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Abstract—Information-theoretically secure Symmetric Private
Information Retrieval (SPIR) is known to be infeasible over
noiseless channels with a single server. Previous solutions in-
volved additional resources such as database replication, shared
randomness, or noisy channels. This paper demonstrates that,
using a noiseless multiple access channel, SPIR with information-
theoretic security guarantees is feasible without shared random-
ness, a noisy channel, or data replication. Specifically, we leverage
a noiseless binary adder channel and employ two non-colluding
servers with independent content. Furthermore, we characterize
the optimal file rates, i.e., the file lengths normalized by the
number of channel uses, that can be transferred.

I. INTRODUCTION

Consider a client who wishes to download a file from

a server such that (i) their file selection is kept private

from the server and (ii) the client does not learn any other

information beyond the selected file. This setting is referred

to as Symmetric Private Information Retrieval (SPIR). SPIR

is also known as oblivious transfer [1], which is anterior to

SPIR and a fundamental cryptographic building block that is

sufficient to implement secure multiparty computation [2], [3].

Under information-theoretic security guarantees, which is

the focus of this paper, it is well known, e.g., [4], [5],

that SPIR between a client and a single server is infeasible

over a noiseless communication channel. To overcome this

impossibility result, two approaches have previously been con-

sidered. The first approach consists in considering additional

resources at the client and server in the form of correlated

randomness, which could, for instance, be obtained through a

noisy channel between the client and the server. Specifically,

for some classes of noisy channels, SPIR is known to be

feasible under information-theoretic security, e.g., [5]–[8]. The

second approach consists in replicating data in multiple servers

and assuming that the servers share randomness, e.g., [9]–[13].

Note that with this second approach, a necessary assumption

is that only a strict subset of servers can collude against the

client, otherwise SPIR is infeasible as the setting reduces to

the case of SPIR between a client and a single server over a

noiseless channel.

This work was supported in part by NSF grant CCF-2047913 and CCF-
2401373.

In this paper, we propose to perform SPIR under

information-theoretic security guarantees without shared ran-

domness, a noisy channel, or data replication. Instead, we

leverage a noiseless binary adder channel and employ two

non-colluding servers. Specifically, we consider SPIR between

one client and two non-colluding servers. We assume the

client wishes to obtain one file from each server such that

(i) the file selection remains private from the servers, (ii) the

unselected files remain unknown to the receiver, and (iii) one

server does not learn anything about the content of the other

server. As formally described in Section II, in our setting,

the servers and the client can communicate over a noiseless

channel and have access to a noiseless adder multiple-access

channel, but no noisy channels nor pre-shared correlated

randomness are available at the parties. While an information-

theoretically secure SPIR is impossible if the client engages in

independent protocols with each of the servers, we show that

a multiuser protocol between the client and the two servers

can enable information-theoretically secure SPIR with positive

rates for both servers simultaneously. Additionally, we fully

characterize the capacity region for this setting.

The remainder of the paper is organized as follows. We

formally introduce the setting in Section II and state our main

results in Section III. We prove our converse and achievability

results in Section IV and V, respectively. Finally, we provide

concluding remarks in Section VI.

II. PROBLEM STATEMENT

Notation: For a, b ∈ R, define Ja, bK ≜ [+a,, +b,] ∩ N. For

any z ∈ {0, 1}, define z̄ ≜ 1 − z. For a vector Xn of length

n, for any set S ¦ J1, nK, let Xn[S] denote the components

of Xn whose indices are in S .

Consider a binary adder multiple access channel (MAC)

(Y, pY |X1X2
,X1 ×X2) defined by

Y ≜ X1 +X2, (1)

where Y ∈ Y ≜ {0, 1, 2} is the output and X1, X2 ∈ X1 ≜
X2 ≜ {0, 1} are the inputs. In the following, we assume

that all the participants in the protocol are honest-but-curious,

i.e., strictly follow the protocol. The setting is summarized in

Figure 1 and formally described in the following definitions.
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Fig. 1. Dual-source symmetric private information retrieval between one client
and two servers who have access to a public channel and a binary adder MAC
as described in (1). The file selection of the client is (Z1, Z2) ∈ L1×L2, i.e.,
the client wish to obtain (F1,Z1

, F2,Z2
) from the servers with the constraints

that the client must not learn information about (F1,L1\{Z1}, F2,L2\{Z2}),
(Z1, Z2) must remain private from both servers, and Server 1 must not learn
information about Server 2’s content, and vice versa for Server 2.

Definition 1. An (n, L1, L2, 2
nR1 , 2nR2) dual-source SPIR

protocol consists of

• Two non-colluding servers and one client;

• For i ∈ {1, 2}, Li independent random variables

(Fi,l)l∈Li
uniformly distributed over {0, 1}nRi , where

Li ≜ J1, LiK, which represent Li files stored at Server i;
• U0, U1, U2, three independent random variables, which

represent local randomness available at the client, Server

1, and Server 2, respectively;

• Z1, Z2, two independent random variables uniformly

distributed over L1 and L2, respectively, which repre-

sent the client file choice for Servers 1, and 2, i.e.,

(Z1, Z2) = (i, j) means that the client is requesting the

files (F1,i, F2,j), where (i, j) ∈ L1 × L2;

and operates as follows from time t = 1 to time t = n,

• The servers send ((X1)t, (X2)t) ∈ X1 × X2 over

the binary adder MAC (1) and the client observes

Yt ≜ (X1)t + (X2)t, where (X1)t and (X2)t are func-

tions of V1,t ≜ (F1,L1
, U1, (A1,i)i∈J1,t−1K) and V2,t ≜

(F2,L2
, U2, (A2,i)i∈J1,t−1K), respectively;

• Next, the servers and the client are allowed to

communicate, possibly interactively in rt rounds of

communication, over a noiseless channel. Specifically,

for j ∈ J1, rtK, Servers 1 and 2 form and publicly

send the messages M1,t(j) and M2,t(j), respectively,

which are functions of (V1,t, (M0,1,t(m))m∈J1,j−1K)
and (V2,t, (M0,2,t(m))m∈J1,j−1K), respectively. The

client forms and publicly sends the messages

M0,1,t(j) and M0,2,t(j), which are functions of

(Z1, U0, (A1,i)i∈J1,t−1K, Y
t, (M1,t(m))m∈J1,jK) and

(Z2, U0, (A2,i)i∈J1,t−1K, Y
t, (M2,t(m))m∈J1,jK),

respectively. Let A1,t ≜ (M0,1,t(j),M1,t(j))j∈J1,rtK

and A2,t ≜ (M0,2,t(j),M2,t(j))j∈J1,rtK represent all

the messages publicly exchanged between the t-th and

t+ 1-th channel use.

Define the entire public communication by A ≜ (A1,A2)
with A1 ≜ (A1,t)t∈J1,nK and A2 ≜ (A2,t)t∈J1,nK. Finally, the

client forms F̂1,Z1
, an estimate of F1,Z1

, from (Y n, U0,A1),
and F̂2,Z2

, an estimate of F2,Z2
, from (Y n, U0,A2).

Definition 2. A rate pair (R1, R2) is achievable if there

exists a sequence of (n, L1, L2, 2
nR1 , 2nR2) dual-source SPIR

protocols such that

lim
n→∞

P

[
(F̂1,Z1

, F̂2,Z2
) ̸= (F1,Z1

, F2,Z2
)
]
= 0, (2)

lim
n→∞

I (F1,L1
Xn

1 U1A;Z1Z2) = 0, (3)

lim
n→∞

I (F2,L2
Xn

2 U2A;Z1Z2) = 0, (4)

lim
n→∞

I(F1,L1
Xn

1 U1A;F2,L2
) = 0, (5)

lim
n→∞

I(F2,L2
Xn

2 U2A;F1,L1
) = 0, (6)

lim
n→∞

I
(
Z1Z2Y

nU0A;F1,L1\{Z1}F2,L2\{Z2}

)
= 0. (7)

The set of all achievable rate pairs is called the dual-source

SPIR capacity region and is denoted by CSPIR2(L1, L2).

Equation (2) ensures that the client obtains the selected

files. Equations (3) and (4) ensure the client’s privacy by

keeping the file selection (Z1, Z2) private from Server 1 and

Server 2, respectively. Note that (Fi,Li
, Xn

i , Ui,A) represents

all the information available at Server i ∈ {1, 2} at the end of

the protocol. Equation (5) (respectively Equation (6)) ensures

Server 2’s (respectively Server 1’s) privacy with respect to

Server 1’s (respectively Server 2’s). Equation (7) ensures the

servers’ privacy by keeping all the non-selected files private

from the client. Note that (Z1, Z2, Y
n, U0,A) represents all

the information available at the client at the end of the protocol

Note that, if the servers are colluding, then no positive

rates are achievable, as the setting reduces to an SPIR setting

between one client and one server over a noiseless channel, for

which it is known that information-theoretic security cannot

be achieved, e.g., [10].

III. MAIN RESULTS

Our main results provide a full characterization of the dual-

source SPIR capacity region.

Theorem 1. The dual-source SPIR capacity region is

CSPIR2(L1, L2)

=

{
(R1, R2) : (L1 − 1)R1 + (L2 − 1)R2 ⩽

1

2

}
.

Moreover, any rate pair in CSPIR2(L1, L2) is achievable with-

out time-sharing.

Proof. The converse and achievability are proved in Sec-

tions IV and V, respectively. ■
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Fig. 2. The x-coordinate (resp. y-coordinate) of CSPIR is defined as the
SPIR capacity between Server 1 (resp. Server 2) and client in the absence of
Server 2 (resp. Server 1), i.e., CSPIR = (0, 0). CSPIR2 (L1, L2) is the dual-
source SPIR capacity region.

Corollary 1. If Servers 1 and 2 have the same number of files,

i.e., L1 = L = L2, then

CSPIR2(L) =

{
(R1, R2) : R1 +R2 ⩽

1

2(L− 1)

}
.

Moreover, if L1 = L = L2 and the files on both servers have

the same size, i.e, nR1 = nR = nR2, then

CSPIR2(L) =

{
(R,R) : R ⩽

1

4(L− 1)

}
.

The results contrast with the case where the client performs

independent SPIR with each of the two servers, since in this

case it is known that information-theoretic SPIR is impossible

in the absence of additional resources such as shared random-

ness, a noisy channel, or data replication. We illustrate this

point in Figure 2.

Note that when L1 = L2 = 2 and when the constraints (5)

and (6) are ignored, the capacity region of the associated

problem had been determined in our previous work [14].

IV. CONVERSE PART OF THEOREM 1

We first establish the following outer bound on the dual-

source SPIR capacity region.

Proposition 1. The dual-source SPIR capacity region is

such that

CSPIR2(L1, L2) ¦{
(R1, R2) : (L1−1)R1+(L2−1)R2 ⩽ max

pX1
pX2

H(X1X2|Y )

}
.

Proof. Consider a sequence of (n, L1, L2, 2
nR1 , 2nR2) dual-

source SPIR protocols that achieve the rate pair (R1, R2). We

prove the outer bound through a series of lemma.

Lemma 1. For any z1, z2 ∈ L1 × L2, we have

I(F1,z1 ;Y
nU0|Xn

1 A1, Z1 = z1, Z2 = z2) = 0, (8)

I(F2,z2 ;Y
nU0|Xn

2 A2, Z1 = z1, Z2 = z2) = 0. (9)

Proof. It is sufficient to prove (8), as the proof of (9) can be

obtained by exchanging the roles of the servers. Define for

t ∈ J1, nK, i ∈ J1, rtK, A1,t,1:i ≜ (M0,1,t(j),M1,t(j))j∈J1,iK

the messages sent and received by Server 1 between the first

and the i-th communication exchanges with the client that

happen after the t-th channel use. Let At
1 ≜ (A1,j,1:rj )j∈J1,tK

be all the messages sent and received by Server 1 before the

t + 1-th channel use. Let t ∈ J1, nK and j ∈ J1, rtK. For

convenience, we also write Z ≜ (Z1, Z2). Then, we have

I(F1,L1
U1;Y

tU0|Xt
1A

t−1
1 A1,t,1:jZ) (10)

= I(F1,L1
U1;Y

tU0|Xt
1A

t−1
1 A1,t,1:(j−1)M0,1,t(j)M1,t(j)Z)

⩽ I(F1,L1
U1;Y

tU0M0,1,t(j)|Xt
1A

t−1
1 A1,t,1:(j−1)M1,t(j)Z)

(a)
= I(F1,L1

U1;Y
tU0|Xt

1A
t−1
1 A1,t,1:(j−1)M1,t(j)Z)

⩽ I(F1,L1
U1M1,t(j);Y

tU0|Xt
1A

t−1
1 A1,t,1:(j−1)Z)

(b)
= I(F1,L1

U1;Y
tU0|Xt

1A
t−1
1 A1,t,1:(j−1)Z) (11)

(c)

⩽ I(F1,L1
U1;Y

tU0|Xt
1A

t−1
1 Z1Z2)

(d)
= I(F1,L1

U1;Y
t−1U0|Xt

1A
t−1
1 Z)

⩽ I(F1,L1
U1(X1)t;Y

t−1U0|Xt−1
1 At−1

1 Z)

(e)
= I(F1,L1

U1;Y
t−1U0|Xt−1

1 At−1
1 Z), (12)

where (a) holds by the chain rule and be-

cause by definition M0,1,t(j) is a function of

(Z1, Z2, U0, Y
t, At−1

1 , A1,t,1:(j−1),M1,t(j)), (b) holds

by the chain rule and because M1,t(j) is a function of

(F1,L1
, U1, A

t−1
1 , A1,t,1:(j−1)), (c) holds by repeating j − 1

times the steps between Equations (10) and (11), (d) holds

because (F1,L1
, U1) − (Y t−1, U0, X

t
1, A

t−1
1 ,Z) − Yt forms a

Markov chain, (e) holds by the chain rule and because (X1)t
is a function of (F1,L1

, U1, A
t−1
1 ). Then, for any t ∈ J1, nK,

we have

I(F1,L1
U1;Y

tU0|Xt
1A

t
1Z)

(a)

⩽ I(F1,L1
U1;Y

t−1U0|Xt−1
1 At−1

1 Z) (13)

(b)

⩽ I(F1,L1
U1;U0|Z)

= 0, (14)

where (a) holds by taking j = rt in (12), (b) holds by using

t− 1 times (13). Next, for any z1, z2 ∈ L1 × L2, we have

I(F1,z1 ;Y
nU0|Xn

1 A1, Z1 = z1, Z2 = z2)

⩽ I(F1,L1
U1;Y

nU0|Xn
1 A1, Z1 = z1, Z2 = z2)

⩽ (P[(Z1, Z2) = (z1, z2)])
−1I(F1,L1

U1;Y
nU0|Xn

1 A1Z)

= 0,

where the last equality holds by taking t = n in (14). ■

Next, using Lemma 1, we prove Lemma 2.

Lemma 2. We have

H(F1,L1\{Z1}|Xn
1 AZ1Z2) = o(n), (15)

H(F2,L1\{Z2}|Xn
2 AZ1Z2) = o(n). (16)

2666Authorized licensed use limited to: University of Texas at Arlington. Downloaded on September 20,2024 at 02:28:59 UTC from IEEE Xplore.  Restrictions apply. 



Proof. It is sufficient to prove (15), as the proof of (16) can

be obtained by exchanging the roles of the servers. For any

z1, z2 ∈ L1 ×L2, we write L1\{z1} = {γi : i ∈ J1, L1 − 2K},

and we have

H(F1,L1\{z1}|Xn
1 A, Z1 = z1, Z2 = z2)

⩽ H(F1,L1\{z1}|Xn
1 A1, Z1 = z1, Z2 = z2)

(a)

⩽ H(F1,L1\{z1}|Xn
1 A1, Z1 = γ1, Z2 = z2)

+ 6nR1

√
ln 2

√
I(F1,L1\{z1}X

n
1 A1;Z1Z2) + 1

(b)

⩽ H(F1,L1\{z1}|Xn
1 A1, Z1 = γ1, Z2 = z2) + o(n)

(c)

⩽ H(F1,L1\{z1,γ1}|Xn
1 A1, Z1 = γ1, Z2 = z2)

+H(F1,γ1
|Xn

1 A1, Z1 = γ1, Z2 = z2) + o(n)

(d)

⩽

L1−1∑

i=1

H(F1,γi
|Xn

1 A1, Z1 = γi, Z2 = z2) + o(n)

(e)
=

L1−1∑

i=1

H(F1,γi
|Y nU0X

n
1 A1, Z1 = γi, Z2 = z2) + o(n)

(f)

⩽

L1−1∑

i=1

H(F1,γi
|Y nU0A1F̂1,γi

, Z1 = γi, Z2 = z2) + o(n)

(g)

⩽ o(n), (17)

where (a) holds by [8, Lemma 3], (b) holds by (3), (c) holds

by the chain rule and because conditioning reduces entropy,

(d) holds by repeating L1 − 2 times the steps between (a)
and (c), (e) holds by Lemma 1, (f) holds because for any

i ∈ J1, L1−2K, F̂1,γi
is a function of (Y n, U0,A1), (g) holds

by Fano’s inequality and (2). Finally, we have

H(F1,L1\{Z1}|Xn
1 A1Z1Z2)

=
∑

z1,z2

P[(Z1, Z2) = (z1, z2)]

×H(F1,L1\{Z1}|Xn
1 A1, Z1 = z1, Z2 = z2)

= o(n),

where the last equality holds by (17).

■

Next, using Lemma 2 we obtain the following lemma.

Lemma 3. We have

H(F1,L1\{Z1}F2,L1\{Z2}|Z1Z2) ⩽ H(Xn
1 X

n
2 |Y n) + o(n).

Proof. We have

H(F1,L1\{Z1}F2,L1\{Z2}|Z1Z2)

= H(F1,L1\{Z1}F2,L1\{Z2}|Y n
AZ1Z2)

+ I(F1,L1\{Z1}F2,L1\{Z2};Y
n
A|Z1Z2)

⩽ H(F1,L1\{Z1}F2,L1\{Z2}|Y n
AZ1Z2)

+ I(F1,L1\{Z1}F2,L1\{Z2};Y
n
AZ1Z2)

(a)

⩽ H(F1,L1\{Z1}F2,L1\{Z2}|Y n
AZ1Z2) + o(n)

⩽ H(F1,L1\{Z1}F2,L1\{Z2}X
n
1 X

n
2 |Y n

AZ1Z2) + o(n)

= H(Xn
1 X

n
2 |Y n

AZ1Z2)

+H(F1,L1\{Z1}F2,L1\{Z2}|Xn
1 X

n
2 Y

n
AZ1Z2) + o(n)

(b)

⩽ H(Xn
1 X

n
2 |Y n) +H(F1,L1\{Z1}|Xn

1 AZ1Z2)

+H(F2,L1\{Z2}|Xn
2 AZ1Z2) + o(n)

(c)

⩽ H(Xn
1 X

n
2 |Y n) + o(n),

where (a) holds by (7), (b) holds by the chain rule and because

conditioning reduces entropy, (c) holds by Lemma 2. ■

Finally, we have

(L1 − 1)nR1 + (L2 − 1)nR2

(a)
= H(F1,L1\{Z1}F2,L1\{Z2}|Z1Z2)

(b)

⩽ H(Xn
1 X

n
2 |Y n) + o(n)

(c)

⩽

n∑

t=1

H((X1)t(X2)t|Yt) + o(n)

(d)
= nH((X1)T (X2)T |YTT ) + o(n)

⩽ nH((X1)T (X2)T |YT ) + o(n)

(e)

⩽ n max
pX1

pX2

H(X1X2|Y ) + o(n),

where (a) holds by independence and uniformity of the files,

(b) holds by Lemma 3, (c) holds by the chain rule and because

conditioning reduces entropy, (d) holds by defining T as the

uniform random variable over J1, nK, and in (e) we have

defined Y ≜ X1 +X2. ■

By Proposition 1, it is sufficient to [14, Lemma 5] to obtain

the converse part of Theorem 1.

V. ACHIEVABILITY PART OF THEOREM 1

For clarity of presentation, we focus on the case L1 = L2.

Specifically, we present our coding scheme in Section V-B,

which shows that the case L1 = L2 can be reduced to the

special case L1 = L2 = 2, which we treat in Section V-A.

A. Special case L1 = L2 = 2

Consider the coding scheme in Algorithm 1. Since (2), (3),

(4), (7) can be proved as in [14], we only have to prove (5)

and (6). Next, we have

I (F1,1F1,2X
n
1 A;F2,1F2,2) (18)

(a)
= I(F1,1F1,2X

n
1 M20M21S

(1)
0 S

(1)
1 S

(2)
0 S

(2)
1 ;F2,1F2,2)

(b)
= 0,

where (a) holds because (M10,M11) is a function of

(Xn
1 , F1,1, F1,2, S

(1)
0 , S

(1)
1 ), (b) holds by a modified version

of the one-time pad lemma. By exchanging the roles of the

servers we also have

I (F2,1F2,2X
n
2 A;F1,1F1,2) = 0.
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Algorithm 1 Dual-source SPIR when L1 = L2 = 2

Require: t < 1/2 and α ∈ [0, 1].

1: The servers use the channel (1) as follows:

a: Consider (Xn
1 , X

n
2 ) distributed according to the uniform

distribution over {0, 1}2n
b: Servers 1 and 2 send Xn

1 and Xn
2 , respectively, over

the channel (1)

c: The client observes Y n ≜ Xn
1 +Xn

2

2: Upon observation of Y n, the client

a: Defines

G ≜ {i ∈ J1, nK :Yi ∈ {0, 2}},B ≜ {i ∈ J1, nK :Yi = 1};

b: Defines M ≜ min(|G|, |B|);
c: Constructs G1,G2 such that G1 ∪ G2 ¢ G, G1 ∩ G2 = ∅,

and (|G1|, |G2|) = (αM, ᾱM);

d: Constructs B1,B2 such that B1 ∪B2 ¢ B, B1 ∩B2 = ∅,

and (|B1|, |B2|) = (αM, ᾱM);

e: Defines for i ∈ {1, 2}

S
(i)
0 ≜

{
Gi if Zi = 0

Bi if Zi = 1
, S

(i)
1 ≜

{
Bi if Zi = 0

Gi if Zi = 1
.

Note that when Zj = i, i ∈ {0, 1}, j ∈ {1, 2}, the client

can determine Xn
j [S

(j)
i ].

3: If ∣∣∣∣
|G|
n

− 1

2

∣∣∣∣ ⩽ n−t, (19)

then the client sends to Servers 1 and 2 the sets

S
(1)
0 , S

(1)
1 , S

(2)
0 , S

(2)
1 , otherwise the client aborts the pro-

tocol.

4: The public communication of the servers is as follows:

a: Server 1 sends to the client (M10,M11) where

(M10,M11) ≜ (Xn
1 [S

(1)
0 ]· F1,1, X

n
1 [S

(1)
1 ]· F1,2).

b: Server 2 sends to the client (M20,M21) where

(M20,M21) ≜ (Xn
2 [S

(2)
0 ]· F2,1, X

n
2 [S

(2)
1 ]· F2,2).

5: The client obtains its file selection as follows:

a: If Z1 = i ∈ {0, 1}, then the client determines Xn
1 [S

(1)
i ]

and computes M1i ·Xn
1 [S

(1)
i ] = F1,i.

b: If Z2 = i ∈ {0, 1}, then the client determines Xn
2 [S

(2)
i ]

and computes M2i ·Xn
2 [S

(2)
i ] = F2,i.

B. Case L1 = L2

The idea is to construct a coding scheme for the general

case by utilizing multiple times Algorithm 2 developed for

the case L1 = L2 = 2. This reduction idea is well known in

the context of oblivious transfer, e.g., [15]. Our coding scheme

is described in Algorithm 2. The analysis of Algorithm 2 is

omitted due to space constraints.

Algorithm 2 Dual-source SPIR when L1 = L2

Require: L − 2 sequences (S1,t)t∈J1,L−2K uniformly dis-

tributed over {0, 1}nR1 , L− 2 sequences (S2,t)t∈J1,L−2K

uniformly distributed over {0, 1}nR2 , the file selection

(Z1, Z2) ∈ L1 × L2

1: Server j ∈ J1, 2K forms (Cj,t)t∈J1,L−1K as follows:

(Cj,1[1], Cj,1[2])≜(Fj,1, Sj,1)

(Cj,t[1], Cj,t[2])≜(Fj,t · Sj,t−1, Sj,t−1 · Sj,t)

(Cj,L−1[1], Cj,L−1[2])≜(Fj,L−1·Sj,L−2, Sj,L−2·Fj,L)

where t ∈ J2, L − 2K. Then, For t ∈ J1, L − 1K, define

Cj,t ≜ (Cj,t[1], Cj,t[2]).

2: The client forms (Zj,t, Zj,t)j∈J1,2K,t∈J1,L−1K as follows:

Zj,t ≜ 1 + 1{t < Zj}, ∀t ∈ J1, L− 1K, ∀j ∈ J1, 2K

3: for t ∈ J1, L− 1K do

4: The client and the two servers perform the SPIR

protocol in Algorithm 1 with the two sequences

(Cj,t[1], Cj,t[2]) at Server j ∈ J1, 2K and the selection

(Z1,t, Z2,t) for the client.

The subscript t is used in the notation of the random

variables (Xn
1,t, X

n
2,t, Y

n
t ,At, Z1,t, Z2,t) involved in this

SPIR protocol.

5: end for

6: By Lines 2-5, the client can form for j ∈ J1, 2K

Fj,Zj
=

{
Cj,Zj

[1]·⊕Zj−1
t=1 Cj,t[2] if Zj < L⊕Zj

t=1 Cj,t[2] if Zj = L

VI. CONCLUDING REMARKS

We studied information-theoretically secure SPIR in the

absence of shared randomness, a noisy channel, and data repli-

cation. Instead, we leveraged a noiseless binary adder channel

and two non-colluding servers with independent content and

characterized the capacity region for this setting. While we

considered honest-but-curious parties, an open problem is to

address malicious parties who might attempt to cheat.
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