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ABSTRACT

Observations of 21 cm line from neutral hydrogen promise to be an exciting new probe of astrophysics and cosmology during the
Cosmic Dawn and through the Epoch of Reionization (EoR) to when dark energy accelerates the expansion of our Universe. At
each of these epochs, separating bright foregrounds from the cosmological signal is a primary challenge that requires exquisite
calibration. In this paper, we present a new calibration method called NUCAL that extends redundant-baseline calibration, allowing
spectral variation in antenna responses to be solved for by using correlations between visibilities measuring the same angular
Fourier modes at different frequencies. By modelling the chromaticity of the beam-weighted sky with a tunable set of discrete
prolate spheroidal sequences, we develop a calibration loop that optimizes for spectrally smooth calibrated visibilities. Crucially,
this technique does not require explicit models of the sky or the primary beam. With simulations that incorporate realistic source
and beam chromaticity, we show that this method solves for unsmooth bandpass features, exposes narrow-band interference
systematics, and suppresses smooth-spectrum foregrounds below the level of 21 cm reionization models, even within much of the
so-called wedge region where current foreground mitigation techniques struggle. We show that this foreground subtraction can
be performed with minimal cosmological signal loss for certain well-sampled angular Fourier modes, making spectral-redundant

calibration a promising technique for current and next-generation 21 cm intensity mapping experiments.
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1 INTRODUCTION

Tomographic mapping of the redshifted hyperfine transition of
neutral hydrogen (H1) holds great potential for studying the evo-
lution of large-scale structure in the early Universe. Successfully
observing the cosmological 21 cm signal will open a window for
understanding the properties of the first stars and galaxies and
constraining ACDM cosmology. For a review of 21 cm cosmology,
see for example Furlanetto, Oh & Briggs (2006), Morales & Wyithe
(2010), Pritchard & Loeb (2012), and Liu & Shaw (2020). Prior
and ongoing experiments seeking to characterize patchy fluctuations
in this 21 cm signal include the Precision Array for Probing the
Epoch of Reionization (PAPER; Parsons et al. 2010), the Murchison
Widefield Array (MWA; Tingay et al. 2013), the Low-Frequency
Array (LOFAR; van Haarlem et al. 2013), the Hydrogen Epoch
of Reionization Array (HERA; DeBoer et al. 2017), the Giant
Metre Wave Radio Telescope (GMRT; Paciga et al. 2013), the
Long Wavelength Array (LWA; Eastwood et al. 2019), the Cana-
dian Hydrogen Intensity Mapping Experiment (CHIME; Bandura
et al. 2014), and the Hydrogen Intensity and Real-time Analysis
eXperiment (HIRAX; Newburgh et al. 2016).
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The principal challenge faced by experiments aiming to measure
the high-redshift 21 cm signal is to accurately separate the rela-
tively weak cosmological signal from astrophysical foregrounds,
particularly from continuum emission from our galaxy and other
radio-bright galaxies, which are ~10*~> times brighter. To address
this challenge, experiments such as HERA and CHIME rely on the
distinct spectral characteristics of foregrounds and the 21 cm signal
to separate the cosmological signal from the dominant foregrounds
— an approach known as foreground avoidance.

For redshifted line emission, spectral frequency corresponds to a
line-of-sight spatial distance, making the Fourier dual of frequency a
probe of line-of-sight modes (i.e. k) in the 3D Fourier space of spatial
fluctuations. H1is expected to exhibit significant spatial variation on
cosmological scales in density, ionization state, and spin temperature,
giving the cosmological 21 cm signal structure at a variety of spectral
scales (Morales & Hewitt 2004). Foregrounds, on the other hand, are
spectrally very smooth, and so occupy a relatively small number of
low-order spectral modes.

In the absence of instrumental systematics, these differences in
spectral properties lead to a relatively clean separation between
foreground contamination and higher order spatial modes of the
cosmological signal (Morales & Wyithe 2010). However, this sep-
aration is degraded by the inherently chromatic nature of antenna
beams and interferometric baselines, which modulate foreground
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power on spectral scales inversely proportional to the diameter or
interferometric baseline length (Parsons et al. 2012b). The result is
that foreground residuals tend to occupy a characteristic wedge shape
in cylindrical k space (Datta, Bowman & Carilli 2010; Parsons et al.
2012b; Vedantham, Udaya Shankar & Subrahmanyan 2012; Pober
et al. 2013; Thyagarajan et al. 2013; Liu, Parsons & Trott 2014a, b).

By avoiding modes within this wedge and focusing instead on the
complementary Epoch of Reionization (EoR) ‘window’, detection
of the cosmological 21 cm signal remains possible, albeit with a
reduced number of modes — and thus, sensitivity — for estimating the
21 cm power spectrum. In practice, this picture is further complicated
by spectral structure in signal chains, which convolutionally leak
power from the foreground wedge into the EoR window, potentially
overwhelming the cosmological signal. Preventing such spectral
leakage requires precision calibration to invert any spectral structure
that may have been imparted by the instrument. Given the high
dynamic range between foregrounds and signal, chromatic effects
larger than roughly one part in 10° must be mitigated.

Numerous approaches have been put forward to meet the challenge
of accurately calibrating interferometers for 21 cm cosmology (e.g.
Yatawatta et al. 2008; Liu et al. 2010; Sievers 2017; Dillon et al. 2018,
2020; Li et al. 2018; Byrne et al. 2019; Kern et al. 2020b). These can
be roughly organized into the categories of sky-based calibration and
redundancy-based calibration. Sky-based calibration relies on accu-
rate models of the sky and antenna beams to solve for per-antenna
gains in visibility measurements, but this approach is susceptible to
model error and incompleteness (Barry et al. 2016; Ewall-Wice et al.
2017). Redundancy-based calibration attempts to circumvent model
incompleteness by using the fact that visibility measurements are
expected to be identical for interferometric baselines with the same
separation vector, provided antennas have identical beam patterns —
an assumption which can prove to be detrimental to the accuracy of
derived calibration solutions if not realized in the field (Byrne et al.
2019; Orosz et al. 2019). In essence, redundancy-based calibration
reduces the reliance on absolute knowledge of the sky and beam and
focuses instead on symmetries internal to the antenna array.

In most implementations, both sky-based and redundant base-
line calibration solve for antenna parameters independently versus
frequency, relying on post-hoc methods such as averaging (Zheng
et al. 2014), gain smoothing (Abdurashidova et al. 2022; HERA
Collaboration 2023), or parametric fitting to limit the number of
degrees of freedom in a calibration solution (Ali et al. 2015; Ewall-
Wice et al. 2016a) in favour of calibrating all frequency channels
in the data simultaneously. While this is not universally true (e.g.
Yatawatta 2016), many calibration algorithms lack the capacity to
calibrate all frequency channels simultaneously due to computing
and memory requirements.

This is an unfortunate limitation, considering that the spectral
axis provides the most powerful discriminant between astrophysical
foregrounds and cosmological 21 cm signal. As experiments move
from setting upper limits to making detections of the 21 cm power
spectrum, there is a growing need for a rigorous accounting of the
systematics that can arise from foregrounds interacting with low-
level spectral structure in the instrument response. This motivates the
need for calibration routines that can solve for the spectral structure
while remaining robust to errors in sky and beam modelling.

In this paper, we introduce a new approach to calibrating radio
interferometers for 21 cm cosmology, which we call spectrally
redundant calibration or NUCAL, for short. This technique leverages
the slow evolution of sky emission versus frequency to relate visi-
bility measurements of the same angular Fourier modes at different
frequencies. By extending the concept of redundant calibration along
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the frequency axis, this approach allows the calibration of arrays with
arbitrary bandpass structure, while minimizing potential calibration
errors introduced by incomplete sky models.

This paper is structured as follows: in Section 2, we review the
state of current calibration algorithms and motivate the need for
new methods that optimize for the spectral smoothness of calibrated
visibilities. In Section 3, we introduce the concept of spectral
redundancy and how it can be leveraged to calibrate 21 cm arrays.
We also introduce NUCAL — our approach to redundant spectral
calibration that enforces spectral and spatial smoothness in calibrated
visibilities. In Section 3.5, we apply NUCAL to simulated visibilities
and show that we can faithfully solve for degenerate redundant-
baseline calibration parameters and eliminate spurious structure into
the calibration solutions. In Section 5, we demonstrate our ability
to subtract foregrounds from simulated visibilities in a perfectly
redundant array to recover the 21 cm signal within the wedge. In
Section 6, we discuss the assumptions made by spectrally redundant
calibration and identify areas for further refinement. We conclude
with a summary of our results in Section 7.

2 REVIEW OF CALIBRATION TECHNIQUES
FOR 21 CM COSMOLOGY

In this section, we review the current status of 21 cm calibration
techniques and some of their limitations in order to motivate the need
to improve direction-independent calibration methods by explicitly
optimizing for spectral smoothness in calibrated visibilities. We
begin with a brief review of the calibration problem.

2.1 Calibration problem

Per-antenna gain calibration is the process of solving for a single
complex number per antenna as a function of time and frequency.
These numbers model signal chain effects and enter into the observed
visibility of a baseline between antennas i and j as the true visibility
multiplied by the frequency- and time-dependent gain response of
each antenna involved in the measurement,

VS (1) = g (0. 0) g5 (. ) VI (0, 1) + nyj (v,1), €]

where Vi‘J’-bS is the observed visibility between antennas i and j, g;
and g; are the complex gain of antennas i and j, Vi‘jrue is the true
visibility sampled by baseline, b;;, and n;; is Gaussian distributed
thermal noise on that measurement (Hamaker, Bregman & Sault
1996; Smirnov 2011). Additionally, most 21 cm interferometers are
dual-polarization instruments, which allow them to simultaneously
measure electromagnetic signals from two orthogonal antenna po-
larizations. This requires that we also solve for frequency-dependent
gains for each antenna polarization.

The process of correcting for these frequency, antenna, and polar-
ization dependent gains is called direction-independent calibration,
which we will refer to simply as calibration in this paper to
distinguish it from direction-dependent calibration, which accounts
for the spatial response of each array element. Direction-independent
calibration methods used for solving for antenna gains traditionally
fall within one of two categories: sky-based calibration and redundant
calibration.

2.2 Sky-based calibration

One of the most common approaches to calibrating radio interfer-
ometers is through a method known as sky-based calibration. In sky-
based calibration, detailed knowledge of the radio sky and antenna-
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beam pattern is employed to simulate a set of visibilities that ideally
match the true, uncorrupted visibilities measured by the instrument.
These simulated data products can then be used to set up an
overconstrained system of equations to solve for antenna-dependent
gain parameters. While this approach works quite well when the
field of view is dominated by a single, bright, well-characterized
source (Baars, Mezger & Wendker 1965), arrays optimized for 21 cm
cosmology often have wide fields of view with elements that often
have limited pointing ability, making it more challenging to build
faithful sky and beam models for calibration. Additionally, diffuse
Galactic emission can introduce calibration errors if not included in
the model of the sky, particularly in short baselines which are more
sensitive to diffuse foregrounds.

While sky maps have been slowly improving, existing experiments
have not yet shown that the sky can be modelled to the precision
necessary to calibrate visibilities to one part in ~10°. In particular,
delivering foreground maps which accurately account for the spatial
distribution, amplitude, and spectral properties of diffuse continuum
emission from the galaxy and extragalactic point sources to the
precision required for 21 cm cosmology has proven very difficult.
Barry et al. (2016) showed that unmodelled foreground point sources,
even those below the confusion limit of current arrays, can introduce
calibration errors which can limit the detection of the cosmological
signal. These issues can be partially mitigated by down-weighting
long baselines or only including relatively short, less-chromatic
baselines when performing sky-based calibration (Ewall-Wice et al.
2017). However, this can make calibration less accurate because this
approach relies on baselines dominated by diffuse emission, which
is rarely accurate to better than the per cent level and is also highly
polarized (Lenc et al. 2016). In addition to making a measurement
within the EoR window challenging, these errors make the level of
foreground subtraction necessary for measuring cosmological modes
within the foreground wedge impossible.

Sky calibration is further complicated by the need to produce
accurate models of the antenna primary beam, which typically have a
complicated spatial response that is both polarization- and frequency-
dependent. Significant work has gone into modelling instrument
primary beam (Ewall-Wice et al. 2016b; Fagnoni et al. 2021a)
and validating these models by attempting to measure beams in
situ (Pober et al. 2012; Neben et al. 2016; Jacobs et al. 2017; de
Lera Acedo et al. 2018; Eastwood et al. 2018; Line et al. 2018;
Patra et al. 2018; Nunhokee et al. 2020). However, state-of-the-art
beam models are still insufficient to acquire sky-based calibration
solutions that are accurate enough, or to do foreground subtraction
to level necessary for 21 cm cosmology. Even if the sky and beam
are known to sufficient accuracy, ionospheric distortion can introduce
frequency-dependent errors in the position and intensities of known
sources that can corrupt calibration solutions, making this method
difficult to execute properly for 21 cm experiments (Jordan et al.
2017; Gehlot et al. 2018; Yoshiura et al. 2021).

2.3 Redundant-baseline calibration

Another approach to calibrating an interferometer which largely
skirts the issue of incomplete sky-models and imprecise knowledge
of the beam is by calibrating an array assuming that antenna pairs
which have the same baseline vector measure the same visibility
value. Under this assumption, deviations from a shared measurement
should be explainable by antenna-based gain terms that can be
calibrated out of a raw visibility. This approach, known as redundant-
baseline calibration (Wieringa 1992; Liu et al. 2010), can be used
to calibrate antenna gains in the case when repeated measurements
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of the same baseline vector are made without needing an a priori
estimate of the true model visibilities.

Redundant-baseline calibration seeks to solve for antenna-gain
and visibility parameters at each frequency by finding a solution to
a system of equations of the form

Vi) =g v, 0) g} (v, )V (v, 1) )
which is done by minimizing x 2 written as

K=Y

i#]

[V (v 1) — g (v, 1) g% (v, ) Vi (v, D[

2
0j; v, 1)

; 3

where V,-Sflj is the visibility solution for redundant baselines with the
same baseline vector separation as Vﬁbs and Jl%. is the noise variance
on baseline b;;. In the case where the number of unique baseline
separations made by a perfectly redundant array is significantly
less than the total number of measurements made (such as with
HERA; Dillon & Parsons 2016), a highly overconstrained system of
equations can be set-up to solve for the gains and model visibilities.
In practice, no array is perfectly redundant and non-redundancies in
the array due to small deviations in antenna position, beam shape,
and beam pointing errors can all introduce chromatic gain errors
which can complicate a 21 cm measurement (Orosz et al. 2019).
None the less, redundant calibration remains an attractive approach
since it is mostly free of assumptions about emission from the sky,
i.e. whether it is dominated by point sources, diffuse emission, or
some combination of the two and does not initially require precision
knowledge of the beam.

However, it is important to highlight that while redundant-baseline
calibration reduces reliance on accurate models of the sky and
beam, it ultimately still requires a sky-model to solve for a small
number of remaining calibration degrees of freedom. Regardless
of how overdetermined the system of equations used to minimize
equation (3), the structure of x? guarantees that there will always be
a few parameters as a function of frequency that cannot be solved
by redundant-baseline calibration. These frequency-dependent pa-
rameters are degeneracies of this system of equations, which arise
as a result of a set of transformations that one can apply to gains
and visibilities that leave the value of x? unchanged (Zheng et al.
2014; Dillon et al. 2018, 2020). These transformations that can be
applied to the estimated gain parameters are an overall amplitude
degeneracy,

gzgj Vmodel N (Agz (Ag;ﬁ) (Afz‘/il}‘lodel)
=g g} Vmodel’ (4)
and a phase gradient degeneracy,

g gl Vmodel N (giei0>~r;) (gﬁfe—iib»rj) (VA“.Wdele—i‘D‘bij)

— g,g* i®-b;j Vmodel —id-b;;

= gig; V™. ®)

Here, both A and & are real-valued frequency- and time-dependent
quantities and r; is the position of antenna i. When each polariza-
tion is calibrated independently, there are three degeneracies' per
frequency and polarization: an average gain amplitude and a phase
gradient in both the North—South and East—West directions.

'An additional overall phase degeneracy, where g; — gjei‘b does not
generally need calibration because it leaves calibrated single-polarization
visibilities unaffected.
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After performing redundant-baseline calibration, an additional
absolute calibration must be performed to fill in this small set of
degenerate calibration parameters per frequency, which amounts to
setting the absolute flux scale and phase centre for each frequency
observed (Liu et al. 2010; Zheng et al. 2014; Dillon et al. 2018; Byrne
etal. 2019; Kern et al. 2020b). While this approach does significantly
reduce the number of free parameters required to be solved for by a
referencing a sky model, sky-model incompleteness errors can intro-
duce calibration errors in redundant-calibration degeneracies which
leak power into the EoR window that exceeds the 21 cm signal (Byrne
et al. 2019) if further measures are not taken to mitigate the effect.

2.4 Hybrid approaches

It is worth noting that a number of hybrid calibration have been
developed in recent years to address the issues detailed with both
sky-based and redundant calibration. In Sievers (2017), a new ap-
proach CORRCAL was presented which modelled covariance between
baselines to bridge the gap between redundant-baseline calibration
and sky-based calibration. Gogo et al. (2022) were able to show
that this approach led to moderate improvement in the calibration
of PAPER data over redundant calibration alone. Other approaches,
such as BAYESCAL (Sims, Pober & Sievers 2022a, b) and Unified
Calibration (Byrne et al. 2021), have developed Bayesian frameworks
to incorporate model uncertainty into calibration. They have shown
a reduction in the spurious spectral structure of gain solutions
compared to traditional sky-based and redundant calibration when
estimating gain solutions in simulated data. The newly proposed
Delay-Weighted Calibration (Byrne 2023), a variant of sky-based
calibration, has also showed significant promise in reducing spurious
spectral structure in gain solutions by down-weighting Fourier modes
thought to have significant sky-model error.

2.5 Mitigation of spectral structure in calibrated visibilities

One of the primary challenges of 21 cm cosmology is managing
frequency-dependent calibration errors introduced when performing
estimates of antenna-gain parameters. Assuming antenna gains
are estimated accurately by some calibration method, one can
simply divide the measured data by the estimated gains to recover
the true sky signal. However, gain calibration is often performed
inaccurately due to the issues mentioned above (i.e. inaccurate
sky/beam models and non-redundancies). These errors often have
fine-scale frequency structure which, due to the multiplicative nature
of gain calibration (as in equation 1), are convolved with the true
sky in Fourier space, leading to a leakage of foreground power into
modes outside the wedge. Therefore, it is crucial that this calibration
parameters be accurately estimated to prevent bright foreground
from contaminating 21 cm signal.

Many of the frequency-dependent calibration errors introduced
by both sky-based and redundant-baseline calibration have been
mitigated by imposing the a priori assumption that the final calibrated
gain parameters be smooth as a function of time and frequency. This
assumption is generally imposed in a two-step process in which
gains are estimated via sky-based or redundant calibration, then
smoothed by fitting some set of slowly varying basis functions to
the gain estimates (Barry et al. 2016; Dillon et al. 2018; Gehlot et al.
2018; Eastwood et al. 2019; Li et al. 2019). Because instruments are
designed to be stable in time and have smooth bandpass responses,
imposing this a priori assumption is fairly reasonable in theory. It is
therefore assumed that fine-frequency structure in gain solutions is
more likely the result of calibration errors than true spectral structure
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in the instrumental response, and that it is therefore safer to ignore
it than to introduce new chromaticity into calibrated visibilities.
However, it remains to be seen whether these assumptions about
smooth instrument responses hold in real-world antennas in the
field. It is worth noting that there are exceptions to the approach
of post-hoc smoothing calibration solutions, most notably Yatawatta
(2016) which fits a parametrized version of antenna gains rather than
smoothing post-calibration, but at the cost of greater computational
expense and larger memory requirement.

These post-hoc approaches are suboptimal in the sense that they
neglect a true accounting of what amount of true spectral structure
may be found in the instrument bandpass or due to systematics such as
cable reflections, which can be factored out of the data by modelling
them as a gain-like term (Kern et al. 2019, 2020a). One can imagine
that if the gains actually contain a significant amount of spectral
structure, that post-hoc smoothing will remove those features from
estimates of the gains, leading to structure which is not properly
deconvolved from the calibrated visibilities potentially polluting
the EoR window. For experiments to be successful in detecting
the 21 cm signal, calibration routines must be designed to handle
imperfect knowledge of the sky and primary beam while remaining
flexible enough to correct for true fine-scale frequency structure in
instrumental gains. In the next section, we introduce our approach to
calibrating fine-scale frequency structure using spectral redundancy
— the repeated sampling of modes in the uv-plane by baselines at
different frequencies.

3 SPECTRAL REDUNDANCY

In this section, we explore the idea of spectral redundancy, an
extension of traditional spatial redundancy to the spectral axis, which
enforces consistency between measurements by comparing visibility
measurements which sample the same uv-modes at different fre-
quencies. We begin our discussion of spectral redundancy with a
brief description of the visibility simulations used throughout the
rest of this work (Section 3.1) and demonstrate the high degree of
redundancy between baselines at frequencies which sample the same
modes in the uv-plane (Section 3.2). We then discuss our approach
to modelling spectrally redundant baselines by representing them
as the sum of a flexible set of basis functions known as discrete
prolate spheroidal sequences (DPSS). Finally, we revisit the antenna
calibration problem and present our approach to calibrating data
using spectral redundancy, NUCAL, in Section 3.5.

3.1 Visibility simulation review

Before we begin with a description of spectral redundancy, we first
give a brief description of the visibility simulations used in this work.
In order to explore the extent to which measurements which made at
the same angular Fourier mode at different frequencies are correlated,
we use the antenna layout of the HERA array for our simulations.
HERA was designed to have a high degree of spatial redundancy,
but due to its regular layout of baselines in the same orientation, also
has a significant amount of spectral redundancy as well, making it
a good candidate for explorations of model real world arrays with
spectral redundancy. HERA'’s layout and corresponding sampling of
the uv-plane are shown in Fig. 1.

For our foreground model, we generate a set of 10° point sources
randomly distributed across the sky. The flux density of each point
source follows the power-law relation,

Sy =f (U—VO) ©6)
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Figure 1. Left Panel: Array layout for the Hydrogen Epoch of Reionization Array (HERA). HERA was designed for redundant-baseline calibration, but its
split-core configuration and 30 outrigger antennas effectively triple the number of unique baselines along any given heading in the uv plane compared to a
simple hexagonally packed array (Dillon & Parsons 2016). Right Panel: Corresponding samples in the uv-plane for the antenna positions shown in the left
panel. Black lines overlaid on the uv-plane designate radial headings which contain baselines with significant overlap of same uv-modes at different frequencies
(at least 15 unique baseline types within the same orientation, though we will use all orientations with at least 10 unique baseline types for the NUCAL algorithm

in Section 3).

where « is the spectral index, vy is the arbitrary pivot frequency,
which we define to be 150 MHz, and f is the flux density of the
point source at frequency, vy. Our foreground sky model is defined
as the sum of each of these randomly generated point sources,

16 =Y S1)sGE—8) @)

where § is the Dirac-delta and §; is the unit vector describing the
direction to that point. For each source in our simulation, we draw
a random spectral index and flux density, where « is drawn from a
uniform distribution ranging from —1.5 to —0.5, and the flux density
is drawn from an exponential distribution with a mean of 300 mJy. In
addition to a point source foreground model, we also simulate a flat
power spectrum EoR by generating uncorrelated, Gaussian random
HEALpix maps (Gdrski et al. 2005) at each frequency. For these
maps, we take the map size to be NSIDE = 128 (Nix = 1.96 x 10%)
and with a variance of 25 mK?, consistent with the expected fiducial
brightness temperature of the signal at EoR redshifts (Mesinger,
Furlanetto & Cen 2011).

For our beam model, we choose an azimuthally symmetric Airy
function above the horizon, which roughly captures the spatial and
spectral structure of a realistic instrument primary beam. This takes
the form

Ji (danev sin6/c) ) 2 7 ®

A(,8) = (2 -
Tdyv sinf/c

where 6 is the angle between zenith and the unit vector §, J; is the
Bessel function of the first order and first kind, d,, is the diameter
of the antenna, which for HERA we take to be d,,, = 14 m, and A
is the wavelength at which the beam is evaluated. While there are
differences between the HERA beam and the Airy beam, they have
similar spatial and spectral variability, making them a good candidate
for realistic visibility simulations (Neben et al. 2016).

With the beam and sky-model set, we use the visibility equation,
Vij(v) = / A A (v, 8) 1 (v,8) e hse, ©)

to perform a discrete sum over each source in our sky-model
weighting by the value of the Airy beam at the position of the
source for each unique baseline orientation in the HERA array.
Each visibility is simulated over the frequency range 46.9 — 234.9
MHz with 1536, 122 kHz wide channels to match HERA’s extended
frequency range and channel width (Fagnoni et al. 2021a).

In some figures later in this paper, we find it useful to generate
thermal noise for visibilities simulated to test the dynamic range
capabilities of our technique. We generate this noise by randomly
sampling from a complex Gaussian distribution with zero mean and
a standard deviation set by the radiometer equation,

ViVijj
== 10
%=\ Arav (19)

where V;; is the autocorrelation amplitude of antenna i, At is the
integration time, which we set to HERA’s integration time, At =
10 s, and Av is the channel width.

3.2 Spectrally redundant sampling of the uv-plane

Traditional redundant-baseline calibration focuses on using simi-
larities between baselines which share an orientation and physical
length. However, within an array, there exist additional symmetries
that can be leveraged to establish a concept of redundancy among
measurements that are not conventionally considered redundant.
Specifically, baselines that sample the same modes in the uv-plane at
different frequencies — those sharing an orientation — may not yield
identical visibilities values, but may still exhibit a form of redundancy
in the sense that they are strongely correlated.
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Figure 2. Traditional spatial redundancy involves comparing visibilities from antenna pairs separated by the same physical baseline vector, as we see in spectral
phase plots of visibilities simulated with a chromatic beam and sky for 29 m (top) and 44 m (middle) baselines. Here, in these top two panels, the phase of
each of the visibilities is plotted in the left column. In the right column, we show the corresponding antenna pairs and the baseline vectors connecting them.
Because all antennas in the simulation share identical beams and the simulations are noiseless, the phases of the visibilities in the top rows align perfectly. In
the lower panel, we overlay phase as a function of u = v|b|/c for measured visibilities whose baselines have the same orientation but different lengths. Spectral
redundancy is evidenced by the fact that both baselines see largely the same sky (at least in phase) at different frequencies. Their amplitudes will be quite
different, since continuum foregrounds are might brighter at low frequency, but that spectral evolution is quite smooth at fixed u«, as shown in Fig. 4. Note that
though both baselines span the same range in v, they span different but overlapping ranges in u (hashed regions).

To understand how both spatial and spectral redundancy arise
in interferometric measurements, we can generalize equation (9) to
express a visibility as a function of position in the uv plane,u = vb/c,
equivalent to the baseline vector in wavelength units. It enters into
the equation as the Fourier dual of the projected angular brightness
on the sky,

Vv = /dQA(S, v) I (8, v)exp[—2miu-§]. (11)

From equation (11), itis clear that pairs of antennas that have the same
separation vector b;; should measure the same visibility, assuming
that beam responses are identical. In practice, the redundancy that
arises from the spatial arrangement of these antennas is broken
by the unique signal delay and amplifier gain versus frequency
of each antenna. However, as is mentioned in Section 2.3, it is
straightforward to set up a system of equations to solve for such
per-antenna calibration terms in order to restore the redundancy of
the underlying measurements.

Similarly, baselines which have dramatically different lengths may
still be redundant in the sense that they measure very similar skies
at different frequencies and thus be highly covariant. Consider the
simple case of a linear array in which all the baseline vectors are
oriented in the same direction. Let us also make the simplifying
assumption that the sky and beam are achromatic, i.e. I (§, v) = I (S)
and A (8, v) = A(8). This allows to use equation (11) to rewrite
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equation (9) as

Vi (v) = /dQ AB)I S exp [—2miu; -8] =V (u;). (12)

By ignoring the frequency-dependent of the sky and the beam in this
toy example, we observe a given baseline’s spectral characteristics
are only dependent on the angular Fourier mode, u, that it measures.
In this example, any two baselines in this linear array which sample
the exact same angular Fourier modes (u; = vib;/c = v;by/c =
u,), would produce identical visibility values despite potentially
having vastly different physical lengths and making measurements
at different frequency channels. These measurements could be
compared and leveraged to constrain antenna gains, similarly to what
is done in traditional spatial redundant-baseline calibration.

While the sky and beam are not truly achromatic as described
in this toy example, it is well known that the chromatic response
of the foreground sky is quite smooth, as it is dominated by
smooth spectrum processes such as galactic synchrotron emission.
Likewise, antenna beams are designed to be as spectrally smooth
as possible to prevent leakage of smooth spectrum foregrounds into
the EoR window. Therefore, it is reasonable to assume that the sky-
beam product A (s, v) I (s, v) evolve smoothly with frequency, which
would allow for a high degree of phase coherence between baselines
which measure the same uv-modes. As shown in Fig. 2, baselines in
the same orientation can in fact agree quite well in phase, provided
the sky beam product evolve slowly as a function of frequency.
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Figure 3. Cross-frequency correlation-coefficient matrices, Rj2 (vi, v2) = C2/ VCi1Caa, computed by averaging over 1000 randomly generated, noise-free
point source foreground visibility simulations. Each correlation-coefficient matrix is computed between baselines in the same orientation, but with different
lengths (except for the five panels on the diagonal, which show frequency-frequency correlations for the same baseline). The dashed line in each plot follows,
vy = (b1 /by)vy, and marks the location where baselines sample the same #v-mode, u; = u,. Here, a clear correlation can be seen between baselines of different
lengths, indicated by the near unity value of the cross-correlation coefficient, at frequencies where pairs of baselines redundantly sample the same angular
Fourier modes. This strongly implies that different baselines at a fixed u are sensitive to the same fundamental sky-beam structure and, in some sense, redundant.

We can further explore the degree to which sample the same modes
in the uv-plane are redundant by examining the cross-frequency,
cross-correlation coefficient between pairs of baselines. Here, we
define cross-frequency, cross-correlation coefficient as

Vi,vl '

Jv 13)

VO V) (i)

R;j (v, 1) =

where R is a matrix whose elements are the cross-correlation
coefficients of pairs of frequencies sampled by baselines i and j
and v; ,, a mean-subtracted visibility vector containing the visibility
values from N = 2000 randomly generated, point source simulations
(as described in Section 3.1) for baseline i at frequency v;.

In Fig. 3, we show the cross-correlation coefficients for a sample
of baselines within a group of baselines with the same azimuthal
orientation in the HERA array. Along the main diagonal, we plot
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the cross-correlation matrices of each baseline with itself, while the
lower triangle features baselines crossed with another baseline of a
different length. As one might expect, baselines which have been
cross-correlated with themselves are highly correlated along their
main diagonal. More interesting is the existence of a pronounced
correlation between different baselines in the same orientation,
particularly at frequencies where u; & u,. This manifests in the near-
unity cross-correlation coefficient in baselines of different lengths.

This correlation means that different measurements are sensitive
to the same underlying information. A question naturally arises: why
would this new sort of redundancy be useful? The answer comes from
the fundamental difference between visibilities Fourier transformed
along the frequency axis (or equivalently the line-of-sight axis) at
fixed u — the n transform — and visibilities Fourier transformed along
the same axis for a fixed baseline b — the 7 or delay transform. The
delay transform is, in some sense, more natural, since it is performed
directly on the measured visibilities. However, as we illustrate in
Fig. 4, the n transform is the space where foregrounds, even when
multiplied by the beam, are the least chromatic.

In the centre two panels Fig. 4, we plot the amplitude and phase
of a simulated slice of the uv-plane, modelled with smooth spectrum
foregrounds and a chromatic Airy beam as described in Section 3.1,
as a function of u and v. Overlaid on these panels are a series of large
(small) white dotted lines, which represent every hundredth (tenth)
frequency and the u mode sampled there by a group of nine baselines
oriented in the East—West direction within the HERA array.

In the bottom panel, we construct the 2D power spectrum of the
baselines depicted in the central two panels. We form this power
spectrum by taking the Fourier transform over the frequency axis of
each of the simulated visibilities individually (known as the delay
spectrum) over the frequency range 130 — 170 MHz, as indicated
by the magenta data points in the second and third panels. While
the amplitude of the power spectrum is dominated by smooth
spectrum sources, the process of forming the power spectrum through
the delay transform effectively mixes rapidly varying uv-modes.
Consequently, this mixing results in the contamination of foreground
power at lower delays, or t (the Fourier dual of frequency in the delay
regime) extending to higher delays. The extent of the power leakage
is contingent on the range of #v-modes sampled by a given baseline,
which is dependent on the baseline’s physical length. This baseline-
dependent mode-mixing effect is precisely what leads to the widely
observed wedge effect that challenges the measurement of the 21 cm
signal.

In the top panel, by contrast, we form the 2D power spectrum
over the same frequency range, but this time applying a Fourier
transform directly to the visibility simulation itself perpendicular to
the uv-axis—n-transform. Unlike the delay transform, the n-transform
does not introduce mixing between different uv-modes. Instead, it
performs a Fourier transform along the frequency axis while keeping
the u coordinate fixed. Here, we see that the n-transform isolates
beam-weighted foregrounds to many fewer modes than the delay-
transform due to keeping the more chromatic axis of this plane u
fixed, leaving much of the Fourier space clean to measure the 21 cm
signal. Put another way, the sky-beam product can accurately be
described by many fewer parameters at fixed u than at fixed b for all
but the shortest baselines.

While in practice we generally do not have access to all the required
modes necessary to perform an n-transform and achieve this level of
foreground isolation, this fundamental difference between the delay
and n-transforms underscores the potential of redundant sampling
of fixed uv-modes. If we can perform repeated sampling of fixed
u-modes across frequency, as is done by comparing overlapping

MNRAS 532, 3375-3394 (2024)

measurements between baselines in the same orientation which re-
dundantly sample the same modes in the uv-plane, one can effectively
differentiate between the intrinsic chromatic structure of a baseline
that samples a broad range of u-modes and the true chromaticity
of the beam-weighted sky. Leveraging the power of spectrally
redundant sampling of the uv-plane for precise estimates of the sky
chromaticity holds great promise for a number of applications. In
particular, it proves to be a powerful tool in calibration applications,
solving for antenna gains which cause visibilities to deviate from the
expected chromaticity at fixed #-modes, and for improved foreground
suppression. We explore both applications later in this paper.

3.3 Constructing a model for spectrally redundant visibilities
with DPSS

One important distinction between spatial redundancy and spectral
redundancy is that while two or more spatially redundant baselines
can be directly compared when calibrating, it is much less straight-
forward to compare measurements that sample the same modes in
the uv-plane with spectral redundancy — a point we highlight in
Figs 2 and 4. In traditional spatial redundancy, one expects that two
baselines with the same separation vector should be redundant up
to the per-antenna, per-frequency complex gains, assuming perfect
redundancy in the array (i.e. identical beams and perfect antenna
placement). Because each baseline makes the same measurements
at the same frequency channels, comparing these measurements to
enforce spatial-redundancy between baselines is trivial.

However, comparing measurements in an attempt to enforce the
less-than-perfect spectral redundancy between two or more baselines
that sample the same uv-mode is not as simple. Simply put, while
the true visibility evolves smoothly with frequency at fixed u, it still
does evolve and that evolution must be parametrized and modelled.
Further, we must deal with the complexity introduced by the fact that
baselines in the same orientation that cross a given mode in the uv-
plane at different frequencies rarely sample the exact same modes.
Both challenges must be tackled in order to compare measurements
across baselines.

One prior approach to incorporating spectral redundancy into
calibration tried to solve this problem by statistically modelling the
correlations between baselines in order to solve for the models of the
visibilties which were spectrally redundant. In Byrne etal. (2021), the
authors introduced a technique for incorporating spectral redundancy
into a unified Bayesian framework, citing private communication
with some of us during the development of this work. Their technique
forward-modelled the cross-frequency covariance between baselines,
incorporating information about the sky and beam model into the
estimate of the covariance matrices. These covariance matrices were
then used in an optimization loop which penalized non-redundant
features between pairs of visibilities when solving for a set of
spectral redundant visibility models. This technique has the benefit
of modelling the redundancy between baselines which may not
strictly sample the same modes in the uv-plane, but nearby modes.
This approach makes the technique very flexible, but extremely
computationally challenging for arrays with wide-bandwidths and
many frequency channels to take advantage of spectral redundancy.
Additionally, this approach requires accurate knowledge of the
sky and primary beam to product estimates of the cross-baseline
frequency—frequency covariance matrices used in the optimization
loop.

Ideally, we would like our technique to make assumptions which
are informed by realistic properties of the sky and the beam,
but not require precise knowledge of either to perform accurate
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Figure 4. A demonstration of the advantages of spectral redundant sampling of the uv-plane. In the centre two panels, we plot the u — v footprint of a group of
nine baselines oriented in the East—West direction within the HERA core in white over a simulation of visibility amplitudes and phases modelled with smooth
spectrum foregrounds and an Airy beam, as a function of u and v. Here, the large dots represent visibility measurements for every 100th channel and small dots
represent every 10th channel (the true channel width of 122 kHz). All visibility measurements fall on these lines. In the bottom panel, we form the 2D power
spectrum of the visibilities from the baselines plotted in the centre two panels by taking the delay transform of each of the simulated visibilities individually
over 130 — 170MHz (as shown by the magenta points between frequencies 130-170 MHz). While the amplitude of the power spectrum is dominated by smooth
spectrum sources, forming the power spectrum by taking the delay transform of the visibilities, V;, mixes quickly varying uv-modes, which bleeds power, from
the intrinsically foreground-dominated lower-order Fourier modes to the higher order Fourier modes, leading to the wedge effect. In the top panel, we form
the 2D power spectrum over the same range of frequencies, but instead take the Fourier transform of the visibility simulation perpendicular to the uv-axis, also
known as the n-transform, V,,. Here, the n-transform highlights the localization of foreground power to low-n modes which results from the Fourier transform
being taken over a fixed angular scale. By comparing the measurements of baselines which redundantly sample the same modes in the uv-plane, one can infer the
true frequency-structure of the foreground-beam product, despite the fact that the baselines themselves are highly chromatic as evidenced by the delay transform.

calibration and modelling of the spectrally redundant visibilities.
Additionally, we would like to strictly enforce that our modelling
procedure explicitly limits the modelled foreground visibilities to
the level of spectral structure we expect. To achieve these require-
ments, we choose to model our spectrally redundant visibilities as
a linear combination of a finite number of highly efficient basis

functions known as DPSS or the Slepian basis. These basis functions
have the ideal property of having their power being maximally
concentrated within a contiguous region of Fourier space with
a half-bandwidth of #, while also being orthonormal, making
them a powerful set of basis functions for modelling band-limited
signals.

MNRAS 532, 3375-3394 (2024)
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In recent years, the DPSS basis has gained popularity in the
21 cm community as an efficient basis for per-baseline modelling
of foregrounds (Ewall-Wice et al. 2021), in-painting missing data in
channels flagged for radio frequency interference (RFI; Pagano et al.
2023), and for performing gain calibration (Ewall-Wice et al. 2022).
As a mathematical basis, DPSS modes span the space of variations
subtended by interferometric measurements of foregrounds while
providing a rigorous formulation for limiting the scale of modelled
structure — particularly in applications with irregular sampling such
as in-painting or modelling flagged data — using pseudo-inverses of
an analytically calculable covariance matrix.

The DPSS basis functions are defined with respect to some finite
band within which we want to maximally concentrate the power of
that function. The spectral concentration ratio for some function ¢ is
the Fourier domain of v, 1, is defined as follows:

Nw Tmax
w=["towran/ [ lowran (14)

Nw Tmax

where 7,, is the half-width in 7 that we wish to maximally concentrate
the power of ¢ and 1,y is the Nyquist limit for the discrete grid of
points over which the discrete band in v is defined. By maximizing
this quantity, one obtains the first DPSS mode for a given 7,,. The
full set of DPSS basis functions is formed for this 7, by repeatedly
solving for the function that maximizes p and is also orthogonal
to all prior solutions to equation (14). This procedure provides
a basis which is complete within the bounds —n, < n < n, and
also maximally concentrates its power within these bounds. Slepian
(1978) showed that this optimization problem could be summarized
by solving the eigenvalue problem,

Ng—1 . _
S g gy Wy SRV 2L Wy (Ve W,
g 7w (m—n)

15)

where W = n,, Av is a parameter which sets the filter half-width of
the filter in Fourier space, ¢, (v) is the nth DPSS function, N, is
the number of discrete points where ¢ is evaluated, and X, is the
corresponding eigenvalue of the nth DPSS function.

While the number of functions in a complete set of DPSS basis
functions is equal to the number of samples in the basis, N, typically
only a few basis vectors are actually needed to represent a given
band-limited signal to high precision if it is spectrally smooth.
Which basis functions are used for modelling a given band-limited
signal is typically determined by the eigenvalue spectrum of the
DPSS eigenfunctions. The eigenvalue spectrum of DPSS modes
has a characteristic step shape where significant eigenvalues have
a value near 1 and whose power is primarily concentrated within
Ny and insignificant eigenvalues have a value near 0 and have
significant power leakage beyond |n| > n,,, with a few eigenvalues
with intermediate values (1 > A > 0). The approximate number of
eigenmodes with near unity eigenvalue values asymptotes to ~2 BV
when N — oo (Slepian 1978; Karnik, Romberg & Davenport 2020).
The shape of this eigenvalues spectrum allows us to select a finite
number of basis functions to fit or filter data by taking only those
with eigenvalues greater than some eigenvalue cut-off €. We perform
this fitting and/or filtering of data presumed to be band-limited using
the linear least-squares approach laid out in the DAYENUREST
formalism in Ewall-Wice et al. (2021). In this paper, we take
e=10"12

For this paper, we utilize the DPSS basis to modelling groups of
baselines within the same orientation as the outer product of two sets
of DPSS vectors in order to model the spatial and the spectral axes.

MNRAS 532, 3375-3394 (2024)

Namely,
V,'T(jdel W) = Z Z AmnPm (”uij I, ‘emax) ®n (V, Mmax) (16)

m n

where ¢, and ¢, are the sets of basis functions that model the uv-
axis and frequency axis respectively and ¢, and n,, are parameters
which set the Fourier half-width of the uv-axis and frequency axis
respectively. By taking the outer product of these set of basis
functions, we effectively form a new set of basis functions whose
power is concentrated in a rectangular region of 2D Fourier space
within the Fourier domains of u and v (¢ and n respectively).
Representing baselines in this way allows us to precisely limit the
model to the level of structure that we expect to be present in each
axis of a set of spectrally redundant visibilities. For the spatial axis,
we restrict the DPSS basis to evolve no faster than —1 < £ < 1 as
limited by the horizon (i.e. half-wavelength scales in u). For the
spectral axis, we inform of choice of DPSS based on stringent limits
set by antenna chromaticity (Ewall-Wice et al. 2016b; Neben et al.
2016; Thyagarajan et al. 2016; Patra et al. 2018; Nunhokee et al.
2020; Fagnoni et al. 2021a, b) and foreground smoothness (Tegmark
et al. 2000; Wang et al. 2006; de Oliveira-Costa et al. 2008; Liu &
Tegmark 2012; Zheng et al. 2017). For this paper, we take the Fourier
half-width of the spectral axis to be n,, = 25 ns.

We compute the DPSS basis functions along the frequency axis
by using the SCIPY implementation (Virtanen et al. 2020), which
employs the Lanczos algorithm to solve the eigenvalue problem
(equation 15). This approach necessitates that the samples along the
axis where the basis functions are generated be uniformly spaced.
Given that each baseline within the HERA array sample the same
frequencies and the frequency channels are sampled uniformly, this
condition is satisfied.

In contrast, the spatial axis lacks a uniformly spaced grid that is
consistent across all baselines in the group that would allow us to use
the SCIPY implementation. This discrepancy arises from the fact that
the spacing of discrete samples along the uv-axis is determined by the
length of the baseline (i.e. Au = Avb/c). Therefore, each baseline
in the spectrally redundant group samples the #v-axis non-uniformly,
which requires that we generate values from the Slepian basis that
exactly correspond with the location each baseline samples in the
uv-plane. To satisfy this requirement, we instead generate samples
from the continuous extension of the DPSS — the prolate spheroidal
wave functions.”

We generate these functions by utilizing an implementation that
solves the continuous eigenvalue problem described by

/ sin [Znnw (v - v’)]

T(v—1v)

(pn(‘)/s nw)d‘), = )‘n(pn(‘)v nw)- (17)

This method uses a normalized Legendre polynomial expansion to
sample from the prolate spheroidal wave functions at the exact values
of u each baseline measures. Further details regarding the process
for generating these samples can be found in Moore & Cada (2004).

To demonstrate that this basis and parametrization is sufficiently
flexible to model astrophysical foregrounds as observed by a realistic
beam, we explore how well we can model the entire u-v plane
(similar to Fig. 4). The fit, which we show in Fig. 5 for one of the
best-sampled spectrally redundant groups in the array, is constrained

Note that discrete prolate spheroidal wave functions are discrete sequences
sampled from the continuous prolate spheroidal wave functions. If the two
sets of functions had the same Fourier half-width support and sampled the
same points, the values of the functions would be identical.
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Figure 5. Here, we demonstrate the DPSS model’s ability to accurately fit the u-v plane with a relatively restricted set of basis vectors. In the top panel, we
show true visibility without noise, evaluated using equation (9), for one of the best-sampled spectrally redundant groups in the array. This is done not just at the
points actually measured by the array (shown in dotted and solid lines), but across the entire plane. We then show in the middle panel our model (equation 16),
which is fit using only the discrete set of visibility samples. Finally, we show the magnitude of the difference in the bottom panel. The bold lines indicate the
baselines we show the relative error of the model in Fig. 6. When the frequency density of visibility samples is high enough —i.e. where the spectral redundancy
is large enough — the model is a good fit and can even accurately interpolate between measured points (blue regions). Where the spectral redundancy is lower,
such as in the upper left, the fit is underdetermined and only the actual sampled visibilities are well-modelled. This figure can give us a sense of where we
expect foreground modelling and subtraction with spectral redundancy to be effective and where we expect it to be lossy and to remove cosmological signal in

the wedge — a point we return to in Section 5.

only by the discretely sampled visibilities in the spectrally redundant
group. Despite that, not only are the observable visibilities fit well,
but much of the unobserved parts of the plane are fit well too. This
strongly implies that with sufficient spectral redundancy, the DPSS
model is overdetermined by the visibilities and that extra information
could be used to subtract foregrounds within the wedge. Of course,
this raises a question of signal loss, which we return to in Section 5.

Regardless, by examining the quality of the fit to the actual
measurable visibilities, which we show in Fig. 6, we can see that
the model and its limited range of basis vectors is sufficient to model
foregrounds to better than 1 partin 10°. At least to the level of realism
reflected by our simulations, this is more than enough dynamic range
to precisely model and remove foregrounds to below the expected
EoR level. This is very promising, though there are certainly real-
world complexities that any application of this technique would have
to address, as we discuss in Section 6.1.

3.4 The robustness of the DPSS model to spectrally localized
features

One downside to incorporating cross-frequency, cross-baseline in-
formation into a model fit, as is described in the previous sub-
sections, is the potential for that fit to be corrupted by fea-
tures in the visibilties which are compact in frequency and large
in amplitude. These features, which violate the assumptions of
spectral redundancy, can lead to model errors which can ripple
across the frequency band of one or more baselines. One such
spectrally localized feature commonly found in visibility data
is RFIL.

In Fig. 7, we demonstrate this effect by fitting the DPSS basis
described in the previous section to the most spectrally redundant
group of visibilities within the HERA array — the same group used
in Figs 5 and 6. Prior to performing the fit, we simulate unflagged
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Figure 6. To more quantitatively assess the fidelity of the NUCAL model fit in
reproducing the simulated visibilities, we plot the relative error of the model
shown in Fig. 5 evaluated for the three baselines highlighted as solid lines.
Regardless of the level of spectral redundancy at the # modes probed by these
baselines, the model is able to fit a foreground-only simulation to a very high
dynamic range — better than 1 part in 10°. This is despite the fact that the
NUCAL is restricted to only modelling slow frequency evolution at fixed u.
This demonstrates the flexibility of the model, though we expect that the level
of spectral redundancy will still matter when assessing cosmological signal
loss (see Section 5).

RFI in the measurement set by adding a 50 Jy RFI blip to all the
simulated visibilities at a single frequency channel near 100 MHz.
We then perform a linear-least-squares fit of the DPSS basis to the
visibilities with the RFI added and plot the simulated visibilties, the
DPSS model, and residuals. From the figure, we observe that fitting
the DPSS basis to a set of baselines corrupted by RFI does in-fact
lead to errors which impact nearby channels, as can be seen in the
residuals. However, thanks to the stringent constraints imposed by
spectral redundancy and the DPSS basis, our set of basis function
are still able to model and remove foreground emission down to the
thermal noise floor over the majority of the band.

While these types of errors are concerning if we wish to produce
high-fidelity models of foreground emission over a wide-range of
frequencies, there are techniques which can minimize the impact
of the spectrally localized features, such as detecting and flagging
the worst offending sources of RFI before fitting and implementing
procedures which identify RFI-impacted channels during the fitting
process. This potential pitfall may also to prove a strength of
spectral-redundancy — if certain channels exhibit a particularly strong
discrepancy between data and model, that maybe be evidence for
narrowband RFI that should be flagged before re-running the fit.

3.5 Spectrally redundant calibration (NUCAL)

For highly spectrally redundant baseline groups (see Fig. 1), the
parameters describing the smooth foregrounds in equation (16)
are overdetermined. This means that the data can simultaneously
constrain the foreground model parameters and nuisance parameters
like calibration gains. Just as in redundant-baseline calibration, our
goal when we perform that fit is to minimize x2, which represents
the noise-weighed sum of the difference between our measured and
visibilities modelled with DPSS modes in equation (16). Here, we
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Figure 7. Demonstration of the robustness of the DPSS basis being used
to model a group of spectrally redundant baselines to real-world effects.
This modelling basis is restricted to modelling structure which is smooth as
a function of frequency at a fixed u, and rejects shapes in visibilities that
are spectrally compact. To demonstrate this ability, we simulate RFI in one
frequency channel across all baselines in the spectrally redundant group (58
baselines with the same orientation), and fit our model to the simulations
with noise and RFI added. Leveraging spectral redundancy, we find that the
DPSS basis functions are able to produce a model (solid black line) of smooth
spectrum foreground emission of one of those baselines (in this case 9.3 m
east, 12.0 m south) to the level of the thermal noise (dashed black line) while
mostly rejecting the RFI spike, which can be seen in the data-model residuals.
The residuals show remarkable agreement with the thermal noise simulated
across most of the band, demonstrating the ability of the DPSS basis to
model and remove foregrounds. In particular, this technique may be adept at
identifying low-amplitude narrowband RFI, which is difficult to locate using
traditional methods and has the potential to introduce high-delay structure
which can swamp the cosmological signal. A more thorough investigation of
that potential is left for future work.

generalize equation (3),

=y

ijv

V™ ) = Giy ) V25 (. v)

) , (18)

where we seek to solve for both for our visibility model and antenna
2

gains. Here, o;; is a weighting function that incorporates thermal
noise variance and any flags, which are treated as having infinite
variance, and G;; are a set of gain parameters to be solved for in
calibration. While in redundant-baseline calibration, Vfﬁ’l] is allowed
to have arbitrary spectral structure considering that each frequency
is solved for independently, NUCAL restricts V/™od! (u,- js v) to be the
sum of a limited number modes at fixed u that vary smoothly in
frequency.

By using multiple orientations within the uv-plane which have
baselines with significant overlap and modelling each with the
DPSS basis, equation (18), the simultaneous solution of G;;(v) and
yymodel (u,— it v) becomes even more overdetermined — depending on
the degrees of freedom we assign to our model for G;;(v). Restricting
the visibility model to a set of relatively smooth DPSS vectors in
u and v allows this calibration to minimize spectral structure in
calibrated visibilities and attempts to put as much of the observed
spectral structure in uncalibrated (or partially calibrated) visibilities
into the gains. Where traditional spatially redundant calibration uses
internal symmetries in an array to calibrate antenna gains to one
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another at each frequency independently, NUCAL uses analogous
symmetries in the spectral response to explicitly calibrate the array
along the frequency axis. This allows spectrally redundant baselines
to be brought into alignment with a physically motivated model
for the angular arrangement and chromatic variation of the bright
foregrounds that dominate their measurements.

This is one of the primary benefits of spectral redundancy:
it provides us a new-axis for enforcing self-consistency between
visibilities. Although spectral redundancy does not require that two
different baselines precisely measure identical visibility values at
the same angular Fourier modes across various frequencies, it does
impose stringent constraints on the extent of spectral variations at a
constant value of u across baselines of vastly different lengths. Be-
cause we anticipate these measurements to exhibit gradual changes
with frequency at fixed angular scales, deviations from the anticipated
level of spectral smoothness observed in the raw visibilities can often
be ascribed to non-smooth signal chain effects. These deviations are
subsequently accounted for as direction-independent antenna gain
terms during the fitting process.

While NUCAL can in principle be applied to solve for per-
antenna gains, for this paper we restrict NUCAL to only work within
the degenerate space of spatially redundant baseline calibration.
NUCAL is a somewhat natural solution to fixing the degeneracies of
redundant-baseline calibration without introducing spectral structure
into the degenerate parameters, as many arrays which have leaned
heavily on spatial redundancy, such as HERA and PAPER, are also
capable of being calibrated using spectral redundancy. The procedure
for solving for these degeneracies is quite straightforward within the
framework of NUCAL. We restrict G;;(v) to take the form

Gij (V) =A (U) exp I:l(b (V) : bi.f] ’ (19)

where A and @ are the frequency-dependent amplitude and phase
tip-tilts degeneracies described in Section 2.3. In this way, NUCAL
replaces (or at least refines) the absolute calibration step that must
follow after redundant-baseline calibration. More importantly, it
does so in a way that optimizes for the spectral smoothness of the
calibrated visibilities and thus reduces the impact of gain errors due
to sky-model incompleteness.

Because NUCAL relies on fitting many spectrally redundant groups
simultaneously to constrain these array-wide degeneracy parameters,
and because adding gains makes the fit no longer linear, the com-
putational challenge is dramatically increased compared to fitting
a DPSS model to a single spectrally redundant group. Therefore,
we implement the calibration routine described above as a first-
order gradient descent optimization in JAX and OPTAX (Bradbury
et al. 2018) to take advantage of the built-in autodifferentiation,
just-in-time compilation, XLA acceleration, and library of popular
optimizers. As written, the gradient descent algorithm makes the
problem of calibrating every frequency channel simultaneously
tractable, but only converges to the local minima closest to our initial
guess of the model parameters. Therefore, NUCAL is best applied after
an initial sky-based absolute calibration has already been performed.

It is worth noting that this technique bears several similarities to
the recently proposed calibration technique, CALAMITY (Ewall-
Wice et al. 2022), which also utilizes the DPSS basis to model
foregrounds and solves for antenna gains by minimizing a loss
function using first-order gradient, but does so in a way that does not
incorporate spectrally redundant information into the fit. For a review
of the similarities and differences between these two approaches, see
Appendix A.
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3.5.1 NucaL degenerate parameters

Like spatially redundant calibration, spectrally redundant calibration
is not a full solution of all the calibration degrees of freedom. Given
that NUCAL calibrates on the basis of internal consistency between
baselines that redundantly sample the same modes in the uv-plane at
different frequencies, there are a set of transformations that can be
applied to either the gains or visibility models that ultimately leave
the value of x 2 in equation (18) unchanged. For example, one can take
A — 2A from equation (19) and a,,, — %am,, from equation (16)
without modifying the product G;;V;™%* in equation (18). The
precise number and shape of these degeneracies depends on one’s
array layout and DPSS parametrization.

However, because we enforce that the visibility model is spectrally
smooth at a fixed uv-mode across baselines in a spectrally redundant
group, the number of NUCAL degeneracies must be dramatically
reduced from the number of degeneracies that must be fixed by
traditional absolute calibration after spatially redundant calibration.
There were at least three physically important numbers per frequency
per polarization. Here, we expect only a handful of such numbers
over the whole band. This largely eliminates the need for sky-
based absolute calibration to faithfully calibrate fine-scale spectral
structure, and thus reduces the impact sky or beam modelling errors
can have on the final calibration solution.

In practice, one can use NUCAL by starting with a best-attempt at
sky-based absolute calibration and letting the degeneracies simply
be left unmodified by the gradient descent solver, which only takes
steps in non-degenerate directions. Because the visibility model
is restricted to one consistent with smooth spectrum foregrounds,
the dynamic range of foreground subtraction (see Section 5) is not
affected by absolute calibration errors in the degenerate subspace of
NUCAL. This of course assumes that perfectly calibrated foregrounds
are well-captured by the parametrized NUCAL model. While one can
still get errors in the degenerate subspace that affect the magnitude
of the recovered EoR signal as a function of redshift, these sorts of
errors do not risk mixing the foreground signal into uncontaminated
modes, as is the case in the standard direction-independent calibration
problem.

4 DEMONSTRATION OF SPECTRALLY
REDUNDANT CALIBRATION (NucAL) ON
SIMULATED DATA

In this section, we test the performance of NUCAL on a set of simulated
visibilities which contain realistic spectral variation and calibration
errors. We begin with a description of the gains applied to the
simulated data to produce a set of ‘uncalibrated’ data.

4.1 Setting up the problem

For the simulations used in this section, we assume that the data have
already been redundantly calibrated and that the only remaining
calibration required is the removal of the degeneracies of spatially
redundant calibration. This is done to reduce the computational cost
of performing a per-antenna gain calibration, but is still a scenario of
practical relevance given that the arrays designed to perform spatial
redundant calibration also generally have some degree of spectral
redundancy (e.g. PAPER and HERA). Here, we simulate the need
for such a calibration by moving our model visibilities within the
degenerate parameter space of redundant-baseline calibration. To
highlight NUCAL’s ability to accurately account for arbitrary amounts
of spectral structure in an instrument bandpass, we simulate the
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Table 1. Visibility simulation and calibration details.

Parameter

Value

Instrument layout

Frequency range

Frequency resolution (Av)

Sky model

Beam model

Spatial axis DPSS half-width parameter
Frequency axis DPSS half-width parameter (1,,)
Minimum number of unique baselines per group
Model constraints (data points/parameters)

HERA-350 (Hexagonal Core and Outrigger Antennas; Fig. 1)

46.9

—234.4MHz

122kHz
10° Point Sources (equation 6) 4+ Flat-Spectrum Power Spectrum
Airy Beam (equation 8)

0.51

25ns

10

11.94

degenerate amplitude (equation 4) and tip-tilt parameters (equation 5)
to vary rapidly from channel-to-channel by drawing the amplitude
from a normal distribution with a mean of 1 and standard deviation
of 0.01 and the tip-tilt degeneracy from a normal distribution with a
mean of 0 radians per meter and standard deviation of 0.01 radians
per metre for both the north—south and east—west parameters.

We then use NUCAL to calibrate this corrupted data set by selecting
baselines within orientations which have greater than 10 unique
baseline types to participate in the estimation of the gains. For
each unique orientation, we construct a foreground model, allowing
each set of foreground components to vary independently of all
other orientations included in the calibration and restrict the set
of basis functions modelling the spatial axis to only model out
u = 100X1. We then execute the first-order gradient descent to refine
our initial estimates of the foreground model components and the
redundant-baseline degeneracies. The final product of the NUCAL
implementation produces a DPSS-based model of the sky, V,-_?de],
a set of calibrated visibilities, V;;, and an estimate of the spatially
redundant degeneracies, A (v) and ® (v). Since our primary goal is to
test the dynamic range of this calibration procedure, our simulations
are noise-free. See Section 3.1 for details on visibility simulations
and Table 1 for a summary of simulation and calibration parameters.

4.2 Demonstration of NUCAL’s dynamic range in Fourier space

After NUCAL, we perform a delay transform, in which we substitute
a Fourier transform along the frequency axis of a visibility for a line-
of-sight Fourier transform (Parsons et al. 2012b; Liu et al. 2014a),
V()= / dvV )W (v)e 2 (20)
where W (v) is a frequency taper function applied to the data prior
to Fourier transforming, which we take to be a Blackman—Harris
function (Harris 1978). We perform this delay-transform on both the
NUCAL-calibrated visibilities, and the uncalibrated visibilities and the
visibilities of the foregrounds and EoR separately.

In Fig. 8, we inspect the delay-transformed visibilities associated
with three baselines that belong to the same spectrally redundant
group. The primary goal of this analysis is to assess the effectiveness
of NUCAL in mitigating spurious spectral structure imparted by a
highly chromatic bandpass. For each of the baselines plotted, we
find that NUCAL is effectively able to solve for and thus calibrate out
the redundant-calibration degenerate parameters. More importantly,
NUCAL is able to converge to a solution of the degeneracies at a
precision necessary to recover the 21 cm signal outside the wedge
for each of the baselines plotted. This demonstrates NUCAL’s utility
for dramatically reducing the complexity of absolute calibration
after redundant-baseline calibration and for isolating the result from
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sky and beam modelling errors that would impart spurious spectral
structure to contaminate the EoR window.

5 SPECTRAL REDUNDANCY AS A METHOD OF
FOREGROUND MODELLING AND
SUBTRACTION

Potentially the most interesting application of spectral redundancy
is the production of incredibly accurate sky models. The model of
the sky that we fit during spectrally redundant calibration, can also
be used as a spatiospectral filter of beam-weighted smooth-spectrum
sky emission. When the sampling of uv modes is sufficiently dense
along a given orientation, this model constrains foreground emission
at a given frequency using information from a wide range of other
frequencies — much wider than the coherence scale of cosmological
21 cm emission. This means that, for certain orientations and fre-
quency ranges, this technique has the ability to remove foregrounds
while retaining 21 cm emission within the wedge, even with a realistic
level of sky and beam chromaticity. Access to these modes would
greatly increase the sensitivity of 21 cm experiments as a significant
number of SNR modes lost to foreground contamination, particularly
interferometers with many long baselines which must sacrifice more
sensitivity than compact arrays to estimate the delay spectrum using
only modes outside the wedge (the so-called foreground avoidance
strategy).

In this section, we attempt to use spectral redundancy to excise
foregrounds from a set of simulated visibilities while still leaving
modes within the wedge. For ease of analysis, we assume that our
simulated visibilties are perfectly calibrated so that the effective-
ness of this basis for removing foregrounds while leaving 21 cm
signal recoverable can be evaluated without the complication of
instrumental systematics. In order to examine our ability to recover
cosmological signal within the wedge for existing instruments, use
the single most spectrally redundant group of visibilities within the
HERA array. With this set of uncorrupted simulated visibilities, we
use the set of DPSS modelling vectors to perform a least-squares
fit to the simulated data allowing the set of filters modelling the u-
axis the freedom to model structure that varies at scales of half a
wavelength and the set of filters which model the spectral axis to
model variation with a Fourier half-width in 1 of n,,x = 25 ns as
was done in Sections 3 and 3.5.

After computing this model, we form an estimate of the power
spectrum by forming delay-spectra for each baseline within the
spectrally redundant group for each of the simulated data products
(simulated 21 cm signal, foregrounds, 21 cm signal and foregrounds,
and the visibilities filtered by subtracting the NUCAL) using the delay-
transform where the visibilities are multiplied by a Blackman—Harris
window function (equation 20). We take the delay-spectrum over the
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Figure 8. Demonstration of NUCAL’s ability to calibrate out arbitrary spectral structure introduced by an instrument for three different baselines within the
same spectrally redundant group. Plotted in green is a noise-free but intentionally uncalibrated simulated visibility, with gains only in the degenerate subspace of
redundant-baseline calibration. We also plot the power spectrum of noise-free simulated foreground visibilities (blue dashed), the EoR power spectrum (black),
and the visibility after spectrally redundant calibration (orange). We find that NUCAL, by restricting the level of spectral structure allowed in the calibrated
visibility, correctly removes the spatially redundant degenerate parameters in our simulated visibilities, leaving calibrated visibilities consistent with the EoR

power spectrum outside the wedge.

frequency band, 60—70 MHz, where more baselines in the group
have more significant spectrally redundancy. It should be noted that
while the power spectrum is estimated over a small sub-band, the
NUCAL model is fit over the full frequency range of 46.9—234.4 MHz.
We then estimate the 2D power spectrum by squaring the delay
spectra and scaling to cosmological power spectrum units using,

R XY |~
Py (ki k) = o B Vij (t)
pp

2
B @1

(Parsons et al. 2014) where P, j is our estimate of the power spectrum
as measured by baseline, b;;, 2, is the solid angle integral of the
primary beam squared, X and Y are linear scaling factors which
map comoving distance to angular separation and radial comoving
distances to the frequency interval Av,

c(1+2z2)?
_ 22
X (2) o H ) (22)
¢ (42
Y@= Hovyi E(2) @3)

and B is the bandwidth over which the delay transform was taken
(Furlanetto et al. 2006; Parsons et al. 2012b). We also transform
our baseline and delay coordinates into cosmological spatial modes
perpendicular, k; = 27b;;/X, and parallel to the line of sight,
ky = 2mt/Y (Parsons et al. 2012a). For all results shown, we adopt a
ACDM cosmology derived from the Planck 2018 analysis when
computing power spectra and cosmological coordinates (Planck
Collaboration VI 2020).

InFig. 9, we display the results of our foreground filtered visibilties
as 2D power spectra for 21 cm signal, foregrounds, foregrounds and
21 cm and the filtered foregrounds and 21 cm signal. We find that
NUCAL is able to substantially suppress foreground modes within

the wedge, while revealing relatively clean EoR signal. We find
substantial signal loss — i.e. incorporation of EoR fluctuations into
the NUCAL model, which is then subtracted off — at low k; and k.
This is clearest for short baselines, which have the least spectral
redundancy (see Fig. 4). This lack of spectral redundancy leads
to degeneracies between the foreground filters and 21 cm signal
that leads to an oversubtraction of cosmological signal within the
wedge. Note that this result is for the single best-sampled spectrally
redundant group with 58 unique baselines, all oriented in the same
direction (see Fig. 1); we should expect less effective subtraction
for other groups in HERA. Many orientations within HERA have
too few baselines to fit the smooth foreground degrees of freedom
in equation (16). Of the 61 075 total single-polarization baselines
in HERA-350, which sample 6610 unique baseline vectors, 26.8
per cent belong to baseline groups with 10 or more unique baselines —
enough to be useful for NUCAL (see Section 3.5). 13.5 per cent belong
to highly spectrally redundant baseline groups with 25 or more unique
baselines.

In Fig. 10, we quantify the level of signal loss from overfitting
during foreground subtraction by comparing the filtered power
spectrum to the input EoR power spectrum. We find that some
amount of signal is lost throughout the wedge and slightly beyond
the horizon, due to the small amount of chromaticity given the DPSS
basis modelling the frequency axis. Across the range of k; modes
which are well-sampled, we find a signal loss value of ~20 per cent.
This is a non-negligible amount of signal, to be sure, but it is certainly
preferable to losing 100 per cent of the EoR signal inside the wedge
that one has to accept with a strategy of foreground avoidance.

Such signal loss is not unexpected; the NUCAL model fits any power
at low n regardless of its astrophysical origin. In a delay spectrum,
that power gets spread across T modes, which explains why we see
signal loss throughout and even a bit beyond the wedge. However, the
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Figure 9. Demonstration of the foreground filtering capabilities of spectral redundancy on a set of simulated visibilities from the most spectrally redundant
group in the HERA array. Fitting a NUCAL model suppresses foregrounds within the wedge, but is able to retain 21 cm signal in simulated, noise-free simulations.
By fitting versus u and v, NUCAL is able to remove foreground emission from a point-source model with varying spectral indices and a realistic level of beam
chromaticity. In the first three subplots, we show the 2D power spectra of EoR, foregrounds, and the sum of both components. In the right-most panel, we plot
the 2D power spectrum of the full simulated data (third panel) but with the NUCAL model subtracted. By subtracting off our best-fitting model, we are able to
substantially suppress foregrounds across a wide range of k; modes while retaining 21 cm signal. Signal loss from overfitting appears in the last panel at low
k) and k| where spectral redundancy is minimal and 21 cm modes are degenerate with NUCAL foreground filters. We examine that loss more directly in Fig. 10.

part of the power of this technique is the ability to use information
from many other frequencies to better estimate (and thus remove)
low 71 structure, which is overwhelmingly foreground-dominated.
While this technique suppresses the 21 cm signal to a larger extent
than other techniques (Mertens, Ghosh & Koopmans 2018; Mevius
et al. 2022), the benefit of this approach is that it makes very few
assumptions about the foregrounds and primary beam while still
modelling them to good precision.

Of course, to use this technique on real data, one would have
to precisely and systematically model and account for the signal
loss in observed spectrally redundant groups — a task beyond the
scope of this work. Regardless, this level of foreground subtraction
is a promising step towards mitigating the impact of foregrounds in
certain array-types while retaining 21 cm signal within the wedge.

6 DISCUSSION

In the previous sections, we explored the promise of utilizing spectral
redundancy as both a method of performing accurate direction-
independent gain calibration and foreground subtraction. Here,
we discuss both the real-world limitations of and potential future
extensions to the technique.

6.1 Real-world challenges of leveraging spectral redundancy

This work remains an incomplete study of what needs to be done
to evaluate the ability of NUCAL to calibrate real data and to
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remove foregrounds and recover 21 cm signal within the wedge
more generally. We have not fully explored important effects such
as proper fixing of NUCAL’s degenerate parameters, which requires
reference to a sky-model, which are always incomplete. In the
event that the sky-model significantly deviates from the observed
visibility, improper degeneracy removal may impact the efficacy of
foreground subtraction and complicate the recovery of cosmolog-
ical modes within the wedge. Future work is needed to explore
our ability to subtract foregrounds in the presence of sky-model
incompleteness.

As with redundant calibration, spectrally redundant calibration
requires that the frequency-dependent uv-plane be self-consistent
between measurements made by different baselines. Several known
effects can lead to deviations between baselines, which lead to
non-redundancies in spectrally redundant calibration. These non-
redundancies arise as a result of beam non-redundancies and antenna
position errors, mutual coupling between elements in the array, and
polarized emission.

The first is the most straightforward, as they are also non-
redundancies associated with spatially redundant-baseline calibra-
tion: all antennas in the array must have the same primary beam
response and be placed accurately. Spectral redundancy requires that
beams are uniform across the array, otherwise baselines assumed to
be spectrally redundant will measure different u v-planes, considering
that the measured uv-plane is a convolution of the true uv-plane
and the antenna beam. Attempting to jointly model baselines with
NUCAL that include antennas with non-redundant beams would likely
introduce calibration errors into the antenna gains, complicating the
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Figure 10. Fractional signal loss computed following foreground filtering,
shown in Fig. 9. At low k; and low k| baselines which contribute to these
measurements of the power spectra have poor spectral-redundancy, leading
to oversubtraction of the 21 cm signal. At intermediate k| scales, more
baselines overlap a given uv-mode, leading to better differentiation between
foregrounds and 21 cm signal and reduced (~20 per cent) signal loss within
the foreground wedge. Signal loss is largely negligible in the EoR window,
given that the DPSS modelling basis is restricted to producing wedge-like
shapes in delay space. There is some signal beyond the horizon given by the
dotted white line due to either the Blackman—Harris taper used or due to the
small amount of chromaticity allowed by the DPSS basis functions used to
model the frequency axis.

recovery of 21 cm signal in the EoR window. Deviations in both
the primary beam size and beam pointing centre have been shown
to introduce spectral errors in redundant calibration (Orosz et al.
2019), and will likely be a point of concern when applying NUCAL
to data. Kim et al. (2023) show that beam errors can be mitigated in
traditional redundant calibration by perform fringe rate filtering the
data before calibrating, and could potentially help mitigate similar
errors in spectrally redundant calibration.

Similarly, antenna placement errors such as East—West/North—
South positional errors or height offsets between elements may prove
to introduce spurious structure in calibrated visibilities if one assumes
that baselines sample the same modes in the uv-plane actually sample
slightly different modes. Orosz et al. (2019) showed that gain errors
introduce by antenna placement errors can be mitigated by down-
weighting long baselines during calibration. However, the models
produced by NUCAL are crucially informed by long baselines, and
therefore down-weighting them may prove to be less effective for
spectral redundancy than spatial redundancy. More work is needed
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to understand how to best handle antenna placement errors within
the NUCAL framework.

In addition to beam non-redundancies and antenna placement
errors, leakage of long baselines’ visibilities into less chromatic
short baselines due to mutual coupling between array elements is
likely to pose a challenge to the convergence of NUCAL in its current
form. Given that these systematics extend significantly beyond the
wedge, they are unable to be modelled with the set of DPSS basis
functions used to model beam-sky product, and are unable to be
removed via per-antenna gain calibration (Kern et al. 2019; Josaitis
et al. 2022; Charles et al. 2023; HERA Collaboration 2023). The
inability to incorporate these effects into models of the foregrounds or
gains will lead to chromatic gain errors if unaccounted for. However,
one could imagine that NUCAL could be modified to solve for first-
order coupling coefficients, such as those presented in the framework
developed in Josaitis et al. (2022), in addition to the per-antenna
gains, potentially reducing the impact of mutual coupling effects on
the estimates of gain parameters.

The assumption that the foreground-beam product is spectrally
compact may be violated by Faraday-rotated diffuse emission, par-
ticularly near the Galactic Centre, where the effect is most prominent
(Taylor, Stil & Sunstrum 2009). Spectral structure introduced by
this polarized emission will cause variations at a fixed u that we
will be unable to model using our smooth set of basis functions,
likely leading to chromatic errors in the gain estimates if that are not
properly accounted for. One approach to calibrating visibilities which
we expect to be highly polarized, is to require that the foregrounds
in psuedo-Stokes I be smooth as a function of frequency rather
than assuming that either of the linear polarizations are spectrally
redundant. This formulation should help to reduce the impact of
Faraday-rotated polarized emission on the estimates of the gains.

In addition to the non-idealities of real-world instruments and
calibration, we did not provide a full study of the factors affecting
signal loss when subtracting NUCAL modelled foregrounds from
simulated visibilities. Quantifying the precise level of signal loss
is crucial when performing this kind of analysis, as the inclusion
of wedge modes with substantial signal loss in an estimate of the
power spectrum will artificially lower the amplitude of the estimated
power spectrum (Aguirre et al. 2022). The exact amount of signal
loss in a given wedge mode will depend on the precise set of basis
vectors fit with equation (16). It will also depend on the spectral
smoothness of the instrument’s primary beam response, the true
spectral smoothness of the foregrounds, and the degree to which a
given mode contributing to an estimate of power spectrum is sampled
redundantly in frequency. These effects are fundamental to the array
on which NUCAL is being performed, and entirely independent of sky-
model incompleteness and non-redundancy. The exploration of how
variations in dish size, beam chromaticity, and antenna layout affect
the level of signal loss within the wedge in 21 cm measurements is
also left for future work.

6.2 Future applications of NUCAL

While we have shown the benefits of spectral redundancy and
spatiospectral filtering for calibration and foregrounds subtraction,
there are many more improvements of this technique and future
applications which could make it more widely useful to the 21 cm
community.

Perhaps the most conceptually straightforward improvement to
this technique is extending NUCAL to solve for per-antenna gains.
There are two potential ways in which this could be done. The
first is by simply extending equation (18) to incorporate per-antenna
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gains, instead of restricting the gain terms to the degenerate space
of redundant-baseline calibration. While this approach is mathemati-
cally straightforward, extension to full per-antenna gains is extremely
computationally challenging due to the massive increase in data
volume and number of parameters required to solve for. Utilization
of the JAX environment to efficiently compute gradients and its
ability to use GPUs to perform would likely help, but it is unclear
if the approach would be computationally tractable for such as
HERA without major improvements to the algorithm itself. Another
complication of extending NUCAL to per-antenna gains is the potential
risk of introducing signal loss beyond the wedge. Because NUCAL
attempts to produce the smoothest possible calibrated visibilities,
extending calibration to incorporate more degrees of freedom may
lead to per-antenna gains overfitting 21 cm signal, especially beyond
the foreground wedge. More work is needed to understand how
extending NUCAL to incorporate more calibration degrees of freedom
introduces the signal loss outside the wedge.

The second approach is slightly more limited, but more compu-
tationally efficient. Instead of solving for per-antennas gains and
NUCAL model parameters simultaneously, we could instead fit a
NUCAL-based model to data which have already been calibrated
and then use that model as a sky-model to recompute per-antenna
gains. Because the NUCAL is highly constrained by the redundancy
of an array and physically motivated to pick out foreground emission
from sets of spectrally redundant baselines, it could be an excellent
foreground model for sky-based calibration. One potential downside
of this approach is that if the NUCAL model is derived from visibilities
with significant errors due to prior miscalibration and there is a lack of
highly spectrally redundant baselines within the array, this approach
may be unlikely to fix those errors. However, both approaches are
interesting avenues for further exploration and warrant future work.

As presented, NUCAL is currently limited to modelling foregrounds
in baselines which are part of groups that redundantly sample the
same spatially Fourier modes at different frequencies. While some
arrays do take advantage of redundant baseline measurements and
therefore often redundantly sample the same uv-modes along radial
spokes of the uv plane, arrays which are not radially redundant will
be unable to take advantage of the benefits of NUCAL as currently
formulated. However, given the flexibility of our modelling basis
functions, NUCAL’s modelling equation (16) could in principle be
modified such that the entire v plane be modelled jointly in a higher
dimensional representation of these DPSS eigenfunctions.

Doing so would significantly increase the number of free param-
eters incorporated into the foreground model, but will improve the
generality of the approach to allow for the calibration of array types
which do not explicitly sample the same # modes. Additionally, this
approach may improve the ability for non-radially redundant arrays to
better model and subtract foregrounds by empirically estimating the
cross-frequency covariance between baselines which samples nearby
modes in the uv-plane without explicitly simulating foregrounds with
a model of the sky and instrument primary beam. This approach to
using modelling the entire frequency-dependent uv-plane may also
offer a reduction in signal loss incurred by subtracting foregrounds
with a NUCAL model. Such an exploration and its implementation is
outside the scope of this paper and left for future work.

Given the extreme dynamic range challenge 21 cm cosmology
presents, 21 cm arrays must be co-designed to allow for an analysis
which best allows for the separation of foregrounds from 21cm
signal. Next-generation 21 cm experiments will need to restore access
to modes within the wedge in order to directly image cosmologi-
cal hydrogen. Such three-dimensional images of neutral hydrogen
support cross-correlation studies with other probes of large-scale
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structure, providing verification of a detection of the 21 cm and
unlocking stronger constraints on the physics of reionization (Beard-
sley et al. 2015; Kovetz et al. 2017; La Plante et al. 2023). Just as
HERA'’s highly regular array configuration is designed to prioritize
spatial redundancy (Dillon & Parsons 2016; DeBoer et al. 2017),
future array designs may be optimized for both spatial and spectral
redundancy, allowing for calibration and foreground modelling with
NUCAL and potentially enabling for the recovery of cosmological
modes within the foreground wedge that could be used for imaging.
Future work is needed to investigate how new array configurations
and element design can be leveraged to maximize the effectiveness
of this technique.

7 SUMMARY

In this paper, we introduced a novel technique for precisely cali-
brating interferometers for 21 cm cosmology known as spectrally
redundant calibration, or NUCAL for short. Inspired by traditional
spatially redundant calibration, our approach solves for antenna gains
by exploiting the correlations between baselines which redundantly
sample the same angular Fourier modes in the uv-plane at different
frequencies. Leveraging the fact that baselines which sample the
same angular scales see highly correlated beam-sky products at
different frequencies, we model this redundantly sampled u — v
plane as a linear combination of a highly efficient set of smooth
basis vectors known as DPSS.

We demonstrate in Section 3.5 our ability to calibrate out arbitrary
spectral structure in redundant calibration degeneracies in a set
of simulated HERA visibilities and show that NUCAL explicitly
preserves the EOR window by preventing fine-scale calibration errors
from coupling with foreground power. Because this approach relies
on self-consistency between baselines at different frequencies, we
do not need detailed models of the sky and beam to perform
calibration while ensuring that our calibrated visibilities remain
spectrally smooth.

While this technique does require reference to a sky model to
solve for a set of additional parameters which are degenerate with our
empirically motivated foreground model, the number of degenerate
parameters that are required to be solved for are substantially reduced
compared to that of traditional redundant calibration and are limited
to shapes residing within the foreground wedge. Assuming that the
algorithm reaches convergence to the global minima, this signifi-
cantly reduces the amount of spurious spectral structure that can be
introduced via calibration error due to sky model incompleteness.

One of the most exciting aspects of this work is NUCAL’s ability
to precisely model and subtract foregrounds from baselines, which
redundantly sample the same modes in the uv-plane. As shown
in Section 5, combining spectral redundancy with spatiospectral
filtering is able to accurately model the beam-weighted sky even
in case in which realistic chromatic beams and foregrounds are
used. Assuming that the uv-sampling is dense enough to break
the degeneracy between variation in the spatial and spectral axes,
modelling foregrounds baselines in the same radial heading using
the DPSS basis shows promise for recovering 21 cm signal within
the wedge.

One must be cautious when applying this technique to real data,
as overfitting can lead to cosmological signal loss, especially when
a given uv-mode is not sufficiently redundantly sampled by the
baselines in its unique orientation. As this effect is dependent on
the assumed chromaticity of the sky and beam, the antenna layout
of the array, and observing frequencies. Future work will attempt
to quantify this signal loss for different array types. Despite those
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caveats and limitations, our technique is the first proposal to enable
the estimation of 21 cm signal within the wedge without detailed
knowledge of foregrounds or the primary beam and is thus perhaps
the first step towards recovering ~80 per cent of the sensitivity that
interferometers like HERA must sacrifice by avoiding the foreground
wedge.

SOFTWARE

This work was enabled by a number of software packages includ-
ing MATPLOTLIB® (Hunter 2007), NUMPY* (Oliphant 2006), SCIPY?
(Virtanen et al. 2020), JaX® (Bradbury et al. 2018) for data analysis
and modelling, and OPTAX’ (Babuschkin et al. 2020) for the gradient
descent framework and library of optimizers.
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APPENDIX A: NUCAL VERSUS CALAMITY

NUCAL bears several similarities to the recently proposed CALAMITY
technique (Ewall-Wice et al. 2022) due to its use of first-order
optimization to determine gain solutions and the use of DPSS
modelling. In this appendix, we highlight the specific similarities
and differences between the two techniques by casting them both
under the formalism adopted in the rest of the paper. CALAMITY and
NUCAL differ primarily in two ways.

A1 Different foreground modelling functions

Let the set of all frequencies sampled by every baseline be the
same, which we denote with the vector F with length Nr. From

equation (16), we can describe any per-baseline modelling approach
like the one described in Ewall-Wice et al. (2022) with a set
of ¢ basis functions where the vectors are partitioned into b
different sets where the m'" set has length n,, different functions,
{00,05 <> ©0.ng }» 101,05 s @10y }s - - -5 {0b05 ---s Po.m,} and each m™
baseline is centred at the set of u values in the N length set U,,. The
first index of each function labels the baseline, and the second index
labels the basis functions necessary to model that baseline.

¢m,n(v) ue Um andv e F

Pmn (W, Vi) = {0 otherwise, (A

In the per-baseline modelling case, we work with a set of basis
functions that only having support over a single baseline. In practice,
we fit discrete vectors to our data the basis vectors in the per-baseline

modelling case are non-zero over a single baseline. For the DPSS
modelling used in CALAMITY, we choose ¢,, , equal to

¢m,n = un(v, Wm) (AZ)

where u,, is the ' Slepian sequence (Slepian 1978) with normalized
bandwidth of W,, = 2B7,, where 1, is the delay width that is chosen
to describe the foregrounds modulated by the primary beam.

A2 Different gain modelling assumptions

In NUCAL, we assume that the redundant degrees of freedom in the
gains have already been removed through some redundant calibration
strategy. All that is left to solve for in the gains is a common per-
frequency absolute gain factor A(v) and the tip-tilt term ®(v). In
CALAMITY, we retain and fit per-frequency complex gain for every
antenna in the array. This limits the utility of NUCAL as specifically
laid out in this paper to redundant arrays with identical beams while
CALAMITY can, in principle, be applied to arbitrary array layouts with
non-redundant beams. Reducing the gain degrees of freedom may
reduce the amount of signal loss suffered by our measurement for
a fixed array layout, though the larger number of independent uv
modes sampled by non-redundant arrays could counteract this. We
leave a detailed exploration of the tradeofts between gain modelling
assumptions and array layout to future work.

In summary, NUCAL reduces to CALAMITY in the limit that the
antenna gains are described by a tip-tilt parameter and an amplitude
degeneracy, the true visibility modelling functions have support only
over individual baselines, and are described by discrete Slepian
sequences instead of sampled prolate spheroidal wave functions.
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