-colluding servers with independent content and
characterized the capacity region for this setting. While we
considered honest-but-curious parties, an open problem is to
address malicious parties who might attempt to cheat.
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