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Abstract 19 

This study utilizes Deep Neural Networks (DNN) to improve the K-Profile 20 

Parameterization (KPP) for the vertical mixing effects in the ocean’s surface boundary layer 21 

turbulence. The DNNs were trained using 11-year turbulence-resolving solutions, obtained by 22 

running a large eddy simulation model for Ocean Station Papa, to predict the turbulence velocity 23 

scale coefficient and unresolved shear coefficient in the KPP. The DNN-augmented KPP 24 

schemes (KPP_DNN) have been implemented in the General Ocean Turbulence Model 25 

(GOTM). The KPP_DNN is stable for long-term integration and more efficient than existing 26 

variants of KPP schemes with wave effects. Three different KPP_DNN schemes, each differing 27 

in their input and output variables, have been developed and trained. The performance of models 28 

utilizing the KPP_DNN schemes is compared to those employing traditional deterministic first-29 

order and second-moment closure turbulent mixing parameterizations. Solution comparisons 30 

indicate that the simulated mixed layer becomes cooler and deeper when wave effects are 31 

included in parameterizations, aligning closer with observations. In the KPP framework, the 32 

velocity scale of unresolved shear, which is used to calculate ocean surface boundary layer 33 

depth, has a greater impact on the simulated mixed layer than the magnitude of diffusivity does. 34 

In the KPP_DNN, unresolved shear depends not only on wave forcing, but also on the mixed 35 

layer depth and buoyancy forcing. 36 

Plain Language Summary 37 

The uppermost tens of meters of the ocean, known as the ocean surface boundary layer, 38 

are rich in intricate and chaotic fine-scale (cm to 100s m) ocean currents referred to as 39 

turbulence. These currents, spanning from centimeters to hundreds of meters, play pivotal roles 40 

in shaping the oceanic environment and influencing Earth's climate dynamics. Despite their 41 
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significance, simulating these fine-scale ocean currents remains beyond the capabilities of 42 

current and foreseeable supercomputing resources. Consequently, simplified formulas derived 43 

from fundamental principles are commonly employed to approximate these currents in ocean and 44 

climate models. However, these approximations still cannot cover all types of choppy currents 45 

and uncertainties in these approximations represent a substantial source of bias in contemporary 46 

ocean and climate modeling endeavors. In this study, we enhance one of the prevalent physics-47 

based approximations of fine-scale turbulent currents using machine learning techniques. Our 48 

tests show that integrating machine learning in physics-based approximation is stable and 49 

efficient and is suitable for use in ocean and climate models. 50 

1 Introduction 51 

The ocean surface boundary layer (OSBL) is a thin layer below the ocean surface, 52 

typically extending tens to a hundred meters in thickness, and is strongly affected by external 53 

forcing such as wind, waves, and net heat fluxes. Ocean currents within the OSBL are highly 54 

turbulent, with the scale of these turbulent currents ranging from centimeters to several hundred 55 

meters. These turbulent currents have a profound impact on ocean dynamics, both within and 56 

beyond the OSBL, playing a significant role in sustaining marine ecosystems and shaping global 57 

climates. However, despite advances in oceanography, accurately simulating these turbulent 58 

processes remains a formidable challenge, particularly in regional and global ocean models, 59 

where directly resolving these dynamics is computationally infeasible in the foreseeable future 60 

(Fox-Kemper et al., 2019; Fox-Kemper et al., 2014).  61 

In realistic ocean and climate models, the turbulent flux of a variable x, i.e., 𝑤𝑤′𝑥𝑥′, is 62 

calculated as:  63 
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𝑤𝑤′𝑥𝑥′ = −𝐾𝐾𝑥𝑥 �
𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕

− γ𝑥𝑥� (1) 64 

Here, 𝑥𝑥 represents a property in ocean water such as momentum, temperature, or material 65 

concentrations; 𝑧𝑧 is the vertical coordinate; and 𝑤𝑤 is the vertical velocity of water. The overbar 66 

in equation 1 represents the ensemble average, while the prime denotes the turbulent fluctuation, 67 

i.e., 𝑥𝑥’ =  𝑥𝑥 − 𝑥𝑥. 𝐾𝐾𝑥𝑥 in equation 1 is the eddy viscosity or diffusivity, represented by simplified 68 

physics-based formulas called parameterizations. These parameterizations incorporate empirical, 69 

tunable coefficients. In early studies, the coefficients were tuned using in situ observations of 70 

temperature and salinity (e.g., Large et al. 1994). However, in-situ observations are modulated 71 

by turbulent currents as well as submesoscale to large-scale currents. Over the past 20 years, 72 

turbulence-resolving simulations of OSBL turbulence, using Large Eddy Simulation (LES) 73 

models, have become available, with LES solutions being used to derive empirical parameters 74 

(Harcourt, 2015; Van Roekel et al., 2012). LES models simulate OSBL turbulence exclusively, 75 

excluding submesoscale to large-scale processes, thus are superior to tune parameterizations of 76 

turbulent mixing. The second right-hand term, γ𝑥𝑥 in equation (1), represents the non-local heat 77 

and material transport that are not proportional to the local gradient of temperature and material 78 

concentrations. For momentum, 𝛾𝛾𝑥𝑥 is assumed zero in most studies, although a non-zero 𝛾𝛾𝑥𝑥 term 79 

was recently proposed by Large et al. (2019). The non-local effects can be important when 80 

coherent convective and/or Langmuir cells dominate. This study focuses on improving of 𝐾𝐾𝑥𝑥, 81 

which improves both the local (downgradient) and nonlocal portion of the KPP diagnosed flux.  82 

Turbulent mixing parameterization schemes typically fall into two categories. The first 83 

category is the first-order closure scheme, in which parameters directly relate to the forcing 84 

conditions and water property profiles. A well-known example is the K-profile parametrization 85 
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(KPP) scheme. The KPP scheme was initially proposed for turbulence in atmospheric boundary 86 

layers  (Troen & Mahrt, 1986) and later adapted for the OSBL (Large et al., 1994). Due to its 87 

computational efficiency and stability, the KPP scheme is widely used in realistic simulations for 88 

regional and global oceans (e.g., Belcher et al., 2012; Q. Li & Fox-Kemper, 2017; McWilliams 89 

& Sullivan, 2000; Van Roekel et al., 2018; Vertenstein et al., 2012). Another well-known first-90 

order closure scheme is the energetics-based planetary boundary layer scheme (ePBL, Reichl & 91 

Hallberg, 2018). The second category is the second-moment closure (SMC) scheme, where 92 

turbulent diffusivity and turbulent viscosity are derived from turbulence statistics (kinetic energy, 93 

length scale, and dissipation rate) and empirically calculated in the scheme (Kantha & Clayson, 94 

1994; Umlauf & Burchard, 2003). The SMC scheme, being computationally more expensive 95 

than the KPP scheme, is more commonly used in simulations of coastal oceans, where the 96 

current environment is more complicated (e.g., Sane et al., 2021; Warner et al., 2005) than in 97 

global and regional oceans. Recent studies have revised both the KPP and SMC schemes to 98 

include enhanced turbulent mixing effect due to wave-driven Langmuir turbulence, i.e., KPPLT 99 

and SMCLT. Studies have shown that the use of KPPLT and SMCLT generally improves the 100 

simulations of sea surface temperature and the mixed layer depth (MLD) for global (Q. Li et al., 101 

2016) and regional oceans (Ali et al., 2019). However, a recent study (Q. Li et al., 2019) 102 

examining 11 mixing parameterization schemes, including KPP, SMC, KPPLT, and SMCLT, 103 

found substantial differences in the solutions provided by these methods, indicating persistent 104 

biases across all schemes.  105 

Further refining traditional turbulent mixing parameterizations is challenging. In the 106 

upper ocean, turbulent mixing is driven by diverse combinations of wind, wave, and buoyancy 107 

conditions. However, traditional deterministic parameterization schemes were developed based 108 
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on a small subset of the realistic conditions across the global ocean (e.g., Fig.1 in Q. Li et al., 109 

2019). Furthermore, although the scaling law is well-established for a specific turbulent regime, 110 

it is not well-defined for common scenarios over the world’s oceans, where the three types of 111 

turbulence are equally significant. It is challenging to identify optimal functional forms and 112 

coefficients to adequately encompass the vast turbulent regimes due to diverse combinations of 113 

wind, wave, and buoyancy conditions.  114 

In light of these challenges, recent efforts have begun exploring alternative approaches to 115 

take advantage of the recent development of machine learning techniques, especially deep neural 116 

networks (DNNs), to enhance the representation of the mixing effects of OSBL turbulence. 117 

DNNs utilize extensive data as truth to establish non-linear relationships between the inputs and 118 

predicted outcomes. Early attempts aimed to replace traditional mixing parameterization by 119 

directly predicting turbulent fluxes using DNNs (e.g., Gentine et al., 2018; Liang et al., 2022; 120 

Rasp et al., 2018). While these DNNs have shown promising results in predicting turbulent flux 121 

profiles, ensuring numerical stability when integrating them with realistic climate models for 122 

long-term use poses challenges (e.g., Noah D Brenowitz et al., 2020; Chattopadhyay & 123 

Hassanzadeh, 2023; Rasp, 2020). 124 

 An alternative approach is to retain the physics-based framework in traditional 125 

parameterizations and use DNN to predict parameters that are uncertain in those 126 

parameterizations. Sane et al. (2023) trained DNNs to predict profiles of eddy diffusivity in the 127 

OSBL under the framework of the energetics-based planetary boundary layer (ePBL, Reichl & 128 

Hallberg, 2018) using simulations based on a SMC scheme as the truth. The authors further 129 

coupled the ePBL-DNN model into the Modular Ocean Model (MOM, e.g., Adcroft et al., 2019), 130 

and demonstrated its stability for long-term integration. Zhu et al. (2022) trained DNNs to 131 
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predict mixing coefficients in the interior ocean (below the OSBL) based on in-situ 132 

microstructure observations at the equatorial Pacific Ocean. By implementing it into the MOM, 133 

they demonstrated that incorporating a DNN into the model reduces cold biases in the equatorial 134 

Pacific. The study, however, focused only on the KPP below the OSBL, but did not attempt to 135 

improve the KPP for the effects of OSBL turbulence. 136 

However, the DNN models in those two studies are not based on LES solutions and have 137 

not targeted the popular KPP model. In this study, we aim to bridge the gap by using high-138 

resolution LES simulations to develop DNN models capable of predicting key turbulent mixing 139 

parameters in the widely used KPP model. The models in this study are designed to enhance the 140 

realism of OSBL simulations within the framework of the KPP scheme, without altering 141 

fundamental equations or time-stepping mechanisms, thus facilitating straightforward integration 142 

into existing ocean models. The rest of the paper is organized as follows: Section 2 presents the 143 

framework of the DNN-augmented KPP (KPP_DNN) and outlines the data used to train the 144 

DNNs. Section 3 provides details on the implementation of the DNN-augmented KPP schemes 145 

into the General Ocean Turbulence Model (GOTM). Section 4 describes how the GOTM is 146 

configured. Section 5 evaluates the performance of the KPP_DNN and compares the KPP_DNN 147 

with traditional parameterizations. Section 6 explores the use of the KPP_DNN to understand 148 

OSBL turbulence and deficiency in physics-based parameterizations. Section 7 summarizes the 149 

major findings of the study and discusses future research directions. 150 
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2 The K-Profile Parameterization augmented by Deep Neural Networks (KPP_DNN) 151 

2.1 Model Description 152 

In the KPP framework (Large et al., 1994), the expression for viscosity or diffusivity 𝐾𝐾𝑥𝑥 153 

is given by: 154 

𝐾𝐾𝑥𝑥(𝜎𝜎) = 𝑤𝑤𝑥𝑥(𝜎𝜎)ℎ𝐺𝐺𝑥𝑥(𝜎𝜎) (2) 155 

 Here, 𝑤𝑤𝑥𝑥 is a velocity scale related to the surface forcing and the Monin-Obukhov 156 

similarity theory, ℎ is the surface boundary layer depth, and 𝐺𝐺𝑥𝑥(𝜎𝜎) is a dimensionless shape 157 

function, with 𝜎𝜎 = 𝑧𝑧/ℎ the depth normalized by ℎ. The OSBL depth ℎ is the depth to which the 158 

impact of surface forcing reaches. In low and mid-latitudes, where mixed layers are relatively 159 

shallow and the Coriolis effect is relatively weak, the OSBL depth often equals the MLD, and 160 

deepening of the OSBL is limited by stratification. In higher latitudes, observations show that the 161 

OSBL can at times be substantially shallower than the mixed layer (Carranza et al., 2018) and 162 

the deepening of the OSBL is limited by the rotation of the earth when convection is weak (Liu 163 

et al., 2018). When convection dominates, the impact due to the earth's rotation on the depth of 164 

OSBL is small. 165 

In mixing parameterizations, the OSBL depth ℎ is typically diagnosed by identifying the 166 

depth at which the bulk Richardson number (𝑅𝑅𝑖𝑖𝑏𝑏), a measure of the relative importance between 167 

shear and stable stratification, exceeds a critical value Ric. This criterion is based on linear 168 

stability analysis, which shows that stably stratified shear flow is unstable and turbulent mixing 169 

quenches when the gradient Ri exceeds a critical value of 0.3, i.e., 𝑅𝑅𝑖𝑖𝑏𝑏 > 𝑅𝑅𝑖𝑖𝑐𝑐 = 0.3.  Below the 170 

OSBL depth, Ri is larger than Ric and the flow is stable. Above the depth, 𝑅𝑅𝑖𝑖𝑏𝑏 is smaller than Ric 171 

and the flow is turbulent. In the KPP scheme, the bulk Richardson number 𝑅𝑅𝑖𝑖𝑏𝑏(𝑧𝑧) is used and the 172 
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critical bulk Richardson number is set to be 0.3 (Large et al., 1994). 𝑅𝑅𝑖𝑖𝑏𝑏(𝑧𝑧) is related to ocean 173 

current and stratification as,  174 

𝑅𝑅𝑖𝑖𝑏𝑏(𝑧𝑧) =
𝑧𝑧 �𝑏𝑏𝑟𝑟 − 𝑏𝑏(𝑧𝑧)�

�𝒖𝒖𝑟𝑟 − 𝒖𝒖(𝑧𝑧)�
2

+ 𝑈𝑈𝑡𝑡2(𝑧𝑧)
(3) 175 

Here,  𝑏𝑏 is the buoyancy, defined as 𝑏𝑏 = 𝑔𝑔[𝛼𝛼𝜃𝜃(𝜃𝜃 − 𝜃𝜃𝑟𝑟) − 𝛽𝛽𝑠𝑠(𝑠𝑠 − 𝑠𝑠𝑟𝑟)], with 𝜃𝜃 the 176 

potential temperature, 𝑠𝑠 the salinity, 𝛼𝛼𝜃𝜃 and 𝛽𝛽𝑠𝑠 the corresponding thermal and saline expansion 177 

coefficients, respectively; 𝒖𝒖 is the water current vector. The subscript 𝑟𝑟 denotes the vertically 178 

averaged value over the surface layer. The effect of turbulence is represented using the velocity 179 

scale of the unresolved shear 𝑈𝑈𝑡𝑡2(𝑧𝑧):  180 

𝑈𝑈𝑡𝑡2(𝑧𝑧) =
𝐶𝐶𝑣𝑣𝑁𝑁(𝑧𝑧)𝑤𝑤𝑥𝑥(𝑧𝑧)|𝑧𝑧|

𝑅𝑅𝑖𝑖𝑐𝑐
(4) 181 

where 𝐶𝐶𝑣𝑣 is a dimensionless coefficient and 𝑁𝑁 is the Brunt-Väsälä frequency.  182 

Recent studies have shown that the effects of non-breaking waves greatly modulate 183 

turbulent fluxes in the OSBL, either enhancing or suppressing turbulent fluxes depending on the 184 

alignment between wind and waves (McWilliams et al., 2014; Van Roekel et al., 2012). When 185 

wind and waves are largely aligned, as is common across the global ocean, turbulence is 186 

enhanced by wave-driven Langmuir turbulence. When waves are significantly misaligned with 187 

the wind, as occurs when the swell is strong, turbulence is suppressed. Several recent studies 188 

(e.g., Q. Li & Fox-Kemper, 2017; Q. Li et al., 2019; McWilliams & Sullivan, 2000; Van Roekel 189 

et al., 2012) have been devoted to including wave effects into the KPP framework. In those 190 

parameterizations, referred to as KPPLT hereafter, the turbulent velocity scale (𝑤𝑤𝑥𝑥), and the 191 

unresolved shear velocity scale, 𝑈𝑈𝑡𝑡2(𝑧𝑧), are modified as, 192 

𝐾𝐾𝑥𝑥(𝜎𝜎) = 𝜖𝜖𝜖𝜖𝑥𝑥(𝜎𝜎)|ℎ|𝐺𝐺𝑥𝑥(𝜎𝜎) (5) 193 

𝑈𝑈𝑡𝑡2(𝑧𝑧) = 𝜂𝜂𝑈𝑈𝑡𝑡2(𝑧𝑧)|𝐿𝐿𝐿𝐿𝐿𝐿 (6) 194 



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES) 

 

Where the subscript LMD (Large, McWilliams and Doney) indicates the term is calculated using 195 

a formula in Large et al. (1994), the velocity scale coefficient 𝜖𝜖 and the unresolved shear 196 

coefficient 𝜂𝜂 are calculated using traditional deterministic functions of wind and wave forcing 197 

(e.g., Q. Li & Fox-Kemper, 2017; Reichl et al., 2016). 198 

In this study, these two coefficients will be determined by Deep feedforward Neural 199 

Networks (DNNs), as opposed to traditional deterministic functions in existing studies. The 200 

DNN augmented parameterization will be called KPP_DNN hereafter. 201 

A DNN is made up of multiple densely connected layers, including one input layer, one 202 

output layer, and multiple hidden layers (Figure 1). Each layer includes multiple neurons. 203 

Neurons between layers are connected by the following relationship:  204 

𝑋𝑋𝑖𝑖,𝑗𝑗 = 𝑓𝑓 �� 𝑤𝑤𝑘𝑘,𝑖𝑖,𝑗𝑗−1𝑋𝑋𝑘𝑘,𝑗𝑗−1 + 𝑏𝑏𝑘𝑘,𝑖𝑖,𝑗𝑗−1

𝑁𝑁𝑗𝑗−1

𝑘𝑘=1

�  (7) 205 

where  𝑋𝑋𝑖𝑖,𝑗𝑗 means the 𝑖𝑖th neuron in the 𝑗𝑗th layer, 𝑁𝑁𝑗𝑗 is the number of neurons in the 𝑗𝑗th layer. 206 

𝑤𝑤𝑘𝑘,𝑖𝑖,𝑗𝑗−1 and 𝑏𝑏𝑘𝑘,𝑖𝑖,𝑗𝑗−1 are the weight and bias that link neuron 𝑋𝑋𝑘𝑘,𝑗𝑗−1 to neuron 𝑋𝑋𝑖𝑖,𝑗𝑗, respectively.  207 

In this study, the Leaky Rectified Linear Unit function (Leaky ReLU, 𝛼𝛼(𝑥𝑥) = max(0.1𝑥𝑥, 𝑥𝑥)) is 208 

used as the activation function. Other activation functions, including tangent hyperbolic and 209 

ReLU, were tested as well, but did not improve the results. 210 

 211 
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Figure 1. The architecture of a Deep Neural Network (DNN) model 212 

The DNN's input layer consists of water-column variables, including potential 213 

temperature profiles (𝜃𝜃), salinity profiles (𝑠𝑠), and key OSBL turbulence drivers, including wind 214 

stress (𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦), shortwave radiation at the ocean surface (𝑆𝑆𝑤𝑤), net heat flux excluding short wave 215 

radiation (𝑄𝑄𝑓𝑓), the rate of evaporation minus precipitation (𝑄𝑄𝑠𝑠), vertical profiles of Stokes drift 216 

associated with ocean surface waves (𝑢𝑢𝑠𝑠𝑠𝑠 , 𝑣𝑣𝑠𝑠𝑠𝑠) and the OSBL depth from the previous time step. 217 

The output layer consists of a single neuron in each DNN model, predicting a specific parameter. 218 

Specifically, we have two different DNN models based on the output: model 𝐷𝐷𝜖𝜖 to predict the 219 

turbulent velocity scale coefficient (𝜖𝜖), and model 𝐷𝐷𝜂𝜂 to predict the unresolved shear coefficient 220 

(𝜂𝜂). To prevent the DNN models from predicting unphysical values, 𝜖𝜖 and 𝜂𝜂 were scaled to a 221 

range of 0~1, and a sigmoid activation was added to the output layer to ensure the predictions by 222 

the DNN models always fall within this range.  223 

The DNN model utilizes a vast array of computations characterized by nonlinear 224 

activation functions with distinct weights and biases. Integrating a well-tuned DNN model into a 225 

traditional physics-based parameterization scheme not only preserves the computational stability 226 

and efficiency of a traditional physics-based model but also enables a more flexible and effective 227 

non-linear mapping from input variables to output parameters than what traditional deterministic 228 

formulas could achieve. 229 

Compared to other machine learning model architectures, such as Long-Short Term 230 

Memory (LSTM, Hochreiter & Schmidhuber, 1997) and Fourier Neural Operator (e.g., Z. Li et 231 

al., 2020), the neural network using basic densely connected layers is much more efficient and 232 

equally accurate for the purposes of this study. 233 
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2.2 Data Generation and Curation 234 

The data used to develop and test the KPP_DNN schemes are turbulence-resolving 235 

simulations for Ocean Station Papa (OSP) using the NCAR-LES model for the OSBL (e.g., 236 

Sullivan & McWilliams, 2010). OSP (50°𝑁𝑁, 145°𝑊𝑊, see Figure 2a) is located within the 237 

Northern Pacific subpolar gyre. With a long history of continuous atmospheric and 238 

oceanographic in-situ observations (Cronin et al., 2023; Whitney & Tortell, 2006), OSP has been 239 

served as a pivotal site for monitoring ocean climate (e.g., Bond et al., 2015; R. E. Thomson & 240 

Tabata, 1987), understanding ocean physical and biogeochemical processes, and developing 241 

parameterization schemes extensively employed in diverse ocean models (e.g., Chalikov, 2005; 242 

Craig & Banner, 1994; Gaspar et al., 1990; Kantha & Clayson, 1994; Large et al., 1994). Figures 243 

2b and 2c present the probability of OSBL turbulence regime at OSP based on the observed 244 

forcing conditions. The most common turbulence regime at OSP is a mix of the three types of 245 

turbulence. There are periods when Langmuir turbulence dominates, while convection or shear-246 

driven turbulence seldom dominates. Different from the global ocean (compare the blue and 247 

black contours), the OSBL at OSP is seldom strongly convective or strongly stabilizing. LES 248 

models are currently the state-of-the-art tool to study OSBL and submsoscale turbulence (e.g., 249 

Bodner et al., 2020; Skyllingstad & Denbo, 1995; Yuan & Liang, 2021), and to develop 250 

parameterizations for those processes (e.g., Bodner et al., 2023; Liang et al., 2013; Liang et al., 251 

2018; Liu et al., 2022). 252 
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 253 

Figure 2. Panel (a) shows the location of OSP in the north Pacific Ocean. Panels (b) and (c) are 254 

regime diagrams showing the forcing conditions at OSP between 2010 and 2022. In panel (b) 255 

and (c), the x axis is the turbulent Langmuir number (𝐿𝐿𝑎𝑎𝑡𝑡), while the y axis is the MLD ℎ 256 

divided by the Langmuir stability length 𝐿𝐿𝐿𝐿. Panel (b) corresponds to conditions of destabilizing 257 

net surface buoyancy forces, whereas panel (c) is for conditions under stabilizing buoyancy 258 

forces. The blue contours are the probability (30%, 60%, 90% and 99%) of a certain parameter 259 

combination in the global ocean, while the red contours are the probability (30%, 60%, 90% and 260 

99%) in OSP. In panel (b), the thin dashed contours show turbulent dissipation rate, and the thick 261 

solid black lines encompass regimes where one of the three types of turbulence contributes over 262 

90% to total dissipation. In panel (c), the thick black line is the maximum equilibrium −ℎ/𝐿𝐿𝐿𝐿 263 

value according to Pearson et al. (2015). 264 

The use of the NCAR-LES model to generate data is similar to that reported in Liang et 265 

al. (2017) and Liang et al. (2022): The domain of the LES model is configured with 160 266 

uniformly distributed horizontal grid points, spanning 300m in each horizontal direction, 267 

Vertically, the LES model features 128 stretched grid points across a 200m depth, with the finest 268 

grid equal 0.2m at the ocean surface. The LES model was driven by a combination of observed 269 

hourly meteorological (Cronin et al., 2015), wave conditions (J. Thomson et al., 2013) and the 270 
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derived surface flux products at OSP from September 2010 to December 2022. These inputs 271 

include wind stresses, wave conditions, shortwave radiation, net surface heat flux (excluding 272 

shortwave radiation), and the rate of evaporation minus precipitation, at OSP from September 273 

2010 to December 2022. Periods when the observational wave data were not available were 274 

excluded from LES simulations. The LES simulations were restarted every 10 days, and initial 275 

conditions of each restart were derived from observed water column temperature and salinity 276 

profiles, linearly interpolated to LES vertical grids. The restart procedure is to ensure that the 277 

LES solutions do not deviate from the true state of the ocean, as large- and mesoscale processes 278 

that also modulate the physical states of the upper ocean at the station (Cronin et al., 2015) are 279 

not resolved by the LES model. Comparisons with observations show that the LES simulations 280 

closely align with observed upper-ocean states with this approach (see Figure 3). In total, 367 281 

LES simulations were conducted.  282 

The turbulence-resolving LES solution dataset differs from that used by Liang et al. 283 

(2022) in two ways: Firstly, the simulation period is longer, spanning from 2010 to 2022 in the 284 

current study, as opposed to 2010 to 2019 in Liang et al. (2022), thereby offering more data for 285 

model training and testing. Secondly, shortwave radiation penetrates the OSBL in the current 286 

study while shortwave radiation was applied only at the ocean surface in Liang et al. (2022). The 287 

shortwave radiation at depth z, 𝑄𝑄𝑠𝑠𝑠𝑠(𝑧𝑧), is calculated as  288 

𝑄𝑄𝑠𝑠𝑠𝑠(𝑧𝑧) = 𝑄𝑄𝑠𝑠𝑠𝑠,0�𝑟𝑟 𝑒𝑒𝑧𝑧/𝜇𝜇1 + (1 − 𝑟𝑟) 𝑒𝑒𝑧𝑧/𝜇𝜇2 � (8) 289 

where 𝑄𝑄𝑠𝑠𝑠𝑠,0 is the net shortwave radiation at the ocean surface. 𝑟𝑟 = 0.58, 𝜇𝜇1 = 0.35 and 290 

𝜇𝜇2 = 23 are three empirically determined constants (Paulson & Simpson, 1977) to fit the data in 291 

Jerlov (1976). The penetrative shortwave radiation is more realistic than a surface shortwave 292 

flux. In LES simulations, the penetrating shortwave radiation led to thicker OSBLs and more 293 



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES) 

 

modest increases in sea surface temperature when compared to simulations driven by shortwave 294 

radiation only at the ocean surface. The use of penetrative shortwave radiation is also consistent 295 

with realistic ocean models. Therefore, the KPP_DNN trained using the set of LES solutions 296 

could be implemented into realistic ocean models. 297 

 298 

Figure 3. Comparison between the LES solutions and in situ observations at OSP. (a) mixed 299 

layer depth (MLD); (b) mean temperature in the mixed layer; (c) mean salinity in the mixed 300 

layer. 301 

Ensemble-averaged profiles of temperature, salinity, velocities, turbulent kinetic energy 302 

(TKE), and their turbulent fluxes were calculated online and output every 30 minutes. The depth 303 

of the OSBL ℎ was diagnosed as the depth at which the vertical gradient of momentum flux 304 
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decreases to 2 × 10−7 𝑚𝑚/𝑠𝑠2.  𝜂𝜂 was then diagnosed using Equations 4 and 6 with a 𝑅𝑅𝑖𝑖𝑐𝑐 = 0.3. 305 

𝑤𝑤𝑥𝑥 and 𝐺𝐺(𝜎𝜎) in Equation 5 were first calculated using the LES solutions and formulas detailed in 306 

Large et al. (1994). 𝜖𝜖 was then obtained by minimizing the difference between the momentum 307 

fluxes using equation 1 and the output momentum flux from LES solutions. 308 

2.3 Model Training 309 

The turbulence-resolving LES data were separated into three datasets: the training, the 310 

validation and the testing, at a ratio of approximately 6:2:2. The validation dataset was used to 311 

monitor the neural network training and prevent overfitting, while the testing dataset was used to 312 

evaluate the model after the training process was completed. This partition followed the random 313 

block sampling strategy (Schultz et al., 2021), dividing the data by LES runs, each covering a 10-314 

day period. This strategy efficiently avoids spurious correlations among the datasets and ensures 315 

that all three datasets represent different climatological conditions over the entire study period. 316 

The predicted coefficients 𝜖𝜖 in model 𝐷𝐷𝜖𝜖 and 𝜂𝜂 in model 𝐷𝐷𝜂𝜂 were compared with 𝜖𝜖 and 𝜂𝜂 317 

diagnosed from LES solutions as detailed in section 2.2. Mean square errors served as the loss to 318 

update trainable parameters in the DNNs. The DNNs were trained using TensorFlow and Keras 319 

within the R programming environment. The architecture of these DNNs varied significantly, 320 

encompassing a range of different layers (1, 2, 4, 6, 8, 12) and neurons per layer (2, 4, 8, 16, 32), 321 

to explore the optimal structure for our specific application. The Adam optimizer was employed 322 

across all models. Each model was trained for 1000 epochs. The learning rate was reduced by a 323 

factor of 0.1 whenever a plateau in validation loss, quantified as Mean Squared Error (MSE), 324 

was detected during the training process. The criterion for selecting the best model was based on 325 

the smallest validation loss, a standard measure of model accuracy on unseen data, ensuring that 326 

the chosen model has the highest generalization capability.  327 
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3 Implementation of KPP_DNN in the General Ocean Turbulence Model (GOTM) 328 

The General Ocean Turbulence Model (GOTM, Burchard et al., 1999) is a single-column 329 

model designed to examine the behavior of various turbulent mixing parameterization schemes 330 

in the OSBL. It provides a versatile framework, allowing for the straightforward compilation and 331 

execution of different OSBL turbulent mixing parameterization schemes, making it the ideal 332 

testbed for developing and testing mixing parameterizations. The current GOTM model includes 333 

a variety of first-order and second-moment closure schemes, allowing for the comparison of 334 

different schemes within the same framework.  335 

Adding to the capability of the GOTM, this study implements the trained DNNs, their 336 

structure and trainable parameters, into the model. The GOTM, like most earth system models, is 337 

coded exclusively in Fortran, while DNN models are typically written in high-level 338 

programming languages like Python and R, utilizing deep learning libraries such as Keras (Gulli 339 

& Pal, 2017; Ketkar & Ketkar, 2017). There are two approaches that a DNN model could be 340 

implemented in a Fortran code: The first is to hard-code the entire DNN structure and trainable 341 

parameters directly into Fortran (e.g., N. D. Brenowitz & Bretherton, 2018; Gagne et al., 2020). 342 

The other approach, adopted in this study, is to overcome the computer language interoperability 343 

by incorporating a software library that connects Fortran and Python environments, such as the 344 

Fortran-Keras Bridge (FKB, Ott et al., 2020) used in this study.  345 

The process involves converting a trained DNN using Keras, saved in HDF format, into 346 

an ASCII file offline. This ASCII file is specifically structured for easy interpretation by the 347 

FKB. In a FKB informed Fortran program, the DNN model, including its structure and weights, 348 

is reconstructed by loading this ASCII file. During each timestep of integration in the GOTM, 349 

the necessary input array, composed of outputs from the GOTM model and forcing conditions, as 350 
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detailed in Section 2.3, was normalized and fed into the loaded DNN model. Subsequently, the 351 

DNN's predictions were then denormalized and integrated back into GOTM to compute the 352 

enhancement factors in equation 6. 353 

4 Model Configurations 354 

Three different KPP_DNNs were compared against seven existing physics-based 355 

parameterizations (Table 1) using the GOTM. The three KPP_DNNs vary in complexity. In 356 

KPP_DNN1, only the coefficients for the velocity scale coefficient 𝜖𝜖 predicted by 𝐷𝐷𝜖𝜖 were 357 

utilized. In KPP_DNN2a, both the velocity scale coefficient 𝜖𝜖 predicted by 𝐷𝐷𝜖𝜖 and the 358 

unresolved shear coefficient 𝜂𝜂 predicted by 𝐷𝐷𝜂𝜂 were used. Wave-induced stokes profiles were 359 

not included as inputs of the KPP_DNN2a. KPP_DNN2b was the same as KPP_DNN2a but 360 

additionally incorporated Stokes profiles as inputs. For ocean models not yet coupled with wave 361 

models, the KPP_DNN2b could be employed by reading in pre-calculated Stokes profiles 362 

calculated offline from wave spectrum products (e.g., Ali et al., 2019; Q. Li et al., 2016), or the 363 

KPP_DNN2a can be utilized without the Stokes drift as inputs.  364 

The best-trained DNN models, identified by the smallest validation loss during training, 365 

are configured with 2 hidden layers of 16 neurons each for 𝐷𝐷𝜖𝜖 and 4 hidden layers of 16 neurons 366 

each for 𝐷𝐷𝜂𝜂 in KPP_DNN2a, and 4 hidden layers of 8 neurons each for 𝐷𝐷𝜖𝜖 and 8 hidden layers of 367 

8 neurons each for 𝐷𝐷𝜂𝜂 in KPP_DNN2b. The performance of the training process and the model is 368 

in the supplementary material (see Figure S1 for training and validation loss curves and Figure 369 

S2 for density distribution curves for DNN predictions and LES truths in the Supporting 370 

Information).  371 

Seven well-known traditional deterministic parameterizations were also selected for 372 

comparison (Table 1). The KPP_LMD is the basis of KPP schemes and does not incorporate the 373 



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES) 

 

enhancement of non-breaking waves. KPPLT_VR12 adds the enhancement of non-breaking 374 

wave effects only to the turbulent velocity scale but leaves the unresolved shear component 375 

unchanged. KPPLT_LF17 builds on KPPLT_VR12 and includes modification on both the 376 

velocity scale and the unresolved shear components. KPPLT_RW16 is similar to KPPLT_LF17, 377 

but formulas and coefficients that modify velocity scale and the unresolved shear were tuned 378 

using LES solutions under hurricane conditions, thus has a stronger enhancement than 379 

KPPLT_LF17. It should be noted that all three KPPLT schemes have considered the effects of 380 

wind-wave misalignment. Across the global oceans, wind and waves are often misaligned (e.g., 381 

Abolfazli et al., 2020; Hanley et al., 2010). When waves align with the wind, Langmuir 382 

turbulence enhances OSBL turbulence. When waves oppose the wind, OSBL turbulence is 383 

suppressed (e.g., McWilliams et al., 2014). All KPPLT schemes were tuned using LES solutions.  384 

SMC_KC94 is the second closure model tuned using data over at a few different 385 

locations across the global oceans. This scheme does not include the non-breaking wave effects. 386 

SMCLT_H15 generalizes SMC_KC94 to incorporate the impact of non-breaking waves by 387 

including the Stokes profiles in the governing equations. Coefficients in the SMCLT_H15 388 

scheme were tuned using LES solutions.  389 

The performance of the seven traditional parameterizations and the three variants of 390 

KPP_DNN schemes is compared using the GOTM for the year 2011 to 2016, when observed 391 

meteorological conditions and directional wave spectra were continuously available. The GOTM 392 

simulations are divided into two sets. Both sets of simulations were driven by observed 393 

meteorological and wave conditions. They differ by the surface buoyancy fluxes used to drive 394 

the model. In the first set of simulation (set 1), surface buoyancy flux products at OSP provided 395 

by Pacific Marine Environmental Laboratory (PMEL), were used as input. Those fluxes were 396 
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calculated using the Coupled Ocean-Atmosphere Response Experiment (COARE) algorithm 397 

with the observed ocean and atmosphere conditions. In the second set of simulations (set 2), 398 

surface buoyancy fluxes were calculated using the same COARE algorithms online during the 399 

GOTM simulations. The online flux calculation is based on observed meteorological condition 400 

and the simulated sea surface temperature (SST) and sea surface salinity (SSS). The approach in 401 

the pre-calculated surface buoyancy flux has been commonly used in studies aiming at 402 

improving or comparing mixing parameterization schemes (e.g., Q. Li et al., 2019). In this model 403 

configuration, forcing conditions are identical among different simulations and the difference in 404 

solutions are purely due to mixing parameterizations. The online calculation of surface buoyancy 405 

flux in the second set of simulation is consistent with that in most realistic ocean simulations 406 

using regional and global models (e.g., Chassignet et al., 2020). In simulations driven by pre-407 

calculated buoyancy fluxes, corrected fluxes to nudge the simulated SST and SSS to their 408 

climatological states are usually imposed to prevent the long-term drift in the solutions (e.g., 409 

Barnier et al., 1995). With this approach, however, the surface buoyancy flux is different among 410 

simulations using different mixing parameterizations. The GOTM simulations were restarted at 411 

the beginning of each year using observed temperature and salinity profiles as initial conditions. 412 

In each simulation, outputs were recorded at every 30 minutes. It should be noted that the GOTM 413 

with all parameterizations could be integrated for a full 6-year period without any stability issue. 414 

However, restarting at the beginning of each year mitigates the long-term drift in the solution due 415 

to the exclusion of larger-scale processes in the 1-D vertical column model (see Figure S3 in 416 

supporting information). 417 
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 418 

Figure 4. Taylor diagram for the rate of change of simulated mixed-layer averaged potential 419 

temperature. The solid lines, dashed lines and dotted lines represent contours of normalized 420 

standard deviations, the normalized root mean square errors and the correlations, respectively. 421 

The standard deviations and the root mean square errors were normalized by dividing the 422 

standard deviation of the truth (LES solutions).  423 

 424 

Table 1. List of parameterization names and the references for the traditional deterministic 425 

parameterization schemes compared in this study. 426 

 427 
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Parameterization Name References 

KPP_LMD Large et al. (1994) 

KPPLT_VR12 Van Roekel et al. (2012)  

KPPLT_RW16 Reichl et al. (2016)  

KPPLT_LF17 Q. Li and Fox-Kemper (2017)  

SMC_KC94 Kantha and Clayson (1994)  

SMCLT_H15 Harcourt (2015) 

 428 

5 Performance of the KPP_DNN models 429 

5.1 Model Evaluation Using LES Solutions 430 

To directly evaluate the performance of GOTM models using different turbulent mixing 431 

schemes, we compared them with LES solutions. We conducted several 9-day simulations 432 

coinciding with all the testing periods, initializing from the beginning of day 2 in each 433 

simulation, and ran for 9 days for each testing period. We then calculated three statistics for 434 

SSTs—mean standard deviation, root mean square errors, and correlations—for all the testing 435 

periods from both the LES solutions and GOTM simulations. Comparisons of four variants of 436 

KPP schemes, including KPP_DNN2b, KPPLT_LF17, KPPLT_RW16, and KPP_LMD, using 437 

the Taylor diagram (Figure 4) show that KPP_DNN2a and KPP_DNN2b share similar evaluation 438 

statistics, and both are superior to all other schemes in terms of root mean square error and 439 

correlation. Among the traditional deterministic schemes, the performance of KPPLT_LF17 is 440 

close to that of KPP_DNN2a and KPP_DNN2b, as simulations used to tune KPPLT_LF17 is 441 

also typical to mid-latitude stratified ocean. In agreement with Q. Li et al. (2019), the 442 
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performance of KPPLT_RW16 and KPP_LMD is not as good for OSP, as KPPLT_RW16 was 443 

tuned using LES simulations of hurricane-forced OSBL, while KPP_LMD was tuned using 444 

observation over the global ocean.  445 

5.2 Model Comparison using long-term integration 446 

Figure 5 shows the evolution of surface forcing and ocean temperature profiles calculated 447 

using various mixing parameterizations for the year 2013 using pre-calculated surface buoyancy 448 

fluxes. Forcing conditions are identical for these solutions. Both wind and buoyancy fluxes 449 

exhibit distinct seasonal variability. Winds are weaker and stabilizing surface buoyancy fluxes 450 

prevail from March to early September. During winter, there were multiple storms characterized 451 

by short-term and significant strengthening in both wind and destabilizing surface buoyancy 452 

fluxes. For example, during the cold front in late September, the daily average wind speed 453 

doubled within a single day and remained above 12 m/s for approximately one week. 454 

Figure 5b displays the temperature profiles calculated using KPP_LMD. From January to 455 

March, there is minimal variability in the simulated MLD and temperature. The simulated mixed 456 

layer was relatively deep, close to 100 m, and the mixed layer temperature was around 5°C. The 457 

upper ocean re-stratified quickly in April. The MLD shallowed from -100 m to -20 m during 458 

April. However, the warming of the mixed layer during the month is relatively modest, about 459 

2°C. The mixed layer continued to warm, reaching a maximum temperature of 17.6°C in early 460 

September. Since then, the mixed layer cooled and deepened. It should be noted that a marine 461 

heatwave, famously known as “the Blob”, started in the winter of 2013/2014 (Bond et al., 2015; 462 

Di Lorenzo & Mantua, 2016) resulting in a shallower and warmer mixed layer at the end of 2013 463 

than the beginning of the year. In addition to the seasonal cycle, rapid mixed layer cooling and 464 

deepening associated with storms are also evident, leading to short-term variability in both mixed 465 
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layer temperature and depth. For example, storms in early June led to notable mixed layer 466 

cooling and deepening during the longer-term seasonal warming of the mixed layer during 467 

summer, while a storm in late September accelerated mixed deepening and cooling during fall. 468 

 469 
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Figure 5. Comparison of the potential temperature profile evolutions at OSP in the year 2013 470 

using various simulation schemes. Forcing conditions are identical in these simulations (set 1). 471 

(a) Time series for observed 10-meter wind speeds (thin red line) and net surface buoyancy 472 

fluxes (thin blue line). The smoothed thick lines show the daily averaged values. (b) potential 473 

temperature evolution calculated using KPP_LMD. Panels (c) to (j) show the difference in 474 

simulated temperature from KPP_LMD for all other parameterizations. The mixed layer depth 475 

(MLD), defined by the depth at which the density exceeds the surface value by 0.03 kg/m³, from 476 

KPP_LMD is indicated by thin red lines in panels (b) to (j), whereas the mixed layer depths from 477 

other schemes are delineated by blue lines in panels (c) to (j). 478 

Figures 5c to 5j show the differences between different parameterizations and 479 

KPP_LMD. In KPPLT_VR12 and KPP_DNN1, wave effects are incorporated only into the 480 

velocity scale coefficient 𝜖𝜖, but not in unresolved shear coefficient 𝜂𝜂. The results (Figures 5c and 481 

5h) demonstrate only a slight impact on the simulated temperature profiles. The deviation in 482 

temperature from the baseline KPP_LMD remained relatively minor, less than 1°C throughout 483 

the year. The mixed layer was only slightly deeper after September.  484 

In the KPP schemes that include wave effects in both velocity scale coefficient 𝜖𝜖 and 485 

unresolved shear coefficient 𝜂𝜂, i.e., KPPLT_LF17, KPPLT_RW16, KPP_DNN2a and 486 

KPP_DNN2b, as shown in Figures 5d, 5e, 5i and 5j, the simulated mixed layer using those 487 

schemes was evidently cooler and deeper throughout the year than that using KPP_LMD. A 488 

warm anomaly was observed at a depth of approximately 120 m throughout the year. That is the 489 

greatest depth that the mixed layer reached in March and well below the mixed layer after April 490 

when the water column re-stratified, thus highlighting the significance of OSBL mixing in 491 

shaping upper-ocean thermal profiles and heat transfer between the surface and the interior 492 
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ocean. Among these solutions, the one using KPPLT_RW16 displays the most rapid mixed layer 493 

cooling and deepening in Fall, implying the strongest mixing during that period, consistent with 494 

the finding by Q. Li et al. (2019). The stronger mixing by KPPLT_RW16 is attributed to the use 495 

of hurricane conditions to tune the coefficients. The simulated short-term mixed layer cooling 496 

and deepening due to storms, and the subsequent short-term warming and restratification by 497 

these four parameterizations were also more dramatic than those by KPP_LMD, KPPLT_VR12 498 

and KPP_DNN1. These results highlight the importance of accounting for the unresolved shear 499 

coefficient 𝜂𝜂 in modeling wave effects in parameterizations under the KPP framework. 500 

For SMC_KC94 (Figure 5f), which did not incorporate wave effects, the simulated mixed 501 

layer tends to be shallower and warmer throughout the year compared to that in KPP_LMD, 502 

indicating that the parameterized mixing in SMC_KC94 is weaker than that in KPP_LMD. This 503 

is particularly evident during the first half of the year when the mixed layer warms and re-504 

stratifies. With the inclusion of wave effects, the simulation using SMC_H15 yields a mixed 505 

layer that is cooler and deeper compared to the one using SMC_KC94. Between January and 506 

March, the simulated mixed layer using SMC_H15 exhibits higher temperatures than those 507 

generated by the KPPLT and KPP_DNN2 schemes. The re-stratification predicted by SMC_H15 508 

occurs more rapidly than that by KPP_LMD, evidenced by a sharper increase in mixed layer 509 

temperature during April. The simulated mixed layer cooling and deepening rates by SMC_H15 510 

in fall is close to those using KPPLT_LF17, KPP_DNN2a and KPP_DNN2b. 511 

The time series of sea surface temperature (SST) for the years 2011 to 2016 are presented 512 

in Figure 6. Observed SST is plotted as reference and is not a metric to evaluate the 1D 513 

simulations, as observed SST includes contributions from processes other than OSBL turbulence. 514 

The simulated SST is mostly warmer than observation at the end of the year for all years. At the 515 



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES) 

 

OSP, large- and meso- scale processes also contribute to the annual cycle of SST (Cronin et al., 516 

2015). Across the six years simulated, SST was the highest using the SMC_KC94 and the lowest 517 

using KPPLT_RW16, respectively, implying that mixing is the weakest in SMC_KC94 and is 518 

the strongest in KPPLT_RW16. When using KPPLT_VR12 and KPP_DNN1, the simulated SST 519 

is close to that in KPP_LMD throughout the 6 years, reaffirming that KPP parameterizations 520 

without counting on wave effects on unresolved shear coefficient 𝜂𝜂 has only limited impact on 521 

the evolution of MLD and temperature within the mixed layer.  522 

 523 
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 524 

Figure 6. Comparison of observed SST time series at OSP and simulated SST time series using 525 

different schemes from 2011 to 2016 (panels (a) to (f)) in simulation Set 1. All simulations were 526 

driven by identical surface forcing conditions, i.e., using pre-calculated surface buoyancy fluxes. 527 

The simulated SSTs using KPPLT_LF17, SMCLT_H15, KPP_DNN2a, and 528 

KPP_DNN2b were lower than that using KPP_LMD, KPPLT_VR12, KPP_DNN1, and 529 
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SMC_KC94, but higher than that using KPPLT_RW16. There is a considerable difference 530 

between the solutions of the two KPP_DNN2 schemes: KPP_DNN2a and KPP_DNN2b. The 531 

simulated SSTs by the two schemes were close to each other for the year 2013. In other 532 

simulated years, the simulated SSTs when using KPP_DNN2b were noticeably cooler than that 533 

using KPP_DNN2a. The difference between KPP_DNN2a and KPP_DNN2b highlights the 534 

different roles that waves played in different years. 535 

The simulated SSTs using KPPLT_LF17, SMCLT_H15, KPP_DNN2a, and 536 

KPP_DNN2b were more closely aligned with both the magnitude and the tendency of the 537 

observed SSTs in OSP than using KPP_LMD, KPPLT_VR12, KPPLT_RW16 and SMC_KC94. 538 

However, it is important to note that the one-dimensional column models like the GOTM do not 539 

account for processes at a scale larger than boundary layer turbulence, such as submesoscale, 540 

mesoscale, and large-scale circulations. Therefore, differences between GOTM solutions and 541 

observations should be interpreted with caution as they could be due to contributions by those 542 

larger-scale processes. As pointed out by Large et al. (1994), OSP is often impacted by heat 543 

advection between September and February, a factor that can significantly modulate SSTs but is 544 

not included in the 1D GOTM simulation, thus often causing larger discrepancies between 545 

simulated and observed SSTs during these months. For example, observed cooling is stronger 546 

than the simulated cooling by all schemes during November 2016 and warmer than the simulated 547 

cooling by all schemes with wave effects during December 2013.  548 

 The simulated SSTs, derived using online flux calculation (set 2), are presented in Figure 549 

7. With online flux calculation, the buoyancy fluxes vary across different simulations. A lower 550 

simulated SST results in smaller surface heat loss, as both the outgoing long wave and the 551 

sensible heat loss calculated from the COARE algorithm are both smaller. Different from the 552 
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solutions using pre-calculated fluxes (set 1) shown in Figure 6, the differences in SST among 553 

simulations employing different turbulent mixing schemes in Figure 7 were much smaller, 554 

mostly less than 0.5°C. The simulated SSTs using different parameterization schemes were also 555 

more closely aligned with observations. However, starting from November, consistent biases 556 

from the observed SSTs were found in each simulated year, with SSTs generally being higher 557 

except for the year 2013. The deviated SSTs in winter are due to the advection effects which are 558 

not considered in the 1D GOTM model, while the unique SST biases in winter 2013, is likely 559 

due to the heatwave “Blob”. These biases underscore the influence of advection on SSTs, an 560 

impact that could not be completely mitigated by online flux calculation using bulk formulas. 561 
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 562 

Figure. 7. Same as Figure 6, but for Simulation Set 2 using buoyancy flux calculated online. 563 

 564 

  Figure 8 shows the differences in the simulated MLDs between simulations driven by 565 

pre-calculated buoyancy fluxes (set 1) and those driven by fluxes calculated online using bulk 566 

formulas (set 2). During the summer months, , the simulated MLDs in set 1, using pre-calculated 567 

flux, were mostly slightly shallower with KPP_LMD, and slightly thicker with KPPLT_RW16 in 568 
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comparison with the observed MLDs. Simulated MLDs in set 2, which used online flux 569 

calculation, were shallower and better aligned to observations. During this period, online flux 570 

calculation reduces biases in both simulated SSTs and MLDs. However, during the colder 571 

months from January to April and after November, when the simulated SST is higher than the 572 

observed SST (Figure 7), the simulated MLDs were deeper when driven by fluxes calculated 573 

online using bulk formula. Note that during these periods, the MLDs in simulations using 574 

parameterization schemes with wave enhancements (KPPLT_LF17, KPPLT_RW16 and 575 

KPP_DNN2b) were deeper than the observed mixed layer. Results of simulations over a 6-year 576 

period from 2011 to 2016 (see Figure S3 in supporting information) confirms that all the 577 

simulations using online flux calculation efficiently eliminates the warming drift of SSTs, but the 578 

deviations of MLDs in colder months amplified over years, even for KPP_LMD. While the 579 

online flux calculation has the potential to reduce biases in the simulated SST, it could 580 

conversely increase biases in the simulated MLDs.  581 
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 582 

Figure 8. Comparison of simulated MLDs between GOTM simulations using PMEL derived 583 

flux products and those using COARE-v3.6 online calculated fluxes for the year 2011 (panel (a)) 584 

to 2016 (panel (f)). The MLDs were diagnosed as the depth where water density exceeds surface 585 

water density by 0.03𝑘𝑘𝑘𝑘/𝑚𝑚3. A  5-day running average was used to remove high-frequency 586 

fluctuations. 587 

 588 
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5.3 The Efficiency of KPP_DNNs 589 

A parameterization must be efficient so that it can be used in realistic ocean models for 590 

long-term integrations. The efficiency of the KPP_DNNs is evaluated by comparing them with 591 

the traditional KPP and KPPLT schemes (refer to Table 1) within the GOTM framework.  592 

Simulations were conducted on a dedicated single core of Intel Cascade Lake (Intel® 593 

Xeon® Platinum 8260 Processor) CPUs on the Louisiana Optical Network Initiative's high-594 

performance computing server (LONI-HPC). The year 2013 served as the benchmark period for 595 

the GOTM model runs to evaluate efficiency. In all simulations, the forcing and configuration 596 

were identical. To ensure accuracy in measuring computational efficiency, we disabled output. 597 

The results showed that the run times for KPP_DNNs are comparable with those of 598 

traditional KPP and KPPLT schemes. Specifically, the run time for KPP_DNNs exceeds less 599 

than 4% that of KPP_LMD and KPPLT_VR12 but is 8% faster than that for KPPLT_LF17 and 600 

22% faster than that for KPPLT_RW16. This comparison suggests that KPP_DNN schemes are 601 

suitable for implementation in realistic ocean and climate models.  602 

 603 

Table 2. List of parameterization names and their run time.  604 

Simulation Name Run Time (seconds) 

KPP_LMD 3.06 

KPPLT_VR12 3.07 

KPPLT_LF17 3.48 

KPPLT_RW16 4.12 

KPP_DNN1 3.09 

KPP_DNN2a 3.16 
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KPP_DNN2b 3.20 

 605 

6. Neural network enabled understanding of OSBL turbulence and parameterization 606 

Neural networks excel at discovering complex relationships and can be employed to help 607 

understand the complicated dynamics in OSBL turbulence and potential missing relationships in 608 

traditional physics-based KPP schemes.  609 

Figure 9 presents the dependence of the velocity scale coefficient (ϵ in Equation 5) on 610 

turbulent Langmuir number and MLD and compares it across KPPLT_LF17, KPPLT_RW16, 611 

and KPP_DNN2b. In all three schemes, the magnitude of ϵ shows a clear dependence on the 612 

non-dimensional turbulent Langmuir number (𝐿𝐿𝑎𝑎𝑡𝑡). Specifically, a smaller 𝐿𝐿𝑎𝑎𝑡𝑡 is associated with 613 

a larger 𝜖𝜖, indicating wave-induced turbulence has a larger effect on mixing. 𝜖𝜖 by KPPLT_RW16 614 

(Figures 9c and 9d) is the largest among the three schemes. ϵ by KPP_DNN2b displays a 615 

dependence on the MLD as well. The deeper the MLD, the larger the 𝜖𝜖. 616 

 617 
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 618 

Figure 9. Comparison of the velocity scales coefficient (ϵ) computed by two of the traditional 619 

deterministic KPPLT schemes, i.e., KPPLT_LF17 (panels a and b) and KPPLT_RW16 (panels c 620 

and d), and predicted by the KPP_DNN2b (panels e and f).  The color scale in each hexagon 621 

represents the average enhancement of velocity scale 𝜖𝜖 over all data points contained in the 622 

hexagon region. Only hexagons averaged over more than 50 data points are shown. The upper 623 

row (panels a, b, c) corresponds to conditions of destabilizing buoyancy forces, whereas the 624 

lower row (panels d, e, f) represents conditions under stabilizing buoyancy forces. Different from 625 

the regime diagrams in Figure 2, the y-axis is the mixed layer depth (MLD).  626 

Figure 10 shows the unresolved shear coefficient (𝜂𝜂 in Equation 6) for KPPLT_LF17, 627 

KPPLT_RW16, and KPP_DNN2b. As demonstrated in the simulated temperature profiles and 628 

SST (Figures 5 and 6), the magnitude of the unresolved shear coefficient 𝜂𝜂 is more impactful 629 

than the magnitude of the velocity scale 𝜖𝜖 coefficient in the simulation of upper-ocean 630 

temperature and stratification. 631 
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For KPPLT_LF17 (Figures 10a and 10b), 𝜂𝜂 only varies with forcing conditions when 632 

surface buoyancy forcing is destabilizing. Under stabilizing buoyancy forcing conditions, the 633 

velocity scale of unresolved shear 𝑈𝑈𝑡𝑡2 by KPPLT_LF17 is the same as that by KPP_LMD, thus 634 

𝜂𝜂 = 1.0 regardless of the wind-wave-buoyancy condition or MLD. Under destabilizing 635 

buoyancy forcing conditions, the average value of 𝜂𝜂 ranges from 1.0 to 2.5, but there is no 636 

apparent correlation between 𝜂𝜂 and either 𝐿𝐿𝑎𝑎𝑡𝑡 or MLD. For KPPLT_RW16 (Figures 10c and 637 

10d), there is an apparent relationship between 𝜂𝜂 and 𝐿𝐿𝑎𝑎𝑡𝑡. The more dominant the wave effect 638 

over the wind effect, the smaller the 𝐿𝐿𝑎𝑎𝑡𝑡 and the larger the 𝜂𝜂.  However, there are no apparent 639 

differences of 𝜂𝜂 in magnitudes under different buoyancy forcing conditions or MLD if 𝐿𝐿𝑎𝑎𝑡𝑡 is the 640 

same. The more dominant the wave effect over the wind effect, the smaller the 𝐿𝐿𝑎𝑎𝑡𝑡 and the larger 641 

the 𝜂𝜂.  642 

In KPP_DNN2b (Figures 10e and 10f), 𝜂𝜂 is impacted not only by 𝐿𝐿𝑎𝑎𝑡𝑡, but also by MLD 643 

and surface buoyancy forcing. Similar to KPPLT_LF17 and KPPLT_RW16, 𝜂𝜂 increases with 644 

decreasing turbulence Langmuir number for all MLDs. However, different from the two KPPLT 645 

schemes, there is also an evident relationship between 𝜂𝜂 and MLD: 𝜂𝜂 decreases with increasing 646 

MLD, implying a weaker influence of Langmuir circulations on mixed layer deepening when the 647 

mixed layer is deeper. Langmuir circulation arises from wave-current interaction close to the 648 

surface, where it exhibits the greatest intensity (e.g., McWilliams et al., 1997). Q. Li and Fox-649 

Kemper (2020); Weller and Price (1988) found no significant wave effect at the base of the 650 

mixed layer if the MLD exceeds −40𝑚𝑚 deep.  651 

Furthermore, 𝜂𝜂 also depends on whether the surface buoyancy forcing is stabilizing or 652 

destabilizing. For the same 𝐿𝐿𝑎𝑎𝑡𝑡 and MLD, 𝜂𝜂 is larger when surface buoyancy forcing is 653 

stabilizing, indicating that the traditional KPP scheme (KPP_LMD) more significantly and more 654 
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consistently underestimates the entrainment effect. As discussed in Ali et al. (2019), due to an 655 

underestimation of entrainment effect, KPP schemes tend to underestimate the summertime 656 

MLD everywhere, during which season stabilizing buoyancy forcing is predominant. The 657 

KPPLT schemes, such as the KPPLT_LF17 slightly improve the simulated summertime MLD, 658 

but still underestimate it. The KPP_DNN2b scheme identifies the limitation of KPP_LMD and 659 

predicts larger 𝜂𝜂 under stabilizing buoyancy forcing.  660 

 661 

 662 

Figure 10. Same as Figure 9, but for the unresolved shear coefficient (𝜂𝜂) 663 

7 Conclusions 664 

In this study, feedforward deep neural networks (DNNs) tuned using 11-year solutions of 665 

turbulence-resolving large eddy simulations (LES) driven by realistic forcing conditions at ocean 666 

station Papa (OSP), are used to improve one of the most popular parameterizations for mixing in 667 

the ocean surface boundary layer (OSBL), the K-Profile Parameterization (KPP). Specifically, 668 
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the DNNs are used to parameterize two coefficients: the turbulent velocity scale coefficient 𝜖𝜖 and 669 

the unresolved shear coefficient 𝜂𝜂 in equations 5 and 6 respectively. These two coefficients 670 

revise the turbulent velocity scale and the unresolved shear, two key parameters in the KPP. The 671 

KPP_DNNs are implemented into the general ocean turbulence model (GOTM), a one-672 

dimensional column model and commonly used testbed of turbulence parameterization. The 673 

KPP_DNNs are compared with seven popular traditional deterministic schemes, including 674 

variants of the first-order KPP and the second-moment closure (SMC) schemes within the 675 

GOTM using simulations for upper-ocean conditions at OSP between 2011 and 2016. Key 676 

conclusions from this study are summarized as follows:  677 

• The KPP_DNNs are stable, accurate and efficient for integration over several years. The 678 

KPP_DNN scheme including wave effects, i.e., the KPP_DNN2b, is 8% faster than 679 

KPPLT_LF17 and 22% faster than KPPLT_RW16.  680 

• When using the pre-calculated flux products, the simulated mixed layer is the warmest 681 

and the shallowest using the schemes without wave effects, i.e., KPP_LMD and 682 

SMC_KC94. The simulated re-stratification in spring is faster when SMC compared to 683 

KPP. 684 

• Biases in the simulated SST are smaller when using online buoyancy flux calculation 685 

using bulk formulas (Simulation Set 2) compared to using pre-calculated flux (Simulation 686 

Set 1). However, biases in the simulated mixed layer depth (MLD) are larger with the 687 

online buoyancy flux calculation. 688 

• In KPP_DNN2b, the value of the turbulent velocity scale coefficient 𝜖𝜖 and the unresolved 689 

shear coefficient 𝜂𝜂 not only increases with decreasing 𝐿𝐿𝑎𝑎𝑡𝑡, but also changes with the 690 

thickness of the mixed layer. As the mixed layer deepens, 𝜖𝜖 increases while 𝜂𝜂 decreases. 691 
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When MLD and 𝐿𝐿𝑎𝑎𝑡𝑡 are identical, 𝜂𝜂 is smaller when surface buoyancy forcing is 692 

destabilizing compared to stabilizing. 693 

 694 

The KPP_DNN2 schemes not only reproduce the dependence of turbulent mixing on 695 

Langmuir number, but also uncover the dependence on the MLD and whether the surface 696 

buoyancy forcing is stabilizing or destabilizing. This study highlights the ability of deep learning 697 

to discover relationships and physics not easily identified in traditional deterministic KPP 698 

schemes, and to incorporate complex, multifaceted influences on turbulent mixing in the OSBL. 699 

There are two main directions for further studies. 700 

(1). The first is to implement and evaluate the KPP_DNNs in a realistic ocean model for a 701 

regional ocean. We are currently conducting LES simulations for the Gulf of Mexico and will 702 

include those new simulations in the training dataset of the KPP_DNNs. Both the KPP_DNN2b 703 

scheme, with Stokes drift profiles included as model inputs, and the KPP_DNN2a will be 704 

implemented in the HYCOM model configured for the Gulf of Mexico (Dukhovskoy et al., 705 

2015; Laxenaire et al., 2023).  706 

(2) The capability of the KPP_DNN scheme will be expanded to include other turbulent 707 

and geographic regimes by including training data for those regimes and geographic locations as 708 

training data. The current KPP_DNN is trained using LES solutions at OSP, where turbulence is 709 

typical of the mid-latitude oceans, and is accurate for the mid-latitude oceans with similar 710 

turbulent regimes. To have a KPP_DNN suitable for other regions, existing and new LES 711 

simulations for strongly convective  high-latitude oceans (e.g., Skyllingstad & Denbo, 1995), 712 

configuration typical of the equatorial regions (e.g., Schmitt et al., 2024; Whitt et al., 2022), and 713 

strongly forced hurricane conditions (e.g., Liang et al., 2020) can be added to the training 714 
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dataset. Finally, some other factors and conditions, such as the horizontal component of the 715 

Earth's rotation (Liu et al., 2018), and a background front (e.g., Fan et al., 2018; Taylor & 716 

Thompson, 2023; Yuan & Liang, 2021) also modulates OSBL turbulence. Adding those LES 717 

simulations will further expand the capability of KPP_DNN. The advantage of neural networks 718 

is their flexibility to accurately map any input to any output. This advantage will be evident 719 

when the KPP_DNN is used for multiple regimes. 720 
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