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Impact performance is a key consideration when designing objects to be encountered in everyday life. Unfor-
tunately, how a structure absorbs energy during an impact event is difficult to predict using traditional methods,
such as finite element analysis, because of the complex interactions during high strain-rate compression. Here,
we employ a physics-based model to predict impact performance of structures using a single quasistatic
experiment and refine that model using intermediate strain rate and impact testing to account for strain-rate
dependent strengthening. This model is trained and evaluated using experiments on additively manufactured
generalized cylindrical shells. Using transfer learning, the trained model can predict the performance of a new
design using data from a single quasistatic test. To validate the transfer learning model, we extrapolate to new
impactor masses, new designs, and a new material. The accuracy of this model allows researchers to quickly
screen new designs or leverage pre-existing databases of quasistatic test data. Furthermore, when impact tests are

necessary to validate design selection, fewer impact tests are necessary to identify optimal performance.

1. Introduction

Structures that absorb energy in impact events are critical for
everyday life. They are used in bicycle helmets [1,2], the crumple zones
of cars [3], packaging for shipping [4,5], and even ballistic and blast
protection [6]. Despite these critical needs, development of protective
impact structures is challenging because performance depends on the
properties of the object to be protected, the energy of the impact, and the
height and contact area of the protective structure, requiring thousands
of time-consuming physical tests to optimize [10,11,7,8,9]. Further
complicating the design process is that it is extremely challenging to
obtain precise agreement between experiment and traditional
physics-based approaches, namely finite element analysis. [12,13]
Disagreement often arises due to the difficulty associated with capturing
the complex interactions that occur at high strain rate, at high strain,
and with self-self-contacts of the structures.

To overcome these challenges, many impact structures make use of
simple bulk materials such as foams [7,14]. Such materials are simple to
work with because their density can be tuned in a manner that

predictably changes their performance [15]. This scaling leads to the
common use of empirically measured cushion curves, which compare
the peak acceleration of an impactor versus the static pressure exerted
by that impactor at rest. Such cushion curves are helpful in selecting the
ideal foam height and density for a given application, but assume that
the height can be changed without affecting performance, limiting their
applicability when applied to non-homogenous materials. Despite the
widespread use of cushion curves for foams, significant research focuses
on developing materials and structures that outperform foams in weight,
volume, and safety metrics.

The increasing reliability and decreasing cost of additive
manufacturing (AM) has opened the opportunity to manufacture struc-
tures that are more complex than traditional foams. [16,17,5] One
common approach is to use AM to produce uniform lattice structures,
once again depending on density scaling or repeated unit cells to predict
performance [18-21]. Some researchers have investigated how structure
affects performance for designs with consistent density, such as func-
tionally grading strut thickness along an axis [22,23], auxetic structures
[24,25], or using tapered beams [26]. Our previous work showed that
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Gaussian process regression (GPR) models could be used to predict peak
acceleration of impact tests for lattice structures where the mass of the
lattice is shifted between the joints and different types of struts [27].
Two promising developments are the innovation of automated testing of
bulk materials to optimize impact properties [28] and the use of
autonomous experiments to optimize structure for quasistatic mechanics
[29,30]. Despite their promise, optimizing novel structured materials for
impact performance can quickly become impractical due to the immense
number of possible design choices and the burdensome testing re-
quirements, both in researcher time and in the number of repeat samples
needed for optimization.

Many efforts have been made to decrease the burden of impact
testing. Early attempts focused on predicting the amount of energy that
foam samples could efficiently absorb [31,32]. To account for strain-rate
effects, a common strategy is to treat the material as viscoelastic or scale
quasistatic curves by multiplying them by empirical constants or dy-
namic factors that include both strain and strain rate [33-36,9].
Recently, more numerical models have appeared to model the dynamics
of impact [8,37]. Despite these efforts, little work has been done to
extend these predictive models beyond homogenous foams. Facile
models that accurately predict impact performance remain an open
challenge.

To speed up development of new impact structures, we develop a
physics-based transfer learning model to predict the ideal impact ve-
locity Vi for polymer structures. To explore this concept, we experi-
mentally study generalized cylindrical shells (GCS), which have
superlative energy absorbing capacity in quasistatic (QS) compression
tests and are inherently easy to print using fused filament fabrication
(FFF) [30]. The development of this model involves three key steps, (1)
the extraction of key metrics from QS testing, (2) the use of intermediate
strain rate (ISR) tests to determine strain-rate dependent strengthening,
and (3) the refinement of the model using impact tests. After these initial
training steps, the model is able to predict impact performance on pre-
viously unseen samples with a single QS test and even extrapolate to test
data using different impactor mass, designs, and materials with an RMSE
of 0.23 m/s.

2. Theory

An impact test consists of an impactor of mass m dropping on a test
component and hitting it with initial impact velocity V. The initial ki-
netic energy KE of the impact is given by,

1 2
KE = 2 mV;. €]

During an impact experiment, the acceleration a of the impactor is
tracked and used to assess the performance of the component. Typically,
the impact performance of a component is defined by the maximum
acceleration a,, observed during the test, which should be minimized to
prevent damage. However, a, is not always the clearest way to compare
the performance of components as a,, generally increases monotonically
with V, and m. For ease of comparison, impact performance is often
described using the non-dimensional Janssen factor J, which is defined
asJ = a,,/a, where q, is the theoretical minimum acceleration that could
stop the impactor given by,

_
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where h is the height of the test component. While J depends on the
details of the impact test, namely V, and m, there exists a critical initial
velocity Vi for which the minimum Janssen factor J* is observed for a
given m.

In contrast with impact tests in which the strain rate varies during
the experiment, fixed-velocity tests feature a constant strain rate. Under
these conditions, the useful non-dimensional metric to consider is the
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energy absorbing efficiency K; of a component, which describes how
efficiently it absorbs energy below a force threshold F; and is given by,
[ F(D)dD

K(F,) = OT-, 3

with the displacement threshold D, taken as the largest D for which
F(D) < F, for all D < D;. Practically speaking, this equation quantifies
the amount of energy absorbed before exceeding F; and normalizes it by
F;h, which is the total amount of energy that could be absorbed if F = F;
for 0 < D < h. The maximum energy absorbing efficiency K; occurs at
the critical force threshold F;. Maximizing K; requires a long, flat
plateau region, which is why most structures designed to absorb energy
take advantage of productive buckling phenomenon. While there are
similarities between K; and J*, it is worth emphasizing that K; can be
found using a single QS test while finding J* requires empirically
searching for the minimum value in V; at the relevant m.

3. Results and Discussion

In order to examine the behavior of a component when impacted
under various conditions, a specific GCS design was selected and fabri-
cated out of thermoplastic polyurethane (TPU, Ninjatek — Cheetah)
using FFF (Fig. 1a) and subsequently tested in impact (Fig. 1b). Repre-
sentative a- displacement D curves illustrate the outcome of testing this
component with too little KE, an ideal amount of KE, and too much KE,
all relative to the ideal conditions for this component (Fig. 1c). At low
Vo, am increases slowly with increasing Vj due to strain-rate dependent
material properties increasing the yielding force (Fig. 1d). However,
once Vy increases to the point where densification is reached, a, in-
creases at a much faster rate with increasing V, as the component is
unable to absorb KE without densifying further. This transition point
coincides with (V, J*), which is the condition under which the design is
most efficient (Fig. 1e). Because of this, (V, J*) is a highly useful way to
quantify impact performance. However, determining this value required
a large number of impact tests on independently prepared samples and is
only valid for one value of m.

We hypothesize that fixed-velocity tests (Fig. 1f) could be used to
predict V. While there are substantial differences between impact and
fixed-velocity testing, the move to fixed-velocity would be a tremendous
reduction in the experimental burden as fixed-velocity tests use rela-
tively common universal testing machines (UTMs), are amenable to
automation, and feature fewer variables than impact tests. The result of
a fixed-velocity test is a plot of force F vs. D (Fig. 1g). One key question in
exploring our hypothesis is determining a way to extract information
from this QS curve that can be useful for predicting impact performance.
In analogy with the non-dimensional J, we consider K; (defined in Eq.
(3)) as an important non-dimensional metric of a component’s ability to
absorb mechanical energy as previously explored by Gruenbaum, G. &
Miltz [32]. Graphically, K can be calculated by dividing the amount of
energy absorbed (light blue area in Fig. 1g) while F <F, by the
maximum amount that could be absorbed at that F; (light red area in
Fig. 1g). While F; is an independent parameter that is most often chosen
with consideration of the operational conditions of the component, there
often exists an optimal force threshold F; where the component exhibits
its maximum energy absorption efficiency K;. Based on these metrics, a
simple prediction of the ideal impact conditions can be found by
equating impact KE with the amount of energy most efficiently absorbed
during QS testing,

1
5mvo2 —FKh, )

and then solving for predicted optimal impact velocity V;

~x 2F;K’h
Uy =/ ®)
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Fig. 1. Predicting impact performance from quasistatic tests. (a) Photograph showing a generalized cylindrical shell (GCS) component made from thermoplastic
polyurethane (TPU). (b) Schematic of an impact test with impactor of mass m hitting the component of height h at an initial velocity Vj. (c) Acceleration a vs.
displacement D for impact tests of the same component at three different V, with m = 1.57 kg. The max acceleration a,, for each Vj is denoted as a black dot. The
units of a are the gravitational acceleration g. (d) The a,, at various V, with m = 1.57 kg. (e) Janssen factor J vs. Vp. The test with the lowest J is designated as the
point (Vg,J*). (f) Schematic of a fixed speed test in which a platen is lowered at constant velocity V. (g) Force F vs. D for quasistatic (QS) test (V = 2 mm/min). This
data is used to compute the most efficient operating conditions in terms of the critical force threshold F; and maximum mechanical energy absorbing efficiency Kj,
which is defined by dividing the amount of energy absorbed (light blue area) by the maximum amount of energy that could be absorbed below F; (light red area). (h)

Photograph showing five additional GCS designs made from TPU. (i) QS model uses a single QS test to compute the predicted optimal impactor velocity V;. (j) Parity
plot showing V; vs. V; for the six shown designs using the QS model for m = 1.57 kg. Error bars denote one standard deviation.

While the QS model is both simple and physics based, it neglects strain-
rate dependent effects, which is expected to limit its predictive power.
To test the QS model, five additional designs were selected and
fabricated from TPU (Fig. 1h). To apply the model, a single QS test is
needed to determine F;, K}, and h for each design. With this data, VZ for
a given m can be predicted using Eq. (5) (Fig. 1i). For each of the six
designs, components were fabricated and tested at 2 mm/min in tripli-
cate (Fig. 1j). While the predictions preserve rank order, they consis-
tently underestimate V; because the QS model does not account for the
strain-rate dependent strengthening. Despite this, because the predic-
tion always underestimates Vj, it provides two key pieces of informa-
tion. First, it provides a safe V, that will not reach densification. Second,
if subsequent impact testing will be done to identify (Vy, J*) more
accurately, it provides guidance of the lower end of potential Vj values,
potentially decreasing the number of experiments needed to identify the

point of maximum performance. Nevertheless, it is clear that more in-
formation is needed to further improve this model.

In order to improve predictions of V;, it is necessary to model the
strain-rate dependent effects on the components. Using our UTM, it is
possible to test at V of up to 2000 mm/min (Fig. 2a). Although this is still
more than an order of magnitude lower than V, during impact testing, it
is several orders of magnitude higher than the 2 mm/min speed that was
used in QS testing. Furthermore, when the F-D curves are compared for
these ISR tests, strain-rate dependent strengthening is readily apparent
(Fig. 2b). Specifically, the curves have similar shapes, but F increases
with increasing V. Interestingly, higher V has a modest effect on K
(Fig. 2¢), which bears the advantage that QS tests can be used to estimate
this value. In contrast, F; monotonically increases with increasing V
(Fig. 2d), making this parameter a clear quantification of strain-rate
dependent strengthening. Empirically, we find that these experiments
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Fig. 2. Predicting impact performance from intermediate strain rate tests. (a) Velocity V vs. D during impact and intermediate strain rate (ISR) tests. While impact
tests start at V = V, and decrease as energy is absorbed, ISR tests have a fixed V for the entire test. (b) F vs. D for ISR tests of copies of the component shown in Fig. 1a.
(c) K; vs. V for the ISR tests shown in b. (d) F; vs. V for the ISR tests shown in b. The red line shows a fit to Eq. (6) with key fitting constants F;(0) and V. marked by
gray and black dashed lines, respectively. (e) ISR model uses both QS and ISR tests of the target design to predict V;. (f) Parity plot showing ‘7:) vs. V for the six
original designs using the ISR model for m = 1.57 kg. Error bars denote one standard deviation. In panels a, b, ¢, and d, shades of blue indicate V.
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Fig. 3. Predicting impact performance using transfer learning. (a) Values from ISR fitting each of the six designs to Eq. (6) with the mean value shown as a dashed red
line. (b) Plot of QS F; (2 mm/min) vs. fitting constant F; (0). (c) Transfer learning (TL) ISR model that uses ISR tests of other designs to calculate V. and a, allowing the
prediction of l~/:) with a single QS test for each target design. (d) Parity plot showing f/(*) vs. V; for the six designs using the TL ISR model for impactor mass m =
1.57 kg using leave-one-out cross validation (LOOCV) to calculate V, and «a for each prediction. (e) F; vs. V for ISR tests with theoretical impact point (V;‘NF;‘ ) (pink
square) calculated using Eq. (7). (f) Values from ISR and impact fitting each of the six designs to Eq. (6) with the mean value shown as dashed red line. (g) TL impact
model uses ISR tests and impact F; prediction from other designs to calculate parameters V. and a, allowing the prediction of V; with just a single QS test for each
new target design. (h) Parity plot of ‘7:) vs. V; for the six original designs using the TL impact model for m = 1.57 kg using LOOCV. Error bars throughout represent
one standard deviation.
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can be fit using,

ro(1+(y) ) ©

with fitting constants F;(0), V., and a. These fitting constants have a
physical basis: F; (0) represents the asymptotic limit of F; for ISR testing
when V approaches 0, V, represents the characteristic velocity where
F{(V) doubles, and «a represents how quickly F;(V) increases as V in-
creases. The ISR model is formed by combining Eq. (6) and Eq. (5) to
obtain a transcendental equation that can be solved numerically to

F(V) =

t

predict V:, of a given design based upon QS and ISR tests for the design
(Fig. 2e). The predictive performance of the ISR model is significantly
improved, although the rank order is no longer correct (Fig. 2f). Despite
this improvement, the ISR model only uses data from a given design and
requires a large number of fixed velocity tests for each prediction.

Despite the improvements with the ISR model, taking a full sweep of
ISR test data is much slower than taking a single QS test and high-speed
tests have the potential to damage the load cells of UTMs. Therefore, we
hypothesized that transfer learning could be employed to eliminate the
need to take ISR tests for each new target design. By plotting the fitting
constant values for F; (0), V¢, and a, some trends become clear (Fig. 3a).
While F;(0) clearly varies for each design, both V. and a have more
closely grouped values for all tested designs, suggesting that their mean
values could be used. Fortunately, F;(0) is correlated with F;(2 mm/
min) determined by QS experiments of the target design (Fig. 3b).
Therefore, a transfer learning model can be created that uses the mean
value of V. and a from other designs while establishing F; (0), K;, and h
from a single QS test (Fig. 3c) for each new target design. In this way, the
time-consuming ISR tests can be done once for a representative set of
designs to establish baseline values, and then subsequent designs can be
predicted using a single QS test. Interestingly, when predicting impact
performance using leave-one-out cross validation (LOOCV), the new TL
ISR model performs significantly better than the ISR model trained on
ISR data from each target point (Fig. 3d). This suggests that V, and a are
not design dependent, as averaging the values for several designs pro-
vides better predictive performance than using the value from the spe-
cific design.

Motivated by the success of incorporating ISR data from other de-
signs, we hypothesized that using limited impact testing could further
improve the prediction of F;(V). Unfortunately, impact tests do not
produce an estimate of F; that can be directly used to estimate strain-
rate dependent strengthening at these higher strain rates. Despite this,
the value of V;; determined by impact experiments for each design can be
used to compute what the required F;(V) would need to have been to
arrive at the correct prediction, which can be computed by rearranging
Eq. (4) as,

_mvg?
T2Kh

F; (V) @

This (Vy, F;(V})) point can then be included in the F; (V) fit model to
further improve its accuracy at high velocities (Fig. 3e). Fitting the ISR
and impact data together to Eq. (6), we find that the additional point
provided by impact testing barely changes F; (0), but slightly adjusts V.
and a (Fig. 3f). Importantly, the scaling parameter a decreases from
0.223 to 0.205, suggesting that the TL ISR model overestimates the
strain-rate dependent strengthening at higher velocities. With this
addition, the TL impact model can predict VZ using a model initialized
on a representative set of ISR and impact tests and a single QS test for
each new design (Fig. 3g). The TL impact model shows slight improve-
ments to predictive accuracy at the cost of including some impact data to
train the initial model (Fig. 3h). The similarities between the results
shown in Figs. 3d and 3h demonstrate that including the impact results
merely refines the TL ISR model from what is possible when including
ISR testing alone, which is further supported by the modest adjustments
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to the fitting parameters V, and a with the inclusion of the impact data.

To further explore the transferability of this model, we tested two
new designs at m = 3.1 kg, nearly twice the mass of the impactor used to
generate all training data. The first design (Fig. 4a) had low stiffness and
no clearly defined yield point (Fig. 4b). All models predict the very low

\7; for this soft design, consistent with the test data obtained from impact
testing (Fig. 4c). In contrast, another design (Fig. 4d) was chosen that
had a higher F; than previous designs and a clear yielding region

(Fig. 4e). Here, the models predict higher V(*) consistent with experi-
mental results, with the QS model being the notable outlier because it
fails to account for the strain-dependent strengthening of the material
that is amplified by this stiff design (Fig. 4f).

As a final test of generalizability, we extended these models to a new
material, a TPU filament mixed with a blowing agent (ColorFabb —
VarioShore) such that when printed at 250 °C, it forms a foam with a
density half of the previously studied TPU. When testing solid cylinder
samples fabricated with both the TPU and foaming TPU (Fig. 5a), the
foaming TPU sample shows a significantly lower modulus and densifies
at a much higher strain due to the added porosity from the blowing
agent decreasing the relative density of the material at the microstruc-
tural scale. Furthermore, we switched to a more complex GCS design
space (Fig. 5b), which adds a tapered region to provide an initial region
with low stiffness. Some of the new foaming TPU designs had heights
that included those much lower than the previously studied designs and
some were up to twice the mass of any components in the training set
(Fig. 5¢). The new designs generally had much lower K; due to the in-
efficiency of the tapered region (Fig. 5d), but they also had much higher
F{, which were designed to target higher Vj. All four models were
applied to the 14 new foaming TPU designs, with both TL models’ V. and
a parameter values being trained exclusively on data from the original
six TPU designs. The TL impact model had an RMSE of 0.23 m/s, with
the TL ISR model close behind and the ISR and QS models’ errors
significantly higher (Fig. 5e). The TL impact model trained exclusively
on the original six TPU data shows excellent accuracy at predicting
impact performance using only a single QS test for each new foaming
TPU design (Fig. 5f), especially considering that the design space, h,
component mass, and component material were all broadened from
those contained in the training data. This suggests that the physics-
informed transfer learning model may be able to extrapolate far
beyond the limited training data used to train it.

4. Conclusion

This work reports a systematic exploration of how the impact per-
formance of structures can be predicted using a set of models with
varying complexity. In all cases, models are physics informed to mean-
ingfully connect metrics from QS testing to impact performance. Our key
finding is that the incorporation of related training data that includes
testing in the ISR and impact regimes allows these models to powerfully
extrapolate to new designs, materials, and impact conditions. From a
design perspective, this work implies that once a representative set of
data has been acquired, new designs can be rapidly evaluated based on a
single QS test. Furthermore, the success of this model in extrapolating
beyond the training materials suggests that models trained on large
databases of polymeric structures may be useful with new materials and
architectures. To that end, the TL impact model based on all data pre-
sented in this study is given by V. = 331 mm/min and a = 0.205,
which, when combined with a single QS test of a new sample, can be
used to estimate VS.

The ability to predict performance with a single QS test allows re-
searchers to screen candidate structures for impact performance quickly
and easily. Additionally, it allows researchers to leverage databases of
QS tests already published or that can be generated using high
throughput experimentation or self-driving labs. Finally, researchers can
take advantage of previously studied design motifs, such as how the
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angle, aspect ratio, or connectivity of lattices affect their force-
displacement response, to predict their impact performance. [12,38,
39] When impact testing is required to validate a chosen design,

knowing the V:; before impact testing can significantly decrease the
number of tests needed to pinpoint (Vj,J*). Furthermore, by using a
physics-informed model instead of density or other approaches that
depend on the specific structure of the individual design or material, it is
more likely that the model will extrapolate to more disparate designs
and structures.

By examining Eq. 5, it is possible to understand what properties are
necessary for good impact performance. First, increasing the h of the
component directly translates into improved impact performance, so the
component should take advantage of as much vertical space as is feasible
within design constraints. Second, the K] is directly correlated with
impact performance. Because K is found to be tolerant to strain-rate
dependent effects, QS testing can be used to identify high performance
designs with long, flat plateau regions. Finally, F; affects impact per-
formance. However, F; is often limited by the fragility of the object to be
protected and therefore usually must be optimized in coordination with
the design objectives of the system as a whole.

5. Methods

GCS designs consist of 11 parameters that transform a standard cy-
lindrical shell [30]. The STLs were generated using a previously pub-
lished python script [40]. For foaming TPU designs, tapered regions
were added to the GCS components by adding two distinct regions in the
axial direction. First, there is a transition zone where the top shape of the
GCS component increases in diameter while the lobes are decreased in
size. The second region transforms the intermediate shape to a circular
cross section with a small diameter, creating a reentrant region that can
collapse into itself while offering low stiffness. These modifications
retain the topological nature of the GCS space and can be considered a
subset of GCS.

The STLs were converted into gcode using Slic3r using spiral vase
mode and sent to the printers using Octoprint. Components were printed
on one of five MakerGear M3-ID FFF printers on a glass bed covered with
polyimide tape with 0.75 mm nozzles. Components were printed using
either TPU (Ninjatek - Cheetah) or foaming TPU (ColorFabb - Vario-
Shore) filament. Components were printed at 250 °C nozzle temperature
and 80 °C bed temperature. The bed was heated to 100 °C before
removal.

Components were removed from the printers using a UR5e (Uni-
versal Robotics) 6-axis robot arm and transferred to a scale (Sartorius
CP225D) to record the mass. Afterwards, components for impact testing
were placed on a table by the robot arm for temporary storage. Com-
ponents for QS or ISR testing were moved by the robot to a UTM (Instron
5965). QS tests for each design were performed at 2 mm/min until the
force reached 4.5 kN. A single ISR test for each design was performed at
each speed (6, 20, 63, 200, 632, or 2000 mm/min). For higher testing
speeds, the 4.5 kN threshold was lowered for some designs that densify
quickly to protect the UTM from damage, but this did not prevent the
proper calculation of K; or F;. For TPU, QS tests were performed in
triplicate while single QS tests were performed for each foaming TPU
design. Components tested in impact were transferred to another loca-
tion for testing on a drop tower impact system (Ceast 9350) with a flat-
ended steel impactor with a mass of either 1.57 or 3.1 kg. Because
impact testing took place at an alternate site, there was an interval of
several days between fabrication and testing of impact components.

QS and ISR tests record data as F-D data. The h of the component is
calculated by measuring when the F first reaches 1 N. The K} and F; are
then found by calculating the max and argmax of Eq. (3). For impact
testing, each design is tested once at each Vj. Impact data is recorded as
a vs. time. Because of noise in the signal, a is smoothed using a Gaussian
filter by using the MATLAB function “smoothdata” with a smoothing
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factor of 0.13. The a,, is then taken as the max of this smoothed curve.
Subsequently Vj and J* are calculated by finding the minimum J for
each design and its corresponding Vj.

When calculating V;, only a single QS test was used at a time.
Therefore, to get standard deviation for the TPU models, the models
were rerun with each of the three QS experiments. Likewise, when
fitting Eq. (6), a single QS test was paired with all ISR tests for each of the
three predictions using the MATLAB function “fit” with the restriction
that of F;(0) > 0, V. > 2 mm/min, and a > 0. For LOOCV predictions
(Fig. 3), ISR data from the target design was excluded when calculating
the mean of fitting constant V. and a. However, fitting constant F; (0)
was calculated from the F; of the single QS test used for each of the three

predictions for that design. When predicting VZ for the new designs
(Fig. 4c,f and Fig. 5), ISR data from all six original TPU designs were
used when calculating the mean of fitting constants V, and a. Only a
single QS experiment was performed for each foaming TPU design, so no
standard deviation was reported.
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