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A B S T R A C T 

Observations of 21 cm line from neutral hydrogen promise to be an exciting new probe of astrophysics and cosmology during the 
Cosmic Dawn and through the Epoch of Reionization (EoR) to when dark energy accelerates the expansion of our Universe. At 
each of these epochs, separating bright foregrounds from the cosmological signal is a primary challenge that requires exquisite 
calibration. In this paper, we present a new calibration method called NUCAL that extends redundant-baseline calibration, allowing 

spectral variation in antenna responses to be solved for by using correlations between visibilities measuring the same angular 
Fourier modes at different frequencies. By modelling the chromaticity of the beam-weighted sky with a tunable set of discrete 
prolate spheroidal sequences, we develop a calibration loop that optimizes for spectrally smooth calibrated visibilities. Crucially, 
this technique does not require explicit models of the sky or the primary beam. With simulations that incorporate realistic source 
and beam chromaticity, we show that this method solves for unsmooth bandpass features, exposes narrow-band interference 
systematics, and suppresses smooth-spectrum foregrounds below the level of 21 cm reionization models, even within much of the 
so-called wedge region where current foreground mitigation techniques struggle. We show that this foreground subtraction can 

be performed with minimal cosmological signal loss for certain well-sampled angular Fourier modes, making spectral-redundant 
calibration a promising technique for current and next-generation 21 cm intensity mapping experiments. 

Key words: instrumentation: interferometers – dark ages, reionization, first stars. 
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 INTRODUCTION  

omographic mapping of the redshifted hyperfine transition of 
eutral hydrogen (H I ) holds great potential for studying the evo-
ution of large-scale structure in the early Universe. Successfully 
bserving the cosmological 21 cm signal will open a window for
nderstanding the properties of the first stars and galaxies and 
onstraining � CDM cosmology. For a re vie w of 21 cm cosmology,
ee for example Furlanetto, Oh & Briggs ( 2006 ), Morales & Wyithe
 2010 ), Pritchard & Loeb ( 2012 ), and Liu & Shaw ( 2020 ). Prior
nd ongoing experiments seeking to characterize patchy fluctuations 
n this 21 cm signal include the Precision Array for Probing the
poch of Reionization (PAPER; Parsons et al. 2010 ), the Murchison
idefield Array (MWA; Tingay et al. 2013 ), the Low-Frequency 
rray (LOFAR; van Haarlem et al. 2013 ), the Hydrogen Epoch 
f Reionization Array (HERA; DeBoer et al. 2017 ), the Giant 
etre Wave Radio Telescope (GMRT; Paciga et al. 2013 ), the 

ong Wavelength Array (LWA; Eastwood et al. 2019 ), the Cana- 
ian Hydrogen Intensity Mapping Experiment (CHIME; Bandura 
t al. 2014 ), and the Hydrogen Intensity and Real-time Analysis
Xperiment (HIRAX; Newburgh et al. 2016 ). 
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The principal challenge faced by experiments aiming to measure 
he high-redshift 21 cm signal is to accurately separate the rela-
ively weak cosmological signal from astrophysical foregrounds, 
articularly from continuum emission from our galaxy and other 
adio-bright galaxies, which are ∼10 4 −5 times brighter. To address 
his challenge, experiments such as HERA and CHIME rely on the
istinct spectral characteristics of foregrounds and the 21 cm signal 
o separate the cosmological signal from the dominant foregrounds 
an approach known as foreground a v oidance. 
For redshifted line emission, spectral frequency corresponds to a 

ine-of-sight spatial distance, making the Fourier dual of frequency a 
robe of line-of-sight modes (i.e. k ‖ ) in the 3D Fourier space of spatial
uctuations. H I is expected to exhibit significant spatial variation on
osmological scales in density, ionization state, and spin temperature, 
iving the cosmological 21 cm signal structure at a variety of spectral
cales (Morales & Hewitt 2004 ). F ore grounds, on the other hand, are
pectrally very smooth, and so occupy a relatively small number of
ow-order spectral modes. 

In the absence of instrumental systematics, these differences in 
pectral properties lead to a relatively clean separation between 
oreground contamination and higher order spatial modes of the 
osmological signal (Morales & Wyithe 2010 ). Ho we ver, this sep-
ration is degraded by the inherently chromatic nature of antenna 
eams and interferometric baselines, which modulate foreground 
is is an Open Access article distributed under the terms of the Creative 
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http://orcid.org/0009-0008-2574-3878
http://orcid.org/0000-0003-3336-9958
http://orcid.org/0000-0002-0086-7363
http://orcid.org/0000-0003-0073-5528
mailto:tyler.a.cox@berkeley.edu
https://creativecommons.org/licenses/by/4.0/


3376 T. A. Cox et. al 

M

p  

i  

t  

i  

2  

e  

 

c  

o  

r  

2  

b  

p  

o  

l  

t  

d  

l
 

o  

Y  

2  

b  

r  

r  

g  

m  

2  

i  

e  

s
a  

d  

2  

r  

f
 

l  

f  

e  

C  

d  

W  

i  

Y  

c  

a
 

a  

f  

f  

s  

s  

l  

n  

w
 

i  

r  

t  

b  

f  

t  

a  

e
 

s  

n  

v  

r  

W  

c  

v  

a  

b  

t  

t  

r  

S  

c  

w

2
F

I  

t  

t  

o  

b

2

P  

c  

T  

v  

m  

e

V

w
a  

v  

t  

1  

d  

m  

l  

g
 

i  

w  

d  

f  

c  

f  

c

2

O  

o  

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/532/3/3375/7710121 by guest on 20 Septem
ber 2024
ower on spectral scales inversely proportional to the diameter or
nterferometric baseline length (Parsons et al. 2012b ). The result is
hat foreground residuals tend to occupy a characteristic wedge shape
n cylindrical k space (Datta, Bowman & Carilli 2010 ; Parsons et al.
012b ; Vedantham, Udaya Shankar & Subrahmanyan 2012 ; Pober
t al. 2013 ; Th yag arajan et al. 2013 ; Liu, Parsons & Trott 2014a , b ).

By a v oiding modes within this wedge and focusing instead on the
omplementary Epoch of Reionization (EoR) ‘window’, detection
f the cosmological 21 cm signal remains possible, albeit with a
educed number of modes – and thus, sensitivity – for estimating the
1 cm power spectrum. In practice, this picture is further complicated
y spectral structure in signal chains, which convolutionally leak
ower from the foreground wedge into the EoR window, potentially
 v erwhelming the cosmological signal. Preventing such spectral
eakage requires precision calibration to inv ert an y spectral structure
hat may have been imparted by the instrument. Given the high
ynamic range between foregrounds and signal, chromatic effects
arger than roughly one part in 10 5 must be mitigated. 

Numerous approaches have been put forward to meet the challenge
f accurately calibrating interferometers for 21 cm cosmology (e.g.
atawatta et al. 2008 ; Liu et al. 2010 ; Sievers 2017 ; Dillon et al. 2018,
020 ; Li et al. 2018 ; Byrne et al. 2019 ; Kern et al. 2020b ). These can
e roughly organized into the categories of sky-based calibration and
edundanc y-based calibration. Sk y-based calibration relies on accu-
ate models of the sky and antenna beams to solve for per-antenna
ains in visibility measurements, but this approach is susceptible to
odel error and incompleteness (Barry et al. 2016 ; Ewall-Wice et al.

017 ). Redundancy-based calibration attempts to circumvent model
ncompleteness by using the fact that visibility measurements are
xpected to be identical for interferometric baselines with the same
eparation v ector, pro vided antennas hav e identical beam patterns –
n assumption which can pro v e to be detrimental to the accuracy of
erived calibration solutions if not realized in the field (Byrne et al.
019 ; Orosz et al. 2019 ). In essence, redundancy-based calibration
educes the reliance on absolute knowledge of the sky and beam and
ocuses instead on symmetries internal to the antenna array. 

In most implementations, both sky-based and redundant base-
ine calibration solve for antenna parameters independently versus
requency, relying on post-hoc methods such as averaging (Zheng
t al. 2014 ), gain smoothing (Abdurashidova et al. 2022 ; HERA
ollaboration 2023 ), or parametric fitting to limit the number of
egrees of freedom in a calibration solution (Ali et al. 2015 ; Ewall-
ice et al. 2016a ) in fa v our of calibrating all frequency channels

n the data simultaneously. While this is not universally true (e.g.
ata watta 2016 ), man y calibration algorithms lack the capacity to
alibrate all frequency channels simultaneously due to computing
nd memory requirements. 

This is an unfortunate limitation, considering that the spectral
xis provides the most powerful discriminant between astrophysical
oregrounds and cosmological 21 cm signal. As experiments move
rom setting upper limits to making detections of the 21 cm power
pectrum, there is a growing need for a rigorous accounting of the
ystematics that can arise from foregrounds interacting with low-
evel spectral structure in the instrument response. This motivates the
eed for calibration routines that can solve for the spectral structure
hile remaining robust to errors in sky and beam modelling. 
In this paper, we introduce a new approach to calibrating radio

nterferometers for 21 cm cosmology, which we call spectrally
edundant calibration or NUCAL , for short. This technique leverages
he slo w e volution of sk y emission v ersus frequenc y to relate visi-
ility measurements of the same angular Fourier modes at different
requencies. By extending the concept of redundant calibration along
NRAS 532, 3375–3394 (2024) 
he frequency axis, this approach allows the calibration of arrays with
rbitrary bandpass structure, while minimizing potential calibration
rrors introduced by incomplete sky models. 

This paper is structured as follows: in Section 2 , we re vie w the
tate of current calibration algorithms and moti v ate the need for
ew methods that optimize for the spectral smoothness of calibrated
isibilities. In Section 3 , we introduce the concept of spectral
edundancy and how it can be leveraged to calibrate 21 cm arrays.

e also introduce NUCAL – our approach to redundant spectral
alibration that enforces spectral and spatial smoothness in calibrated
isibilities. In Section 3.5 , we apply NUCAL to simulated visibilities
nd show that we can faithfully solve for degenerate redundant-
aseline calibration parameters and eliminate spurious structure into
he calibration solutions. In Section 5 , we demonstrate our ability
o subtract foregrounds from simulated visibilities in a perfectly
edundant array to reco v er the 21 cm signal within the wedge. In
ection 6 , we discuss the assumptions made by spectrally redundant
alibration and identify areas for further refinement. We conclude
ith a summary of our results in Section 7 . 

 REVIEW  OF  CALIBRATION  TECHNIQUES  

OR  21  CM  COSMOLOGY  

n this section, we re vie w the current status of 21 cm calibration
echniques and some of their limitations in order to moti v ate the need
o impro v e direction-independent calibration methods by explicitly
ptimizing for spectral smoothness in calibrated visibilities. We
egin with a brief re vie w of the calibration problem. 

.1 Calibration problem 

er-antenna gain calibration is the process of solving for a single
omplex number per antenna as a function of time and frequency.
hese numbers model signal chain effects and enter into the observed
isibility of a baseline between antennas i and j as the true visibility
ultiplied by the frequency- and time-dependent gain response of

ach antenna involved in the measurement, 

 
obs 
ij ( ν, t ) = g i ( ν, t ) g ∗j ( ν, t ) V 

true 
ij ( ν, t ) + n ij ( ν, t ) , (1) 

here V 
obs 
ij is the observed visibility between antennas i and j , g i 

nd g j are the complex gain of antennas i and j , V 
true 
ij is the true

isibility sampled by baseline, b ij , and n ij is Gaussian distributed
hermal noise on that measurement (Hamaker, Bregman & Sault
996 ; Smirnov 2011 ). Additionally, most 21 cm interferometers are
ual-polarization instruments, which allow them to simultaneously
easure electromagnetic signals from two orthogonal antenna po-

arizations. This requires that we also solve for frequency-dependent
ains for each antenna polarization. 

The process of correcting for these frequency, antenna, and polar-
zation dependent gains is called direction-independent calibration ,
hich we will refer to simply as calibration in this paper to
istinguish it from direction-dependent calibration , which accounts
or the spatial response of each array element. Direction-independent
alibration methods used for solving for antenna gains traditionally
all within one of two cate gories: sk y-based calibration and redundant
alibration. 

.2 Sky-based calibration 

ne of the most common approaches to calibrating radio interfer-
meters is through a method known as sky-based calibration. In sky-
ased calibration, detailed knowledge of the radio sky and antenna-
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eam pattern is employed to simulate a set of visibilities that ideally
atch the true, uncorrupted visibilities measured by the instrument. 
hese simulated data products can then be used to set up an
 v erconstrained system of equations to solve for antenna-dependent 
ain parameters. While this approach works quite well when the 
eld of view is dominated by a single, bright, well-characterized 
ource (Baars, Mezger & Wendker 1965 ), arrays optimized for 21 cm
osmology often have wide fields of view with elements that often 
ave limited pointing ability, making it more challenging to build 
aithful sky and beam models for calibration. Additionally, diffuse 
alactic emission can introduce calibration errors if not included in 

he model of the sky, particularly in short baselines which are more
ensitive to diffuse foregrounds. 

While sky maps have been slowly improving, existing experiments 
ave not yet shown that the sky can be modelled to the precision
ecessary to calibrate visibilities to one part in ∼10 5 . In particular,
eliv ering fore ground maps which accurately account for the spatial 
istribution, amplitude, and spectral properties of diffuse continuum 

mission from the galaxy and extragalactic point sources to the 
recision required for 21 cm cosmology has pro v en v ery difficult.
arry et al. ( 2016 ) showed that unmodelled foreground point sources,
ven those below the confusion limit of current arrays, can introduce 
alibration errors which can limit the detection of the cosmological 
ignal. These issues can be partially mitigated by down-weighting 
ong baselines or only including relatively short, less-chromatic 
aselines when performing sky-based calibration (Ewall-Wice et al. 
017 ). Ho we ver, this can make calibration less accurate because this
pproach relies on baselines dominated by diffuse emission, which 
s rarely accurate to better than the per cent level and is also highly
olarized (Lenc et al. 2016 ). In addition to making a measurement
ithin the EoR window challenging, these errors make the level of

oreground subtraction necessary for measuring cosmological modes 
ithin the foreground wedge impossible. 
Sky calibration is further complicated by the need to produce 

ccurate models of the antenna primary beam, which typically have a 
omplicated spatial response that is both polarization- and frequency- 
ependent. Significant work has gone into modelling instrument 
rimary beam (Ewall-Wice et al. 2016b ; Fagnoni et al. 2021a )
nd validating these models by attempting to measure beams in 
itu (Pober et al. 2012 ; Neben et al. 2016 ; Jacobs et al. 2017 ; de
era Acedo et al. 2018 ; Eastwood et al. 2018 ; Line et al. 2018 ;
atra et al. 2018 ; Nunhokee et al. 2020 ). Ho we ver, state-of-the-art
eam models are still insufficient to acquire sky-based calibration 
olutions that are accurate enough, or to do foreground subtraction 
o level necessary for 21 cm cosmology. Even if the sky and beam
re known to sufficient accuracy, ionospheric distortion can introduce 
requency-dependent errors in the position and intensities of known 
ources that can corrupt calibration solutions, making this method 
ifficult to e x ecute properly for 21 cm experiments (Jordan et al.
017 ; Gehlot et al. 2018 ; Yoshiura et al. 2021 ). 

.3 Redundant-baseline calibration 

nother approach to calibrating an interferometer which largely 
kirts the issue of incomplete sky-models and imprecise knowledge 
f the beam is by calibrating an array assuming that antenna pairs
hich have the same baseline vector measure the same visibility 
 alue. Under this assumption, de viations from a shared measurement 
hould be explainable by antenna-based gain terms that can be 
alibrated out of a raw visibility. This approach, known as redundant- 
aseline calibration (Wieringa 1992 ; Liu et al. 2010 ), can be used
o calibrate antenna gains in the case when repeated measurements 
f the same baseline vector are made without needing an a priori
stimate of the true model visibilities. 

Redundant-baseline calibration seeks to solve for antenna-gain 
nd visibility parameters at each frequency by finding a solution to
 system of equations of the form 

 ij ( ν, t ) = g i ( ν, t ) g ∗j ( ν, t ) V 
sol 
i−j ( ν, t ) (2) 

hich is done by minimizing χ2 written as 

2 ( ν, t ) = 

∑ 

i �= j 

∣∣V 
obs 
ij ( ν, t ) − g i ( ν, t ) g ∗j ( ν, t ) V 

sol 
i−j ( ν, t ) 

∣∣2 
σ 2 

ij ( ν, t ) 
, (3) 

here V 
sol 
i−j is the visibility solution for redundant baselines with the

ame baseline vector separation as V 
obs 
ij and σ 2 

ij is the noise variance
n baseline b ij . In the case where the number of unique baseline
eparations made by a perfectly redundant array is significantly 
ess than the total number of measurements made (such as with
ERA; Dillon & Parsons 2016 ), a highly overconstrained system of

quations can be set-up to solve for the gains and model visibilities.
n practice, no array is perfectly redundant and non-redundancies in 
he array due to small deviations in antenna position, beam shape,
nd beam pointing errors can all introduce chromatic gain errors 
hich can complicate a 21 cm measurement (Orosz et al. 2019 ).
one the less, redundant calibration remains an attractive approach 

ince it is mostly free of assumptions about emission from the sky,
.e. whether it is dominated by point sources, diffuse emission, or
ome combination of the two and does not initially require precision
nowledge of the beam. 
Ho we ver, it is important to highlight that while redundant-baseline

alibration reduces reliance on accurate models of the sky and 
eam, it ultimately still requires a sky-model to solve for a small
umber of remaining calibration degrees of freedom. Regardless 
f how o v erdetermined the system of equations used to minimize
quation ( 3 ), the structure of χ2 guarantees that there will al w ays be
 few parameters as a function of frequency that cannot be solved
y redundant-baseline calibration. These frequency-dependent pa- 
ameters are degeneracies of this system of equations, which arise 
s a result of a set of transformations that one can apply to gains
nd visibilities that leave the value of χ2 unchanged (Zheng et al.
014 ; Dillon et al. 2018 , 2020 ). These transformations that can be
pplied to the estimated gain parameters are an o v erall amplitude
e generac y, 

 i g 
∗
j V 

model 
ij → ( Ag i ) 

(
Ag ∗j 

) (
A 

−2 V 
model 
ij 

)
= g i g 

∗
j V 

model 
ij , (4) 

nd a phase gradient de generac y, 

 i g 
∗
j V 

model 
ij → 

(
g i e 

i � ·r i ) (g ∗j e −i � ·r j ) (V 
model 
ij e −i � ·b ij )

= g i g 
∗
j e 

i � ·b ij V 
model 
ij e −i � ·b ij 

= g i g 
∗
j V 

model 
ij . (5) 

ere, both A and � are real-valued frequency- and time-dependent 
uantities and r i is the position of antenna i. When each polariza-
ion is calibrated independently, there are three degeneracies 1 per 
requency and polarization: an average gain amplitude and a phase 
radient in both the North–South and East–West directions. 
MNRAS 532, 3375–3394 (2024) 
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After performing redundant-baseline calibration, an additional
bsolute calibration must be performed to fill in this small set of
egenerate calibration parameters per frequency, which amounts to
etting the absolute flux scale and phase centre for each frequency
bserved (Liu et al. 2010 ; Zheng et al. 2014 ; Dillon et al. 2018 ; Byrne
t al. 2019 ; Kern et al. 2020b ). While this approach does significantly
educe the number of free parameters required to be solved for by a
eferencing a sky model, sky-model incompleteness errors can intro-
uce calibration errors in redundant-calibration degeneracies which
eak power into the EoR window that exceeds the 21 cm signal (Byrne
t al. 2019 ) if further measures are not taken to mitigate the effect. 

.4 Hybrid approaches 

t is worth noting that a number of hybrid calibration have been
eveloped in recent years to address the issues detailed with both
ky-based and redundant calibration. In Sievers ( 2017 ), a new ap-
roach CORRCAL was presented which modelled covariance between
aselines to bridge the gap between redundant-baseline calibration
nd sky-based calibration. Gogo et al. ( 2022 ) were able to show
hat this approach led to moderate impro v ement in the calibration
f PAPER data o v er redundant calibration alone. Other approaches,
uch as BAYESCAL (Sims, Pober & Sievers 2022a , b ) and Unified
alibration (Byrne et al. 2021 ), have developed Bayesian frameworks

o incorporate model uncertainty into calibration. The y hav e shown
 reduction in the spurious spectral structure of gain solutions
ompared to traditional sky-based and redundant calibration when
stimating gain solutions in simulated data. The newly proposed
elay-Weighted Calibration (Byrne 2023 ), a variant of sky-based

alibration, has also showed significant promise in reducing spurious
pectral structure in gain solutions by down-weighting Fourier modes
hought to have significant sky-model error. 

.5 Mitigation of spectral structure in calibrated visibilities 

ne of the primary challenges of 21 cm cosmology is managing
requency-dependent calibration errors introduced when performing
stimates of antenna-gain parameters. Assuming antenna gains
re estimated accurately by some calibration method, one can
imply divide the measured data by the estimated gains to reco v er
he true sky signal. Ho we ver, gain calibration is often performed
naccurately due to the issues mentioned abo v e (i.e. inaccurate
ky/beam models and non-redundancies). These errors often have
ne-scale frequency structure which, due to the multiplicative nature
f gain calibration (as in equation 1 ), are convolved with the true
ky in Fourier space, leading to a leakage of foreground power into
odes outside the wedge. Therefore, it is crucial that this calibration

arameters be accurately estimated to prevent bright foreground
rom contaminating 21 cm signal. 

Many of the frequency-dependent calibration errors introduced
y both sky-based and redundant-baseline calibration have been
itigated by imposing the a priori assumption that the final calibrated

ain parameters be smooth as a function of time and frequency. This
ssumption is generally imposed in a two-step process in which
ains are estimated via sky-based or redundant calibration, then
moothed by fitting some set of slowly varying basis functions to
he gain estimates (Barry et al. 2016 ; Dillon et al. 2018 ; Gehlot et al.
018 ; Eastwood et al. 2019 ; Li et al. 2019 ). Because instruments are
esigned to be stable in time and have smooth bandpass responses,
mposing this a priori assumption is fairly reasonable in theory. It is
herefore assumed that fine-frequency structure in gain solutions is

ore likely the result of calibration errors than true spectral structure
NRAS 532, 3375–3394 (2024) 
n the instrumental response, and that it is therefore safer to ignore
t than to introduce new chromaticity into calibrated visibilities.
o we ver, it remains to be seen whether these assumptions about

mooth instrument responses hold in real-world antennas in the
eld. It is worth noting that there are exceptions to the approach
f post-hoc smoothing calibration solutions, most notably Yatawatta
 2016 ) which fits a parametrized version of antenna gains rather than
moothing post-calibration, but at the cost of greater computational
xpense and larger memory requirement. 

These post-hoc approaches are suboptimal in the sense that they
eglect a true accounting of what amount of true spectral structure
ay be found in the instrument bandpass or due to systematics such as

able reflections, which can be factored out of the data by modelling
hem as a gain-like term (Kern et al. 2019 , 2020a ). One can imagine
hat if the gains actually contain a significant amount of spectral
tructure, that post-hoc smoothing will remo v e those features from
stimates of the gains, leading to structure which is not properly
econvolved from the calibrated visibilities potentially polluting
he EoR window. For experiments to be successful in detecting
he 21 cm signal, calibration routines must be designed to handle
mperfect knowledge of the sky and primary beam while remaining
exible enough to correct for true fine-scale frequency structure in

nstrumental gains. In the next section, we introduce our approach to
alibrating fine-scale frequency structure using spectral redundancy
the repeated sampling of modes in the uv-plane by baselines at

ifferent frequencies. 

 SPECTRAL  REDUNDANCY  

n this section, we explore the idea of spectral redundancy, an
xtension of traditional spatial redundancy to the spectral axis, which
nforces consistency between measurements by comparing visibility
easurements which sample the same uv-modes at different fre-

uencies. We begin our discussion of spectral redundancy with a
rief description of the visibility simulations used throughout the
est of this work (Section 3.1 ) and demonstrate the high degree of
edundancy between baselines at frequencies which sample the same
odes in the uv-plane (Section 3.2 ). We then discuss our approach

o modelling spectrally redundant baselines by representing them
s the sum of a flexible set of basis functions known as discrete
rolate spheroidal sequences (DPSS). Finally, we revisit the antenna
alibration problem and present our approach to calibrating data
sing spectral redundancy, NUCAL , in Section 3.5 . 

.1 Visibility simulation review 

efore we begin with a description of spectral redundancy, we first
ive a brief description of the visibility simulations used in this work.
n order to explore the extent to which measurements which made at
he same angular Fourier mode at different frequencies are correlated,
e use the antenna layout of the HERA array for our simulations.
ERA was designed to have a high degree of spatial redundancy,
ut due to its regular layout of baselines in the same orientation, also
as a significant amount of spectral redundancy as well, making it
 good candidate for explorations of model real world arrays with
pectral redundancy. HERA’s layout and corresponding sampling of
he uv-plane are shown in Fig. 1 . 

F or our fore ground model, we generate a set of 10 5 point sources
andomly distributed across the sky. The flux density of each point
ource follows the power-law relation, 

 ( ν) = f 

(
ν

ν0 

)α

(6) 
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Figure 1. Left Panel: Array layout for the Hydrogen Epoch of Reionization Array (HERA). HERA was designed for redundant-baseline calibration, but its 
split-core configuration and 30 outrigger antennas ef fecti vely triple the number of unique baselines along any given heading in the uv plane compared to a 
simple hexagonally packed array (Dillon & Parsons 2016 ). Right Panel: Corresponding samples in the uv-plane for the antenna positions shown in the left 
panel. Black lines o v erlaid on the uv-plane designate radial headings which contain baselines with significant o v erlap of same uv-modes at different frequencies 
(at least 15 unique baseline types within the same orientation, though we will use all orientations with at least 10 unique baseline types for the NUCAL algorithm 

in Section 3 ). 
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here α is the spectral index, ν0 is the arbitrary pivot frequency, 
hich we define to be 150 MHz, and f is the flux density of the
oint source at frequency, ν0 . Our foreground sky model is defined 
s the sum of each of these randomly generated point sources, 

 ( ̂ s , ν) = 

∑ 

i 

S i ( ν) δ ( ̂ s − ˆ s i ) (7) 

here δ is the Dirac-delta and ˆ s i is the unit vector describing the 
irection to that point. For each source in our simulation, we draw
 random spectral index and flux density, where α is drawn from a
niform distribution ranging from −1 . 5 to −0 . 5, and the flux density
s drawn from an exponential distribution with a mean of 300 mJy. In
ddition to a point source foreground model, we also simulate a flat
ower spectrum EoR by generating uncorrelated, Gaussian random 

EALpix maps (G ́orski et al. 2005 ) at each frequenc y. F or these
aps, we take the map size to be NSIDE = 128 ( N pix = 1 . 96 × 10 5 )

nd with a variance of 25 mK 
2 , consistent with the expected fiducial

rightness temperature of the signal at EoR redshifts (Mesinger, 
urlanetto & Cen 2011 ). 
For our beam model, we choose an azimuthally symmetric Airy 

unction abo v e the horizon, which roughly captures the spatial and
pectral structure of a realistic instrument primary beam. This takes 
he form 

 ( ν, ̂  s ) = 

(
2 
J 1 ( πd ant ν sin θ/c ) 

πd ant ν sin θ/c 

)2 

, (8) 

here θ is the angle between zenith and the unit vector ˆ s , J 1 is the
essel function of the first order and first kind, d ant is the diameter
f the antenna, which for HERA we take to be d ant = 14 m , and λ
s the wavelength at which the beam is e v aluated. While there are
ifferences between the HERA beam and the Airy beam, they have 
imilar spatial and spectral variability, making them a good candidate 
or realistic visibility simulations (Neben et al. 2016 ). 
With the beam and sky-model set, we use the visibility equation, 

 ij ( ν) = 

∫ 
d� A ( ν, ̂  s ) I ( ν, ̂  s ) e −2 πi νb ij ·ˆ s /c , (9) 

o perform a discrete sum o v er each source in our sky-model
eighting by the value of the Airy beam at the position of the

ource for each unique baseline orientation in the HERA array. 
ach visibility is simulated o v er the frequency range 46 . 9 − 234 . 9
Hz with 1536, 122 kHz wide channels to match HERA’s extended

requency range and channel width (Fagnoni et al. 2021a ). 
In some figures later in this paper, we find it useful to generate

hermal noise for visibilities simulated to test the dynamic range 
apabilities of our technique. We generate this noise by randomly 
ampling from a complex Gaussian distribution with zero mean and 
 standard deviation set by the radiometer equation, 

ij = 

√ 

V ii V jj 

�t�ν
, (10) 

here V ii is the autocorrelation amplitude of antenna i, �t is the
ntegration time, which we set to HERA’s integration time, �t =
0 s, and �ν is the channel width. 

.2 Spectrally redundant sampling of the uv-plane 

raditional redundant-baseline calibration focuses on using simi- 
arities between baselines which share an orientation and physical 
ength. Ho we ver, within an array, there exist additional symmetries
hat can be leveraged to establish a concept of redundancy among

easurements that are not conventionally considered redundant. 
pecifically, baselines that sample the same modes in the uv-plane at
ifferent frequencies – those sharing an orientation – may not yield 
dentical visibilities values, but may still exhibit a form of redundancy
n the sense that they are strongely correlated. 
MNRAS 532, 3375–3394 (2024) 
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M

Figure 2. Traditional spatial redundancy involves comparing visibilities from antenna pairs separated by the same physical baseline vector, as we see in spectral 
phase plots of visibilities simulated with a chromatic beam and sky for 29 m (top) and 44 m (middle) baselines. Here, in these top two panels, the phase of 
each of the visibilities is plotted in the left column. In the right column, we show the corresponding antenna pairs and the baseline vectors connecting them. 
Because all antennas in the simulation share identical beams and the simulations are noiseless, the phases of the visibilities in the top rows align perfectly. In 
the lower panel, we o v erlay phase as a function of u ≡ ν| b | /c for measured visibilities whose baselines have the same orientation but different lengths. Spectral 
redundancy is evidenced by the fact that both baselines see largely the same sky (at least in phase) at different frequencies. Their amplitudes will be quite 
different, since continuum foregrounds are might brighter at low frequency, but that spectral evolution is quite smooth at fixed u , as shown in Fig. 4 . Note that 
though both baselines span the same range in ν, they span different but overlapping ranges in u (hashed regions). 
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To understand how both spatial and spectral redundancy arise
n interferometric measurements, we can generalize equation ( 9 ) to
xpress a visibility as a function of position in the uv plane, u ≡ νb /c,
qui v alent to the baseline vector in wavelength units. It enters into
he equation as the Fourier dual of the projected angular brightness
n the sky, 

 ( u , ν) = 

∫ 
d� A ( ̂ s , ν) I ( ̂ s , ν) exp [ −2 πiu · ˆ s ] . (11) 

rom equation ( 11 ), it is clear that pairs of antennas that have the same
eparation vector b ij should measure the same visibility, assuming
hat beam responses are identical. In practice, the redundancy that
rises from the spatial arrangement of these antennas is broken
y the unique signal delay and amplifier gain versus frequency
f each antenna. Ho we ver, as is mentioned in Section 2.3 , it is
traightforward to set up a system of equations to solve for such
er-antenna calibration terms in order to restore the redundancy of
he underlying measurements. 

Similarly, baselines which have dramatically different lengths may
till be redundant in the sense that they measure very similar skies
t different frequencies and thus be highly covariant. Consider the
imple case of a linear array in which all the baseline vectors are
riented in the same direction. Let us also make the simplifying
ssumption that the sky and beam are achromatic, i.e. I ( ̂ s , ν) = I ( ̂ s )
nd A ( ̂ s , ν) = A ( ̂ s ) . This allows to use equation ( 11 ) to rewrite
NRAS 532, 3375–3394 (2024) 
quation ( 9 ) as 

 ij ( ν) = 

∫ 
d� A ( ̂ s ) I ( ̂ s ) exp 

[−2 πiu ij · ˆ s 
] = V 

(
u ij 

)
. (12) 

y ignoring the frequency-dependent of the sky and the beam in this
oy example, we observe a given baseline’s spectral characteristics
re only dependent on the angular Fourier mode, u , that it measures.
n this e xample, an y two baselines in this linear array which sample
he exact same angular Fourier modes ( u 1 = ν1 b 1 /c = ν2 b 2 /c =
 2 ), would produce identical visibility values despite potentially
aving vastly different physical lengths and making measurements
t different frequency channels. These measurements could be
ompared and leveraged to constrain antenna gains, similarly to what
s done in traditional spatial redundant-baseline calibration. 

While the sky and beam are not truly achromatic as described
n this toy example, it is well known that the chromatic response
f the foreground sky is quite smooth, as it is dominated by
mooth spectrum processes such as galactic synchrotron emission.
ikewise, antenna beams are designed to be as spectrally smooth
s possible to prevent leakage of smooth spectrum foregrounds into
he EoR window. Therefore, it is reasonable to assume that the sky-
eam product A ( s , ν) I ( s , ν) evolve smoothly with frequency, which
ould allow for a high degree of phase coherence between baselines
hich measure the same uv-modes. As shown in Fig. 2 , baselines in

he same orientation can in fact agree quite well in phase, provided
he sky beam product evolve slowly as a function of frequency. 
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Figure 3. Cross-frequency correlation-coefficient matrices, R 12 ( ν1 , ν2 ) = C 12 / 
√ 

C 11 C 22 , computed by averaging over 1000 randomly generated, noise-free 
point source foreground visibility simulations. Each correlation-coefficient matrix is computed between baselines in the same orientation, but with different 
lengths (except for the five panels on the diagonal, which show frequenc y-frequenc y correlations for the same baseline). The dashed line in each plot follows, 
ν2 = ( b 1 /b 2 ) ν1 , and marks the location where baselines sample the same uv-mode, u 1 = u 2 . Here, a clear correlation can be seen between baselines of different 
lengths, indicated by the near unity value of the cross-correlation coefficient, at frequencies where pairs of baselines redundantly sample the same angular 
Fourier modes. This strongly implies that different baselines at a fixed u are sensitive to the same fundamental sky-beam structure and, in some sense, redundant. 
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We can further explore the degree to which sample the same modes
n the uv-plane are redundant by examining the cross-frequency, 
ross-correlation coefficient between pairs of baselines. Here, we 
efine cross-frequency, cross-correlation coefficient as 

 ij ( ν1 , ν2 ) = 

v i,ν1 · v ∗j,ν2 √ (
v i,ν1 · v ∗i,ν1 

) (
v j,ν2 · v ∗j,ν2 

) (13) 
here R is a matrix whose elements are the cross-correlation 
oefficients of pairs of frequencies sampled by baselines i and j 
nd v i,ν1 a mean-subtracted visibility vector containing the visibility 
alues from N = 2000 randomly generated, point source simulations 
as described in Section 3.1 ) for baseline i at frequency ν1 . 

In Fig. 3 , we show the cross-correlation coefficients for a sample
f baselines within a group of baselines with the same azimuthal
rientation in the HERA array. Along the main diagonal, we plot
MNRAS 532, 3375–3394 (2024) 
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he cross-correlation matrices of each baseline with itself, while the
ower triangle features baselines crossed with another baseline of a
ifferent length. As one might expect, baselines which have been
ross-correlated with themselves are highly correlated along their
ain diagonal. More interesting is the existence of a pronounced

orrelation between different baselines in the same orientation,
articularly at frequencies where u 1 ≈ u 2 . This manifests in the near-
nity cross-correlation coefficient in baselines of different lengths. 
This correlation means that different measurements are sensitive

o the same underlying information. A question naturally arises: why
ould this new sort of redundancy be useful ? The answer comes from

he fundamental difference between visibilities Fourier transformed
long the frequency axis (or equi v alently the line-of-sight axis) at
xed u – the η transform – and visibilities Fourier transformed along

he same axis for a fixed baseline b – the τ or delay transform. The
elay transform is, in some sense, more natural, since it is performed
irectly on the measured visibilities. Ho we ver, as we illustrate in
ig. 4 , the η transform is the space where fore grounds, ev en when
ultiplied by the beam, are the least chromatic. 
In the centre two panels Fig. 4 , we plot the amplitude and phase

f a simulated slice of the uv-plane, modelled with smooth spectrum
oregrounds and a chromatic Airy beam as described in Section 3.1 ,
s a function of u and ν. Overlaid on these panels are a series of large
small) white dotted lines, which represent every hundredth (tenth)
requency and the u mode sampled there by a group of nine baselines
riented in the East–West direction within the HERA array. 
In the bottom panel, we construct the 2D power spectrum of the

aselines depicted in the central two panels. We form this power
pectrum by taking the Fourier transform over the frequency axis of
ach of the simulated visibilities individually (known as the delay
pectrum) o v er the frequenc y range 130 − 170 MHz, as indicated
y the magenta data points in the second and third panels. While
he amplitude of the power spectrum is dominated by smooth
pectrum sources, the process of forming the power spectrum through
he delay transform ef fecti v ely mix es rapidly varying uv-modes.
onsequently, this mixing results in the contamination of foreground
o wer at lo wer delays, or τ (the Fourier dual of frequency in the delay
e gime) e xtending to higher delays. The e xtent of the power leakage
s contingent on the range of uv-modes sampled by a given baseline,
hich is dependent on the baseline’s physical length. This baseline-
ependent mode-mixing effect is precisely what leads to the widely
bserved wedge effect that challenges the measurement of the 21 cm
ignal. 

In the top panel, by contrast, we form the 2D power spectrum
 v er the same frequency range, but this time applying a Fourier
ransform directly to the visibility simulation itself perpendicular to
he uv-axis–η-transform. Unlike the delay transform, the η-transform
oes not introduce mixing between different uv-modes. Instead, it
erforms a Fourier transform along the frequency axis while keeping
he u coordinate fixed. Here, we see that the η-transform isolates
eam-weighted foregrounds to many fewer modes than the delay-
ransform due to keeping the more chromatic axis of this plane u
xed, leaving much of the Fourier space clean to measure the 21 cm
ignal. Put another way, the sky-beam product can accurately be
escribed by many fewer parameters at fixed u than at fixed b for all
ut the shortest baselines. 

While in practice we generally do not have access to all the required
odes necessary to perform an η-transform and achieve this level of

oreground isolation, this fundamental difference between the delay
nd η-transforms underscores the potential of redundant sampling
f fixed uv-modes. If we can perform repeated sampling of fixed
 -modes across frequency, as is done by comparing overlapping
NRAS 532, 3375–3394 (2024) 
easurements between baselines in the same orientation which re-
undantly sample the same modes in the uv-plane, one can ef fecti vely
ifferentiate between the intrinsic chromatic structure of a baseline
hat samples a broad range of u -modes and the true chromaticity
f the beam-weighted sk y. Lev eraging the power of spectrally
edundant sampling of the uv-plane for precise estimates of the sky
hromaticity holds great promise for a number of applications. In
articular, it pro v es to be a powerful tool in calibration applications,
olving for antenna gains which cause visibilities to deviate from the
xpected chromaticity at fixed u -modes, and for impro v ed fore ground
uppression. We explore both applications later in this paper. 

.3 Constructing a model for spectrally redundant visibilities 
ith DPSS 

ne important distinction between spatial redundancy and spectral
edundancy is that while two or more spatially redundant baselines
an be directly compared when calibrating, it is much less straight-
orward to compare measurements that sample the same modes in
he uv-plane with spectral redundancy – a point we highlight in
igs 2 and 4 . In traditional spatial redundancy, one expects that two
aselines with the same separation vector should be redundant up
o the per -antenna, per -frequenc y comple x gains, assuming perfect
edundancy in the array (i.e. identical beams and perfect antenna
lacement). Because each baseline makes the same measurements
t the same frequency channels, comparing these measurements to
nforce spatial-redundancy between baselines is trivial. 

Ho we ver, comparing measurements in an attempt to enforce the
ess-than-perfect spectral redundancy between two or more baselines
hat sample the same uv-mode is not as simple. Simply put, while
he true visibility evolves smoothly with frequency at fixed u , it still
oes evolve and that evolution must be parametrized and modelled.
urther, we must deal with the complexity introduced by the fact that
aselines in the same orientation that cross a given mode in the uv-
lane at different frequencies rarely sample the exact same modes.
oth challenges must be tackled in order to compare measurements
cross baselines. 

One prior approach to incorporating spectral redundancy into
alibration tried to solve this problem by statistically modelling the
orrelations between baselines in order to solve for the models of the
isibilties which were spectrally redundant. In Byrne et al. ( 2021 ), the
uthors introduced a technique for incorporating spectral redundancy
nto a unified Bayesian frame work, citing pri v ate communication
ith some of us during the development of this work. Their technique

orward-modelled the cross-frequenc y co variance between baselines,
ncorporating information about the sky and beam model into the
stimate of the covariance matrices. These covariance matrices were
hen used in an optimization loop which penalized non-redundant
eatures between pairs of visibilities when solving for a set of
pectral redundant visibility models. This technique has the benefit
f modelling the redundancy between baselines which may not
trictly sample the same modes in the uv-plane, but nearby modes.
his approach makes the technique very flexible, but extremely
omputationally challenging for arrays with wide-bandwidths and
an y frequenc y channels to take advantage of spectral redundancy.
dditionally, this approach requires accurate knowledge of the

ky and primary beam to product estimates of the cross-baseline
requenc y–frequenc y co variance matrices used in the optimization
oop. 

Ideally, we would like our technique to make assumptions which
re informed by realistic properties of the sky and the beam,
ut not r equir e precise knowledge of either to perform accurate
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Figure 4. A demonstration of the advantages of spectral redundant sampling of the uv-plane. In the centre two panels, we plot the u − ν footprint of a group of 
nine baselines oriented in the East–West direction within the HERA core in white o v er a simulation of visibility amplitudes and phases modelled with smooth 
spectrum foregrounds and an Airy beam, as a function of u and ν. Here, the large dots represent visibility measurements for every 100th channel and small dots 
represent every 10th channel (the true channel width of 122 kHz). All visibility measurements fall on these lines. In the bottom panel, we form the 2D power 
spectrum of the visibilities from the baselines plotted in the centre two panels by taking the delay transform of each of the simulated visibilities individually 
o v er 130 − 170MHz (as shown by the magenta points between frequencies 130-170 MHz). While the amplitude of the power spectrum is dominated by smooth 
spectrum sources, forming the power spectrum by taking the delay transform of the visibilities, V τ , mixes quickly varying uv-modes, which bleeds power, from 

the intrinsically foreground-dominated lower-order Fourier modes to the higher order Fourier modes, leading to the wedge effect. In the top panel, we form 

the 2D power spectrum o v er the same range of frequencies, but instead take the Fourier transform of the visibility simulation perpendicular to the uv-axis, also 
known as the η-transform, V η . Here, the η-transform highlights the localization of foreground power to low- η modes which results from the Fourier transform 

being taken o v er a fixed angular scale. By comparing the measurements of baselines which redundantly sample the same modes in the uv-plane, one can infer the 
true frequency-structure of the foreground-beam product, despite the fact that the baselines themselves are highly chromatic as evidenced by the delay transform. 
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alibration and modelling of the spectrally redundant visibilities. 
dditionally, we would like to strictly enforce that our modelling 
rocedure explicitly limits the modelled foreground visibilities to 
he level of spectral structure we expect. To achieve these require- 

ents, we choose to model our spectrally redundant visibilities as 
 linear combination of a finite number of highly efficient basis
unctions known as DPSS or the Slepian basis. These basis functions
ave the ideal property of having their power being maximally 
oncentrated within a contiguous region of Fourier space with 
 half-bandwidth of ηw while also being orthonormal, making 
hem a powerful set of basis functions for modelling band-limited 
ignals. 
MNRAS 532, 3375–3394 (2024) 
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In recent years, the DPSS basis has gained popularity in the
1 cm community as an efficient basis for per-baseline modelling
f foregrounds (Ewall-Wice et al. 2021 ), in-painting missing data in
hannels flagged for radio frequency interference (RFI; Pagano et al.
023 ), and for performing gain calibration (Ewall-Wice et al. 2022 ).
s a mathematical basis, DPSS modes span the space of variations

ubtended by interferometric measurements of foregrounds while
roviding a rigorous formulation for limiting the scale of modelled
tructure – particularly in applications with irregular sampling such
s in-painting or modelling flagged data – using pseudo-inverses of
n analytically calculable covariance matrix. 

The DPSS basis functions are defined with respect to some finite
and within which we want to maximally concentrate the power of
hat function. The spectral concentration ratio for some function ϕ is
he Fourier domain of ν, η, is defined as follows: 

= 

∫ ηw 

−ηw 

| ϕ ( η) | 2 dη
/ 
∫ ηmax 

−ηmax 

| ϕ ( η) | 2 dη, (14) 

here ηw is the half-width in η that we wish to maximally concentrate
he power of ϕ and ηmax is the Nyquist limit for the discrete grid of
oints o v er which the discrete band in ν is defined. By maximizing
his quantity, one obtains the first DPSS mode for a given ηw . The
ull set of DPSS basis functions is formed for this ηmax by repeatedly
olving for the function that maximizes μ and is also orthogonal
o all prior solutions to equation ( 14 ). This procedure provides
 basis which is complete within the bounds −ηw < η < ηw and
lso maximally concentrates its power within these bounds. Slepian
 1978 ) showed that this optimization problem could be summarized
y solving the eigenvalue problem, 

N d −1 ∑ 

n = 0 

ϕ n ( N d , W ) 
sin [ 2 πW ( m − n ) ] 

π ( m − n ) 
= ϕ n ( N d , W ) λn ( N d , W ) , 

(15) 

here W = ηw �ν is a parameter which sets the filter half-width of
he filter in Fourier space, ϕ n ( ν) is the n th DPSS function, N d is
he number of discrete points where ϕ is e v aluated, and λn is the
orresponding eigenvalue of the n th DPSS function. 

While the number of functions in a complete set of DPSS basis
unctions is equal to the number of samples in the basis, N d , typically
nly a few basis vectors are actually needed to represent a given
and-limited signal to high precision if it is spectrally smooth.
hich basis functions are used for modelling a given band-limited

ignal is typically determined by the eigenvalue spectrum of the
PSS eigenfunctions. The eigenvalue spectrum of DPSS modes
as a characteristic step shape where significant eigenvalues have
 value near 1 and whose power is primarily concentrated within
w and insignificant eigenvalues have a value near 0 and have
ignificant power leakage beyond | η| > ηw , with a few eigenvalues
ith intermediate values (1 > λ > 0). The approximate number of

igenmodes with near unity eigenvalue values asymptotes to ∼2 BW 

hen N → ∞ (Slepian 1978 ; Karnik, Romberg & Davenport 2020 ).
he shape of this eigenvalues spectrum allows us to select a finite
umber of basis functions to fit or filter data by taking only those
ith eigenvalues greater than some eigenvalue cut-off ε. We perform

his fitting and/or filtering of data presumed to be band-limited using
he linear least-squares approach laid out in the DAYENUREST
ormalism in Ewall-Wice et al. ( 2021 ). In this paper, we take
= 10 −12 . 
For this paper, we utilize the DPSS basis to modelling groups of

aselines within the same orientation as the outer product of two sets
f DPSS vectors in order to model the spatial and the spectral axes.
NRAS 532, 3375–3394 (2024) 
amely, 

 
model 
i−j ( ν) = 

∑ 

m 

∑ 

n 

a mn ϕ m 

(‖ u ij ‖ , � max 

)
ϕ n ( ν, ηmax ) (16) 

here ϕ m and ϕ n are the sets of basis functions that model the uv-
xis and frequency axis respectively and � w and ηw are parameters
hich set the Fourier half-width of the uv-axis and frequency axis

espectively. By taking the outer product of these set of basis
unctions, we ef fecti vely form a new set of basis functions whose
ower is concentrated in a rectangular region of 2D Fourier space
ithin the Fourier domains of u and ν ( � and η respectively).
epresenting baselines in this way allows us to precisely limit the
odel to the level of structure that we expect to be present in each

xis of a set of spectrally redundant visibilities. For the spatial axis,
e restrict the DPSS basis to evolve no faster than −1 < � < 1 as

imited by the horizon (i.e. half-wavelength scales in u ). For the
pectral axis, we inform of choice of DPSS based on stringent limits
et by antenna chromaticity (Ewall-Wice et al. 2016b ; Neben et al.
016 ; Th yag arajan et al. 2016 ; Patra et al. 2018 ; Nunhokee et al.
020 ; Fagnoni et al. 2021a , b ) and foreground smoothness (Tegmark
t al. 2000 ; Wang et al. 2006 ; de Oliveira-Costa et al. 2008 ; Liu &
egmark 2012 ; Zheng et al. 2017 ). For this paper, we take the Fourier
alf-width of the spectral axis to be ηw = 25 ns. 
We compute the DPSS basis functions along the frequency axis

y using the SCIPY implementation (Virtanen et al. 2020 ), which
mploys the Lanczos algorithm to solve the eigenvalue problem
equation 15 ). This approach necessitates that the samples along the
xis where the basis functions are generated be uniformly spaced.
iven that each baseline within the HERA array sample the same

requencies and the frequency channels are sampled uniformly, this
ondition is satisfied. 

In contrast, the spatial axis lacks a uniformly spaced grid that is
onsistent across all baselines in the group that would allow us to use
he SCIPY implementation. This discrepancy arises from the fact that
he spacing of discrete samples along the uv-axis is determined by the
ength of the baseline (i.e. �u = �νb /c). Therefore, each baseline
n the spectrally redundant group samples the uv-axis non-uniformly,
hich requires that we generate values from the Slepian basis that

xactly correspond with the location each baseline samples in the
v-plane. To satisfy this requirement, we instead generate samples
rom the continuous extension of the DPSS – the prolate spheroidal
ave functions. 2 

We generate these functions by utilizing an implementation that
olves the continuous eigenvalue problem described by ∫ 

sin 
[
2 πηw 

(
ν − ν ′ )]

π ( ν − ν ′ ) 
ϕ n ( ν

′ , ηw ) dν ′ = λn ϕ n ( ν, ηw ) . (17) 

his method uses a normalized Legendre polynomial expansion to
ample from the prolate spheroidal wave functions at the exact values
f u each baseline measures. Further details regarding the process
or generating these samples can be found in Moore & Cada ( 2004 ).

To demonstrate that this basis and parametrization is sufficiently
exible to model astrophysical foregrounds as observed by a realistic
eam, we explore how well we can model the entire u - ν plane
similar to Fig. 4 ). The fit, which we show in Fig. 5 for one of the
est-sampled spectrally redundant groups in the array, is constrained
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Figure 5. Here, we demonstrate the DPSS model’s ability to accurately fit the u - ν plane with a relatively restricted set of basis vectors. In the top panel, we 
show true visibility without noise, evaluated using equation ( 9 ), for one of the best-sampled spectrally redundant groups in the array. This is done not just at the 
points actually measured by the array (shown in dotted and solid lines), but across the entire plane. We then show in the middle panel our model (equation 16 ), 
which is fit using only the discrete set of visibility samples. Finally, we show the magnitude of the difference in the bottom panel. The bold lines indicate the 
baselines we show the relative error of the model in Fig. 6 . When the frequency density of visibility samples is high enough – i.e. where the spectral redundancy 
is large enough – the model is a good fit and can even accurately interpolate between measured points (blue regions). Where the spectral redundancy is lower, 
such as in the upper left, the fit is underdetermined and only the actual sampled visibilities are well-modelled. This figure can give us a sense of where we 
e xpect fore ground modelling and subtraction with spectral redundanc y to be ef fecti v e and where we e xpect it to be lossy and to remo v e cosmological signal in 
the wedge – a point we return to in Section 5 . 
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nly by the discretely sampled visibilities in the spectrally redundant 
roup. Despite that, not only are the observable visibilities fit well, 
ut much of the unobserved parts of the plane are fit well too. This
trongly implies that with sufficient spectral redundancy, the DPSS 

odel is o v erdetermined by the visibilities and that extra information
ould be used to subtract foregrounds within the wedge. Of course, 
his raises a question of signal loss, which we return to in Section 5 .

Re gardless, by e xamining the quality of the fit to the actual
easurable visibilities, which we show in Fig. 6 , we can see that

he model and its limited range of basis vectors is sufficient to model
oregrounds to better than 1 part in 10 6 . At least to the level of realism
eflected by our simulations, this is more than enough dynamic range 
o precisely model and remo v e fore grounds to below the expected
oR level. This is very promising, though there are certainly real- 
orld complexities that any application of this technique would have 

o address, as we discuss in Section 6.1 . 
.4 The robustness of the DPSS model to spectrally localized 
eatures 

ne downside to incorporating cross-frequency, cross-baseline in- 
ormation into a model fit, as is described in the previous sub-
ections, is the potential for that fit to be corrupted by fea-
ures in the visibilties which are compact in frequency and large
n amplitude. These features, which violate the assumptions of 
pectral redundancy, can lead to model errors which can ripple 
cross the frequency band of one or more baselines. One such
pectrally localized feature commonly found in visibility data 
s RFI. 

In Fig. 7 , we demonstrate this effect by fitting the DPSS basis
escribed in the previous section to the most spectrally redundant 
roup of visibilities within the HERA array – the same group used
n Figs 5 and 6 . Prior to performing the fit, we simulate unflagged
MNRAS 532, 3375–3394 (2024) 
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Figure 6. To more quantitatively assess the fidelity of the NUCAL model fit in 
reproducing the simulated visibilities, we plot the relative error of the model 
shown in Fig. 5 evaluated for the three baselines highlighted as solid lines. 
Regardless of the level of spectral redundancy at the u modes probed by these 
baselines, the model is able to fit a foreground-only simulation to a very high 
dynamic range – better than 1 part in 10 6 . This is despite the fact that the 
NUCAL is restricted to only modelling slow frequency evolution at fixed u . 
This demonstrates the flexibility of the model, though we expect that the level 
of spectral redundancy will still matter when assessing cosmological signal 
loss (see Section 5 ). 
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Figure 7. Demonstration of the robustness of the DPSS basis being used 
to model a group of spectrally redundant baselines to real-world effects. 
This modelling basis is restricted to modelling structure which is smooth as 
a function of frequency at a fixed u , and rejects shapes in visibilities that 
are spectrally compact. To demonstrate this ability, we simulate RFI in one 
frequency channel across all baselines in the spectrally redundant group (58 
baselines with the same orientation), and fit our model to the simulations 
with noise and RFI added. Leveraging spectral redundancy, we find that the 
DPSS basis functions are able to produce a model (solid black line) of smooth 
spectrum foreground emission of one of those baselines (in this case 9.3 m 

east, 12.0 m south) to the level of the thermal noise (dashed black line) while 
mostly rejecting the RFI spike, which can be seen in the data-model residuals. 
The residuals show remarkable agreement with the thermal noise simulated 
across most of the band, demonstrating the ability of the DPSS basis to 
model and remo v e fore grounds. In particular, this technique may be adept at 
identifying low-amplitude narrowband RFI, which is difficult to locate using 
traditional methods and has the potential to introduce high-delay structure 
which can swamp the cosmological signal. A more thorough investigation of 
that potential is left for future work. 
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FI in the measurement set by adding a 50 Jy RFI blip to all the
imulated visibilities at a single frequency channel near 100 MHz .
e then perform a linear-least-squares fit of the DPSS basis to the

isibilities with the RFI added and plot the simulated visibilties, the
PSS model, and residuals. From the figure, we observe that fitting

he DPSS basis to a set of baselines corrupted by RFI does in-fact
ead to errors which impact nearby channels, as can be seen in the
esiduals. Ho we ver, thanks to the stringent constraints imposed by
pectral redundancy and the DPSS basis, our set of basis function
re still able to model and remo v e fore ground emission down to the
hermal noise floor o v er the majority of the band. 

While these types of errors are concerning if we wish to produce
igh-fidelity models of foreground emission over a wide-range of
requencies, there are techniques which can minimize the impact
f the spectrally localized features, such as detecting and flagging
he worst offending sources of RFI before fitting and implementing
rocedures which identify RFI-impacted channels during the fitting
rocess. This potential pitfall may also to pro v e a strength of
pectral-redundancy – if certain channels exhibit a particularly strong
iscrepancy between data and model, that maybe be evidence for
arrowband RFI that should be flagged before re-running the fit. 

.5 Spectrally redundant calibration ( NUCAL ) 

or highly spectrally redundant baseline groups (see Fig. 1 ), the
arameters describing the smooth foregrounds in equation ( 16 )
re o v erdetermined. This means that the data can simultaneously
onstrain the foreground model parameters and nuisance parameters
ike calibration gains. Just as in redundant-baseline calibration, our
oal when we perform that fit is to minimize χ2 , which represents
he noise-weighed sum of the difference between our measured and
isibilities modelled with DPSS modes in equation ( 16 ). Here, we
NRAS 532, 3375–3394 (2024) 
eneralize equation ( 3 ), 

2 = 

∑ 

ijν

∣∣V 
obs 
ij ( ν) − G ij ( ν) V 

model 
i−j 

(
u ij , ν

)∣∣2 
σ 2 

ij ( ν) 
, (18) 

here we seek to solve for both for our visibility model and antenna
ains. Here, σ 2 

ij is a weighting function that incorporates thermal
oise variance and any flags, which are treated as having infinite
ariance, and G ij are a set of gain parameters to be solved for in
alibration. While in redundant-baseline calibration, V 

sol 
i−j is allowed

o have arbitrary spectral structure considering that each frequency
s solved for independently, NUCAL restricts V 

model 
(
u ij , ν

)
to be the

um of a limited number modes at fixed u that vary smoothly in
requency. 

By using multiple orientations within the uv-plane which have
aselines with significant o v erlap and modelling each with the
PSS basis, equation ( 18 ), the simultaneous solution of G ij ( ν) and
 
model 

(
u ij , ν

)
becomes even more overdetermined – depending on

he degrees of freedom we assign to our model for G ij ( ν). Restricting
he visibility model to a set of relatively smooth DPSS vectors in
 and ν allows this calibration to minimize spectral structure in
alibrated visibilities and attempts to put as much of the observed
pectral structure in uncalibrated (or partially calibrated) visibilities
nto the gains. Where traditional spatially redundant calibration uses
nternal symmetries in an array to calibrate antenna gains to one
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nother at each frequency independently, NUCAL uses analogous 
ymmetries in the spectral response to explicitly calibrate the array 
long the frequency axis. This allows spectrally redundant baselines 
o be brought into alignment with a physically moti v ated model
or the angular arrangement and chromatic variation of the bright 
oregrounds that dominate their measurements. 

This is one of the primary benefits of spectral redundancy: 
t provides us a new-axis for enforcing self-consistency between 
isibilities. Although spectral redundancy does not require that two 
ifferent baselines precisely measure identical visibility values at 
he same angular Fourier modes across various frequencies, it does 
mpose stringent constraints on the extent of spectral variations at a 
onstant value of u across baselines of vastly different lengths. Be-
ause we anticipate these measurements to exhibit gradual changes 
ith frequency at fixed angular scales, deviations from the anticipated 

evel of spectral smoothness observed in the raw visibilities can often 
e ascribed to non-smooth signal chain ef fects. These de viations are
ubsequently accounted for as direction-independent antenna gain 
erms during the fitting process. 

While NUCAL can in principle be applied to solve for per- 
ntenna gains, for this paper we restrict NUCAL to only work within
he degenerate space of spatially redundant baseline calibration. 
UCAL is a somewhat natural solution to fixing the degeneracies of
edundant-baseline calibration without introducing spectral structure 
nto the degenerate parameters, as many arrays which have leaned 
eavily on spatial redundancy, such as HERA and PAPER, are also 
apable of being calibrated using spectral redundancy. The procedure 
or solving for these degeneracies is quite straightforward within the 
ramework of NUCAL . We restrict G ij ( ν) to take the form 

 ij ( ν) = A ( ν) exp 
[
i � ( ν) · b ij 

]
, (19) 

here A and � are the frequency-dependent amplitude and phase 
ip-tilts degeneracies described in Section 2.3 . In this way, NUCAL 

eplaces (or at least refines) the absolute calibration step that must
ollow after redundant-baseline calibration. More importantly, it 
oes so in a way that optimizes for the spectral smoothness of the
alibrated visibilities and thus reduces the impact of gain errors due 
o sky-model incompleteness. 

Because NUCAL relies on fitting many spectrally redundant groups 
imultaneously to constrain these array-wide de generac y parameters, 
nd because adding gains makes the fit no longer linear, the com-
utational challenge is dramatically increased compared to fitting 
 DPSS model to a single spectrally redundant group. Therefore, 
e implement the calibration routine described abo v e as a first-
rder gradient descent optimization in JAX and OPTAX (Bradbury 
t al. 2018 ) to take advantage of the built-in autodifferentiation, 
ust-in-time compilation, XLA acceleration, and library of popular 
ptimizers. As written, the gradient descent algorithm makes the 
roblem of calibrating every frequency channel simultaneously 
ractable, but only converges to the local minima closest to our initial
uess of the model parameters. Therefore, NUCAL is best applied after 
n initial sky-based absolute calibration has already been performed. 

It is worth noting that this technique bears several similarities to 
he recently proposed calibration technique, CALAMITY (Ewall- 

ice et al. 2022 ), which also utilizes the DPSS basis to model
oregrounds and solves for antenna gains by minimizing a loss 
unction using first-order gradient, but does so in a way that does not
ncorporate spectrally redundant information into the fit. For a re vie w
f the similarities and differences between these two approaches, see 
ppendix A . 
.5.1 NUCAL degenerate parameters 

ike spatially redundant calibration, spectrally redundant calibration 
s not a full solution of all the calibration degrees of freedom. Given
hat NUCAL calibrates on the basis of internal consistency between 
aselines that redundantly sample the same modes in the uv-plane at
ifferent frequencies, there are a set of transformations that can be
pplied to either the gains or visibility models that ultimately leave
he value of χ2 in equation ( 18 ) unchanged. For example, one can take
 → 2 A from equation ( 19 ) and a mn → 

1 
2 a mn from equation ( 16 )

ithout modifying the product G ij V 
model 
i−j in equation ( 18 ). The

recise number and shape of these degeneracies depends on one’s 
rray layout and DPSS parametrization. 

Ho we ver, because we enforce that the visibility model is spectrally
mooth at a fixed uv-mode across baselines in a spectrally redundant
roup, the number of NUCAL degeneracies must be dramatically 
educed from the number of degeneracies that must be fixed by
raditional absolute calibration after spatially redundant calibration. 
here were at least three physically important numbers per frequency 
er polarization. Here, we expect only a handful of such numbers
 v er the whole band. This largely eliminates the need for sky-
ased absolute calibration to faithfully calibrate fine-scale spectral 
tructure, and thus reduces the impact sky or beam modelling errors
an have on the final calibration solution. 

In practice, one can use NUCAL by starting with a best-attempt at
ky-based absolute calibration and letting the degeneracies simply 
e left unmodified by the gradient descent solver, which only takes
teps in non-degenerate directions. Because the visibility model 
s restricted to one consistent with smooth spectrum foregrounds, 
he dynamic range of foreground subtraction (see Section 5 ) is not
ffected by absolute calibration errors in the degenerate subspace of 
UCAL . This of course assumes that perfectly calibrated foregrounds 
re well-captured by the parametrized NUCAL model. While one can 
till get errors in the degenerate subspace that affect the magnitude
f the reco v ered EoR signal as a function of redshift, these sorts of
rrors do not risk mixing the foreground signal into uncontaminated 
odes, as is the case in the standard direction-independent calibration 

roblem. 

 DEMONSTRATION  OF  SPECTRALLY  

EDUNDANT  CALIBRATION  (  NUCAL )  ON  

IMULA  TED  DA  TA  

n this section, we test the performance of NUCAL on a set of simulated
isibilities which contain realistic spectral variation and calibration 
rrors. We begin with a description of the gains applied to the
imulated data to produce a set of ‘uncalibrated’ data. 

.1 Setting up the problem 

or the simulations used in this section, we assume that the data have
lready been redundantly calibrated and that the only remaining 
alibration required is the removal of the degeneracies of spatially 
edundant calibration. This is done to reduce the computational cost 
f performing a per-antenna gain calibration, but is still a scenario of
ractical rele v ance gi ven that the arrays designed to perform spatial
edundant calibration also generally have some degree of spectral 
edundancy (e.g. PAPER and HERA). Here, we simulate the need 
or such a calibration by moving our model visibilities within the
egenerate parameter space of redundant-baseline calibration. To 
ighlight NUCAL ’s ability to accurately account for arbitrary amounts 
f spectral structure in an instrument bandpass, we simulate the 
MNRAS 532, 3375–3394 (2024) 
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Table 1. Visibility simulation and calibration details. 

Parameter Value 

Instrument layout HERA-350 (Hexagonal Core and Outrigger Antennas; Fig. 1 ) 
Frequency range 46.9 −234.4 MHz 
Frequency resolution ( �ν) 122 kHz 
Sky model 10 5 Point Sources (equation 6 ) + Flat-Spectrum Power Spectrum 

Beam model Airy Beam (equation 8 ) 
Spatial axis DPSS half-width parameter 0.5 λ
Frequency axis DPSS half-width parameter ( ηw ) 25 ns 
Minimum number of unique baselines per group 10 
Model constraints (data points/parameters) 11.94 
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egenerate amplitude (equation 4 ) and tip-tilt parameters (equation 5 )
o vary rapidly from channel-to-channel by drawing the amplitude
rom a normal distribution with a mean of 1 and standard deviation
f 0.01 and the tip-tilt de generac y from a normal distribution with a
ean of 0 radians per meter and standard deviation of 0.01 radians

er metre for both the north–south and east–west parameters. 
We then use NUCAL to calibrate this corrupted data set by selecting

aselines within orientations which have greater than 10 unique
aseline types to participate in the estimation of the gains. For
ach unique orientation, we construct a foreground model, allowing
ach set of foreground components to vary independently of all
ther orientations included in the calibration and restrict the set
f basis functions modelling the spatial axis to only model out
 = 100 λ. We then e x ecute the first-order gradient descent to refine
ur initial estimates of the foreground model components and the
edundant-baseline degeneracies. The final product of the NUCAL

mplementation produces a DPSS-based model of the sky, V 
model 
i−j ,

 set of calibrated visibilities, V ij , and an estimate of the spatially
edundant degeneracies, A ( ν) and � ( ν) . Since our primary goal is to
est the dynamic range of this calibration procedure, our simulations
re noise-free. See Section 3.1 for details on visibility simulations
nd Table 1 for a summary of simulation and calibration parameters.

.2 Demonstration of NUCAL ’s dynamic range in Fourier space 

fter NUCAL , we perform a delay transform, in which we substitute
 Fourier transform along the frequency axis of a visibility for a line-
f-sight Fourier transform (Parsons et al. 2012b ; Liu et al. 2014a ), 

˜ 
 ( τ ) = 

∫ 
dν V ( ν) W ( ν) e −2 πiτν (20) 

here W ( ν) is a frequency taper function applied to the data prior
o Fourier transforming, which we take to be a Blackman–Harris
unction (Harris 1978 ). We perform this delay-transform on both the
UCAL -calibrated visibilities, and the uncalibrated visibilities and the
isibilities of the foregrounds and EoR separately. 
In Fig. 8 , we inspect the delay-transformed visibilities associated

ith three baselines that belong to the same spectrally redundant
roup. The primary goal of this analysis is to assess the ef fecti veness
f NUCAL in mitigating spurious spectral structure imparted by a
ighly chromatic bandpass. For each of the baselines plotted, we
nd that NUCAL is ef fecti vely able to solve for and thus calibrate out

he redundant-calibration degenerate parameters. More importantly,
UCAL is able to converge to a solution of the degeneracies at a
recision necessary to reco v er the 21 cm signal outside the wedge
or each of the baselines plotted. This demonstrates NUCAL ’s utility
or dramatically reducing the complexity of absolute calibration
fter redundant-baseline calibration and for isolating the result from
NRAS 532, 3375–3394 (2024) 
ky and beam modelling errors that would impart spurious spectral
tructure to contaminate the EoR window. 

 SPECTRAL  REDUNDANCY  AS  A  METHOD  OF  

OREGROUND  MODELLING  AND  

UBTRACTION  

otentially the most interesting application of spectral redundancy
s the production of incredibly accurate sky models. The model of
he sky that we fit during spectrally redundant calibration, can also
e used as a spatiospectral filter of beam-weighted smooth-spectrum
ky emission. When the sampling of uv modes is sufficiently dense
long a given orientation, this model constrains foreground emission
t a given frequency using information from a wide range of other
requencies – much wider than the coherence scale of cosmological
1 cm emission. This means that, for certain orientations and fre-
uency ranges, this technique has the ability to remo v e fore grounds
hile retaining 21 cm emission within the wedge, even with a realistic

ev el of sk y and beam chromaticity. Access to these modes would
reatly increase the sensitivity of 21 cm experiments as a significant
umber of SNR modes lost to foreground contamination, particularly
nterferometers with many long baselines which must sacrifice more
ensitivity than compact arrays to estimate the delay spectrum using
nly modes outside the wedge (the so-called foreground a v oidance
trategy). 

In this section, we attempt to use spectral redundancy to excise
oregrounds from a set of simulated visibilities while still leaving
odes within the wedge. For ease of analysis, we assume that our

imulated visibilties are perfectly calibrated so that the ef fecti ve-
ess of this basis for removing foregrounds while leaving 21 cm
ignal reco v erable can be e v aluated without the complication of
nstrumental systematics. In order to examine our ability to reco v er
osmological signal within the wedge for existing instruments, use
he single most spectrally redundant group of visibilities within the
ERA array. With this set of uncorrupted simulated visibilities, we
se the set of DPSS modelling vectors to perform a least-squares
t to the simulated data allowing the set of filters modelling the u -
xis the freedom to model structure that varies at scales of half a
avelength and the set of filters which model the spectral axis to
odel variation with a Fourier half-width in η of ηmax = 25 ns as
as done in Sections 3 and 3.5 . 
After computing this model, we form an estimate of the power

pectrum by forming delay-spectra for each baseline within the
pectrally redundant group for each of the simulated data products
simulated 21 cm signal, foregrounds, 21 cm signal and foregrounds,
nd the visibilities filtered by subtracting the NUCAL ) using the delay-
ransform where the visibilities are multiplied by a Blackman–Harris
indow function (equation 20 ). We take the delay-spectrum o v er the
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Figure 8. Demonstration of NUCAL ’s ability to calibrate out arbitrary spectral structure introduced by an instrument for three different baselines within the 
same spectrally redundant group. Plotted in green is a noise-free but intentionally uncalibrated simulated visibility, with gains only in the degenerate subspace of 
redundant-baseline calibration. We also plot the power spectrum of noise-free simulated foreground visibilities (blue dashed), the EoR power spectrum (black), 
and the visibility after spectrally redundant calibration (orange). We find that NUCAL , by restricting the level of spectral structure allowed in the calibrated 
visibility, correctly remo v es the spatially redundant degenerate parameters in our simulated visibilities, leaving calibrated visibilities consistent with the EoR 

power spectrum outside the wedge. 
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requency band, 60 −70 MHz, where more baselines in the group 
ave more significant spectrally redundancy. It should be noted that 
hile the power spectrum is estimated o v er a small sub-band, the
UCAL model is fit o v er the full frequency range of 46.9 −234.4 MHz.
e then estimate the 2D power spectrum by squaring the delay 

pectra and scaling to cosmological power spectrum units using, 

ˆ 
 ij 

(
k ⊥ , k ‖ 

) = 

X 
2 Y 

�pp B 

∣∣∣ ˜ V ij ( τ ) 
∣∣∣2 

, (21) 

Parsons et al. 2014 ) where ˆ P ij is our estimate of the power spectrum
s measured by baseline, b ij , �pp is the solid angle integral of the
rimary beam squared, X and Y are linear scaling factors which 
ap comoving distance to angular separation and radial comoving 

istances to the frequency interval �ν, 

 ( z ) = 

c ( 1 + z ) 2 

ν21 H ( z) 
(22) 

 ( z ) = 

c 

H 0 ν21 

( 1 + z ) 2 

E ( z ) 
(23) 

nd B is the bandwidth o v er which the delay transform was taken
Furlanetto et al. 2006 ; Parsons et al. 2012b ). We also transform
ur baseline and delay coordinates into cosmological spatial modes 
erpendicular, k ⊥ = 2 πb ij /X, and parallel to the line of sight,
 ‖ = 2 πτ/Y (Parsons et al. 2012a ). For all results shown, we adopt a
 CDM cosmology derived from the Planck 2018 analysis when 

omputing power spectra and cosmological coordinates (Planck 
ollaboration VI 2020 ). 
In Fig. 9 , we display the results of our foreground filtered visibilties

s 2D power spectra for 21 cm signal, foregrounds, foregrounds and 
1 cm and the filtered foregrounds and 21 cm signal. We find that
UCAL is able to substantially suppress foreground modes within 
he wedge, while revealing relatively clean EoR signal. We find 
ubstantial signal loss – i.e. incorporation of EoR fluctuations into 
he NUCAL model, which is then subtracted off – at low k ‖ and k ⊥ .
his is clearest for short baselines, which have the least spectral

edundancy (see Fig. 4 ). This lack of spectral redundancy leads
o degeneracies between the foreground filters and 21 cm signal 
hat leads to an o v ersubtraction of cosmological signal within the
edge. Note that this result is for the single best-sampled spectrally

edundant group with 58 unique baselines, all oriented in the same
irection (see Fig. 1 ); we should expect less ef fecti ve subtraction
or other groups in HERA. Many orientations within HERA have 
oo few baselines to fit the smooth foreground degrees of freedom
n equation ( 16 ). Of the 61 075 total single-polarization baselines
n HERA-350, which sample 6610 unique baseline vectors, 26.8 
er cent belong to baseline groups with 10 or more unique baselines –
nough to be useful for NUCAL (see Section 3.5 ). 13.5 per cent belong
o highly spectrally redundant baseline groups with 25 or more unique
aselines. 
In Fig. 10 , we quantify the level of signal loss from o v erfitting

uring foreground subtraction by comparing the filtered power 
pectrum to the input EoR power spectrum. We find that some
mount of signal is lost throughout the wedge and slightly beyond
he horizon, due to the small amount of chromaticity given the DPSS
asis modelling the frequency axis. Across the range of k ⊥ modes
hich are well-sampled, we find a signal loss value of ∼20 per cent.
his is a non-negligible amount of signal, to be sure, but it is certainly
referable to losing 100 per cent of the EoR signal inside the wedge
hat one has to accept with a strategy of foreground a v oidance. 

Such signal loss is not unexpected; the NUCAL model fits any power 
t low η regardless of its astrophysical origin. In a delay spectrum,
hat power gets spread across τ modes, which explains why we see
ignal loss throughout and even a bit beyond the wedge. Ho we ver, the
MNRAS 532, 3375–3394 (2024) 
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Figure 9. Demonstration of the foreground filtering capabilities of spectral redundancy on a set of simulated visibilities from the most spectrally redundant 
group in the HERA array. Fitting a NUCAL model suppresses foregrounds within the wedge, but is able to retain 21 cm signal in simulated, noise-free simulations. 
By fitting versus u and ν, NUCAL is able to remo v e fore ground emission from a point-source model with varying spectral indices and a realistic level of beam 

chromaticity. In the first three subplots, we show the 2D power spectra of EoR, foregrounds, and the sum of both components. In the right-most panel, we plot 
the 2D power spectrum of the full simulated data (third panel) but with the NUCAL model subtracted. By subtracting off our best-fitting model, we are able to 
substantially suppress foregrounds across a wide range of k ⊥ modes while retaining 21 cm signal. Signal loss from overfitting appears in the last panel at low 

k ‖ and k ⊥ where spectral redundancy is minimal and 21 cm modes are degenerate with NUCAL foreground filters. We examine that loss more directly in Fig. 10 . 
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art of the power of this technique is the ability to use information
rom many other frequencies to better estimate (and thus remo v e)
ow η structure, which is o v erwhelmingly fore ground-dominated.

hile this technique suppresses the 21 cm signal to a larger extent
han other techniques (Mertens, Ghosh & Koopmans 2018 ; Mevius
t al. 2022 ), the benefit of this approach is that it makes very few
ssumptions about the foregrounds and primary beam while still
odelling them to good precision. 
Of course, to use this technique on real data, one would have

o precisely and systematically model and account for the signal
oss in observed spectrally redundant groups – a task beyond the
cope of this work. Re gardless, this lev el of foreground subtraction
s a promising step towards mitigating the impact of foregrounds in
ertain array-types while retaining 21 cm signal within the wedge. 

 DISCUSSION  

n the previous sections, we explored the promise of utilizing spectral
edundancy as both a method of performing accurate direction-
ndependent gain calibration and foreground subtraction. Here,
e discuss both the real-world limitations of and potential future

xtensions to the technique. 

.1 Real-world challenges of leveraging spectral redundancy 

his work remains an incomplete study of what needs to be done
o e v aluate the ability of NUCAL to calibrate real data and to
NRAS 532, 3375–3394 (2024) 
emo v e fore grounds and reco v er 21 cm signal within the wedge
ore generally. We have not fully explored important effects such

s proper fixing of NUCAL ’s degenerate parameters, which requires
eference to a sky-model, which are al w ays incomplete. In the
vent that the sky-model significantly deviates from the observed
isibility, improper de generac y remo v al may impact the ef ficacy of
oreground subtraction and complicate the recovery of cosmolog-
cal modes within the wedge. Future work is needed to explore
ur ability to subtract foregrounds in the presence of sky-model
ncompleteness. 

As with redundant calibration, spectrally redundant calibration
equires that the frequency-dependent uv-plane be self-consistent
etween measurements made by different baselines. Several known
ffects can lead to deviations between baselines, which lead to
on-redundancies in spectrally redundant calibration. These non-
edundancies arise as a result of beam non-redundancies and antenna
osition errors, mutual coupling between elements in the array, and
olarized emission. 
The first is the most straightforward, as they are also non-

edundancies associated with spatially redundant-baseline calibra-
ion: all antennas in the array must have the same primary beam
esponse and be placed accurately. Spectral redundancy requires that
eams are uniform across the array, otherwise baselines assumed to
e spectrally redundant will measure different uv-planes, considering
hat the measured uv-plane is a convolution of the true uv-plane
nd the antenna beam. Attempting to jointly model baselines with
UCAL that include antennas with non-redundant beams would likely

ntroduce calibration errors into the antenna gains, complicating the
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Figure 10. Fractional signal loss computed following foreground filtering, 
shown in Fig. 9 . At low k ⊥ and low k ‖ baselines which contribute to these 
measurements of the power spectra have poor spectral-redundancy, leading 
to o v ersubtraction of the 21 cm signal. At intermediate k ⊥ scales, more 
baselines o v erlap a giv en uv-mode, leading to better differentiation between 
foregrounds and 21 cm signal and reduced ( ∼20 per cent) signal loss within 
the foreground wedge. Signal loss is largely negligible in the EoR window, 
given that the DPSS modelling basis is restricted to producing wedge-like 
shapes in delay space. There is some signal beyond the horizon given by the 
dotted white line due to either the Blackman–Harris taper used or due to the 
small amount of chromaticity allowed by the DPSS basis functions used to 
model the frequency axis. 
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eco v ery of 21 cm signal in the EoR windo w. De viations in both
he primary beam size and beam pointing centre have been shown 
o introduce spectral errors in redundant calibration (Orosz et al. 
019 ), and will likely be a point of concern when applying NUCAL

o data. Kim et al. ( 2023 ) show that beam errors can be mitigated in
raditional redundant calibration by perform fringe rate filtering the 
ata before calibrating, and could potentially help mitigate similar 
rrors in spectrally redundant calibration. 

Similarly, antenna placement errors such as East–West/North–
outh positional errors or height offsets between elements may pro v e

o introduce spurious structure in calibrated visibilities if one assumes 
hat baselines sample the same modes in the uv-plane actually sample 
lightly different modes. Orosz et al. ( 2019 ) showed that gain errors
ntroduce by antenna placement errors can be mitigated by down- 
eighting long baselines during calibration. Ho we ver, the models 
roduced by NUCAL are crucially informed by long baselines, and 
herefore down-weighting them may pro v e to be less ef fecti ve for
pectral redundancy than spatial redundancy. More work is needed 
o understand how to best handle antenna placement errors within 
he NUCAL framework. 

In addition to beam non-redundancies and antenna placement 
rrors, leakage of long baselines’ visibilities into less chromatic 
hort baselines due to mutual coupling between array elements is 
ikely to pose a challenge to the convergence of NUCAL in its current
orm. Given that these systematics extend significantly beyond the 
edge, they are unable to be modelled with the set of DPSS basis

unctions used to model beam-sky product, and are unable to be
emo v ed via per-antenna gain calibration (Kern et al. 2019 ; Josaitis
t al. 2022 ; Charles et al. 2023 ; HERA Collaboration 2023 ). The
nability to incorporate these effects into models of the foregrounds or 
ains will lead to chromatic gain errors if unaccounted for. Ho we ver,
ne could imagine that NUCAL could be modified to solve for first-
rder coupling coefficients, such as those presented in the framework 
eveloped in Josaitis et al. ( 2022 ), in addition to the per-antenna
ains, potentially reducing the impact of mutual coupling effects on 
he estimates of gain parameters. 

The assumption that the foreground-beam product is spectrally 
ompact may be violated by Faraday-rotated diffuse emission, par- 
icularly near the Galactic Centre, where the effect is most prominent
Taylor, Stil & Sunstrum 2009 ). Spectral structure introduced by 
his polarized emission will cause variations at a fixed u that we
ill be unable to model using our smooth set of basis functions,

ikely leading to chromatic errors in the gain estimates if that are not
roperly accounted for. One approach to calibrating visibilities which 
e expect to be highly polarized, is to require that the foregrounds

n psuedo-Stokes I be smooth as a function of frequency rather
han assuming that either of the linear polarizations are spectrally 
edundant. This formulation should help to reduce the impact of 
araday-rotated polarized emission on the estimates of the gains. 
In addition to the non-idealities of real-world instruments and 

alibration, we did not provide a full study of the factors affecting
ignal loss when subtracting NUCAL modelled foregrounds from 

imulated visibilities. Quantifying the precise level of signal loss 
s crucial when performing this kind of analysis, as the inclusion
f wedge modes with substantial signal loss in an estimate of the
ower spectrum will artificially lower the amplitude of the estimated 
ower spectrum (Aguirre et al. 2022 ). The exact amount of signal
oss in a given wedge mode will depend on the precise set of basis
ectors fit with equation ( 16 ). It will also depend on the spectral
moothness of the instrument’s primary beam response, the true 
pectral smoothness of the foregrounds, and the degree to which a
iven mode contributing to an estimate of power spectrum is sampled
edundantly in frequency. These effects are fundamental to the array 
n which NUCAL is being performed, and entirely independent of sky-
odel incompleteness and non-redundancy. The exploration of how 

ariations in dish size, beam chromaticity, and antenna layout affect 
he level of signal loss within the wedge in 21 cm measurements is
lso left for future work. 

.2 Future applications of NUCAL 

hile we have shown the benefits of spectral redundancy and 
patiospectral filtering for calibration and foregrounds subtraction, 
here are many more improvements of this technique and future 
pplications which could make it more widely useful to the 21 cm
ommunity. 

Perhaps the most conceptually straightforward impro v ement to 
his technique is extending NUCAL to solve for per-antenna gains. 
here are two potential ways in which this could be done. The
rst is by simply extending equation ( 18 ) to incorporate per-antenna
MNRAS 532, 3375–3394 (2024) 
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ains, instead of restricting the gain terms to the degenerate space
f redundant-baseline calibration. While this approach is mathemati-
ally straightforward, extension to full per-antenna gains is extremely
omputationally challenging due to the massive increase in data
olume and number of parameters required to solve for. Utilization
f the JAX environment to efficiently compute gradients and its
bility to use GPUs to perform would likely help, but it is unclear
f the approach would be computationally tractable for such as
ERA without major impro v ements to the algorithm itself. Another

omplication of extending NUCAL to per-antenna gains is the potential
isk of introducing signal loss beyond the wedge. Because NUCAL

ttempts to produce the smoothest possible calibrated visibilities,
xtending calibration to incorporate more degrees of freedom may
ead to per-antenna gains o v erfitting 21 cm signal, especially beyond
he foreground wedge. More work is needed to understand how
xtending NUCAL to incorporate more calibration degrees of freedom
ntroduces the signal loss outside the wedge. 

The second approach is slightly more limited, but more compu-
ationally efficient. Instead of solving for per-antennas gains and
UCAL model parameters simultaneously, we could instead fit a
UCAL -based model to data which have already been calibrated
nd then use that model as a sky-model to recompute per-antenna
ains. Because the NUCAL is highly constrained by the redundancy
f an array and physically moti v ated to pick out foreground emission
rom sets of spectrally redundant baselines, it could be an excellent
oreground model for sky-based calibration. One potential downside
f this approach is that if the NUCAL model is derived from visibilities
ith significant errors due to prior miscalibration and there is a lack of
ighly spectrally redundant baselines within the array, this approach
ay be unlikely to fix those errors. Ho we ver, both approaches are

nteresting avenues for further exploration and warrant future work. 
As presented, NUCAL is currently limited to modelling foregrounds

n baselines which are part of groups that redundantly sample the
ame spatially Fourier modes at different frequencies. While some
rrays do take advantage of redundant baseline measurements and
herefore often redundantly sample the same uv-modes along radial
pokes of the uv plane, arrays which are not radially redundant will
e unable to take advantage of the benefits of NUCAL as currently
ormulated. Ho we ver, gi ven the flexibility of our modelling basis
unctions, NUCAL ’s modelling equation ( 16 ) could in principle be
odified such that the entire uv plane be modelled jointly in a higher

imensional representation of these DPSS eigenfunctions. 
Doing so would significantly increase the number of free param-

ters incorporated into the foreground model, but will impro v e the
enerality of the approach to allow for the calibration of array types
hich do not explicitly sample the same u modes. Additionally, this

pproach may impro v e the ability for non-radially redundant arrays to
etter model and subtract foregrounds by empirically estimating the
ross-frequenc y co variance between baselines which samples nearby
odes in the uv-plane without explicitly simulating foregrounds with
 model of the sky and instrument primary beam. This approach to
sing modelling the entire frequency-dependent uv-plane may also
ffer a reduction in signal loss incurred by subtracting foregrounds
ith a NUCAL model. Such an exploration and its implementation is
utside the scope of this paper and left for future work. 
Giv en the e xtreme dynamic range challenge 21 cm cosmology

resents, 21 cm arrays must be co-designed to allow for an analysis
hich best allows for the separation of foregrounds from 21 cm

ignal. Ne xt-generation 21 cm e xperiments will need to restore access
o modes within the wedge in order to directly image cosmologi-
al hydrogen. Such three-dimensional images of neutral hydrogen
upport cross-correlation studies with other probes of large-scale
NRAS 532, 3375–3394 (2024) 
tructure, pro viding v erification of a detection of the 21 cm and
nlocking stronger constraints on the physics of reionization (Beard-
le y et al. 2015 ; Ko v etz et al. 2017 ; La Plante et al. 2023 ). Just as
ERA’s highly regular array configuration is designed to prioritize

patial redundancy (Dillon & Parsons 2016 ; DeBoer et al. 2017 ),
uture array designs may be optimized for both spatial and spectral
edundancy, allowing for calibration and foreground modelling with
UCAL and potentially enabling for the reco v ery of cosmological
odes within the foreground wedge that could be used for imaging.
uture work is needed to investigate how new array configurations
nd element design can be leveraged to maximize the ef fecti veness
f this technique. 

 SUMMARY  

n this paper, we introduced a no v el technique for precisely cali-
rating interferometers for 21 cm cosmology known as spectrally
edundant calibration , or NUCAL for short. Inspired by traditional
patially redundant calibration, our approach solves for antenna gains
y exploiting the correlations between baselines which redundantly
ample the same angular Fourier modes in the uv-plane at different
requencies. Leveraging the fact that baselines which sample the
ame angular scales see highly correlated beam-sky products at
ifferent frequencies, we model this redundantly sampled u − ν

lane as a linear combination of a highly efficient set of smooth
asis vectors known as DPSS. 
We demonstrate in Section 3.5 our ability to calibrate out arbitrary

pectral structure in redundant calibration degeneracies in a set
f simulated HERA visibilities and show that NUCAL explicitly
reserves the EoR window by preventing fine-scale calibration errors
rom coupling with foreground power. Because this approach relies
n self-consistency between baselines at different frequencies, we
o not need detailed models of the sky and beam to perform
alibration while ensuring that our calibrated visibilities remain
pectrally smooth. 

While this technique does require reference to a sky model to
olve for a set of additional parameters which are degenerate with our
mpirically moti v ated foreground model, the number of degenerate
arameters that are required to be solved for are substantially reduced
ompared to that of traditional redundant calibration and are limited
o shapes residing within the foreground wedge. Assuming that the
lgorithm reaches convergence to the global minima, this signifi-
antly reduces the amount of spurious spectral structure that can be
ntroduced via calibration error due to sky model incompleteness. 

One of the most exciting aspects of this work is NUCAL ’s ability
o precisely model and subtract foregrounds from baselines, which
edundantly sample the same modes in the uv-plane. As shown
n Section 5 , combining spectral redundancy with spatiospectral
ltering is able to accurately model the beam-weighted sky even

n case in which realistic chromatic beams and foregrounds are
sed. Assuming that the uv-sampling is dense enough to break
he de generac y between variation in the spatial and spectral ax es,

odelling foregrounds baselines in the same radial heading using
he DPSS basis shows promise for reco v ering 21 cm signal within
he wedge. 

One must be cautious when applying this technique to real data,
s o v erfitting can lead to cosmological signal loss, especially when
 given uv-mode is not sufficiently redundantly sampled by the
aselines in its unique orientation. As this effect is dependent on
he assumed chromaticity of the sky and beam, the antenna layout
f the array, and observing frequencies. Future work will attempt
o quantify this signal loss for different array types. Despite those
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aveats and limitations, our technique is the first proposal to enable 
he estimation of 21 cm signal within the wedge without detailed 
nowledge of foregrounds or the primary beam and is thus perhaps 
he first step towards reco v ering ∼80 per cent of the sensitivity that
nterferometers like HERA must sacrifice by a v oiding the foreground 
edge. 

OFTWARE  

his work was enabled by a number of software packages includ- 
ng MATPLOTLIB 

3 (Hunter 2007 ), NUMPY 
4 (Oliphant 2006 ), SCIPY 

5 

Virtanen et al. 2020 ), JAX 
6 (Bradbury et al. 2018 ) for data analysis

nd modelling, and OPTAX 
7 (Babuschkin et al. 2020 ) for the gradient

escent framework and library of optimizers. 
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PPENDIX  A:  NUCAL  VERSUS  CALAMITY  

UCAL bears several similarities to the recently proposed CALAMITY

echnique (Ewall-Wice et al. 2022 ) due to its use of first-order
ptimization to determine gain solutions and the use of DPSS
odelling. In this appendix, we highlight the specific similarities

nd differences between the two techniques by casting them both
nder the formalism adopted in the rest of the paper. CALAMITY and
UCAL differ primarily in two ways. 

1 Different foreground modelling functions 

et the set of all frequencies sampled by every baseline be the
ame, which we denote with the vector F with length N F . From
NRAS 532, 3375–3394 (2024) 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
quation ( 16 ), we can describe any per-baseline modelling approach
ike the one described in Ewall-Wice et al. ( 2022 ) with a set
f φk basis functions where the vectors are partitioned into b 

ifferent sets where the m 
th set has length n m different functions,

 ϕ 0 , 0 , ..., ϕ 0 ,n 0 } , { ϕ 1 , 0 , ..., ϕ 1 ,n 1 } , . . . , { ϕ b, 0 , ..., ϕ b,n b } and each m 
th

aseline is centred at the set of u values in the N F length set U m . The
rst index of each function labels the baseline, and the second index

abels the basis functions necessary to model that baseline. 

 m,n ( u , νi ) = 

{
φm,n ( ν) u ∈ U m and ν ∈ F 

0 otherwise , 
(A1) 

In the per-baseline modelling case, we work with a set of basis
unctions that only having support o v er a single baseline. In practice,
e fit discrete vectors to our data the basis vectors in the per-baseline
odelling case are non-zero o v er a single baseline. For the DPSS
odelling used in CALAMITY , we choose φm,n equal to 

m,n = u n ( ν, W m ) (A2) 

here u n is the n th Slepian sequence (Slepian 1978 ) with normalized
andwidth of W m = 2 Bτm where τm is the delay width that is chosen
o describe the foregrounds modulated by the primary beam. 

2 Different gain modelling assumptions 

n NUCAL , we assume that the redundant degrees of freedom in the
ains have already been remo v ed through some redundant calibration
trategy. All that is left to solve for in the gains is a common per-
requency absolute gain factor A ( ν) and the tip-tilt term � ( ν). In
ALAMITY , we retain and fit per-frequency complex gain for every
ntenna in the array. This limits the utility of NUCAL as specifically
aid out in this paper to redundant arrays with identical beams while
ALAMITY can, in principle, be applied to arbitrary array layouts with
on-redundant beams. Reducing the gain degrees of freedom may
educe the amount of signal loss suffered by our measurement for
 fixed array layout, though the larger number of independent uv 

odes sampled by non-redundant arrays could counteract this. We
eave a detailed exploration of the tradeoffs between gain modelling
ssumptions and array layout to future work. 

In summary, NUCAL reduces to CALAMITY in the limit that the
ntenna gains are described by a tip-tilt parameter and an amplitude
e generac y, the true visibility modelling functions have support only
 v er individual baselines, and are described by discrete Slepian
equences instead of sampled prolate spheroidal wave functions. 

his paper has been typeset from a T E 
X/L A T E 

X file prepared by the author. 
© 2024 The Author(s). 
Open Access article distributed under the terms of the Creative Commons Attribution License 
e, distribution, and reproduction in any medium, provided the original work is properly cited. 

er 2024

http://dx.doi.org/10.1088/0004-6256/139/4/1468
http://dx.doi.org/10.1088/0004-637X/753/1/81
http://dx.doi.org/10.1088/0004-637X/756/2/165
http://dx.doi.org/10.1088/0004-637X/788/2/106
http://dx.doi.org/10.1007/s10686-017-9563-0
http://dx.doi.org/10.1051/0004-6361/201833910
http://dx.doi.org/10.1088/0004-6256/143/2/53
http://dx.doi.org/10.1088/2041-8205/768/2/L36
http://dx.doi.org/10.1088/0034-4885/75/8/086901
http://arxiv.org/abs/1701.01860
http://dx.doi.org/10.1093/mnras/stac1861
http://dx.doi.org/10.1093/mnras/stac1749
http://dx.doi.org/10.1051/0004-6361/201016082
http://dx.doi.org/10.1088/0004-637X/702/2/1230
http://dx.doi.org/10.1086/308348
http://dx.doi.org/10.1088/0004-637X/776/1/6
http://dx.doi.org/10.3847/0004-637X/825/1/9
http://dx.doi.org/10.1017/pasa.2012.007
http://dx.doi.org/10.1051/0004-6361/201220873
http://dx.doi.org/10.1088/0004-637X/745/2/176
http://dx.doi.org/https://doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1086/506597
http://dx.doi.org/10.1007/BF00420576
http://arxiv.org/abs/1605.09219
http://arxiv.org/abs/0810.5751
http://dx.doi.org/10.1093/mnras/stab1560
http://dx.doi.org/10.1093/mnras/stu1773
http://dx.doi.org/10.1093/mnras/stw2525
https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 REVIEW OF CALIBRATION TECHNIQUES FOR 21CM COSMOLOGY
	3 SPECTRAL REDUNDANCY
	4 DEMONSTRATION OF SPECTRALLY REDUNDANT CALIBRATION (nucal)
ON SIMULATED DATA
	5 SPECTRAL REDUNDANCY AS A METHOD OF FOREGROUND MODELLING AND SUBTRACTION
	6 DISCUSSION
	7 SUMMARY
	SOFTWARE
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: NUCAL VERSUS CALAMITY

