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Abstract—In this work, we propose a novel physics-informed
sparse regression (PISR) framework to solve stress evolution
(described by Korhonen’s equations) in general multisegment
wires using an unsupervised learning scheme. Unlike the existing
physics-informed neural network (PINN) framework, the PISR
method trains the trainable weights through the Moore–Penrose
generalized inverse algorithm used in extreme learning machine
(ELM), which is extremely faster than the backpropagation
algorithm. To improve the accuracy of PISR for complex multi-
segment interconnects, we employ domain decomposition schemes
in both space and time. For each subdomain, we use different
trainable weights but the same shared neural network to rep-
resent each subsolution, which leads to more efficient memory
usage. Furthermore, we propose to use sparse matrix techniques
to accelerate the training speed of the PISR method and prove
that the resulting PISR has linear time complexity for analyz-
ing tree-structured interconnects. Finally, we divide the time
into many time intervals and apply an autoregressive model to
simulate each time interval in sequence to further improve scal-
ability and reduce memory cost so that the PISR method can
perform EM analysis for large-scale multisegment interconnects.
Experimental results on different kinds of interconnect structures
show that the proposed PISR method has the same accuracy
level as the numerical methods. The results on NT T-junctions
interconnect trees show that the proposed PISR method indeed
demonstrates true linear time complexity. Furthermore, PISR
can deliver 8.9×, 20.6×, and 1284× speedups over the recently
proposed semi-analytic method (ASOV), finite difference method
accelerated with model order reduction (FDM-MOR), FDM for
the interconnect with NT = 5000, respectively. Furthermore, we
show that PISR also achieves an 818× speedup in training over
the plain PINN method based on the traditional backpropagation
algorithm.

Index Terms—Autoregressive model, electromigration (EM),
physics-informed sparse regression (PISR), space-time domain
decomposition method.

I. INTRODUCTION

ELECTROMIGRATION (EM)-induced failure has become
more and more serious due to the continuing increas-

ing current densities in 5-nm technology and below. With the

Manuscript received 20 July 2022; revised 3 January 2023 and 17 March
2023; accepted 17 April 2023. Date of publication 21 April 2023; date
of current version 20 October 2023. This work was supported in part by
NSF Grant under Grant OISE-1854276 and Grant CCF-2007135. This article
was recommended by Associate Editor I. Vatajelu. (Corresponding author:
Sheldon X.-D. Tan.)

The authors are with the Department of Electrical and Computer
Engineering, University of California at Riverside, Riverside, CA 92521 USA
(e-mail: stan@ece.ucr.edu).

Digital Object Identifier 10.1109/TCAD.2023.3269393

technology scaling to obtain high integrated density, reduction
in interconnect cross section leads to large current densities.
EM lifetime predicted by international roadmap for devices
and systems (IRDSs) will be reduced by half as the technol-
ogy node advances into a new generation [1]. As a result, an
accurate and efficient EM assessment is critical for VLSI chip
designs to meet the EM-induced reliability requirements.

Black equation was first proposed to predict EM-induced
median-time-to-failure (MTF) [2]. However, the empirical
equation can only work for one specific single interconnect
since it is obtained by experimental data fitting. Then,
Blech criterion is developed to check the immortality of one
interconnect by comparing the product of current density and
length with a specific threshold [3]. This method leads to
conservative designs because it can not calculate transient
hydrostatic stress and MTF. To predict EM-induced time-to-
failure (TTF) accurately, several physics-based EM models and
fast computational techniques have been proposed recently [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. Those
EM models primarily employ the partial differential equation
(PDE) which is called Korhonen’s equations [16] to describe
the transient hydrostatic stress in the general multisegment
interconnects.

There are a number of traditional assessment techniques
such as numerical methods and analytical methods which
focus on solving the PDE efficiently and accurately [7], [11],
[13], [14], [17], [18]. The mesh-based numerical methods,
such as the finite element method [13] and finite difference
method (FDM) [11], [17], require spatial and temporal dis-
cretization and cost lots of CPU time and memory. Therefore,
analytical solutions have attracted much attention. Laplace
transformation method [7], [19] and integral transform tech-
nique [20] can only handle simple interconnect structures,
such as a single wire and a straight line multisegment
interconnect. To mitigate the problem, a separation of variables
(SOVs) method was proposed to perform an EM assessment
of the general multisegment interconnect trees [14], [18].
However, this method suffers from the large time to compute
eigenvalues.

Recently, deep learning-based approaches for solving PDEs
[also called Scientific machine learning (ML)] have shown
great promise in both accuracy and efficiency [21], [22].
Such ML-based methods provide new insight to perform EM
assessments. However, as shown in recent works and our ini-
tial study, simply applying existing ML-based methods for
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solving large engineering problems suffers convergence and
low accuracy issues.

In this work, we propose an efficient physics-informed
sparse regression (PISR) unsupervised learning framework
with linear time complexity to solve Korhonen’s equation for
large-scale interconnects. Our key contributions are as follows.

1) We propose a novel PISR framework to solve the PDE
describing EM-induced stress evolution dynamics in
confined metal wires. The PISR method is a combination
of linear regression and neural networks so that it can
better model complicated dynamic systems while still
maintaining regression efficiency. Unlike the physics-
informed neural network (PINN), the PISR framework
trains the trainable weights by using the Moore–Penrose
generalized inverse algorithm, which is extremely faster
than a widely used backpropagation algorithm.

2) The PISR method may sacrifice the accuracy to achieve
good speedup over the PINN since the PISR method has
fewer trainable weights and its structure is simpler. To
mitigate this problem, we apply the domain decompo-
sition method in the space. Specifically, for each wire
segment, we define it as a subdomain, which is repre-
sented by one neural network. To reduce memory usage
for each subdomain, we use different trainable weights
but the same shared neural network to represent the
subsolution.

3) We further apply sparse matrix techniques to store,
multiply and invert matrices in the PISR method. So we
call it sparse regression. The sparse matrix techniques
accelerate the training speed of the PISR method and
reduce its memory usage significantly. We show that the
resulting PISR method has linear time complexity.

4) Last but not least, to further reduce the memory used for
the training of large networks, we apply the time domain
decomposition concept. Specifically, we divide the time
period into many time intervals and apply the autore-
gressive model to compute the divided time intervals in
sequence. In this way, we can solve each interval sequen-
tially and separately, which can significantly reduce the
memory usage of the PISR method due to the reduced
time period in each training and thus be more scalable
for large-scale interconnects.

Experimental results on different kinds of interconnect
structures show that the proposed PISR method has the same
accuracy level as the numerical methods. For a fair compari-
son to traditional methods, the computation time of the PISR
method contains both training time and inference time. We
show that the proposed PISR method indeed demonstrates
true linear time complexity for general interconnect trees for
the first time. Furthermore, PISR can achieve 8.9×, 20.6×,
and 1284× speedup over the recently proposed semi-analytic
method, called accelerated SOVs (ASOVs) method [14], FDM
with model order reduction (FDM-MOR) [11], and FDM [23]
for the interconnect with NT = 5000, respectively. The
speedup will increase further with the increasing number of
segments. Furthermore, we show that PISR also achieves an
818× speedup in training over the plain PINN method which
is based on the traditional backpropagation algorithm.

Fig. 1. (a) Metal-1 circuit layout from the “aes” design using nangate 45 nm
in OpenROAD [24]. Several standard cell circuits are placed in the metal-1
power grid. As we can see, the power grid lines consist of several stubs, which
can be seen as the interconnect tree. (b) General multisegment interconnect
tree structure.

This article is organized as follows. Section II reviews
the EM model and ML-based methods. Section III presents
the novel PISR framework to solve Korhonen’s equation
describing hydrostatic stress evolution. Numerical results are
presented in Section IV. Finally, Section V concludes this
article.

II. REVIEW OF EM MODEL AND ML-BASED METHODS

A. Physics-Based EM Modeling

EM is a physical phenomenon that the metal atoms move
from one side to another side of the interconnects as con-
ducting electrons driven by an applied electric field hit the
atoms [3]. EM driving force creates tension at the cathode
end and compression at the anode end of the wire. The lasting
current increases the EM stress. When the stress reaches the
critical level, the void is nucleated at the cathode end or the
hillock is formed at the anode end of the line. As a result,
the circuits are open or short at two ends, respectively, which
are EM-induced reliability problems.

Korhonen’s equation is well accepted to describe the hydro-
static stress evolution on the interconnect. Korhonen et al. [16]
first proposed the PDEs model for a single wire. Fig. 1(a)
shows a real chip power grid, which consists of many
interconnect trees with stubs. Therefore, the general multiseg-
ment interconnect tree, as shown in Fig. 1(b), is an important
interconnect structure in the power grid and needs to be
studied. The other researchers further extend Korhonen’s equa-
tion for the general multisegment interconnect tree which is
continuously connected [7], [10], [18]. For a general multi-
segment interconnect tree with n nodes, including p interior
junction nodes xr ∈ {xr1, xr2, . . . , xrp} and q block terminals
xb ∈ {xb1, xb2, . . . , xbq}, as shown in Fig. 1(b), the hydrostatic
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stress distribution σ(x, t) along the wire is described by the
following Korhonen’s equation [14], [18]:

∂σij(x, t)

∂t
= ∂

∂x

[
κij

(
∂σij(x, t)

∂x
+ Gij

)]
, t > 0 (1)

where ij denotes a branch connected to nodes i and j, nr repre-
sents the unit inward normal direction of the interior junction
node r on a branch ij, the value of which is +1 for the right
direction and −1 for the left direction of the branch with an
assumption of xi < xj, G = −[(eZ∗ρJ)/�] is the EM driv-
ing force, and κ = [(DaB�)/kBT] is the diffusivity of stress.
Da = D0 exp(−Ea/kBT), which is the effective atomic dif-
fusion coefficient. D0 is the preexponential factor, B is the
effective bulk elasticity modulus, e is the electron charge, Z∗
is the effective charge number, J is the current density, ρ is
the resistivity of the interconnect, � is the atomic lattice vol-
ume, kB is Boltzmann’s constant, T is the absolute temperature,
and Ea is the EM activation energy. The boundary conditions
(BCs) block the atomic flux at block terminals xb, which is
expressed as

BC : κbj

(
∂σbj(x, t)

∂x

∣∣∣∣
x=xb

+ Gbj

)
= 0, t > 0. (2)

The initial stress describes the thermal-induced residual stress
along the interconnect at t = 0, which is given by

IC : σij(x, 0) = σij,T (3)

where σT is the initial thermal-induced residual stress. To con-
nect each branch together, the stress and atomic flux should
be continuous at interior nodes xr. Therefore, the stresses at
interior nodes xr are the same

SC : σrj1(xr, t) = σrj2(xr, t)

= · · · = σrjn(xr, t), t > 0 (4)

where “SC” represents stress continuity conditions at the inte-
rior nodes xr. n is the number of branches which is connected
with node xr. The atomic fluxes at the interior nodes xr are
conserved to zero

AC :
∑

rj

κrj

(
∂σrj(x, t)

∂x

∣∣∣∣
x=xr

+ Grj

)
· nr = 0, t > 0 (5)

where “AC” represents atomic flux continuity conditions at the
interior nodes xr.

When the stress reaches a critical stress level σcrit, the void
is formed in the cathode node. The corresponding void BC [6],
[25] for the cathode node is described as

∂σij(x, t)

∂x

∣∣∣∣
x=xl

≈ σij(xl, t)

δ
(6)

where δ is the effective thickness of void boundary. In this
article, δ is set to 1 nm. Based on the stress distribution on
the wires, the void volume Vv(t) is calculated by the atom
conservation equation [6], [25]

Vv(t) = −
∫

�L

σ(t)

B
dV +

∫
�L

σT

B
dV (7)

where �L is the volume of all the connected interconnects.
The resistance of the interconnect remains almost the same
before the void volume reaches the critical volume. This is
because the cross section of the via is not consumed by the
void and the current can still flow through the copper [26].

When the void reaches critical volume Vcrit or critical length
Lcrit, all current starts to flow through the high resistive bar-
rier, which leads to a small resistance jump. The resistance
change [5] can be estimated by

�R(t) = Vv(t)

WH

[
ρTa

hTa(2H + W)
− ρCu

HW

]
(8)

where ρTa and ρCu are the resistivities of the barrier material
(Ta/TaN) and copper, respectively, W and H are the width and
the thickness of the interconnect, respectively, and hTa is the
barrier layer thickness. As the increment of resistance is up to
10%, the interconnect is recognized as a failed wire since the
IR drop fails to meet the requirement [6], [26].

When void’s volume Vv(t) = 0, the EM failure process is
called the nucleation phase. Once the void is formed, the EM
failure process enters the post-voiding phase [6]. In the post-
voiding phase, we can divide it into two subphases, which are
the incubation phase and the growth phase [26]. In the incuba-
tion phase, the void starts to grow but the wire resistance does
not change immediately. In the growth phase, the resistance
starts to increase.

B. ML-Based Approaches for EM Analysis

Recently, several ML-based methods have been applied for
EM analysis because of their fast prediction. These methods
are divided into two strategies: 1) data-driven methods and
2) physics-informed methods. A data-driven method is a super-
vised learning method based on the dataset. Jin et al. [27] first
employed a generative adversarial networks (GANs) method
to predict EM stress by representing the interconnect struc-
tures with the image. It shows an order of magnitude speedup
through comparison to the efficient analytic-based EM solver.
However, this method can only predict the stress for a region
with a fixed size because the output of the model is an image
with a fixed size. Therefore, this model can not be used to
predict stress for chips of the other size. The image is not
an efficient way to represent the multisegment interconnects
since the image has several blank regions. To efficiently
describe the multisegment interconnect structure, a graph is
leveraged to represent the node and edge of the interconnect
trees. Therefore, a graph convolutional network (GCN)-based
method is developed to estimate hydrostatic stress [28]. This
ML-based model has a smaller model size and faster speed
than the GAN-based method. However, those data-driven
methods require a dataset with labeled data to train the model,
which restricts their applications in real problems because
labeled data generation is a big issue.

Physics-informed method, which is an unsupervised learn-
ing method [29], was proposed to tackle the problem of data
generation. Based on automatic differentiation, a PINN [29]
estimates the differential operators and adds the information
of physics law, such as governing equations, BCs, and ini-
tial conditions, into the loss functions, which are used to
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Fig. 2. PISR framework for EM analysis.

train the neural network by backpropagation without a dataset.
Jin et al. [30] employed the PINN method to solve the
electrostatic field with parameterization of voltage. Recently,
Hou et al. have applied space-time PINN (STPINN) to com-
pute EM stress evolution for the VLSI power grid [31]. They
tried to add more neurons related to the predetermined col-
location points. It can achieve better accuracy but takes a
long time to train the model, which can be viewed as a
tradeoff between accuracy and training time. Furthermore,
STPINN only has been tested on multisegment interconnects
with a small number of segments (<30) since it has conver-
gence issues for large-scale interconnects. To mitigate the slow
training speed of PINN, some researchers proposed to use
shallow neural network instead of deep neural network, such as
the physics-informed extreme learning method (PIELM) [32],
local extreme learning machine (locELM) [33], Bernstein
neural network (BeNN) [34], and physics-informed random
project neural network (PIRPNN) [35]. However, these meth-
ods suffer from a large amount of memory usage, ill condition
of the matrix, and O(N3) time complexity [36]. Therefore,
applying unsupervised learning methods for EM assessment
of large-scale interconnects remains a challenge.

III. PISR METHOD FOR EM ASSESSMENT

In this section, we propose a novel PISR framework to solve
Korhonen’s equation for general multisegment interconnect, as
shown in Fig. 2. First, we sample enough points in equation
domains, BCs and initial conditions. Then, we present a novel
regression method based on PINN. Next, we use sparse matrix
techniques to store, multiply, and solve the inverse of the
sparse matrix so that the PISR algorithm is linear time com-
plexity. Finally, we propose an autoregressive method to tackle
the large time-scale problem and reduce memory significantly.

A. Data Sampling and Normalization

Like the PINN method, we need to sample enough data as
training data to train the neural network. The sampling points,
including initial data, boundary data and equation data, are
generated by using normal sampling distribution. The PISR
is a meshless method since the sampling points are not con-
nected to form a mesh. Position x and time t from the sampling
points are taken as inputs. Once we prepare the data, we have
to normalize the training data, which is an important step in
ML. In this article, we use standardization scaling, which is

expressed as

X̂ = X − Xmean

Xstd
(9)

where Xmean and Xstd are mean values and standard deviations
of the data X, respectively. X can be position x, time t, and
stress σ .

With the scaling variables, Korhonen’s equation (1)–(5)
needs to be updated. Based on the derivative chain rule, we
have

∂σ

∂x
= ∂σ

∂σ̂

∂σ̂

∂ x̂

∂ x̂

∂x
= ∂σ̂

∂ x̂

σstd

xstd
,

∂σ

∂t
= ∂σ

∂σ̂

∂σ̂

∂ t̂

∂ t̂

∂t
= ∂σ̂

∂ t̂

σstd

tstd
(10)

∂2σ

∂x2
= ∂

∂x

(
∂σ

∂x

)
= ∂

∂ x̂

(
∂σ

∂x

)
∂ x̂

∂x
= ∂2σ̂

∂ x̂2

σstd

x2
std

(11)

where x̂, t̂, and σ̂ are the normalization of x, t, and σ , respec-
tively, which make neural networks easy to be trained. xmean,
tmean, and σmean are mean values of x, t, and σ at the sam-
pling points, respectively. xstd, tstd, σstd are standard deviations
of x, t, and σ at the sampling points, respectively. Therefore,
by substituting (10) and (11) into Korhonen’s (1)–(5), we can
obtain the normalized PDEs

∂σ̂ij
(
x̂, t̂
)

∂ t̂
− κijtstd

x2
std

∂σ̂ 2
ij

(
x̂, t̂
)

∂ x̂2
= 0

SC : σ̂rj1

(
x̂r, t̂

)− σ̂rj2

(
x̂r, t̂

) = 0

AC :
∑

rj

κrjnr
∂σ̂rj

(
x̂, t̂
)

∂ x̂

σstd

xstd

∣∣∣∣
x̂=x̂r

= −
∑

rj

κrjnrGrj

BC :
∂σ̂bj

(
x̂, t̂
)

∂ x̂

σstd

xstd

∣∣∣∣
x=xb

= −Gbj

IC : σ̂ij
(
x̂, 0

)
σstd + σmean = σij,T . (12)

When the EM failure process enters the postvoiding phase, the
void BC is normalized as

∂σ̂lj
(
x̂, t̂
)

∂ x̂

σstd

xstd

∣∣∣∣
x=xl

≈ σ̂lj
(
x = xl, t̂

)
σstd + σmean

δ
. (13)

After the normalization of data and PDEs, we can apply the
regression method to solve this problem in the next section.

B. Regression Framework

In linear regression [37], the output is represented by a linear
combination of inputs, which is expressed as

σ̂
(
x̂, t̂
) = [

v1 v2
][x̂

t̂

]
(14)

where v1 and v2 are the weights to be determined by the linear
regression. Although linear regression has a fast training speed,
this method can not model nonlinear effects due to the linear
function. To extend the linear regression for modeling more
complex relationships, the neural network is added to the linear
regression, which can be formulated by

σ̂
(
x̂, t̂
) =

Nn∑
i=1

viNNi
(
x̂, t̂
) = αTβ (15)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 20,2024 at 03:28:12 UTC from IEEE Xplore.  Restrictions apply. 



4130 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

Fig. 3. Space-time domain decomposition method for regression framework.
There are five segments and p time intervals in this example. Therefore, we
use 5×p trainable weights β

p
ij and one shared neural network NN(x̂, t̂) to

represent the solutions.

where vi is the coefficient, NNi(x̂, t̂) is the ith outputs of neural
network NN(x̂, t̂) with the inputs of normalized position x̂ and
time t̂, and Nn is the number of outputs. The vectors α and β

are written as

α = [
NN1

(
x̂, t̂
) · · · NNi

(
x̂, t̂
) · · · NNNn

(
x̂, t̂
)]T

β = [
v1 · · · vi · · · vN

]T
. (16)

NN(x̂, t̂) can be any kind of neural networks, such as
fully connected networks [33], BeNN [34], Fourier neural
network [38], radial basis function neural networks [35], and
extreme learning machine (ELM) [32]. If NN(x̂, t̂) is a single
layer, which is expressed as

NN
(
x̂, t̂
) = tanh

(
W
[

x̂
t̂

]
+ b

)
(17)

expression (15) will become an ELM [39]. Note that the fol-
lowing derivation is not limited to ELM and can be applied
for any kind of neural networks.

Then, we apply the linear combinations of neural
network (15) to solve Korhonen’s equations. By substitut-
ing (15) into (12), we have

λg

[
∂αT

ij

∂ t̂
− κijtstd

x2
std

∂2αT
ij

∂ x̂2

]
β ij = 0

λs
[
αT

rj1
−αT

rj2

][βrj1
βrj2

]
= 0

λa

∑
rj

κrjnr
∂αT

rj

∂ x̂

σstd

xstd

∣∣∣∣
x̂=x̂r

βrj = −λa

∑
rj

κrjnrGrj

λb

∂αT
bj

∂ x̂

σstd

xstd

∣∣∣∣
x̂=x̂b

βbj = −λbGbj

λiα
T
ijσstdβ ij = λi

(
σij,T − σmean

)
. (18)

The derivative items (∂αT
ij/∂ t̂), (∂2αT

ij/∂ x̂2), and (∂αT
ij/∂ x̂)

can be obtained easily by automatic differentiation of neu-
ral networks, which is the basic idea of PINN. Therefore,
this regression method is based on the PINN method. The
space domain decomposition method is employed to divide
the whole interconnect tree into several single branches. In
each branch ij, an individual trainable weight β ij is used to
represent stress σ̂ij(x̂, t̂), as shown in Fig. 3. In the common
interface, we enforce stress continuity and atom flux conti-
nuity. For the time domain, we also divide the whole time
range into several small time intervals, as shown in Fig. 3.
p represents the pth time interval. This idea is similar to
the distributed PIELM (DPIELM) [32]. Note that NN(x̂, t̂)

is a shared neural network, which can be employed for
different branches. Therefore, we can just use one shared neu-
ral network and different trainable weights to represent the
solution of each space and time subdomain. Our proposed
idea of the shared neural network can reduce memory usage
significantly. The vectors are represented by

αij = [
NN1

(
x̂ij, t̂ij

) · · · NNNn

(
x̂ij, t̂ij

)]T
β ij = [

v1,ij · · · vi,ij · · · vN,ij
]T (19)

λg, λs, λa, λb, and λi are the weights to make values of all
equations in the same order of magnitude, which can improve
the condition number of the matrix. Similarly, to consider the
postvoiding phase, we can obtain the void BC

λb

[
∂αT

lj

∂ x̂

σstd

xstd

∣∣∣∣
x=xl

− αT
lj
σstd

δ

∣∣∣∣
x=xl

]
β lj ≈ λb

σmean

δ
. (20)

Once we get the loss function (18) and (20), we feed the
sampling data, such as initial data, boundary data and equa-
tion data into the shared neural network. After that, the loss
function can form a system of linear equations

Aβ = b (21)

where A is a L × (Nn · Nseg) matrix, β is the coefficient to
be determined, and b is an L × 1 vector. L depends on the
number of sampling points and branches. Nseg is the number
of branches in the interconnect tree. Equation (21) is a linear
regression problem, which can be solved by the linear least-
squares methods.

In [33], they employed linear least square routine “lstsq”
from the scipy.linalg package, which is a scientific library
based on LAPACK. This routine computes the linear least
squares problem (21) by using the singular value decom-
position (SVD) of A. The time complexity for computing
SVD of an m × n matrix is O(mnmin(n, m)), which is very
time-consuming and requires a large amount of memory. This
routine “lstsq” can only be applied for the multisegment
interconnect with less than 50 segments.

In [32], they use the Moore–Penrose generalized inverse of
matrix A to solve the problem (21). A is not a square matrix.
Therefore, both sides of (21) are multiplied by the transpose
of A, which is expressed as

ATAβ = ATb. (22)

After that, matrix ATA is an (Nn · Nseg) × (Nn · Nseg) square
matrix. They calculate the inverse of matrix ATA to obtain the
final solution, which is expressed as

β = [
ATA

]−1
ATb. (23)

The total time of this method is determined by three parts.
The first part is the time to generate the A matrix. The second
part is the time of multiplication of two matrices AT and A.
The third part is the time to compute the inverse of ATA. The
Moore–Penrose generalized inverse algorithm is faster than the
linear least square routine “lstsq.” However, in [32] and [36],
they use the dense matrix to represent A. Therefore, matrix
A costs a large amount of memory due to lots of zero ele-
ments. Especially for DPIELM, the number of zero elements
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Fig. 4. (a) Transpose of matrix A. (b) Matrix A. (c) Matrix AT A.

in matrix A increases dramatically with the increasing num-
ber of decomposed domains. What is worse, each domain is
represented by one neural network. The total number of neu-
ral networks for the whole problem is very large so that this
method consumes huge memory. Therefore, DPIELM can not
be applied for large-scale interconnect trees of the chip due to
the issue of large memory usage. It can be only applied for the
multisegment interconnect with less than 150 segments. For
the multiplication of AT and A, there are thousands of opera-
tions to multiply zero elements, which are useless for the final
results. The time complexity for the inverse of the dense matrix
by using the Gauss–Jordan Elimination method is O(N3) [40].
Therefore, total computation time increases cubically as the
number of segments becomes large.

C. Sparse Matrix Technique

To further improve the Moore–Penrose generalized inverse
algorithm, we use the sparse matrix technique to represent
matrix A. To demonstrate the time complexity of the proposed
PISR algorithm, we use NT T-junctions interconnect struc-
ture as an example, as shown in Fig. 1(b). We sample Ng

equation data points, Nb boundary data points, Nbi conti-
nuity data points, and Ni initial data points as input data.
The number of block terminals q is NT + 2. The num-
ber of interior nodes p is NT . The number of branches
Nseg is 2NT + 1. The total number of sampling points is
Npoints = (2Ng + 2Ni + Nb + 3Nbi)NT + Ng + Ni + 2Nb. When
we form matrix A, we use coordinate (COO) sparse format to
store matrix A, as shown in Fig. 4(b). The number of nonzero
elements in matrix A is estimated by

Nnon-zero,A = [(
2Ng + 2Ni + Nb + 7Nbi

)
NT + Ng + Ni + 2Nb

]
Nn.

(24)

Then, we use the sparse multiplication routine “mm” from
torch.sparse package to compute ATA to avoid multiplying
zero elements. The number of multiplication operations of
nonzero elements is calculated by

Nmul = [(
2Ng + Nb + 2Ni + 17Nbi

)
NT + Ng + 2Nb + Ni

]
N2

n .

(25)

The matrix ATA is also a sparse matrix, which can be solved
by the sparse solver routine “spsolve” from scipy.sparse.linalg

Fig. 5. Autoregressive model, which computes the solution βp at the pth time
interval based on the previous solution βp−1 at the (p − 1)th time interval.

package. The number of nonzero elements in ATA is given by

Nnon-zero,AT A = (8NT + 1)N2
n . (26)

Therefore, based on (24)–(26), the total time is proportional
to the number of T-junctions NT , which means that the time
complexity of the proposed method is O(N). The linear time
complexity can be demonstrated in Section IV-D. Based on the
sparse matrix technique, we can speed up the solving process
significantly and reduce memory tremendously. In this method,
we only need to calculate the inverse of ATA, which is an
(Nn · (2NT + 1)) × (Nn · (2NT + 1)) matrix. Therefore, this
method does not depend on the number of nodes (Npoints), but
depends on the number of the coefficient (Nn · (2NT + 1)).
The finite element method must require mesh and depend on
(Npoints), which is larger than (Nn · (2NT +1)). As a result, the
proposed PISR method can reduce the dimensionality of the
data from (Npoints) to (Nn · (2NT + 1)) and is more efficient
than the finite element method.

D. Autoregressive Model

In the time domain, we can divide the time into several
small time intervals, as shown in Fig. 5. This adaptive time
decomposition method can improve the accuracy of PISR with
fewer neurons Nn. The time interval is smaller as the rate of
change of the stress is larger. In general, we can divide the
time range into three time intervals to balance the accuracy
and efficiency of PISR. Then, we have different coefficients
for each time interval, which are expressed as

β(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β1, t1 < t < t2

β2, t2 < t < t3

· · ·
βp, tp < t < tp+1

· · ·

(27)

where p represents the pth time interval. tp is the initial time
for the pth time intervals. The initial conditions for pth time
interval (p > 1) can be updated by results from the (p − 1)th
time interval, which is given by

σ̂T
(
x̂, t̂p

) =
N∑

i=1

vp−1
i NNi

(
x̂, t̂p

) = αTβp−1. (28)

Different from DPIELM [32], this autoregressive model pre-
dicts the stress in a time of tp < t < tp+1 based on its previous
values in a time of tp−1 < t < tp, which can be represented by

βp =
[
AT
(
βp−1

)
A
(
βp−1

)]−1
AT
(
βp−1

)
b (29)
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Fig. 6. Comparison of the proposed PISR results with the solution obtained by using COMSOL for a single wire. (a) PISR solution σPISR(x, t). (b) COMSOL
solution σCOMSOL(x, t). (c) Absolute error |σPISR −σCOMSOL|. The neural network is a single hidden layer with Nn = 90 neurons, and the learnable weights
are randomly generated in the range of [–1, 1]. λg, λb, and λi are set to 102, 10−11, and 3.4 × 10−6, respectively. σstd and σmean are set to 109 and 0,
respectively.

where A(βp−1) means A matrix is updated by the initial con-
dition σ̂T(t̂p) or βp−1, as shown in Fig. 5. Therefore, this
method can solve each time interval step by step and costs
less memory than DPIELM since DPIELM solves several time
intervals simultaneously. Based on the autoregressive model,
the PISR method can further reduce memory usage. Finally,
the proposed PISR method can be applied for the multi-
segment interconnect with more than NT = 5000, which is
demonstrated in Section IV-D.

IV. NUMERICAL RESULTS AND DISCUSSION

We demonstrate the accuracy and scalability of our proposed
PISR method on several experimental results. The commercial
software COMSOL is first used to validate the accuracy of
our proposed PISR method for two kinds of interconnects:
1) straight line multisegment interconnects and 2) general
multisegment interconnect tree. Next, we randomly generate
benchmarks with NT T-junctions interconnect tree to illustrate
the O(N) time complexity of the proposed PISR method. For
a fair comparison to traditional methods, such as FDM [23],
FDM with model order reduction (FDM-MOR) [11], and an
analytical method which is called ASOV method [14], the
computation time of the PISR method contains both training
and inference time.

The PISR method is implemented in PyTorch platform. A
scientific library, called scipy.sparse package, is employed to
solve the inverse of the sparse matrix. The PISR method is
trained and tested on a Linux server with 2 Xeon E5-2699v4
2.2-GHz processors and 315-GB RAM. The parameters [19],
[41] used in EM model are: Z∗ = 1, e = 1.609 × 10−19

C, Ea = 0.83e V, ρCu = 1.95 × 10−8 �· m, B = 28 GPa,
� = 1.182 × 10−29 m3, T = 373 K, and σcrit = 41 MPa.

A. Single Wire

We use a single wire to illustrate the whole flow of the PISR
method. We first prepare the training data, as shown in Fig. 7,
which consists of equation data, boundary data and initial data.
The numbers of sampling points in interior domain, BCs and
initial conditions are Ng = 300, Nb = 120, and Ni = 60,
respectively. The normalized parameters xstd, xmean, tstd, and

Fig. 7. Data sampling in interior domain, BCs and initial conditions. The
numbers of sampling points in interior domain, BCs, and initial conditions
are Ng = 300, Nb = 120, and Ni = 60, respectively.

tmean are obtained from the sampling data. σstd and σmean are
set to 109 and 0, respectively, because stress σ is unknown
and needs to be determined. Next, training data is taken as
inputs and the least-squares problem is formed by using the
normalized Korhonen equation. Finally, the Moore–Penrose
inverse algorithm is employed to train this network and obtain
the weights β. For this simple wire, we do not need domain
and time decomposition.

Fig. 6 shows the stress maps (0–109 s) which are estimated
by the proposed PISR method and COMSOL. The current den-
sity is 1×1010 A/m2. The length of the single wire is 50 μm.
As we can see, the stress map from the PISR has a good
agreement with that of COMSOL. Based on Fig. 6(c), the
maximum relative error max |σPISR −σCOMSOL|/|σmax −σmin|
is 3.9%, which occurs in early time. This is because stress
changes quickly so that the single layer cannot fit well. We
pay more attention on stress in late time. The relative error
for late time is below 0.8%.

B. Straight Line Multisegment Interconnect Example

The second example is a straight line multisegment
interconnect with ten segments, as shown in Fig. 9, which
is the key component of power grid benchmarks [19]. The
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Fig. 8. Comparison of the proposed PISR results with the solution obtained by using COMSOL for the straight line multisegment interconnect with ten
segments. (a) PISR solution σPISR(x, t). (b) COMSOL solution σCOMSOL(x, t). (c) Absolute error |σPISR − σCOMSOL|. The numbers of sampling points in
interior domain, continuity conditions, BCs, and initial conditions for each subdomain are Ng = 3 × 106 · L, Nbi = 30, Nb = 30, and Ni = 30, respectively.
L is the length of one segment. The neural network is a single hidden layer with Nn = 90 neurons, and the learnable weights are randomly generated in the
range of [–1, 1]. λg, λs, λa, λb, and λi are set to 102, 3.4 × 10−6, 0.9 × 10−11, 0.9 × 10−11, and 3.4 × 10−5, respectively. σstd and σmean are set to 109

and 0, respectively.

Fig. 9. Straight line multisegment interconnect with ten segments.

TABLE I
PARAMETERS FOR THE STRAIGHT LINE MULTISEGMENT INTERCONNECT

WITH TEN SEGMENTS

current densities and lengths of ten segments are described
in Table I. For this structure, both nucleation and postvoid-
ing phases are simulated by using the proposed PISR method.
Due to the limited representation capability of few trainable
weights of PISR method, we leverage the domain decompo-
sition method for space and time to improve the accuracy of
the PISR method. Each segment ij is represented by the train-
able weights β ij. But all segments share one neural network.
The whole time range (0 ∼ 1.5×109 s) is divided into six time
intervals, such as [0, 107 s], [107 s, 108 s], [108 s, 3.6×108 s],
[3.6×108 s, 6 × 108 s], [6 × 108 s, 1 × 109 s], and [1 × 109 s,
1.5 × 109 s]. By applying the autoregressive model for time
decomposition, we can reduce memory usage by 5/6 = 83%
compared with DPIELM.

The maximum stress on the multisegment interconnect
reaches the critical stress (41 MPa) at t = 3.6×108 s, as shown
in Figs. 8 and 10. Fig. 8 shows the stress maps (0∼1.5×109 s)
of ten-segment interconnect with nucleation and postvoid-
ing phases obtained from the proposed PISR method and
COMSOL. As we can see, the proposed PISR method shows a
perfect match with COMSOL for both two phases. To further
illustrate the accuracy, we plot the stress distribution on the
ten segments with different time points in Fig. 10. It can be
seen that the PISR method matches COMSOL perfectly.

Fig. 10. Stress distribution on the ten-segment interconnect with different
time points for nucleation and postvoiding phases.

To demonstrate the efficiency of the Moore–Penrose gen-
eralized inverse algorithm, we also apply a plain PINN for
EM nucleation phase analysis of the ten segments by using a
7-layer multilayer perceptron. Adam optimizer was employed
to train the model and its learning rate was set to 10−4. The
training time (2.2 s) of the PISR achieves 818× speedup over
that (1800 s) of the plain PINN. What is more, the relative
error of PISR method for 1.5 × 109 s is 1.1%, which is much
better than the accuracy of the plain PINN (10.7%). Note that
we did not compare our method with [31], as this method
can be essentially viewed as a plain PINN method with some
tradeoffs between training accuracy and training time due to
more complicated neuron representations.

Based on the transient stress obtained by the PISR model,
we calculate the void length by (7), as shown in Fig. 11. The
maximum stress increases in the nucleation phase and the void
length is zero. When the maximum stress reaches the crit-
ical stress (41 MPa), the void is formed in 11.4 years
(t = 3.6 × 108 s) and the stress at the void boundary
is released to zero. We can use the bisection algorithm to
find the time to reach critical stress. After that, the void
starts to grow in the postvoiding phase. However, the resis-
tance does not change until the void length exceeds the
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TABLE II
COMPARISON BETWEEN OUR PROPOSED PISR METHOD AND COMSOL ON OPENROAD BENCHMARKS WITH TWO PROCESS TECHNOLOGIES

Fig. 11. Evolution of stress, void length, and resistance for both nucleation
phase and postvoiding phase. The width, thickness, and length of interconnect
are 40 nm, 90 nm, and 20 μm, respectively. The electrical conductivity of barrier
material (Ta/TaN) is 1.76 × 10−7 �·m. The barrier layer thickness is 4 nm.

critical length 0.04 μm (the diameter of the via). Therefore,
we can divide the postvoiding phase into the incubation
phase and the growth phase. Based on (8), the resistance of
the wire starts to change in 29.8 years (t = 9.4 × 108 s).
The wire fails in 39 years (t = 1.23×109 s) since the resistance
of the wire increases by 10% [6], [26]. The shape of resistance
over time is similar to the experimental results in [42], which
demonstrates that the physics-based EM model is reasonable.
As we can see, the void length obtained by our proposed PISR
method agrees well with the results from COMSOL.

To show the application of PISR on real power grid bench-
marks, we use the OpenROAD tool [24] to automatically
generate aes, gcd, and ibex circuits with nangate 45-nm
and sky 130-nm technology since they are the test cases in
OpenROAD. The currents for the power grids are computed
by PDNSim [43]. The power grid consists of many straight
line multisegment interconnect, as shown in Fig. 9. First, we
use the fast immortality check algorithm [44] to check the
immortal and mortal wires. Second, we use our proposed PISR
method to perform transient analysis for the mortal wires to
check the void at 20 years. If the stress exceeds the crit-
ical stress at 20 years, then these multisegment wires are
marked as EM-void (t = 20 years). The results on OpenROAD
benchmarks are illustrated in Table II. As we can see, the
number of interconnects with 130-nm technology for EM-void
(t = 20 years) is zero. This is reasonable because interconnects
with 130-nm technology have a smaller current and larger
width/thickness compared with 45 nm. The number of gcd
circuit interconnects with 45-nm technology for EM-void
(t = 20 years) is also zero since gcd is a small circuit with a

(a)

(b)

Fig. 12. Stress distributions on the straight line multisegment interconnect
with (a) 371 segments and (b) 19 segments at t = 20 years. The two
interconnects of length 1000 μm are obtained from the aes benchmark with
nangate 45-nm technology in OpenROAD. The 371-segment and 19-segment
lines are located in the metal-1 layer and metal-7 layer, respectively. The
numbers of sampling points in interior domain, continuity conditions, BCs
and initial conditions for each subdomain are Ng = 3 × 106 · L, Nbi = 30,
Nb = 30, and Ni = 30, respectively. L is the length of one segment. The
neural network is a single hidden layer with Nn = 30 neurons, the learnable
weights are randomly generated in the range of [–1, 1]. λg, λs, λa, λb, and
λi are set to 102, 5 × 10−6, 0.9 × 10−11, 0.8 × 10−11, and 3.4 × 10−5,
respectively. σstd and σmean are set to 109 and 0, respectively.

short interconnect. The shorter length leads to better EM relia-
bility. To compare the efficiency between PISR and COMSOL,
we only compute the runtime of transient analysis. PISR can
achieve a large speedup (6.8×) over COMSOL for large cases
because PISR is a linear time algorithm which shows great
advantage in large problem. We did not compare PISR with the
state-of-the-art SOVs method on these power grid benchmarks
because the SOV method is really fast for straight line multi-
segment interconnect. However, SOV is slower than PISR in
the cases which have tree structures and a large number of seg-
ments, which will be demonstrated in Section IV-D. Fig. 12
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(a) (b)

Fig. 13. (a) Real chip layout with standard cell synthesis and placement
from [45]. The VDD and VSS lines have short stubs, which provide the
power for the standard cells. The stubs cannot be ignored because the distance
between two adjacent stubs is as long as the length of stub. (b) General
multisegment interconnect tree structure which considers the short stubs.

TABLE III
PARAMETERS FOR THE GENERAL MULTISEGMENT INTERCONNECT TREE

shows the stress distributions on the straight line multiseg-
ment interconnect with Fig. 12(a) 371 segments and Fig. 12(b)
19 segments at t = 20 years, which are obtained from the aes
benchmark with nangate 45-nm technology in OpenROAD.
The 371-segment and 19 segments with the same length
1000 μm are located in the metal-1 layer and metal-7 layer,
respectively. As we can see, the transient analysis shows that
The 371-segment line does not form a void at 20 years, but
19-segment line has a void at 20 years. The results obtained
from PISR and COMSOL are matched well.

C. General Multisegment Interconnect Tree Example

Fig. 13(a) shows a real chip layout with standard cell syn-
thesis and placement, which comes from [45]. As we can see,
the VDD and VSS lines have short stubs, which provide the
power for the standard cell. Note that we can not ignore short
stubs since the distance between two adjacent stubs is as long
as the length of the stubs. If we consider the stubs, the number
of segments increases dramatically, which brings a challenge
for EM analysis. We apply the proposed PISR method to per-
form EM analysis for a general multisegment interconnect tree
with several stubs, as shown in Fig. 13(b). The current den-
sity and length for each branch are shown in Table III. Then,
the domain decomposition method for time and space is also
employed to improve the accuracy of the PISR method. Each
branch ij is represented by the trainable weights β ij. The time
range (0 ∼ 2 × 109 s) is divided into three time intervals,
which are [0, 108 s], [108 s, 109 s], and [109 s, 2 × 109 s].

Fig. 14 shows the transient stress distribution of the gen-
eral multisegment interconnect tree at different time points.
As we can see, the stress obtained by the proposed PISR
method coincides exactly with the results from COMSOL.
The relative error of the PISR method for 2 × 109 s is 0.34%,
which is the same accuracy level as the numerical methods.

(a) (b)

(c) (d)

Fig. 14. Transient stress distribution of a multisegment interconnect tree at
(a) t = 1 × 108 s, (b) t = 5 × 108 s, (c) t = 1 × 109 s, and (d) t = 2 × 109 s.
The numbers of sampling points in interior domain, continuity conditions,
BCs, and initial conditions for each subdomain are Ng = 3×106 ·L, Nbi = 30,
Nb = 30, and Ni = 30, respectively. L is the length of one segment. The neural
network is a single hidden layer with Nn = 30 neurons, and the learnable
weights are randomly generated in the range of [–1, 1]. λg, λs, λa, λb, and λi
are set to 102, 2×10−6, 1×10−11, 1×10−11, and 3.4×10−6, respectively.
σstd and σmean are set to 109 and 0, respectively.

Fig. 15. Interconnect tree benchmark with NT T-junctions.

To study the impact of stubs, we also calculate the stress on
the VDD or VSS line without stubs, as shown in Fig. 14(d)
(orange dotted–dashed line). This is a single wire with a length
170 μm and a current density 1×1010 A/m2. It can be observed
that the maximum stress without stubs is smaller than that
of simulation with stubs. Therefore, to model EM accurately,
we need to consider the stubs. In power grid benchmarks
of OpenROAD, power grids only consist of the straight line
multisegment interconnect, as shown in Fig. 9. Such power
grids do not consider specific standard cell circuits and ignore
the stubs. Therefore, the multisegment interconnect tree in
Fig. 13(b) is viewed as a single wire, which is one element of
a straight line multisegment interconnect. By considering the
stubs, we calculate the hydrostatic stress for a general multi-
segment interconnect tree with 16 segments. The number of
segments with stubs is 16× larger than that of a single wire
without stubs.

D. Comparison With Existing Numerical Methods

In this section, we compare the proposed PISR method
against some of the published EM numerical and semi-analytic
methods over a number of interconnect trees ranging from
NT = 100 to NT = 5000, as shown in Fig. 15. We compare
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TABLE IV
COMPARISON BETWEEN OUR PROPOSED PISR METHOD AND THE OTHER TRADITIONAL METHODS

our PISR against the recently proposed FDM method [23],
the FDM with model order reduction method, FDM-MOR
method [11], and the recently proposed semi-analytic EM anal-
ysis method, ASOV [14] as shown in Table IV. Note that we
run ASOV code on a Linux server with two Xeon E5-2699v4
2.2-GHz processors and 315-GB RAM, which is the same as
the platform where PISR is tested. We also show the speedup
over the three methods in columns from 5 to 7 in Table IV.

For our PISR, the time reported in the table also consists of
a few components: The training time tL for the proposed PISR
method consists of three parts as mentioned in Section III-B.
They are the time tA to generate the A matrix, the time tM to
multiply AT and A, and the time tS to compute the inverse of
ATA. We have the relationship tL = tA + tM + tS. The infer-
ence time tI is to predict the testing set with uniform sampling
points. The total time tT of the proposed PISR method is the
summation of tL and tI . Fig. 16(a) shows the several time com-
ponents for different computing parts of the proposed PISR
method. The majority of computational time is tA, which can
be improved in the future. As we can see, all time components
increase linearly with the increasing number of segments,
which demonstrates that the proposed PISR method has O(N)

time complexity as mentioned in Section III-C.
To further compare with other published methods intuitively,

we present time data with the log-log plot, as shown in
Fig. 16(b). The time for the proposed PISR method consists
of training time tL and inference time tI . We use the linear
line to fit the data. The slope of the line represents the
empirical runtime trend, which is computed by (log(T1) −
log(T2))/(log(N1) − log(N2)) where T1 and T2 denote the
time, and N1 and N2 represent the number of segments.

The empirical runtime trend of the proposed PISR method
is O(N), which is the same as the time complexity analy-
sis in Section III-C. However, the empirical runtime trend for
the other traditional methods is about O(N2.7), as shown in
Fig. 16(b). For the interconnect with NT = 5000, the proposed
PISR method achieves 8.9×, 20.6×, and 1284× speedup
over ASOV, FDM-MOR, and FDM, respectively. This is a
clear trend that as the number of segments increases, the
speedup will also increase. It indicates the truly scalable of
the proposed method as it has a linear time complexity.

(a)

(b)

Fig. 16. (a) Time components of different parts for the proposed PISR
method. (b) Comparison of the proposed PISR method, FDM, FDM-MOR,
and ASOV. The length for each branch is 30 μm. The numbers of sampling
points in interior domain, continuity conditions, BCs and initial conditions
for each subdomain are Ng = 3 × 106 · L, Nbi = 30, Nb = 30, and Ni = 30,
respectively. L is the length of one segment. The time range (0 ∼ 2 × 109 s)
is divided into three time intervals, which are [0, 108 s], [108 s, 109 s], and
[109 s, 2 ×109 s]. The neural network is a single hidden layer with Nn = 30
neurons, and the learnable weights are randomly generated in the range of
[–1, 1]. λg, λs, λa, λb, and λi are set to 102, 2×10−6, 1×10−11, 1×10−11,
and 3.4×10−6, respectively. σstd and σmean are set to 109 and 0, respectively.

V. CONCLUSION

In this article, we proposed a novel PISR framework
to solve Korhonen’s equations for general multisegment
wires. The PISR method trains the trainable weights through
the Moore–Penrose generalized inverse algorithm, which is
extremely faster than the backpropagation algorithm. To
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improve the accuracy of PISR for complex multisegment
interconnects, we employed domain decomposition schemes in
both space and time. Our proposed idea of the shared neural
network can reduce memory cost significantly. Furthermore,
we propose to use sparse matrix techniques to acceler-
ate the training speed of the PISR method and reduce its
memory usage significantly. Finally, an autoregressive model
is employed to simulate the divided time intervals in sequence
to further reduce memory cost. The numerical results on dif-
ferent kinds of interconnect structures show that the proposed
PISR method has the same accuracy level as the numerical
methods. The numerical results on T-junctions interconnect
trees show that the proposed PISR method indeed demon-
strates linear time complexity for general interconnect trees
for the first time. Furthermore, PISR can deliver 8.9×, 20.6×,
and 1284× speedups over the recently proposed semi-analytic
method (ASOV), FDM accelerated with model order reduction
(FDM-MOR), and FDM for the interconnect with NT = 5000,
respectively. Furthermore, we show that PISR also achieves an
818× speedup in training speed over the plain PINN method
based on the traditional backpropagation algorithm.
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