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Abstract—This paper presents a novel approach for real-time
estimation of spatial thermal maps for the commercial AMD
Ryzen 7 4800U 8-core microprocessor using a transformer-
based machine learning method. The proposed method, called
ThermTransformer, leverages real-time performance metrics of the
AMD chip, provided by uProf 4.0, to accurately estimate transient
thermal maps. These maps can be valuable for dynamic thermal,
power, and reliability controls requiring higher accuracy. Unlike
traditional Convolutional Neural Networks (CNN) designed for
image data or Recurrent Neural Networks (RNN) suitable for
transient data, ThermTransformer is based on a modified self-
attention architecture. It takes time-series performance metrics
information as input and directly generates transient thermal
images. Our results demonstrate that this transformer-based
method achieves the best of both worlds — surpassing CNN in
prediction quality and performing well for transient data. Exper-
imental results reveal that ThermTransformer achieves highly ac-
curate predictions of power maps, with an RMSE of only 0.36°C
or 0.8% of the full-scale error. Additionally, it outperforms the
recently proposed GAN-based thermal map estimation method,
ThermGAN, by 1.66x and the LSTM-based thermal prediction
method, RealMaps, by 6.09x in terms of accuracy on average.
Furthermore, the proposed approach can be efficiently deployed
on the target chip, providing real-time estimation with a speed
as fast as 14ms.

I. INTRODUCTION

With the ongoing trend of rapid integration and technol-
ogy scaling, contemporary high-performance processors are
facing more pronounced thermal limitations than ever before.
Research has shown that higher temperatures exponentially
degrade the reliability of semiconductor chips [1], making
it a significant concern in the industry. To address to this
trend, runtime power and thermal control schemes are being
implemented in most, if not all, new generations of proces-
sors. These control schemes play a crucial role in modern
processors [2], [3]. However, for these control schemes to be
effective, they require accurate real-time thermal information,
ideally a spatial thermal map of the entire chip area [4],
[5]. On-chip temperature sensors alone cannot provide com-
prehensive chip-wide temperature information due to their
limited number, primarily constrained by the area and power
overheads [6].

Several existing methods rely on on-chip temperature sen-
sors. However, the availability of physical sensors is typically
limited, and their placement may not accurately capture the
true hotspots on the chip. As a result, temperature regulation
decisions based solely on these sensors can be misleading [7].
Consequently, a more popular approach is to augment the data
from the few on-chip sensors with estimated temperatures of
prominent hotspots using thermal models based on estimated
power traces [8]. These methods provide higher spatial res-
olution by enabling real-time monitoring of temperatures for
all hotspots on the chip [9]-[12].
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However, existing thermal modeling methods still possess
certain limitations. Firstly, these methods rely on accurate
power traces as inputs. However, accurately estimating the
power consumption of each functional unit (FU) in a real
processor under varying workloads is a non-trivial and often
infeasible task [13], [14]. Secondly, calibrating these mod-
els for practical use presents challenges due to simplified
modeling, boundary conditions, and limited accuracy. Lastly,
many models, such as HotSpot [10], still rely on computation-
ally expensive numerical methods to determine temperature
solutions, which may not be sufficiently fast for real-time
applications.

Conversely, from a system-level thermal or power man-
agement perspective, readily accessible parameters include
core frequency, voltage, and various utilization or performance
metrics, which are natively supported by most commercial
processors [15]. Software tools such as Intel’s Performance
Counter Monitor (PCM) [16] and AMD’s uProf [17] provide
the means to profile these metrics. Recently, Deep Neural
Network (DNN) based approaches have been investigated for
full-chip thermal map estimation of commercial multi-core
processors using real-time PCM performance metrics [18]-
[20]. These methods demonstrate the feasibility of fast online
thermal map estimation for the first time. However, the Long
Short Term Memory (LSTM) based method [18], [19] still
suffers from low accuracy issues, and the Generative Ad-
versarial Network (GAN) based method [20] is more suit-
able for steady-state thermal estimation due to its inability
to handle transient data. Furthermore, this method has not
been demonstrated in commercial AMD multi-core processors,
which account for the second largest market share in the multi-
core processor market.

In this work, we aim to address the aforementioned issues
and propose a novel transformer-based approach for estimating
the full-chip thermal map of commercial AMD multiproces-
sors. The key contributions of this study are as follows.

e We have developed a DNN-based full-chip thermal
map estimation method, named ThermTransformer, for
commercial AMD multi-core microprocessors for the first
time. The case we studied here is the Ryzen 7 4800U 8-
core CPU. Unlike conventional approaches that rely on
traditional functional unit powers, the new DNN model
utilizes real-time on-chip performance metrics of AMD
chips obtained from uProf 4.0 as input features.

e To mitigate the shortcomings of existing methods,
such as the low accuracy of LSTM for image generation
and the limited applicability of GAN-based methods
for transient thermal prediction, we propose the use of
transformer-based DNN models, which are well-suited
for handling both time series input and image data
outputs.

e We employ an advanced infrared thermography setup
system that allows us to directly capture lucid heatmaps
from commercial microprocessors during their operation
under workloads. A total of 14718 pairs of performance
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metrics data and thermal maps were collected, with 80%
of the data used for training purposes.

e The resulting ThermTransfomer can provide tool-
accurate full-chip transient thermal maps from the given
performance monitor traces of commercial off-the-shelf
AMD multi-core processors.

e Experimental results demonstrates the high accuracy
of the thermal map predictions, with a root-mean-square
error of only 0.36°C or 0.8% of the full-scale error.
More importantly, our method outperforms the recently
proposed GAN-based thermal map estimation method,
ThermGAN, by 1.66x and the LSTM-based method,
RealMaps, by 6.09x in terms of accuracy on average.
Furthermore, the proposed approach can be deployed on
the target AMD CPU with a fast inference speed of 7ms,
making it suitable for real-time estimation.

This article is organized as follows. Section II provides
a review of relevant work. Section III outlines the thermal
modeling framework and IR thermography setup employed
in this study. Section IV explains the process of collect-
ing and preparing the training thermal data, as well as the
selection of performance metrics features for the proposed
method. Section V describes the architecture of the pro-
posed transformer-based model for thermal map estimation.
Section VI presents the experimental results and provides
comparisons. Section VII concludes the article.

II. RELATED WORK

To estimate on-chip temperature maps, two general strate-
gies are commonly employed. The first approach involves
estimating the full-chip heatmaps using physics-based ther-
mal models and power-related information [11], [12]. These
’bottom-up’ numerical methods, such as HotSpot [10] based
on simplified finite difference methods, finite element meth-
ods [21], and equivalent thermal RC networks [22], have been
widely used. Recently, top-down behavioral thermal models
based on the matrix pencil method [23] and subspace identi-
fication method [24], [25] have also been proposed. However,
these full-chip thermal analysis methods are computationally
expensive and unsuitable for online applications [26].

The second strategy involves using interpolation-based ap-
proaches to estimate the full-chip heatmaps from embedded
sensor readings [8], [27]. The accuracy of this interpolation-
based approach is influenced by the number and placement of
sensors. To address this, smart sensor placement algorithms
have been proposed to optimize the sensor placement within
a given budget of embedded temperature sensors [27]—[32].
Some works have employed Fourier analysis techniques to
recover the thermal map [27]. However, the accuracy is
limited by the non-band-limited nature of the temperature
signals and the approximations required for non-uniform sen-
sor placement, which is common in heterogeneous multi-
core processors. Other methods have attempted to minimize
the number of thermal sensors and recover thermal maps
by interpolating hard sensor information in the frequency
and DC domains [28], [29]. The use of eigendecomposition
of the interpolation matrix has further improved the sensor
placement strategy, leading to near-optimal sensor numbers
and placements [30].

A statistical method has been proposed by Zhang et al. [31],
[33] for estimating both power and thermal maps. This method
exploits the correlations of power dissipation among different
modules of a chip to recover the power map from sensor read-
ings, followed by temperature estimation. However, the esti-
mation is based on power correlation information. Recently,
Ziabari et al. [34] introduced the power blurring method for
fast 2-D temperature map computation. This method utilizes

the Green’s function approach, where the temperature response
to unit power impulses is computed first using finite element
thermal analysis. However, the practicality of this method is
limited as accurate thermal models are not always available
in all cases.

However, the methods mentioned above either necessi-
tate hardware modifications during the design phase, such
as inserting or relocating sensors, or they rely on detailed
knowledge of the chip’s floorplan, power source correlations
among functional units, and technology-specific constants
that are typically not disclosed by the chip manufacturer.
Consequently, achieving real-time estimation of the spatial
temperature distribution across the entire chip area solely
through a post-silicon approach, i.e., estimating the full-chip
spatial heatmap T'(z,y); at time ¢, remains a significant
challenge for existing commercial microprocessors.

Conversely, in recent years, machine learning, particularly
deep learning, has gained significant attention due to its
remarkable performance breakthroughs in various cognitive
applications, including visual object recognition, object de-
tection, speech recognition, and natural language understand-
ing [35], [36]. Several popular DNN structures have emerged,
such as Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN) (including LSTM), and more re-
cently, self-attention-based Transformer [37]. Transformers
have shown their ability to handle time series data more
effectively than RNNs and have led to recent breakthroughs in
generative Al applications, as exemplified by ChatGPT [38].
Moreover, transformers, such as the Vision Transformer, have
demonstrated superior performance compared to CNNs for
image classification, given sufficient data and training [39].
Some thermal analysis approaches based on power informa-
tion using machine learning methods have been proposed.
Examples include the generative adversairial networks (GAN)
based method [20], the convolutional encoder-decoder net-
work based method [40] and the graph convolution networks
(GCN) based method [41].

To address the aforementioned challenge of real-time full-
chip thermal map estimation without power information, re-
cent research has explored machine-learning-based approaches
utilizing real-time performance metrics [18]-[20]. Sadigbatcha
et al. [18], [19] proposed a LSTM-based approach called
Realmaps, which employs Intel PCM metrics for estimating
full-chip thermal maps in commercial off-the-shelf multi-core
processors. This approach has shown promising results. Build-
ing upon this work, an improvement was made by employing
image-friendly CNN model based on the GAN architecture.
This approach, known as ThermGAN [20], shows better results
than the LSTM-based methods. However, it is important to
note that ThermGAN’s predictions are based solely on the
current PCM information and do not incorporate historical
data. Therefore, it is more suitable for steady-state thermal
map estimation.

III. THERMAL MAP ESTIMATION FRAMEWORK

In this section, a brief overview of the proposed approach
will be presented, along with a description of the thermal
camera setup used to collect the necessary data from an AMD
Ryzen 7 4800U chip while it is under workload.

A. Estimation flow overview

The proposed approach is divided of three parts. Firstly,
we collect data by monitoring the AMD CPU’s performance
metrics, including Performance Monitoring Unit (PMU) event
counters and on-chip sensor data, while executing workloads
on the chip. Simultaneously, we capture full-chip thermal map
measurements using a thermal infrared (IR) imaging system.
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Subsequently, we use the collected data to train a transformer-
based online thermal prediction model.

The training process of the transformer-based model re-
quires two types of data. One consists of the offline measured
thermal maps, which serve as the training targets for the
model. The other comprises the recorded PMU event counters
and sensor data, which are used as indicators to generate
predictions. Once the model is trained, it can be used for
online CPU thermal inference.

The framework of the proposed approach is illustrated in
Fig. 1. In the following section, we will provide a detailed
description of the data acquisition process encompassing each
step shown in the figure. In Section V, we will further
elaborate on the machine learning model.

Thermal imaging system

Record
-
Run
Workloads
Thermal
Sync map
Y-

AMD R7 4800U

Senser
A

Input E j output

Fig. 1. Framework and data acquisition flow

B. Thermal IR imaging system

The effectiveness of the proposed machine-learning-based
approach heavily relies on precise measurements of CPU
surface temperature maps. To facilitate this, we introduce an
advanced IR thermal imaging system, as depicted in Fig. 2. In
order to ensure proper thermal operating conditions, we have
opted for a bottom-side liquid cooling system [7] instead of the
conventional top-side approach. This back-side liquid cooling
technique involves the use of a thermoelectric (Peltier) device
directly mounted on the PCB beneath the processor module,
allowing for efficient cooling from below. Consequently, the
front side of the processor remains wholly exposed to the
IR camera, free from any intervening layers that may cause
interference.

The product information of the IR thermal imaging system
are provided as follows. The IR camera is a FLIR A325sc,
offering a maximum imaging resolution of 240 x 320 pixels
(px) with a precision of 16 bits per px. It is capable of
capturing thermal images at a maximum frequency of 60Hz.
The IR sensor comes factory calibrated to ensure accuracy
across a temperature range of —20°C to 120°C and resolves
the IR spectral range of 7.5um to 13um.

IV. DATA PREPARATION AND PERFORMANCE METRICS
SELECTION

In this study, our objective is to develop a model that
can generate thermal maps using the real-time performance
metrics of the chip. Our machine-learning architecture follows
a supervised learning approach, highlighting the significance
of having an appropriate dataset. As mentioned earlier, the
training data for our learning-based model consists of offline
thermal maps measured across the entire chip area, along

(b)

Fig. 2. (a) Thermal Imaging system setup (b) CPU chip under-test, AMD
Ryzen 7 4800U. Core module is shown in the red box.

with the corresponding performance metrics collected dur-
ing runtime. To obtain this dataset, we begin by executing
benchmark workloads on the CPU. During the execution, we
continuously capture the performance metrics and temperature
map at regular intervals. Each timestamp corresponds to a
pair of historical metrics and the thermal map, forming a
single data point. As the workload progresses, we accumulate
numerous data points, resulting in a comprehensive dataset
for analysis. This section provides a detailed description of
the data acquisition process.

A. Benchmark workloads

To simulate the operational conditions of the processor
across different working environments, we will assign a di-
verse range of workloads to it during the data acquisition pro-
cess. In this study, we utilized the SPLASH-2x suite available
in PARSEC 3.0 [42], an open-source benchmark software for
Linux, which provides a wide range of workloads. Specifically,
the following SPLASH-2x workloads were executed on the
processor: barnes, cholesky, fft, fmm, ocean_cp, ocean_ncp,
radiosity, radix, raytrace, volrend, water_nsquared, and wa-
ter_spatial. These workloads were performed with varying
sizes of input to cover different situations.

B. Thermal map acquisition

During the actual measurement, the chip does not occupy
the entire 240 x 320 px field of view of the camera. Therefore,
we need to crop the specific chip area from the captured
photo. As a result, the final size of the chip thermal map is
reduced to 223 x 280 px. In keeping with the profiling speed of
performance metrics, the camera records at 10Hz. Fig. 3 shows
the thermal map example of the commercial AMD Ryzen 7
4800U 8-core microprocessor, in which one of the cores is
running a workload with elevated temperature.

C. Performance metrics acquisition

In this work, we study an AMD Ryzen 7 4800U chip (8
cores, 16 threads, released in 2020). To monitor the perfor-
mance of this chip, we utilize AMD uProf 4.0 [17], which is
the performance monitoring software supported by AMD. This
software allows us to gather system-level utilization metrics
as well as core-wise power characteristics from the chip. By
utilizing these metrics, we can gain insights into the chip’s
performance and thermal behavior.

AMD uProf 4.0 offers two types of performance metrics
that are relevant to our study. The first type comprises CPU
power metrics, including package and core energy usage,
core frequency, and temperature readings from embedded

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 20,2024 at 04:33:01 UTC from IEEE Xplore. Restrictions apply.



Fig. 3. The thermal image example of AMD Ryzen 7 4800U 8-core
microprocessor in which one core is actively running

TABLE I
SELECTED PERFORMANCE METRICS (AMD R7 4800U)

‘ CPU power metrics ‘

ThreadEffectiveFrequency 0-15

ThreadPerformanceState 0-15

SocketOPower

CorePower 0-7

SocketOTemperature

‘ PMU events
FpRetSseAvxOps FpRetiredSerOps FpDispFaults
LsBadStatus2 LsLocks LsRetCIClush
LsRetCpuid LsDispatch LsSmiRx
LsIntTaken LsSTLF LsStCommitCancel2
LsMabAlloc LsRefillsFromSys LsL1DTIbMiss
LsMisalLoads LsPrefInstrDisp LsInefSwPref
LsSwPfDcFills LsHwPfDcFills LsAllocMabCount
LsNotHaltedCyc IcCacheFillL2 IcCacheFillSys
BpL1TIbMissL2TIbHit BpL1TIbMissL2TIbMiss BpL1BTBCorrect
BpL2BTBCorrect BpDynIndPred BpDeReDirect

BpL1TIbFetchHit

DeDisUopQueueEmpty

DeDisUopsFromDecoder

DeDisDispatchTokenStalls1 DeDisDispatchTokenStallsO ExRetlnstr
ExRetCops ExRetBrn ExRetBrnMisp
ExRetBrnTkn ExRetBrnTknMisp ExRetBrnFar
ExRetNearRet ExRetNearRetMispred ExRetBrnIndMisp
ExRetMmxFplnstr ExRetCond ExDivBusy
ExDivCount ExRetMsprdBrnchInstrDirMsmtch ExTaggedIbsOps
ExRetFusBrnchInst L2RequestG1 L2RequestG2
L2CacheReqStat L2PfHitL2 L2PfMissL2HitL2

L2PfMissL2L3

sensors, among others. The second type consists of PMU
event counters, which track various events such as instruction
counts, cache hits, and branch predictions. In Table I, we
present the list of AMD uProf 4.0 performance metrics from
these two domains. The CPU Power Metrics domain encom-
passes 42 metrics, while the PMU Events domain includes
58 different types of events. It is important to note that some
PMU events have specific unit masks to distinguish different
conditions, resulting in further categorization. As a result, we
have selected a total of 116 metrics for the PMU Events
domain. Combining both domains, we have a total of 158
metrics selected for the AMD Ryzen 7 4800U chip.

For thermal prediction, we use the metrics vectors from the
previous 100 frames and consider them as a time series that
can be processed similarly to sentences in natural language
tasks. Having a longer history of data helps enhance the
accuracy of state estimation but also increases the resource
requirements. The length of the historical data can be adjusted
according to the specific needs of the application.

V. THERMTHANSFOMER: THE PROPOSED
TRANSFORMER-BASED FULL-CHIP THERMAL ESTIMATION
MODEL

A. Review of the transformer DNN architecture

As mentioned earlier, our problem can be viewed as on-chip
thermal image generation task from a given chip performance
metrics vector. The input vectors can be viewed as a time
series data over a period of time. To process such type of data,
the self-attention based transformer architecture can be a good
fit [37]. Transformer mitigates the difficulty to model long-
history relationship in a time series data in the existing RNN
based structure using the self-attention mechanism, which
allow the model to access all previous states and process the
entire input all at once, which can be highly parallelized.

In the sequel, we briefly review the basic attention layer
structure and formula used in the transformer DNNs. Given a
sequence of input vector {z;}, the attention unit first embeds
each vector z; into three vectors: query vector ¢;, key vector
k;, and value vector v;, which are computed as

i = WO ki = ;W5 v, = 2, WV

Here g and k share the same dimension d;. Then a weighted
average will be performed among {v;}. The ith weight comes
from the dot production between {¢;} and {k;}, divided by
\/dqr and then passed through a softmax for the normaliza-
tion. The weighted average is the attention vector Attention
({@:}, {ki},{vi}). If we write the sequence of vectors in a
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Fig. 4. Structure of the Multi-Head Attention layer in this work

way of matrices (i.e. @, K,V for the matrices where the i-th
rows are q;, k;, v;), then the attention can be represented in a
more concise form. This operation is shown in the left side of
Fig. 4.

. QKT
Attention (@, K, V) = softmax | == | V (1)

v/ gk
where softmax is along the rows. Now the input vectors
sequence {z;} becomes a single vector output. In general, we
may want to process the data with multiple attention interests.
Then we can have multiple (WQ, Wk, WV) (which is called
the head), concatenate multiple attention vectors together into
a matrix, and then project it into a final output matrix as shown

below:

Multiheaded Attention (Q, K, V) =
Concat (Attention (QWiQ, KWK, VWiv)) w

where (WiQ,WiK ,Wiv) are the mulitheads, and W©° is
the final projection matrix. Fig. 4 shows an example of the
multiheaded attention layer used in our work. By repeating
multiple attention layers, we have the typical encoder or
decoder structure in the original transformer model [37].

o @
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TABLE I
ACCURACY COMPARISON AMONG DIFFERENT METHODS

] Accuracy \ ThermTransformer \ ThermGAN [20] \ LSTM [19] \ Accuracy imp over [20] \ Accuracy imp over [19] ‘
Average RMSE 0.360 0.596 2.190 1.656x 6.085x
Maximum RMSE 2.776 10.880 19.762 3.919x 7.118x
RMSE deviation 0.234 0.958 2.684 4.095x 11.470x

B. Proposed transformer-based thermal estimation framework

Perform.ance 100x158
metrics :,
Attention 2 100x158
Positional l,
Information
Attention 3 100x158
Input & l’
100x159 Attention 4 100x158
FC & Norm 100x158 Attention 5 100x158
Attention 6 100x158
Multi-Head
100x158 FC & GELU 1x1024
100x158 FC & GELU 1x62440
FC & GELU 100x316
FC & GELU 100x158
Output
Add & Norm 100x158
Thermal map

Fig. 5. Architecture of proposed Transformer model

The framework of our metrics-to-thermal-map model is
shown in Fig. 5. In contrast to the encoder-decoder structure
originally proposed for language translation tasks, we solely
utilize the encoder structure of the original transformer [37],
since our objective is to predict new thermal images based
on historical performance metrics data. Instead of generating
internal codes or features for the given performance metrics
data, we add multi-layer perceptron (MLP) heads at the end
of the attention layers and shape the final outcome into a
223 x 280 image. This strategy is similar to the approach in
GPT-1 [43], which only use the decoder structure to predict
the next word.

The input sequence {x;} is composed of 100 1x158 vectors.
Then we extend the length of the vectors by one to incorporate
the position number, which can be viewed as integrating
timing information. A straightforward positional encoding
scheme is adopted, wherein the extended vectors are directly
mapped back to 1x158 using a fully-connected (FC) layer.

Then the data moves to the attention layer, which is in-
dicated by the large blue box. Inside the attention layer, it
has multi-head attention structure shown in Fig. 4. After this
multi-head attention computation, the data moves through the
normalization layer or “Norm” layer. We use the Gaussian

Error Linear Unit (GELU) [44] as the activation function. All
FC layers operate on columns. For instance, in the attention
block we have an “FC&GELU” layer after the “Norm” layer,
transforming a 100x158 input to a 100x316 output. Instead of
having a weight matrix of size 15800x31600, here we only
employ a matrix of 158x316, which is applied separately to
100 vectors. We have six such attention layers shown in blue
in our design. Following these attention layers, the extracted
feature data undergoes flattening before passing through a
MLP, which has two “FC&GELU” layers. Eventually, the
output is reshaped into the final 223x280 thermal image.
Last not least, for the estimation, we minimize the L2 loss
between F'(x) and ground truth y. The loss function is:

2
lossa = By lly — F(2)[[] ®)
VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we present the experimental results of the
proposed approach.

We evaluate the proposed method on a commercial AMD
Ryzen 7 4800U 8-core microprocessor, which features the Zen
2 (Renoir) architecture and is commonly used in thin and
light laptop computers. The implementation of the proposed
ThermTransformer is based on Python 3.8 and utilizes Ten-
sorFlow (2.11.0) [45], a widely adopted open-source machine
learning library. The model is trained on a Linux server
equipped with a Xeon E5-2699v4 2.20GHz processor and an
NVIDIA Titan RTX GPU. During training, a batch size of
32 is employed, and each data sample consists of historical
performance metrics and a corresponding thermal map. The
final dataset comprises a total of 14718 data points, with 11774
of them for training and 2944 of them reserved for testing.

To assess the prediction accuracy, we compare the proposed
ThermTransformer with two recently proposed methods for
full-chip thermal map estimation: the LSTM-based approach,
called RealMaps [18], [19] and the GAN-based approach,
called ThermGAN [20]. Both of these methods are also im-
plemented in Python using TensorFlow [45]. All the DNN
models are trained on the same dataset, and the training
process terminates when there is no significant improvement
in performance.

A. Thermal map estimation accuracy

We begin by examining the accuracy of predicting thermal
maps using the proposed method on the given dataset. To
evaluate the accuracy, we calculate the Root-Mean-Square
Error (RMSE) between the generated thermal map and the
measured thermal map across all pixels.

In our dataset, the temperature ranges from 44.11 to
90.08°C. The average RMSE of the thermal map estimation
on the test set is 0.360°C, with a standard deviation of only
0.234°C. These results are remarkably accurate considering
the range of the data. Fig. 6 illustrates the estimated and
measured thermal maps, showcasing examples from the test
set. Each column in the figure represents the comparison
results at a specific time step. We display the results for three
time steps. It is evident that the transformer-based model has
successfully learned the contour of the real thermal map.
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Fig. 6. Measured thermal maps (row #1), estimated thermal maps (row #2), and error maps (row #3). The numbers above the maps indicate the Temperature
RMSE | Average Temperature (unit: °C). Each column indicate result at one particular time step.

0.4414 | 54.28
i

Fig. 7. Accuracy comparison with ThermGAN at one time step. The left
column is the result of our model, and the right column is the result of
ThermGAN.

Furthermore, we conducted a comparison between our
method and two recently proposed full-chip thermal map esti-
mation methods: the LSTM-based approach, RealMaps [18],
[19] and the GAN-based approach, ThermGAN [20], in terms
of prediction accuracy. The results are presented in Table II.
Our proposed ThermTransformer demonstrates approximately
1.66x higher accuracy than ThermGAN on average and 6.09x
higher accuracy than RealMaps. In terms of the maximum
RMSE, the proposed method is about 3.92x and 7.12x
more accurate than ThermGAN and RealMaps, respectively.
This trend also applies to the RMSE deviation. Overall,
the proposed ThermTranformer exhibits significant accuracy
improvement over the other two methods across all accuracy
measurements for the given dataset.

Fig. 7 presents the predictions of ThermTransformer and
ThermGAN using the same input. Clearly, the proposed
method yields significantly lower errors in both contour and
temperature compared to the results given by ThermGAN.
Fig. 8 illustrates the predictions of two models at a fixed pixel
over time. We observed a substantial higher error exhibited
by ThermGAN. Additionally, ThermGAN demonstrated high
instability, often leading to incorrect predictions.

B. Computational efficiency

The training procedure typically takes a few to several hours
to complete. Once the model is properly trained, it can be

100 Ground Truth

ThermTransformer
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Fig. 8. Comparison in transient temperature predicted by the two models and
the ground truth at a fixed location in the AMD chip over time

deployed for real-time thermal prediction. In our experiments,
we measured an average inference time of 14ms on the target
board. This inference time is comparable to that of Ther-
mGAN (16ms) and LSTM (19ms). The low latency ensures
the effectiveness of real-time thermal estimation. Compared
to the performance metrics collection interval of 100ms, the
proposed model is sufficiently fast to keep up with the process.

VII. CONCLUSION

In this article, we propose a machine-learning-based ap-
proach for real-time estimation of full-chip thermal maps for
the commercial AMD Ryzen 7 4800U CPU. The new method
leverages performance monitor traces of multi-core processors
and sensor information as input for the machine-learning
models. To construct the dynamic thermal map model, we have
developed a modified self-attention architecture to model ther-
mal maps. Experimental results further show that ThermTrans-
former outperforms recently proposed GAN-based thermal
map estimation methods, ThermGAN, by 1.66x and LSTM-
based thermal prediction methods, RealMaps, by 6.09x in
terms of average accuracy. The predictions of thermal maps
exhibit a high level of accuracy, with an average RMSE of only
0.36°C degrees or 0.8% of the full-scale error. Furthermore,
the proposed approach can be deployed on the target CPU
with a speed of just 14ms, making it suitable for real-time
estimation.
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