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Key Points:

e New versions of K-Profile Parameterization, augmented by Deep Neural Networks

(KPP_DNN), were developed.

e The KPP _DNN schemes were trained using Large Eddy Simulations and implemented in

the General Ocean Turbulence Model (GOTM).

e The KPP_DNN schemes are stable for long-term integration and as efficient as the

physics-based KPP schemes.
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Abstract

This study utilizes Deep Neural Networks (DNN) to improve the K-Profile
Parameterization (KPP) for the vertical mixing effects in the ocean’s surface boundary layer
turbulence. The DNNs were trained using 11-year turbulence-resolving solutions, obtained by
running a large eddy simulation model for Ocean Station Papa, to predict the turbulence velocity
scale coefficient and unresolved shear coefficient in the KPP. The DNN-augmented KPP
schemes (KPP_DNN) have been implemented in the General Ocean Turbulence Model
(GOTM). The KPP_DNN is stable for long-term integration and more efficient than existing
variants of KPP schemes with wave effects. Three different KPP DNN schemes, each differing
in their input and output variables, have been developed and trained. The performance of models
utilizing the KPP_DNN schemes is compared to those employing traditional deterministic first-
order and second-moment closure turbulent mixing parameterizations. Solution comparisons
indicate that the simulated mixed layer becomes cooler and deeper when wave effects are
included in parameterizations, aligning closer with observations. In the KPP framework, the
velocity scale of unresolved shear, which is used to calculate ocean surface boundary layer
depth, has a greater impact on the simulated mixed layer than the magnitude of diffusivity does.
In the KPP_DNN, unresolved shear depends not only on wave forcing, but also on the mixed

layer depth and buoyancy forcing.

Plain Language Summary

The uppermost tens of meters of the ocean, known as the ocean surface boundary layer,
are rich in intricate and chaotic fine-scale (cm to 100s m) ocean currents referred to as
turbulence. These currents, spanning from centimeters to hundreds of meters, play pivotal roles

in shaping the oceanic environment and influencing Earth's climate dynamics. Despite their
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significance, simulating these fine-scale ocean currents remains beyond the capabilities of
current and foreseeable supercomputing resources. Consequently, simplified formulas derived
from fundamental principles are commonly employed to approximate these currents in ocean and
climate models. However, these approximations still cannot cover all types of choppy currents
and uncertainties in these approximations represent a substantial source of bias in contemporary
ocean and climate modeling endeavors. In this study, we enhance one of the prevalent physics-
based approximations of fine-scale turbulent currents using machine learning techniques. Our
tests show that integrating machine learning in physics-based approximation is stable and

efficient and is suitable for use in ocean and climate models.

1 Introduction

The ocean surface boundary layer (OSBL) is a thin layer below the ocean surface,
typically extending tens to a hundred meters in thickness, and is strongly affected by external
forcing such as wind, waves, and net heat fluxes. Ocean currents within the OSBL are highly
turbulent, with the scale of these turbulent currents ranging from centimeters to several hundred
meters. These turbulent currents have a profound impact on ocean dynamics, both within and
beyond the OSBL, playing a significant role in sustaining marine ecosystems and shaping global
climates. However, despite advances in oceanography, accurately simulating these turbulent
processes remains a formidable challenge, particularly in regional and global ocean models,
where directly resolving these dynamics is computationally infeasible in the foreseeable future

(Fox-Kemper et al., 2019; Fox-Kemper et al., 2014).

In realistic ocean and climate models, the turbulent flux of a variable x, i.e., w'x’, is

calculated as:



64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

- ox
'x' = —K, <£ - Yx> (1)

Here, x represents a property in ocean water such as momentum, temperature, or material
concentrations; z is the vertical coordinate; and w is the vertical velocity of water. The overbar
in equation 1 represents the ensemble average, while the prime denotes the turbulent fluctuation,
i.e., x’ = x —x. K, in equation 1 is the eddy viscosity or diffusivity, represented by simplified
physics-based formulas called parameterizations. These parameterizations incorporate empirical,
tunable coefficients. In early studies, the coefficients were tuned using in situ observations of
temperature and salinity (e.g., Large et al. 1994). However, in-situ observations are modulated
by turbulent currents as well as submesoscale to large-scale currents. Over the past 20 years,
turbulence-resolving simulations of OSBL turbulence, using Large Eddy Simulation (LES)
models, have become available, with LES solutions being used to derive empirical parameters
(Harcourt, 2015; Van Roekel et al., 2012). LES models simulate OSBL turbulence exclusively,
excluding submesoscale to large-scale processes, thus are superior to tune parameterizations of
turbulent mixing. The second right-hand term, v, in equation (1), represents the non-local heat
and material transport that are not proportional to the local gradient of temperature and material
concentrations. For momentum, y, is assumed zero in most studies, although a non-zero y, term
was recently proposed by Large et al. (2019). The non-local effects can be important when
coherent convective and/or Langmuir cells dominate. This study focuses on improving of K,

which improves both the local (downgradient) and nonlocal portion of the KPP diagnosed flux.

Turbulent mixing parameterization schemes typically fall into two categories. The first
category is the first-order closure scheme, in which parameters directly relate to the forcing

conditions and water property profiles. A well-known example is the K-profile parametrization
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(KPP) scheme. The KPP scheme was initially proposed for turbulence in atmospheric boundary
layers (Troen & Mahrt, 1986) and later adapted for the OSBL (Large et al., 1994). Due to its
computational efficiency and stability, the KPP scheme is widely used in realistic simulations for
regional and global oceans (e.g., Belcher et al., 2012; Q. Li & Fox-Kemper, 2017; McWilliams
& Sullivan, 2000; Van Roekel et al., 2018; Vertenstein et al., 2012). Another well-known first-
order closure scheme is the energetics-based planetary boundary layer scheme (ePBL, Reichl &
Hallberg, 2018). The second category is the second-moment closure (SMC) scheme, where
turbulent diffusivity and turbulent viscosity are derived from turbulence statistics (kinetic energy,
length scale, and dissipation rate) and empirically calculated in the scheme (Kantha & Clayson,
1994; Umlauf & Burchard, 2003). The SMC scheme, being computationally more expensive
than the KPP scheme, is more commonly used in simulations of coastal oceans, where the
current environment is more complicated (e.g., Sane et al., 2021; Warner et al., 2005) than in
global and regional oceans. Recent studies have revised both the KPP and SMC schemes to
include enhanced turbulent mixing effect due to wave-driven Langmuir turbulence, i.e., KPPLT
and SMCLT. Studies have shown that the use of KPPLT and SMCLT generally improves the
simulations of sea surface temperature and the mixed layer depth (MLD) for global (Q. Li et al.,
2016) and regional oceans (Ali et al., 2019). However, a recent study (Q. Li et al., 2019)
examining 11 mixing parameterization schemes, including KPP, SMC, KPPLT, and SMCLT,
found substantial differences in the solutions provided by these methods, indicating persistent

biases across all schemes.

Further refining traditional turbulent mixing parameterizations is challenging. In the
upper ocean, turbulent mixing is driven by diverse combinations of wind, wave, and buoyancy

conditions. However, traditional deterministic parameterization schemes were developed based
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on a small subset of the realistic conditions across the global ocean (e.g., Fig.1 in Q. Li et al.,
2019). Furthermore, although the scaling law is well-established for a specific turbulent regime,
it is not well-defined for common scenarios over the world’s oceans, where the three types of
turbulence are equally significant. It is challenging to identify optimal functional forms and
coefficients to adequately encompass the vast turbulent regimes due to diverse combinations of

wind, wave, and buoyancy conditions.

In light of these challenges, recent efforts have begun exploring alternative approaches to
take advantage of the recent development of machine learning techniques, especially deep neural
networks (DNNs), to enhance the representation of the mixing effects of OSBL turbulence.
DNNss utilize extensive data as truth to establish non-linear relationships between the inputs and
predicted outcomes. Early attempts aimed to replace traditional mixing parameterization by
directly predicting turbulent fluxes using DNNs (e.g., Gentine et al., 2018; Liang et al., 2022;
Rasp et al., 2018). While these DNNs have shown promising results in predicting turbulent flux
profiles, ensuring numerical stability when integrating them with realistic climate models for
long-term use poses challenges (e.g., Noah D Brenowitz et al., 2020; Chattopadhyay &

Hassanzadeh, 2023; Rasp, 2020).

An alternative approach is to retain the physics-based framework in traditional
parameterizations and use DNN to predict parameters that are uncertain in those
parameterizations. Sane et al. (2023) trained DNNs to predict profiles of eddy diffusivity in the
OSBL under the framework of the energetics-based planetary boundary layer (ePBL, Reichl &
Hallberg, 2018) using simulations based on a SMC scheme as the truth. The authors further
coupled the ePBL-DNN model into the Modular Ocean Model (MOM, e.g., Adcroft et al., 2019),

and demonstrated its stability for long-term integration. Zhu et al. (2022) trained DNNs to
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predict mixing coefficients in the interior ocean (below the OSBL) based on in-situ
microstructure observations at the equatorial Pacific Ocean. By implementing it into the MOM,
they demonstrated that incorporating a DNN into the model reduces cold biases in the equatorial
Pacific. The study, however, focused only on the KPP below the OSBL, but did not attempt to

improve the KPP for the effects of OSBL turbulence.

However, the DNN models in those two studies are not based on LES solutions and have
not targeted the popular KPP model. In this study, we aim to bridge the gap by using high-
resolution LES simulations to develop DNN models capable of predicting key turbulent mixing
parameters in the widely used KPP model. The models in this study are designed to enhance the
realism of OSBL simulations within the framework of the KPP scheme, without altering
fundamental equations or time-stepping mechanisms, thus facilitating straightforward integration
into existing ocean models. The rest of the paper is organized as follows: Section 2 presents the
framework of the DNN-augmented KPP (KPP _DNN) and outlines the data used to train the
DNN:Ss. Section 3 provides details on the implementation of the DNN-augmented KPP schemes
into the General Ocean Turbulence Model (GOTM). Section 4 describes how the GOTM is
configured. Section 5 evaluates the performance of the KPP DNN and compares the KPP DNN
with traditional parameterizations. Section 6 explores the use of the KPP_DNN to understand
OSBL turbulence and deficiency in physics-based parameterizations. Section 7 summarizes the

major findings of the study and discusses future research directions.
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2 The K-Profile Parameterization augmented by Deep Neural Networks (KPP_DNN)

2.1 Model Description

In the KPP framework (Large et al., 1994), the expression for viscosity or diffusivity K,
is given by:

Ky (0) = wy(0)hG,(0) (2)

Here, w, is a velocity scale related to the surface forcing and the Monin-Obukhov
similarity theory, h is the surface boundary layer depth, and G, (o) is a dimensionless shape
function, with ¢ = z/h the depth normalized by h. The OSBL depth h is the depth to which the
impact of surface forcing reaches. In low and mid-latitudes, where mixed layers are relatively
shallow and the Coriolis effect is relatively weak, the OSBL depth often equals the MLD, and
deepening of the OSBL is limited by stratification. In higher latitudes, observations show that the
OSBL can at times be substantially shallower than the mixed layer (Carranza et al., 2018) and
the deepening of the OSBL is limited by the rotation of the earth when convection is weak (Liu
et al., 2018). When convection dominates, the impact due to the earth's rotation on the depth of
OSBL is small.

In mixing parameterizations, the OSBL depth h is typically diagnosed by identifying the
depth at which the bulk Richardson number (Ri;), a measure of the relative importance between
shear and stable stratification, exceeds a critical value Ri.. This criterion is based on linear
stability analysis, which shows that stably stratified shear flow is unstable and turbulent mixing
quenches when the gradient Ri exceeds a critical value of 0.3, i.e., Ri;, > Ri. = 0.3. Below the
OSBL depth, Ri is larger than Ri. and the flow is stable. Above the depth, Rij, is smaller than Ri.

and the flow is turbulent. In the KPP scheme, the bulk Richardson number Ri,(z) is used and the
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critical bulk Richardson number is set to be 0.3 (Large et al., 1994). Ri, (z) is related to ocean
current and stratification as,

Z(br —m)

Rib(Z) = —
(u, —u(2)) +Ui(2)

(3)

Here, b is the buoyancy, defined as b = glag(0 — 0,.) — Bs(s — s,.)], with 6 the
potential temperature, s the salinity, @y and S the corresponding thermal and saline expansion
coefficients, respectively; u is the water current vector. The subscript r denotes the vertically
averaged value over the surface layer. The effect of turbulence is represented using the velocity

scale of the unresolved shear U?(2):

CuN(2)wy (2)12]

UR(z) = = @

where C,, is a dimensionless coefficient and N is the Brunt-Visélé frequency.

Recent studies have shown that the effects of non-breaking waves greatly modulate
turbulent fluxes in the OSBL, either enhancing or suppressing turbulent fluxes depending on the
alignment between wind and waves (McWilliams et al., 2014; Van Roekel et al., 2012). When
wind and waves are largely aligned, as is common across the global ocean, turbulence is
enhanced by wave-driven Langmuir turbulence. When waves are significantly misaligned with
the wind, as occurs when the swell is strong, turbulence is suppressed. Several recent studies
(e.g., Q. Li & Fox-Kemper, 2017; Q. Li et al., 2019; McWilliams & Sullivan, 2000; Van Roekel
et al., 2012) have been devoted to including wave effects into the KPP framework. In those
parameterizations, referred to as KPPLT hereafter, the turbulent velocity scale (w,), and the
unresolved shear velocity scale, UZ(z), are modified as,

Ky (0) = ewy(0)|h|G,(0) (5)

U¢(2) = nUE(2)|Lmp (6)
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Where the subscript LMD (Large, McWilliams and Doney) indicates the term is calculated using
a formula in Large et al. (1994), the velocity scale coefficient € and the unresolved shear
coefficient n are calculated using traditional deterministic functions of wind and wave forcing
(e.g., Q. Li & Fox-Kemper, 2017; Reichl et al., 2016).

In this study, these two coefficients will be determined by Deep feedforward Neural
Networks (DNNS5), as opposed to traditional deterministic functions in existing studies. The
DNN augmented parameterization will be called KPP_DNN hereafter.

A DNN is made up of multiple densely connected layers, including one input layer, one
output layer, and multiple hidden layers (Figure 1). Each layer includes multiple neurons.

Neurons between layers are connected by the following relationship:
Nj—l

Xij=f Wi ij—1Xkj—1 + Diijj-1 @)
=1

where X; ; means the ith neuron in the jth layer, N; is the number of neurons in the jth layer.
Wy ;i j—1 and by ; ;_, are the weight and bias that link neuron X; ;_, to neuron X; ;, respectively.
In this study, the Leaky Rectified Linear Unit function (Leaky ReLU, a(x) = max(0.1x, x)) is

used as the activation function. Other activation functions, including tangent hyperbolic and

ReLU, were tested as well, but did not improve the results.

T profile Forcing OSBL
Input Layer €@ ---©® e - 00

Hidden Layers

Output Layer o
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Figure 1. The architecture of a Deep Neural Network (DNN) model

The DNN's input layer consists of water-column variables, including potential
temperature profiles (8), salinity profiles (s), and key OSBL turbulence drivers, including wind
stress (Ty, Ty ), shortwave radiation at the ocean surface (S,,), net heat flux excluding short wave
radiation (Qf), the rate of evaporation minus precipitation (Q;), vertical profiles of Stokes drift
associated with ocean surface waves (ug, vg¢) and the OSBL depth from the previous time step.
The output layer consists of a single neuron in each DNN model, predicting a specific parameter.
Specifically, we have two different DNN models based on the output: model D, to predict the

turbulent velocity scale coefficient (€), and model Dy, to predict the unresolved shear coefficient

(n). To prevent the DNN models from predicting unphysical values, € and n were scaled to a
range of 0~1, and a sigmoid activation was added to the output layer to ensure the predictions by
the DNN models always fall within this range.

The DNN model utilizes a vast array of computations characterized by nonlinear
activation functions with distinct weights and biases. Integrating a well-tuned DNN model into a
traditional physics-based parameterization scheme not only preserves the computational stability
and efficiency of a traditional physics-based model but also enables a more flexible and effective
non-linear mapping from input variables to output parameters than what traditional deterministic
formulas could achieve.

Compared to other machine learning model architectures, such as Long-Short Term
Memory (LSTM, Hochreiter & Schmidhuber, 1997) and Fourier Neural Operator (e.g., Z. Li et
al., 2020), the neural network using basic densely connected layers is much more efficient and

equally accurate for the purposes of this study.
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2.2 Data Generation and Curation

The data used to develop and test the KPP DNN schemes are turbulence-resolving
simulations for Ocean Station Papa (OSP) using the NCAR-LES model for the OSBL (e.g.,
Sullivan & McWilliams, 2010). OSP (50°N, 145°W, see Figure 2a) is located within the
Northern Pacific subpolar gyre. With a long history of continuous atmospheric and
oceanographic in-situ observations (Cronin et al., 2023; Whitney & Tortell, 2006), OSP has been
served as a pivotal site for monitoring ocean climate (e.g., Bond et al., 2015; R. E. Thomson &
Tabata, 1987), understanding ocean physical and biogeochemical processes, and developing
parameterization schemes extensively employed in diverse ocean models (e.g., Chalikov, 2005;
Craig & Banner, 1994; Gaspar et al., 1990; Kantha & Clayson, 1994; Large et al., 1994). Figures
2b and 2c present the probability of OSBL turbulence regime at OSP based on the observed
forcing conditions. The most common turbulence regime at OSP is a mix of the three types of
turbulence. There are periods when Langmuir turbulence dominates, while convection or shear-
driven turbulence seldom dominates. Different from the global ocean (compare the blue and
black contours), the OSBL at OSP is seldom strongly convective or strongly stabilizing. LES
models are currently the state-of-the-art tool to study OSBL and submsoscale turbulence (e.g.,
Bodner et al., 2020; Skyllingstad & Denbo, 1995; Yuan & Liang, 2021), and to develop
parameterizations for those processes (e.g., Bodner et al., 2023; Liang et al., 2013; Liang et al.,

2018; Liu et al., 2022).
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Figure 2. Panel (a) shows the location of OSP in the north Pacific Ocean. Panels (b) and (c) are
regime diagrams showing the forcing conditions at OSP between 2010 and 2022. In panel (b)
and (c), the x axis is the turbulent Langmuir number (La;), while the y axis is the MLD h
divided by the Langmuir stability length L, . Panel (b) corresponds to conditions of destabilizing
net surface buoyancy forces, whereas panel (c) is for conditions under stabilizing buoyancy
forces. The blue contours are the probability (30%, 60%, 90% and 99%) of a certain parameter
combination in the global ocean, while the red contours are the probability (30%, 60%, 90% and
99%) in OSP. In panel (b), the thin dashed contours show turbulent dissipation rate, and the thick
solid black lines encompass regimes where one of the three types of turbulence contributes over
90% to total dissipation. In panel (c), the thick black line is the maximum equilibrium —h/L;
value according to Pearson et al. (2015).

The use of the NCAR-LES model to generate data is similar to that reported in Liang et
al. (2017) and Liang et al. (2022): The domain of the LES model is configured with 160
uniformly distributed horizontal grid points, spanning 300m in each horizontal direction,
Vertically, the LES model features 128 stretched grid points across a 200m depth, with the finest
grid equal 0.2m at the ocean surface. The LES model was driven by a combination of observed

hourly meteorological (Cronin et al., 2015), wave conditions (J. Thomson et al., 2013) and the
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derived surface flux products at OSP from September 2010 to December 2022. These inputs
include wind stresses, wave conditions, shortwave radiation, net surface heat flux (excluding
shortwave radiation), and the rate of evaporation minus precipitation, at OSP from September
2010 to December 2022. Periods when the observational wave data were not available were
excluded from LES simulations. The LES simulations were restarted every 10 days, and initial
conditions of each restart were derived from observed water column temperature and salinity
profiles, linearly interpolated to LES vertical grids. The restart procedure is to ensure that the
LES solutions do not deviate from the true state of the ocean, as large- and mesoscale processes
that also modulate the physical states of the upper ocean at the station (Cronin et al., 2015) are
not resolved by the LES model. Comparisons with observations show that the LES simulations
closely align with observed upper-ocean states with this approach (see Figure 3). In total, 367
LES simulations were conducted.
The turbulence-resolving LES solution dataset differs from that used by Liang et al.

(2022) in two ways: Firstly, the simulation period is longer, spanning from 2010 to 2022 in the
current study, as opposed to 2010 to 2019 in Liang et al. (2022), thereby offering more data for
model training and testing. Secondly, shortwave radiation penetrates the OSBL in the current
study while shortwave radiation was applied only at the ocean surface in Liang et al. (2022). The
shortwave radiation at depth z, Q,, (2), is calculated as

Qsw(2) = Qawo(re”/™ + (1 —1) e/k2) ®

where Qs o 1s the net shortwave radiation at the ocean surface. r = 0.58, u; = 0.35 and

U, = 23 are three empirically determined constants (Paulson & Simpson, 1977) to fit the data in
Jerlov (1976). The penetrative shortwave radiation is more realistic than a surface shortwave

flux. In LES simulations, the penetrating shortwave radiation led to thicker OSBLs and more
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modest increases in sea surface temperature when compared to simulations driven by shortwave
radiation only at the ocean surface. The use of penetrative shortwave radiation is also consistent
with realistic ocean models. Therefore, the KPP_DNN trained using the set of LES solutions

could be implemented into realistic ocean models.

-50 1

MLD (m)

-100 1

-150

(b)

15.01
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Figure 3. Comparison between the LES solutions and in situ observations at OSP. (a) mixed
layer depth (MLD); (b) mean temperature in the mixed layer; (c) mean salinity in the mixed
layer.

Ensemble-averaged profiles of temperature, salinity, velocities, turbulent kinetic energy
(TKE), and their turbulent fluxes were calculated online and output every 30 minutes. The depth

of the OSBL h was diagnosed as the depth at which the vertical gradient of momentum flux
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decreases to 2 X 1077 m/s?. n was then diagnosed using Equations 4 and 6 with a Ri, = 0.3.
w, and G (o) in Equation 5 were first calculated using the LES solutions and formulas detailed in
Large et al. (1994). € was then obtained by minimizing the difference between the momentum

fluxes using equation 1 and the output momentum flux from LES solutions.

2.3 Model Training

The turbulence-resolving LES data were separated into three datasets: the training, the
validation and the testing, at a ratio of approximately 6:2:2. The validation dataset was used to
monitor the neural network training and prevent overfitting, while the testing dataset was used to
evaluate the model after the training process was completed. This partition followed the random
block sampling strategy (Schultz et al., 2021), dividing the data by LES runs, each covering a 10-
day period. This strategy efficiently avoids spurious correlations among the datasets and ensures
that all three datasets represent different climatological conditions over the entire study period.

The predicted coefficients € in model D, and n in model D,, were compared with € and 7

diagnosed from LES solutions as detailed in section 2.2. Mean square errors served as the loss to
update trainable parameters in the DNNs. The DNNs were trained using TensorFlow and Keras
within the R programming environment. The architecture of these DNNs varied significantly,
encompassing a range of different layers (1, 2, 4, 6, 8, 12) and neurons per layer (2, 4, 8, 16, 32),
to explore the optimal structure for our specific application. The Adam optimizer was employed
across all models. Each model was trained for 1000 epochs. The learning rate was reduced by a
factor of 0.1 whenever a plateau in validation loss, quantified as Mean Squared Error (MSE),
was detected during the training process. The criterion for selecting the best model was based on
the smallest validation loss, a standard measure of model accuracy on unseen data, ensuring that

the chosen model has the highest generalization capability.
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3 Implementation of KPP_DNN in the General Ocean Turbulence Model (GOTM)

The General Ocean Turbulence Model (GOTM, Burchard et al., 1999) is a single-column
model designed to examine the behavior of various turbulent mixing parameterization schemes
in the OSBL. It provides a versatile framework, allowing for the straightforward compilation and
execution of different OSBL turbulent mixing parameterization schemes, making it the ideal
testbed for developing and testing mixing parameterizations. The current GOTM model includes
a variety of first-order and second-moment closure schemes, allowing for the comparison of
different schemes within the same framework.

Adding to the capability of the GOTM, this study implements the trained DNNSs, their
structure and trainable parameters, into the model. The GOTM, like most earth system models, is
coded exclusively in Fortran, while DNN models are typically written in high-level
programming languages like Python and R, utilizing deep learning libraries such as Keras (Gulli
& Pal, 2017; Ketkar & Ketkar, 2017). There are two approaches that a DNN model could be
implemented in a Fortran code: The first is to hard-code the entire DNN structure and trainable
parameters directly into Fortran (e.g., N. D. Brenowitz & Bretherton, 2018; Gagne et al., 2020).
The other approach, adopted in this study, is to overcome the computer language interoperability
by incorporating a software library that connects Fortran and Python environments, such as the
Fortran-Keras Bridge (FKB, Ott et al., 2020) used in this study.

The process involves converting a trained DNN using Keras, saved in HDF format, into
an ASCII file offline. This ASCII file is specifically structured for easy interpretation by the
FKB. In a FKB informed Fortran program, the DNN model, including its structure and weights,
is reconstructed by loading this ASCII file. During each timestep of integration in the GOTM,

the necessary input array, composed of outputs from the GOTM model and forcing conditions, as
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detailed in Section 2.3, was normalized and fed into the loaded DNN model. Subsequently, the
DNN's predictions were then denormalized and integrated back into GOTM to compute the

enhancement factors in equation 6.

4 Model Configurations

Three different KPP DNNs were compared against seven existing physics-based
parameterizations (Table 1) using the GOTM. The three KPP DNNs vary in complexity. In
KPP DNNI, only the coefficients for the velocity scale coefficient € predicted by D, were
utilized. In KPP_DNN2a, both the velocity scale coefficient € predicted by D, and the

unresolved shear coefficient 7 predicted by D;, were used. Wave-induced stokes profiles were

not included as inputs of the KPP DNN2a. KPP DNN2b was the same as KPP DNN2a but
additionally incorporated Stokes profiles as inputs. For ocean models not yet coupled with wave
models, the KPP DNN2b could be employed by reading in pre-calculated Stokes profiles
calculated offline from wave spectrum products (e.g., Ali et al., 2019; Q. Li et al., 2016), or the
KPP DNN2a can be utilized without the Stokes drift as inputs.

The best-trained DNN models, identified by the smallest validation loss during training,
are configured with 2 hidden layers of 16 neurons each for D, and 4 hidden layers of 16 neurons

each for D,) in KPP_DNN2a, and 4 hidden layers of 8 neurons each for D, and 8 hidden layers of
8 neurons each for D,, in KPP_DNNZ2b. The performance of the training process and the model is

in the supplementary material (see Figure S1 for training and validation loss curves and Figure
S2 for density distribution curves for DNN predictions and LES truths in the Supporting
Information).

Seven well-known traditional deterministic parameterizations were also selected for

comparison (Table 1). The KPP_LMD is the basis of KPP schemes and does not incorporate the
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enhancement of non-breaking waves. KPPLT VR12 adds the enhancement of non-breaking
wave effects only to the turbulent velocity scale but leaves the unresolved shear component
unchanged. KPPLT LF17 builds on KPPLT VR12 and includes modification on both the
velocity scale and the unresolved shear components. KPPLT RW16 is similar to KPPLT LF17,
but formulas and coefficients that modify velocity scale and the unresolved shear were tuned
using LES solutions under hurricane conditions, thus has a stronger enhancement than
KPPLT LF17. It should be noted that all three KPPLT schemes have considered the effects of
wind-wave misalignment. Across the global oceans, wind and waves are often misaligned (e.g.,
Abolfazli et al., 2020; Hanley et al., 2010). When waves align with the wind, Langmuir
turbulence enhances OSBL turbulence. When waves oppose the wind, OSBL turbulence is
suppressed (e.g., McWilliams et al., 2014). All KPPLT schemes were tuned using LES solutions.

SMC_ KC94 is the second closure model tuned using data over at a few different
locations across the global oceans. This scheme does not include the non-breaking wave effects.
SMCLT_H15 generalizes SMC K(C94 to incorporate the impact of non-breaking waves by
including the Stokes profiles in the governing equations. Coefficients in the SMCLT H15
scheme were tuned using LES solutions.

The performance of the seven traditional parameterizations and the three variants of
KPP _DNN schemes is compared using the GOTM for the year 2011 to 2016, when observed
meteorological conditions and directional wave spectra were continuously available. The GOTM
simulations are divided into two sets. Both sets of simulations were driven by observed
meteorological and wave conditions. They differ by the surface buoyancy fluxes used to drive
the model. In the first set of simulation (set 1), surface buoyancy flux products at OSP provided

by Pacific Marine Environmental Laboratory (PMEL), were used as input. Those fluxes were
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calculated using the Coupled Ocean-Atmosphere Response Experiment (COARE) algorithm
with the observed ocean and atmosphere conditions. In the second set of simulations (set 2),
surface buoyancy fluxes were calculated using the same COARE algorithms online during the
GOTM simulations. The online flux calculation is based on observed meteorological condition
and the simulated sea surface temperature (SST) and sea surface salinity (SSS). The approach in
the pre-calculated surface buoyancy flux has been commonly used in studies aiming at
improving or comparing mixing parameterization schemes (e.g., Q. Li et al., 2019). In this model
configuration, forcing conditions are identical among different simulations and the difference in
solutions are purely due to mixing parameterizations. The online calculation of surface buoyancy
flux in the second set of simulation is consistent with that in most realistic ocean simulations
using regional and global models (e.g., Chassignet et al., 2020). In simulations driven by pre-
calculated buoyancy fluxes, corrected fluxes to nudge the simulated SST and SSS to their
climatological states are usually imposed to prevent the long-term drift in the solutions (e.g.,
Barnier et al., 1995). With this approach, however, the surface buoyancy flux is different among
simulations using different mixing parameterizations. The GOTM simulations were restarted at
the beginning of each year using observed temperature and salinity profiles as initial conditions.
In each simulation, outputs were recorded at every 30 minutes. It should be noted that the GOTM
with all parameterizations could be integrated for a full 6-year period without any stability issue.
However, restarting at the beginning of each year mitigates the long-term drift in the solution due
to the exclusion of larger-scale processes in the 1-D vertical column model (see Figure S3 in

supporting information).
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Figure 4. Taylor diagram for the rate of change of simulated mixed-layer averaged potential
temperature. The solid lines, dashed lines and dotted lines represent contours of normalized
standard deviations, the normalized root mean square errors and the correlations, respectively.
The standard deviations and the root mean square errors were normalized by dividing the

standard deviation of the truth (LES solutions).

Table 1. List of parameterization names and the references for the traditional deterministic

parameterization schemes compared in this study.
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Parameterization Name References
KPP_LMD Large et al. (1994)
KPPLT VRI2 Van Roekel et al. (2012)
KPPLT RWI16 Reichl et al. (2016)
KPPLT LF17 Q. Li and Fox-Kemper (2017)
SMC_KC9% Kantha and Clayson (1994)
SMCLT HI15 Harcourt (2015)

S Performance of the KPP_DNN models

5.1 Model Evaluation Using LES Solutions

To directly evaluate the performance of GOTM models using different turbulent mixing
schemes, we compared them with LES solutions. We conducted several 9-day simulations
coinciding with all the testing periods, initializing from the beginning of day 2 in each
simulation, and ran for 9 days for each testing period. We then calculated three statistics for
SSTs—mean standard deviation, root mean square errors, and correlations—for all the testing
periods from both the LES solutions and GOTM simulations. Comparisons of four variants of
KPP schemes, including KPP DNN2b, KPPLT LF17, KPPLT RW16, and KPP LMD, using
the Taylor diagram (Figure 4) show that KPP DNN2a and KPP_DNN2b share similar evaluation
statistics, and both are superior to all other schemes in terms of root mean square error and
correlation. Among the traditional deterministic schemes, the performance of KPPLT LF17 is
close to that of KPP DNN2a and KPP_DNN?2b, as simulations used to tune KPPLT LF17 is

also typical to mid-latitude stratified ocean. In agreement with Q. Li et al. (2019), the
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performance of KPPLT RW16 and KPP LMD is not as good for OSP, as KPPLT RW16 was
tuned using LES simulations of hurricane-forced OSBL, while KPP_LMD was tuned using

observation over the global ocean.

5.2 Model Comparison using long-term integration

Figure 5 shows the evolution of surface forcing and ocean temperature profiles calculated
using various mixing parameterizations for the year 2013 using pre-calculated surface buoyancy
fluxes. Forcing conditions are identical for these solutions. Both wind and buoyancy fluxes
exhibit distinct seasonal variability. Winds are weaker and stabilizing surface buoyancy fluxes
prevail from March to early September. During winter, there were multiple storms characterized
by short-term and significant strengthening in both wind and destabilizing surface buoyancy
fluxes. For example, during the cold front in late September, the daily average wind speed
doubled within a single day and remained above 12 m/s for approximately one week.

Figure 5b displays the temperature profiles calculated using KPP_LMD. From January to
March, there is minimal variability in the simulated MLD and temperature. The simulated mixed
layer was relatively deep, close to 100 m, and the mixed layer temperature was around 5°C. The
upper ocean re-stratified quickly in April. The MLD shallowed from -100 m to -20 m during
April. However, the warming of the mixed layer during the month is relatively modest, about
2°C. The mixed layer continued to warm, reaching a maximum temperature of 17.6°C in early
September. Since then, the mixed layer cooled and deepened. It should be noted that a marine
heatwave, famously known as “the Blob”, started in the winter of 2013/2014 (Bond et al., 2015;
Di Lorenzo & Mantua, 2016) resulting in a shallower and warmer mixed layer at the end of 2013
than the beginning of the year. In addition to the seasonal cycle, rapid mixed layer cooling and

deepening associated with storms are also evident, leading to short-term variability in both mixed
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466  layer temperature and depth. For example, storms in early June led to notable mixed layer
467  cooling and deepening during the longer-term seasonal warming of the mixed layer during

468  summer, while a storm in late September accelerated mixed deepening and cooling during fall.
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Figure 5. Comparison of the potential temperature profile evolutions at OSP in the year 2013
using various simulation schemes. Forcing conditions are identical in these simulations (set 1).
(a) Time series for observed 10-meter wind speeds (thin red line) and net surface buoyancy
fluxes (thin blue line). The smoothed thick lines show the daily averaged values. (b) potential
temperature evolution calculated using KPP_LMD. Panels (c) to (j) show the difference in
simulated temperature from KPP LMD for all other parameterizations. The mixed layer depth
(MLD), defined by the depth at which the density exceeds the surface value by 0.03 kg/m?, from
KPP LMD is indicated by thin red lines in panels (b) to (j), whereas the mixed layer depths from
other schemes are delineated by blue lines in panels (c) to (j).

Figures 5c to 5j show the differences between different parameterizations and
KPP _LMD. In KPPLT VRI12 and KPP _DNNI, wave effects are incorporated only into the
velocity scale coefficient €, but not in unresolved shear coefficient 77. The results (Figures 5c¢ and
5h) demonstrate only a slight impact on the simulated temperature profiles. The deviation in
temperature from the baseline KPP_LMD remained relatively minor, less than 1°C throughout
the year. The mixed layer was only slightly deeper after September.

In the KPP schemes that include wave effects in both velocity scale coefficient € and
unresolved shear coefficient 1, i.e., KPPLT LF17, KPPLT RW16, KPP DNN2a and
KPP_DNN2b, as shown in Figures 5d, 5e, 5i and 5j, the simulated mixed layer using those
schemes was evidently cooler and deeper throughout the year than that using KPP LMD. A
warm anomaly was observed at a depth of approximately 120 m throughout the year. That is the
greatest depth that the mixed layer reached in March and well below the mixed layer after April
when the water column re-stratified, thus highlighting the significance of OSBL mixing in

shaping upper-ocean thermal profiles and heat transfer between the surface and the interior
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ocean. Among these solutions, the one using KPPLT RW16 displays the most rapid mixed layer
cooling and deepening in Fall, implying the strongest mixing during that period, consistent with
the finding by Q. Li et al. (2019). The stronger mixing by KPPLT RW16 is attributed to the use
of hurricane conditions to tune the coefficients. The simulated short-term mixed layer cooling
and deepening due to storms, and the subsequent short-term warming and restratification by
these four parameterizations were also more dramatic than those by KPP LMD, KPPLT VRI12
and KPP_DNNI. These results highlight the importance of accounting for the unresolved shear
coefficient 77 in modeling wave effects in parameterizations under the KPP framework.

For SMC KC94 (Figure 5f), which did not incorporate wave effects, the simulated mixed
layer tends to be shallower and warmer throughout the year compared to that in KPP_ LMD,
indicating that the parameterized mixing in SMC K(C94 is weaker than that in KPP_LMD. This
is particularly evident during the first half of the year when the mixed layer warms and re-
stratifies. With the inclusion of wave effects, the simulation using SMC_H15 yields a mixed
layer that is cooler and deeper compared to the one using SMC KC94. Between January and
March, the simulated mixed layer using SMC_ H15 exhibits higher temperatures than those
generated by the KPPLT and KPP DNN2 schemes. The re-stratification predicted by SMC H15
occurs more rapidly than that by KPP_LMD, evidenced by a sharper increase in mixed layer
temperature during April. The simulated mixed layer cooling and deepening rates by SMC H15
in fall is close to those using KPPLT LF17, KPP DNN2a and KPP_DNN2b.

The time series of sea surface temperature (SST) for the years 2011 to 2016 are presented
in Figure 6. Observed SST is plotted as reference and is not a metric to evaluate the 1D
simulations, as observed SST includes contributions from processes other than OSBL turbulence.

The simulated SST is mostly warmer than observation at the end of the year for all years. At the
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OSP, large- and meso- scale processes also contribute to the annual cycle of SST (Cronin et al.,
2015). Across the six years simulated, SST was the highest using the SMC KC94 and the lowest
using KPPLT RW16, respectively, implying that mixing is the weakest in SMC K(C94 and is
the strongest in KPPLT RW16. When using KPPLT VR12 and KPP _DNNI, the simulated SST
is close to that in KPP_LMD throughout the 6 years, reaffirming that KPP parameterizations
without counting on wave effects on unresolved shear coefficient n has only limited impact on

the evolution of MLD and temperature within the mixed layer.
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(a) 2011 (b) 2012
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SST (°C)
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time time
KPP_LMD —— KPPLT_LF17 - x- SMC_KC94 —— KPP_DNN1 —— KPP_DNN2b
—— KPPLT_VR12 - x- KPPLT_RW16 —— SMCLT_H15 - x- KPP_DNN2a —— Observation

Figure 6. Comparison of observed SST time series at OSP and simulated SST time series using
different schemes from 2011 to 2016 (panels (a) to (f)) in simulation Set 1. All simulations were

driven by identical surface forcing conditions, i.e., using pre-calculated surface buoyancy fluxes.

The simulated SSTs using KPPLT LF17, SMCLT H15, KPP DNN2a, and

KPP _DNN2b were lower than that using KPP LMD, KPPLT VRI12, KPP DNNI, and
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SMC_ KC94, but higher than that using KPPLT RW16. There is a considerable difference
between the solutions of the two KPP DNN2 schemes: KPP DNN2a and KPP DNN2b. The
simulated SSTs by the two schemes were close to each other for the year 2013. In other
simulated years, the simulated SSTs when using KPP DNN2b were noticeably cooler than that
using KPP DNN2a. The difference between KPP DNN2a and KPP DNN2b highlights the
different roles that waves played in different years.

The simulated SSTs using KPPLT LF17, SMCLT H15, KPP DNN2a, and
KPP DNN2b were more closely aligned with both the magnitude and the tendency of the
observed SSTs in OSP than using KPP_LMD, KPPLT VR12, KPPLT RW16 and SMC_KC9%4.
However, it is important to note that the one-dimensional column models like the GOTM do not
account for processes at a scale larger than boundary layer turbulence, such as submesoscale,
mesoscale, and large-scale circulations. Therefore, differences between GOTM solutions and
observations should be interpreted with caution as they could be due to contributions by those
larger-scale processes. As pointed out by Large et al. (1994), OSP is often impacted by heat
advection between September and February, a factor that can significantly modulate SSTs but is
not included in the 1D GOTM simulation, thus often causing larger discrepancies between
simulated and observed SSTs during these months. For example, observed cooling is stronger
than the simulated cooling by all schemes during November 2016 and warmer than the simulated
cooling by all schemes with wave effects during December 2013.

The simulated SSTs, derived using online flux calculation (set 2), are presented in Figure
7. With online flux calculation, the buoyancy fluxes vary across different simulations. A lower
simulated SST results in smaller surface heat loss, as both the outgoing long wave and the

sensible heat loss calculated from the COARE algorithm are both smaller. Different from the
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solutions using pre-calculated fluxes (set 1) shown in Figure 6, the differences in SST among
simulations employing different turbulent mixing schemes in Figure 7 were much smaller,
mostly less than 0.5°C. The simulated SSTs using different parameterization schemes were also
more closely aligned with observations. However, starting from November, consistent biases
from the observed SSTs were found in each simulated year, with SSTs generally being higher
except for the year 2013. The deviated SSTs in winter are due to the advection effects which are
not considered in the 1D GOTM model, while the unique SST biases in winter 2013, is likely
due to the heatwave “Blob”. These biases underscore the influence of advection on SSTs, an

impact that could not be completely mitigated by online flux calculation using bulk formulas.
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(a) 2011 (b) 2012

161

SST (°C)

SST (°C)

SST (°C)

4 T T T T T T T T T T T T T T T T T T T T T T
171 21 31 41 51 61 71 81 9/1 10/1 11/1 1211 171 21 31 41 51 6/1 71 81 9/1 10/1 11/1 1211

Date Date
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—— KPPLT_VR12 - x- KPPLT_RW16 —— SMCLT_H15 - x- KPPLT_DNN2a —— Observation

Figure. 7. Same as Figure 6, but for Simulation Set 2 using buoyancy flux calculated online.

Figure 8 shows the differences in the simulated MLDs between simulations driven by
pre-calculated buoyancy fluxes (set 1) and those driven by fluxes calculated online using bulk
formulas (set 2). During the summer months, , the simulated MLDs in set 1, using pre-calculated

flux, were mostly slightly shallower with KPP LMD, and slightly thicker with KPPLT RW16 in
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comparison with the observed MLDs. Simulated MLDs in set 2, which used online flux
calculation, were shallower and better aligned to observations. During this period, online flux
calculation reduces biases in both simulated SSTs and MLDs. However, during the colder
months from January to April and after November, when the simulated SST is higher than the
observed SST (Figure 7), the simulated MLDs were deeper when driven by fluxes calculated
online using bulk formula. Note that during these periods, the MLDs in simulations using
parameterization schemes with wave enhancements (KPPLT LF17, KPPLT RW16 and

KPP DNN2b) were deeper than the observed mixed layer. Results of simulations over a 6-year
period from 2011 to 2016 (see Figure S3 in supporting information) confirms that all the
simulations using online flux calculation efficiently eliminates the warming drift of SSTs, but the
deviations of MLDs in colder months amplified over years, even for KPP LMD. While the
online flux calculation has the potential to reduce biases in the simulated SST, it could

conversely increase biases in the simulated MLDs.
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Figure 8. Comparison of simulated MLDs between GOTM simulations using PMEL derived
flux products and those using COARE-v3.6 online calculated fluxes for the year 2011 (panel (a))
to 2016 (panel (f)). The MLDs were diagnosed as the depth where water density exceeds surface
water density by 0.03kg/m3. A 5-day running average was used to remove high-frequency

fluctuations.
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5.3 The Efficiency of KPP_DNNs

A parameterization must be efficient so that it can be used in realistic ocean models for
long-term integrations. The efficiency of the KPP_DNNs is evaluated by comparing them with
the traditional KPP and KPPLT schemes (refer to Table 1) within the GOTM framework.

Simulations were conducted on a dedicated single core of Intel Cascade Lake (Intel®
Xeon® Platinum 8260 Processor) CPUs on the Louisiana Optical Network Initiative's high-
performance computing server (LONI-HPC). The year 2013 served as the benchmark period for
the GOTM model runs to evaluate efficiency. In all simulations, the forcing and configuration
were identical. To ensure accuracy in measuring computational efficiency, we disabled output.

The results showed that the run times for KPP DNNs are comparable with those of
traditional KPP and KPPLT schemes. Specifically, the run time for KPP_DNNs exceeds less
than 4% that of KPP_LMD and KPPLT VRI12 but is 8% faster than that for KPPLT LF17 and
22% faster than that for KPPLT RW16. This comparison suggests that KPP DNN schemes are

suitable for implementation in realistic ocean and climate models.

Table 2. List of parameterization names and their run time.

Simulation Name Run Time (seconds)
KPP LMD 3.06
KPPLT VRI12 3.07
KPPLT LF17 3.48
KPPLT RW16 4.12
KPP _DNNI 3.09

KPP_DNN2a 3.16
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KPP DNN2b 3.20

6. Neural network enabled understanding of OSBL turbulence and parameterization

Neural networks excel at discovering complex relationships and can be employed to help
understand the complicated dynamics in OSBL turbulence and potential missing relationships in
traditional physics-based KPP schemes.

Figure 9 presents the dependence of the velocity scale coefficient (¢ in Equation 5) on
turbulent Langmuir number and MLD and compares it across KPPLT LF17, KPPLT RW16,
and KPP_DNNZ2b. In all three schemes, the magnitude of € shows a clear dependence on the
non-dimensional turbulent Langmuir number (La;). Specifically, a smaller La; is associated with
a larger €, indicating wave-induced turbulence has a larger effect on mixing. €e by KPPLT RW16
(Figures 9c and 9d) is the largest among the three schemes. ¢ by KPP DNN2b displays a

dependence on the MLD as well. The deeper the MLD, the larger the €.
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Figure 9. Comparison of the velocity scales coefficient (¢) computed by two of the traditional
deterministic KPPLT schemes, i.e., KPPLT LF17 (panels a and b) and KPPLT RW16 (panels ¢
and d), and predicted by the KPP DNN2b (panels e and f). The color scale in each hexagon
represents the average enhancement of velocity scale € over all data points contained in the
hexagon region. Only hexagons averaged over more than 50 data points are shown. The upper
row (panels a, b, ¢) corresponds to conditions of destabilizing buoyancy forces, whereas the
lower row (panels d, e, f) represents conditions under stabilizing buoyancy forces. Different from
the regime diagrams in Figure 2, the y-axis is the mixed layer depth (MLD).

Figure 10 shows the unresolved shear coefficient (1 in Equation 6) for KPPLT LF17,
KPPLT RW16, and KPP_ DNN2b. As demonstrated in the simulated temperature profiles and
SST (Figures 5 and 6), the magnitude of the unresolved shear coefficient 77 is more impactful
than the magnitude of the velocity scale € coefficient in the simulation of upper-ocean

temperature and stratification.
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For KPPLT LF17 (Figures 10a and 10b), n only varies with forcing conditions when
surface buoyancy forcing is destabilizing. Under stabilizing buoyancy forcing conditions, the
velocity scale of unresolved shear U? by KPPLT LF17 is the same as that by KPP_LMD, thus
n = 1.0 regardless of the wind-wave-buoyancy condition or MLD. Under destabilizing
buoyancy forcing conditions, the average value of 7 ranges from 1.0 to 2.5, but there is no
apparent correlation between 7 and either La; or MLD. For KPPLT RW16 (Figures 10c and
10d), there is an apparent relationship between 1 and La;. The more dominant the wave effect
over the wind effect, the smaller the La, and the larger the n. However, there are no apparent
differences of 7 in magnitudes under different buoyancy forcing conditions or MLD if La, is the
same. The more dominant the wave effect over the wind effect, the smaller the La, and the larger
the .

In KPP_DNNZ2b (Figures 10e and 10f), 7 is impacted not only by La,, but also by MLD
and surface buoyancy forcing. Similar to KPPLT LF17 and KPPLT RW16,  increases with
decreasing turbulence Langmuir number for all MLDs. However, different from the two KPPLT
schemes, there is also an evident relationship between  and MLD: 1 decreases with increasing
MLD, implying a weaker influence of Langmuir circulations on mixed layer deepening when the
mixed layer is deeper. Langmuir circulation arises from wave-current interaction close to the
surface, where it exhibits the greatest intensity (e.g., McWilliams et al., 1997). Q. Li and Fox-
Kemper (2020); Weller and Price (1988) found no significant wave effect at the base of the
mixed layer if the MLD exceeds —40m deep.

Furthermore, 1 also depends on whether the surface buoyancy forcing is stabilizing or
destabilizing. For the same La, and MLD, 7 is larger when surface buoyancy forcing is

stabilizing, indicating that the traditional KPP scheme (KPP_LMD) more significantly and more
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consistently underestimates the entrainment effect. As discussed in Ali et al. (2019), due to an
underestimation of entrainment effect, KPP schemes tend to underestimate the summertime
MLD everywhere, during which season stabilizing buoyancy forcing is predominant. The
KPPLT schemes, such as the KPPLT LF17 slightly improve the simulated summertime MLD,
but still underestimate it. The KPP DNN2b scheme identifies the limitation of KPP_ LMD and

predicts larger 1 under stabilizing buoyancy forcing.
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Figure 10. Same as Figure 9, but for the unresolved shear coefficient (77)

7 Conclusions

In this study, feedforward deep neural networks (DNNs) tuned using 11-year solutions of
turbulence-resolving large eddy simulations (LES) driven by realistic forcing conditions at ocean
station Papa (OSP), are used to improve one of the most popular parameterizations for mixing in

the ocean surface boundary layer (OSBL), the K-Profile Parameterization (KPP). Specifically,
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the DNNS5s are used to parameterize two coefficients: the turbulent velocity scale coefficient € and
the unresolved shear coefficient 7 in equations 5 and 6 respectively. These two coefficients
revise the turbulent velocity scale and the unresolved shear, two key parameters in the KPP. The
KPP DNNs are implemented into the general ocean turbulence model (GOTM), a one-
dimensional column model and commonly used testbed of turbulence parameterization. The

KPP DNNs are compared with seven popular traditional deterministic schemes, including
variants of the first-order KPP and the second-moment closure (SMC) schemes within the
GOTM using simulations for upper-ocean conditions at OSP between 2011 and 2016. Key
conclusions from this study are summarized as follows:

e The KPP _DNN:s are stable, accurate and efficient for integration over several years. The
KPP_DNN scheme including wave effects, i.e., the KPP DNN2b, is 8% faster than
KPPLT LF17 and 22% faster than KPPLT RW16.

e When using the pre-calculated flux products, the simulated mixed layer is the warmest
and the shallowest using the schemes without wave effects, i.e., KPP_LMD and
SMC_KC94. The simulated re-stratification in spring is faster when SMC compared to
KPP.

e Biases in the simulated SST are smaller when using online buoyancy flux calculation
using bulk formulas (Simulation Set 2) compared to using pre-calculated flux (Simulation
Set 1). However, biases in the simulated mixed layer depth (MLD) are larger with the
online buoyancy flux calculation.

e In KPP _DNN?2b, the value of the turbulent velocity scale coefficient € and the unresolved
shear coefficient n not only increases with decreasing La;, but also changes with the

thickness of the mixed layer. As the mixed layer deepens, € increases while 1 decreases.
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When MLD and La, are identical, 7 1s smaller when surface buoyancy forcing is

destabilizing compared to stabilizing.

The KPP_DNN2 schemes not only reproduce the dependence of turbulent mixing on
Langmuir number, but also uncover the dependence on the MLD and whether the surface
buoyancy forcing is stabilizing or destabilizing. This study highlights the ability of deep learning
to discover relationships and physics not easily identified in traditional deterministic KPP
schemes, and to incorporate complex, multifaceted influences on turbulent mixing in the OSBL.

There are two main directions for further studies.

(1). The first is to implement and evaluate the KPP_DNNs in a realistic ocean model for a
regional ocean. We are currently conducting LES simulations for the Gulf of Mexico and will
include those new simulations in the training dataset of the KPP_ DNNs. Both the KPP DNN2b
scheme, with Stokes drift profiles included as model inputs, and the KPP DNN2a will be
implemented in the HYCOM model configured for the Gulf of Mexico (Dukhovskoy et al.,
2015; Laxenaire et al., 2023).

(2) The capability of the KPP DNN scheme will be expanded to include other turbulent
and geographic regimes by including training data for those regimes and geographic locations as
training data. The current KPP_DNN is trained using LES solutions at OSP, where turbulence is
typical of the mid-latitude oceans, and is accurate for the mid-latitude oceans with similar
turbulent regimes. To have a KPP_DNN suitable for other regions, existing and new LES
simulations for strongly convective high-latitude oceans (e.g., Skyllingstad & Denbo, 1995),
configuration typical of the equatorial regions (e.g., Schmitt et al., 2024; Whitt et al., 2022), and

strongly forced hurricane conditions (e.g., Liang et al., 2020) can be added to the training
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dataset. Finally, some other factors and conditions, such as the horizontal component of the
Earth's rotation (Liu et al., 2018), and a background front (e.g., Fan et al., 2018; Taylor &
Thompson, 2023; Yuan & Liang, 2021) also modulates OSBL turbulence. Adding those LES
simulations will further expand the capability of KPP_DNN. The advantage of neural networks
is their flexibility to accurately map any input to any output. This advantage will be evident

when the KPP_DNN is used for multiple regimes.
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