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Optical tweezers microrneology maps
micro-mechanics of complex systems
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Biochemical systems, from cytoskeleton to mucus, exhibit complex mechanical responses critical to their function.
Traditionally, these properties have been measured using rheometers that measure the bulk response of the entire
sample, proving insufficient to characterize often heterogeneous and dynamic biochemical systems. Optical tweezers
microrheology (OTM) measures microscale mechanical properties, similar to particle-tracking microrheology (PTM) that
infers properties from the diffusion of embedded probes, while offering wider dynamic range and precise control over

strain profiles.
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OTM uses a focused laser to trap, manipulate, and measure forces exerted by the sample on embedded micro-
spheres, enabling a broad range of strains and precision force measurements. Passive linear OTM measures ther-
mal fluctuations of a stationary trapped bead, while in nonlinear OTM the trapped bead is moved relative to the
sample at programmable rates and distances while the force is measured. Coupling OTM with fluorescence mi-
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croscopy can determine macromolecular dynamics governing the force response.
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ADVANTAGES:

Small samples sizes (~10 pl) compared
with bulk rheology which requires ~10°-
10° pl, ideal for biochemical systems that
are difficult and expensive to produce.

Bespoke strains with a range of rates,
amplitudes, and patterns that span
microscopic and mesoscopic scales and
access nonlinear response features not
possible with particle-tracking
microrheology (PTM).

Measurements on dense and stiff
systems inaccessible to PTM due to
minimal particle mobility, and fluid-like
systems that produce insufficient stress
for accurate bulk rheology.

Long duration measurements in a single
precise location, not limited to the time
that a diffusing particle remains in view
(as in PTM), to decouple spatial
heterogeneities from time-varying
mechanical properties.

Faster data acquisition rates (~100 kHz)
than video-based PTM to resolve high
frequency response.

Coupling to fluorescence microscopy to
image labeled biomolecules or other
constituents during straining to connect
system structure and motion to stress
response.

CHALLENGES:

Many single-location measurements are
needed to span the sample to determine
average properties and map spatial
heterogeneities.

Maximum force (~100 pN) may be below
strain-induced or internally-generated
forces in very rigid or active systems.

Trapping requires the bead refractive
index to be larger than the sample, which
may not be the case for dense or opaque
systems.
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Lack of accurate modeling of non-
uniform flow-fields produced by the
moving bead complicates data
interpretation and comparisons with bulk
rheology.
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