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GridVAE: Fast Power Grid EM-Aware IR Drop
Prediction and Fixing Accelerated by Variational
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Abstract—Electromigration (EM) remains the primary failure
mechanism for copper-based interconnects in today’s and future
nanometer chip technologies. To ensure the longevity of on-chip
power grids, effective EM-aware IR drop analysis is crucial.
However, the existing power grid optimization approaches suffer
high computational costs from the full-chip EM-aware IR drop
analysis and sensitivity computation. This paper proposes a
novel and efficient framework for full-chip power grid EM-
aware IR drop prediction and fixing framework. We developed a
conditional VAE-based framework, named GridVAE, for fast and
accurate EM-aware IR drop prediction and full-chip power grid
fixing. Compared to the state-of-the-art generative adversarial
network (GAN)-based methods, our GridVAE model offers a
remarkable 40% reduction in prediction RMSE on synthesized
power grid benchmarks from ARM Cortex-M0 processor design.
Building on the accurate EM-aware IR drop predictions and
fast acquired sensitivities, we apply the sequence of linear
programming-based optimizations to efficiently size the wires.
Our proposed GridVAE method achieves up to an 140X speedup
(at least one order of magnitude) compared to conventional SLP-
based methods for power grid EM-aware IR drop fixing.

I. INTRODUCTION

Electromigration (EM) is a physical phenomenon in which
metal atoms migrate in response to various driving forces, such
as the applied electrical field. Due to EM, the hydrostatic stress
within the metal wire can reach critical levels, leading to re-
sistance variations during migration. In the context of modern
very large-scale integration (VLSI) designs, EM remains the
dominant reliability failure mechanism for copper-based inter-
connects, particularly in sub-nanometer technologies. And the
challenges posed by EM are further exacerbated as technology
advances toward nanometer manufacturing processes.

On-chip power distribution network (PDN), as the example
shown in Fig.1, is a mesh-structured network that provides
power from top metals. Due to the large and unidirectional
current, PDNs are usually vulnerable to EM-induced failures.
The wires’ resistance may change over time due to the EM
effect, resulting in the IR drops below the threshold voltage
after years of aging effect, makes it difficult to design reliable
PDN with area requirement.

Numerous past research works have investigated PDN sizing
utilizing nonlinear or sequence of linear programming (SLP)
methods [1], [2], [3], [4], [5], [6], [7], [8]. Zhou et al. [5],
[9] proposed a power grid sizing approach based on multi-
segment EM immortality check criteria. However, this EM
immortality-constrained optimization proves too conservative,
necessitating all interconnect trees to be immortal. In an effort
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Fig. 1: (a) Power and ground networks of Cortex-M0 Design-

Start; (b) IR drop map of the power network of (a).

to address this issue, Moudallal et al. [6] directly considers
EM-induced IR drops in time-varying power grid networks.
This method accounts for post-voiding resistance changes of
wires through finite difference analysis of EM-induced stress
in multi-segment wires, leading to a nonlinear problem solved
via successive linear programming. Nonetheless, this method
still incurs high computational costs, as the sensitivities of
violating nodes must be computed by solving circuit matrices.
More recently, Zhou [8], [10] presented a conjugate gradient-
based localized EM-aware IR drop fix for power grid networks,
using the generative adversarial networks (GAN)-based deep
neural network (DNN) modeling method called GridNet to
compute gradient sensitivities. Recently, a variational autoen-
coder (VAE) was proposed for generative applications [11].
Different than the standard autoencoder (AE) and GAN struc-
ture, which uses the same structure as AE for data generation,
the VAE encodes the input into a predefined distribution in
the latent space, and introduces additional regularization in
the cost function to encourage the resulting latent distribution
to closely approximate the predefined distribution, thereby
enhancing the reliability of generating new data. VAE has
found applications in various fields, including quantum circuit
design for drug discovery [12], generative guided analog
routing [13], and analog circuit sizing [14], underscoring its
versatility and potential in different research areas.

Inspired by these works, we proposed a DNN framework,
named GridVAE, to extend the VAE structure and incorporate
with conditional information including the given aging time
and current map. GridVAE can better predict the on-chip
power grid IR drop and reduce the computational costs in
power grid design and optimization while ensuring compliance
with IR drop and EM lifetime targets. The key contributions
of this study are summarized as follows:

• First, we propose GridVAE, a DNN framework designed
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to model full-chip EM-aware IR drop data obtained
from numerical EM-aware IR drop analysis tools. By
comparing GridVAE with the state-of-the-art GAN-based
model [8] on PDN EM-aware IR drop prediction, we
achieved a significant 40% reduction in Root Mean
Square Error (RMSE) based on synthesized power grid
benchmark.
• Second, building upon the new GridVAE models, we
leverage it to fast compute the sensitivity of cost functions
to the wire width. This led to an accelerated power grid
wire sizing method for ensuring the chip’s EM lifetime
based on the sequence of linear program optimization
framework. Numerical results on a number of synthesized
power grid benchmarks from ARM Cortex-M0 processor
designs show that the GridVAE enabled optimization
can provide up to over 140X speedup over the existing
analytical matrix solving-based SLP method [6].

The rest of the paper is organized as follows: Section II
reviews the related preliminary works on the EM-induced IR
drop analysis and current EM-aware power grid optimization
strategy. Section III introduces the detail of the proposed Grid-

VAE framework and the fast full-chip IR drop fixing strategy
accelerated by it. Experiment setup, numerical results, as long
as analysis and discussions are summarized in Section IV.
Section V concludes the paper .

II. PRELIMINARIES

In this section, we first summarize and review some related
preliminary works of on-chip power grid EM-induced IR drop
analysis and mitigation approaches.

A. Full-chip EM-induced IR drop analysis

As mentioned in the previous section, EM is a physical
phenomenon that can lead to resistance increase or even open-
wire segments. The IR drop of the power grid wires may
change due to the EM-induced aging effect. This means we
have to consider the power girds IR drop as time-varying
characters [15], [16], [17], [18]. On the other hand, the failed
wire segments change the current distributions of all the
interconnect wires, which may further accelerate the failure
process. Hence, to emulate the on-chip power grid IR drop
after the aging effect, one has to consider the interplay between
the two physics: electrical characteristics and hydrostatic stress
in the interconnect wires.

EMspice [15], [19] is an open source tool that conducts the
full-chip power grid network coupled EM-IR drop simulation
with the dynamic interplay between the hydrostatic stress and
electronic current/voltage. It solves the coupled time-varying
partial differential equations in the time domain to obtain the
stress evolution, and finally reports resulted IR drop and EM
failure hotspots at the target aging time, such as 10 years. The
tool consists of a finite difference time domain (FDTD) solver
for EM stress and a linear network DC solver for IR drop. The
linear network IR drop solver passes time-dependent current
densities and P/G layout information to the finite difference
time domain FDTD EM solver, and the FDTD EM solver
provides the IR drop solver with new resistance information.
These two simulations are coupled together and must be solved
together, which can be described as

Cσ̇(t) = Aσ(t) +PI(t),

Vv(t) =



ΩL

σ(t)

B
dV,

M(t)× u(t) = PI(t),

σ(0) = [σ1(0), σ2(0), ..., σn(0)] , at t = 0

(1)

In the above equations, M(t) is the time-varying power grid
conductance matrix, as the resistance changes due to the EM
failure process. P is the input matrix, and I(t) represents the
current sources from the chip. C is the identity matrix, and A

is the coefficient matrix. σn(0) denotes the initial stress at time
step t = 0, for node n. The stress from the previous simulation
step is used as the initial condition for each new time step.
Such iterative coupled analysis on a long target lifetime can
be extremely time-consuming for large power grid networks.

There are some research efforts to facilitate the IR drop/EM-
aware IR drop analysis by leveraging machine learning-based
approaches to build the surrogate models, including [20],
[21], [22], [23], [24], [25] to reduce the evaluation time
during the physical design process. Lin et al. [20] tried to
extract power and physical features from cells and layouts
to conduct the full-chip dynamic IR drop analysis. Fang
et al. [21] proposed to train the models for the localized
layout region to improve the scalability. A convolutional neural
network (CNN) model which incorporates design-dependent
features during pre-processing was proposed by Xie et al. [23].
Ho et al. [22] presented incremental IR drop prediction and
mitigation by applying more electrical and physical features
to train the gradient-boosting framework. Chhabria et al. [24]
proposed IREDGe, a CNN-based generative network method
to predict on-chip IR drop contours with image-to-image and
sequence-to-sequence translation tasks. Recently Zhou et al.

[8] considered more accurate physics-based EM effects into
IR drop to build such surrogate models. It adopted the GAN-
based structure to model the resulting EM-aware IR drops.
This method regards the time, 2D power grid structure with
input current and voltages as input images (series of images)
and outputs the voltage map images. Such a surrogate model
can help speed up wire sizing by fast EM-aware IR drop
estimation and the sensitivity of objective functions concerning
the wire geometries. It was initially applied to localized
PDN optimization and then has been extended to full-chip
optimization [10]. However, the GAN-based models suffer
from the difficulties of training the generator and discriminator
together. Also, the GAN model’s deterministic latent variable
encoding and decoding approach make the latent space lack
of continuity and interpretability and less generative capability
(due to non-regulated latent space), eventually affecting the
prediction accuracy.

B. Existing EM-aware PDN optimization

Besides the full-chip aging-aware IR drop estimation, one
also needs to fix or alleviate the excessive IR drop to ensure a
robust PDN design. Lots of past research applies nonlinear
methods [1], [2], [3], [4], [5], [6] to size the PDN wires
properly. These optimization strategies aim to meet the IR drop
requirement at the target lifetime or extend the main time to
failure (MTTF) with minimized metal routing area.

The SLP-based method was proposed first in [3] based
on Black’s equation. Then this method was extended to
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consider multi-segment wires [26]. But this method can be
too conservative as it requires all the wires to be immortal
after optimization. Although, this method has been extended
to consider a targeted lifetime by allowing some wires to fail
and optimizing the rest of the wires [5]. Recently [6] proposed
to directly optimize EM-induced IR drops on the time-varying
power grid networks EM caused by EM-induced aging using
the SLP method. However, the EM-induced IR drop is still
computed by solving Korhonen equations, and the sensitivities
of the IR drop with respect to the wires are calculated through
the matrix-solving method. The solving process is severely
time-consuming, especially when the power grid is enormous.

III. PROPOSED VAE-ACCELERATED EM-AWARE IR DROP

FIXING METHOD

A. EM-Aware IR Drop Prediction

1) AEs, VAEs, and CVAEs: CNNs with an encoder-decoder
structure are widely used in image generation tasks. This
architecture forms the basis for several generative models,
including the simplest form AE, GAN, and VAE [11]. GAN
[27] model introduces an additional binary output CNN called
discriminator only during the training stage to improve the
result quality, and adopts the same AE structure for result
generation. Fig. 2(a) shows AE (as well as GAN) will encode
input x to low-dimensional latent variables z by the encoder
and then decode the result by the decoder.

VAE, as shown in Fig. 2(b), is a unique generative model
derived from the standard AE. Compared to the traditional
AE structure, VAE does not encode the input into a discrete
point, but a distribution over the latent space Q(Z|X) with
multivariate Gaussian prior. This enables the VAEs to have a
better latent space interpretability.

Building upon the foundation of VAEs, we propose to
adopt the CVAE as the backbone, which extends the VAE to
incorporate the conditional information, including the given
aging time and current map, so that our model can predict the
EM-aware IR drop conditioned on the specified aging time
and current distribution.

2) GridVAE Framework: The proposed GridVAE is shown
in Fig. 3. Take an example power grid design with 60 rows
and 60 columns, the GridVAE model input consists of four
channels, which are the power grid topology splitted into
vertical conductance R

60×60×1 and horizontal conductance
R

60×60×1, the current source map R
60×60×1 drawn to other

circuit layers, and a target lifetime t expanded into R
64×64×1

by channel-wise duplication. Since size 60 x 60 is close to 64
x 64, we padded 2 zero entries on each side of the input so that
the model input size becomes 64 x 64 x 4. In this example,
the encoder consists of four convolutional layers followed by
two fully-connected layers. if the power grid exceeds the size
of 64 x 64 but is smaller than 128 x 128, we pad the input into
the standard size of 128 x 128 and add one more convolutional
layer in both the encoder and the decoder network. Similarly,
if the input dimension is larger than 128 but smaller than 256,
we further pad the input to size 256 x 256 and add another one
more convolutional layer. Thus the GridVAE model is actually
quite scalable for larger power grid.

The input x is encoded to a 20-dimensional multivariate
Gaussian distribution in the latent space. We denote the mean
of Q(Z|X) as µx and the standard deviation as σx . We use the
reparameterization trick to ensure the model back propagation

(a)

(b)

Fig. 2: (a) Architecture of an auto encoder (b)Architecture of

a variational auto encoder

with gradient descent while sampling the latent variable, as
shown in (2), which first samples from ǫ ∼ N (0, I) and then
computes the latent variable z:

z = µ(X) + σ ∗ ǫ(X) (2)

The decoder is designed to mirror the architecture of the
encoder in a symmetric manner, except the output layer has
only one channel. The output is R

64×64×1 EM-aware IR drop
at target aging year.

3) Training and Data Preparation: The total loss function
consists two parts. The first part is the reconstruction loss, also
called prediction loss when the input and output are expected
to differ. The prediction loss measures the difference between
the decoded result ŷ = P (ŷ|z) and real data y, encouraging
the decoded output data to be similar to the label. As our
data is continuous, we allocate the mean squared error (MSE)
for the prediction loss evaluation in (3), where N is the total
number of output pixels.

MSE(y, ŷ) =
1

N

N


1

(y − ŷ)2 (3)

The second part is the Kullback-Leibler (KL) divergence be-
tween the encoder’s latent variable distribution Q(z|x) output
and a chosen prior distribution, usually a standard multivariate
Gaussian distribution N (0, I). The KL divergence measures
how one probability distribution differs from a second, which
acts as a regularization term to force the encoded latent
variable distribution from the given training dataset to be close
to a standard normal distribution, and encourage the network
to use the latent space efficiently. The KL divergence in VAE
can be written as:
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Fig. 3: The architecture of the proposed GridVAE for EM-aware IR drop prediction

DKL(N (µx, σ
2
x) || N (0, I)) =

1

2
(− log σ2+µ2+σ2−1) (4)

Hence the training target is to minimize the total loss:

min{MSE(y, ŷ) + λ ·DKL(N (µx, σ
2
x) || N (0, I))} (5)

where λ is the hyper parameter that adjusted similar to [28]
to prevent KL vanishing.

We measure the prediction accuracy in RMSE (6), the unit
is mV

RMSE =









1

N

N


1

(y − ŷ)2 (6)

The data preprocessing before the model training is as
follows: First, the circuit layouts are automatically created by
Synopsys IC compiler from a synthesized gate-level netlist
and a standard cell library. Then IC Compiler output power
grid information is sent to the power grid file parser, which
reorganizes the information, including structure, wire layer,
wire length, wire resistance values, node location, voltage,
current source, etc. Next, the EMspice provides the EM-aware
electrical information from the result above. Eventually, we
parse these EM-aware electrical features and the topological
information for the circuit layout and send it to our VAE-
based model for training and testing. The inputs conductance
and current are normalized

TABLE I: Power Grid Designs Detail

circuit # nodes # Trees # voltage sources VDD (V)

Design1 1024 64 2 1.05

Design2 4096 128 4 1.05

Design3 16384 256 4 1.05

Design4 65536 512 9 1.05

B. Fast Power Grid EM-Aware IR Drop Fixing Framework

The workflow of the proposed GridVAE-accelerated IR drop
fixing strategy is shown in Fig. 4.

1) Problem formulation: The proposed method intends to
solve the following problem: Given the power grid information
at T=0, the GridVAE has predicted the EM-aware IR drop at
the target aging lifetime T = t and revealed that the power grid
has EM-induced IR drop violations demand fixing. IR drop
violation means the power grid has nodes whose voltage drop

Fig. 4: Framework of power grid IR drop fixing method

accelerated by the GridVAE.

v are above the threshold Vth. We wish to alleviate the above
mentioned EM-aware IR drop failure by resizing the power
grid interconnection trees’ width with a minimum metal area
increase.

The problem can be formulated as:

Minimize ats

s.t. v(t, s) ≤ Vth (7)

s ∈ S  {s ∈ Rnt : 1 ≤ s ≤ sup}

In (7), a = [a1, a2, . . . , ant] = [w1l1, w2l2, . . . , wntlnt]
refers to the metal areas of the power grid with nt trees,
wi and li are the ith tree’s width and length separately. As
for the constraint, s = [s1, s2, . . . , snt] is the resizing factor
for the power grid trees. S is the feasible region, where sup
is the upper bound for s. Similar to [6], we assume the
original power grid trees are already set to their minimum
width. Hence we only increase the treewidth and s ≥ 1. The
feasible region reflects both the basic design rules and case-
by-case user requirements, such as the criteria of minimum
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interconnect treewidth, the minimum spacing to prevent the
interconnect trees overlap, and the maximum metal area usage,
etc. The node IR drop v(t, s) is the voltage difference between
the power grid interconnect node and the power supply, it
is a nonlinear function to s at aging time t. The maximum
allowable voltage drop threshold Vth is given by the user. We
assumed it to be five percent of the power supply voltage.

2) Programming-based optimization: As we mentioned in
III-B1, the EM-aware PG node voltage drop v(t,s) as the
constraint is a nonlinear function to s at aging time t. Hence (7)
is a nonlinear optimization problem. We solve it by a stepping
strategy, in which we linearize the voltage drop at the current
latest solution point by Taylor’s expansion (8) and solve (7)
with linear programming (LP) solver. We repeat this operation
until the power grid has no EM-aware IR drop violation.

v(t, s(i+1))  v(t, s(i)) +
∂v(t, s(i))

∂s
· δs (8)

where s(i) denotes the current power grid resizing vector and
s(i+1) is defined as

s(i+1) = s(i) + δs (9)

∂v(t, s)

∂s
is the n×nt Jacobian matrix of v(t, s) with respect

to s, describes how the node voltage drops at target time T = t
respond to the corresponding treewidth rescaling, where n is
the total number of nodes.

∂v(t, s)

∂s
= Jn×nt

(s, t) =















∂v(1,t)
∂s1

∂v(1,t)
∂s2

. . .
∂v(1,t)
∂snt

∂v(2,t)
∂s1

∂v(2,t)
∂s2

. . .
∂v(2,t)
∂snt

...
...

. . .
...

∂v(n,t)
∂s1

∂v(n,t)
∂s2

. . .
∂v(n,t)
∂snt















(10)

3) Fast sensitivity computation: The sensitivity
∂v(t, s)

∂s
in (8) describes how the nodes voltage v at T = t will be
affected by resizing the wires. We utilize the by-product of
the GridVAE model to further accelerate the sensitivity com-
putation. The GridVAE can provide the gradient of output node
voltages to the input wire segment conductances by gradient
back propagation after the GridVAE inference process, which

is
∂v(t, s)

∂g
. Then we can quickly get (10) by chain rule, as

each power grid tree gi has its resizing factor si and will not
be infected by other resizing factors:

∂v

∂s
=

∂v

∂g

∂g

∂s
,

∂gi

∂sk
=



0, if i = k

gi, if i = k

(11)

As a comparison to the conventional sensitivity acquisition
by matrix solving method [6], we briefly review its main steps.
For a power grid network represented by the node conductance
matrix G(t,s), it can be written in the following format (12):

G(t, s) · v(t, s) = j(t) (12)

where j(t) is an n× 1 vector represents the power grid nodes
current vector.

And the sensitivity is calculated as followed (13):

∂v(t, s)

∂sk
= −G−1 ·

∂G(t, s)

∂sk
·G−1 · j(t) (13)

To solve the above equation and obtain
∂v(t,s)
∂sk

, one must

first construct the sparse matrices G and
∂G(t,s)
∂sk

for all k, then

perform matrix solving. Each column of the Jacobian matrix
(10) has to be calculated through the process of (13) for the
corresponding power grid tree. Hence building such a Jacobian

matrix in the traditional method is computationally expensive.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experiment setup

The experiment is set up on a Linux server with 2 Xeon
E5-2698v2 processors and Nvidia Titan X RTX GPU. The
GridVAE is built with the PyTorch package. The linear
programming-based power grid fixing part is implemented in
Python. The test cases are randomly generated following the
IBM format, based on the topology we extract from the real
design and the constraints that the user defines. It comprises of
VDD power nets, VSS ground nets, and two external supplies.
The power grid file parser output is consistent with the IBM
power grid benchmarks [29]. We have three different topology
designs and generate large amounts of IBM format power
grid networks to ensure different workloads can be tested and
verified.

Design 1 comes from Cortex-M0 DesignStart processor,
which implements ARMv6-M 32-bit architecture and is routed
and placed using IC Compiler with 32/28nm Generic Library
from Synopsys. The Cortex power grid consists of two layers
and one thousand interconnect trees, as shown in Fig. 1(a).
Fig. 1(b) shows the voltage drop from the same power grid,
the unit is mV. Design 2 and Design 3 follow a similar pattern,
the detailed information is in Table. I. To train the model, each
topology dataset contains 10000 pairs of samples (workloads
and aging time, EM-aware IR drop).Different current source
maps are included in the dataset. The maximum allowable IR
drop is set to 5% Vdd and the target lifetime T is set from 0
to 10 years.

B. The result and performance

We also implemented the GAN-based model [8] for EM-
aware IR drop prediction comparison, and the excessive linear
programming method in [6] for power grid fixing comparison.

TABLE II: Prediction accuracy of GridVAE vs state-of-the-art

GAN-based model

RMSE (mV)
Circuit PG Size (# nodes)

GAN-based model[8] GridVAE

Design1 1024 5.697 3.144

Design2 4096 6.100 3.519

Design3 16384 3.922 3.462

Design4 65536 7.583 4.371

The table II compares the EW-aware IR drop prediction
accuracy between the proposed GridVAE and the state-of-the-
art GAN-based model, the unit is mV. Results shows we can
reduce up to 40% RMSE. The table III shows the comparison
of our GridVAE-accelerated power grid IR drop fixing strategy
versus the existing SLP-based method [6]. The last column
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TABLE III: Comparison of the proposed VAE-accelerated SLP

optimization method against the existing method

naive SLP method [6] GridVAE-accelerated SLP
Circuit PG Size (# nodes)

Area Increase Time(s) Area Increase Time (s)
Speed up

Design1-PG1 1024 1.61% 41.8 0.98% 2.5 16.79

Design2-PG2 4096 1.55% 165.8 1.79% 7.6 21.82

Design2-PG3 4096 0.70% 149 0.86% 7.34 20.30

Design3-PG4 16384 1.19 % 1034 1.53 % 12.3 84.06

Design3-PG5 16384 2.85 % 922 2.14% 13.7 67.2

Design4-PG6 65536 0.38 % 5627 0.57 % 40.45 139.1

indicate the proposed method has the speedup over [6]. As
we can see that both SLP-based methods can lead to similar
performance in terms of area, and can achieve more than
140X speedup. On the other hand, we see that our GridVAE-
accelerated SLP method shows more speedup advantages as
the sizes of the power grid increase.

V. CONCLUSION

In conclusion, our work introduced a novel full-chip EM-
aware IR drop estimation model, referred to as GridVAE,
tailored specifically for on-chip power grid EM-aware IR drop
prediction and rapid sensitivity computations, and accelerated
the power grid fixing through a recently proposed linear
programming-based optimization framework. The GridVAE

reduced 40% RMSE over the recently proposed state-of-the-art
GAN-based model on full-chip EM-aware IR drop prediction.
Additionally, our GridVAE-accelerated method demonstrates
an impressive up to 140X speedup (at least one order of
magnitude) compared to conventional SLP-based approaches
when applied to synthesized power grid benchmarks from
ARM Cortex-M0 processor design. These findings underscore
the potential of GridVAE as a promising tool for enhanc-
ing power grid optimization in modern nanometer-scale chip
technologies, providing valuable insights into efficient and
accurate solutions for addressing EM-related challenges in
VLSI design.
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