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Abstract—In this work, we propose a fast full-chip thermal
numerical analysis approach based on an enhanced physics-
informed neural networks (PINN) framework. The new method,
called ThermPINN, leverages both PINN-based DNN optimization
framework and analytic solutions of simplified thermal problems
for solving thermal partial differential equations (PDE). The re-
sulting ThermPINN leads to more efficient training speed of DNN
networks and more scalability for solving large PDE problems.
Specifically, we propose to partially enforce physics laws based
on closely related analytic solutions to simpler problems. As a
result, we are able to significantly reduce the number of variables
in the loss function and easily meet boundary conditions. To con-
sider the impact of various ambient temperatures and effective
convection coefficients, which are influenced by different design
parameters and run-time conditions, we develop a parameter-
ized thermal analysis technique. This technique enables design
space exploration and uncertainty quantification (UQ), which
are critical for ensuring the reliability of integrated circuits
under various operating conditions. The numerical results on
alpha21264 processor show that the proposed ThermPINN has
2x speedup and 3x better accuracy over the state-of-the-art
thermal simulator, VarSim. The experimental results for 2-D
full-chip thermal analysis of 3171 cases show that the proposed
parameterized ThermPINN considering both training and infer-
ence time can achieve a 6 x speedup over commercial COMSOL
with an average mean absolute error (AE) of 0.47 K. In terms
of training time, the proposed parameterized ThermPINN is
11x faster than the parameterized plain PINN with similar
accuracy. The UQ analysis with 5000 samples for maximum
temperature propagated from ambient temperature shows that
the parameterized ThermPINN and parameterized plain PINN
are 113x and 22x faster than COMSOL, respectively.

I. INTRODUCTION

As technology advances, today’s high-performance
multi/many core microprocessors are becoming more
thermally constrained due to steadily increasing power
densities [1]. To maintain reliability, many system-level
thermal/power regulation techniques such as clock gating,
power gating, dynamic voltage and frequency scaling (DVES)
and task migration have been proposed in the past [2]-[4].
One critical aspect of those methods mentioned above is
correctly estimating the full-chip temperature profile to
properly guide the dynamic thermal management schemes
[5], [6]. Further more, to precisely predict the thermal impacts
in VLSI physical design, an efficient and accurate thermal
analysis is critical in the temperature-aware design flow.

The traditional thermal simulation algorithms are inten-
sively studied to estimate the temperature profile for the full
chip based on power density map, which consist of two cate-
gories, numerical methods and analytical methods. Numerical
methods, such as finite element method (FEM) [7] and finite
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difference method (FDM) [8]-[10], discretize the full chip
structure and solve a sparse linear system to get accurate
thermal maps with fine mesh. However, millions of unknowns
generated by the mesh are needed to be solved, which is very
time-consuming for the large-scale chip with high integration
density. Due to the rectangular shaped structure of the chip,
under simplified boundary conditions, several analytical meth-
ods, such as Green’s function method [11], [12] and separation
of variables method [13], have been developed to compute the
thermal maps accurately and efficiently because they avoid
meshing the chip to solve a linear system.

However, thermal conductivity and leakage power are func-
tions of temperature [14], [15], which causes the high non-
linearity of thermal equations and remains a challenge for
traditional algorithms. Ignoring the temperature dependence
can lead to significant error in thermal simulation. The thermal
conductivity, leakage power and chip temperature are mutually
dependent. From an analysis perspective, there is a feedback
loop between them. This feedback loop repeats until ther-
mal maps, thermal conductivity and leakage power converge.
The feedback loop runs numerical thermal simulation several
times, which is computationally intensive. In addition, it is
difficult for analytical methods to solve the nonlinear heat con-
duction with temperature-dependent parameters. Therefore,
fast thermal simulation considering temperature-dependent
parameters is highly desired for accurate temperature-aware
design.

Recently, scientific machine learning (SciML) has become
a promising method to solve high dimensional and nonlinear
partial differential equations (PDEs) by using deep neural
networks based on the universal approximation theory [16]—
[18]. There are two kinds of methods: data-driven methods
and physics-informed neural networks (PINN). Data-driven
methods only use the labeled data to train the machine
learning (ML) model [18]. However, it is very difficult or
expensive to generate the labeled data, which restricts the
practical application of data-driven methods. To solve this
problem, PINN was proposed to add the domain knowledge
and physics law into loss function and solve nonlinear PDEs
by using unsupervised learning without labeled data [16], [17].
However, the plain PINN requires a huge time to train the ML
model to achieve a specific accuracy level, especially for large
engineering problems.

Furthermore, boundary and initial conditions in PINN are
difficult to be enforced using loss functions as they need to be
satisfied completely for a valid solution. Governing equation
loss and boundary/initial conditions loss are not in the same
order of magnitude so that it is hard to both exactly solve the
governing equations and satisfy boundary/initial conditions,
which may lead to low accuracy of the solution and increase
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the computational cost [19], [20].

In this work, we develop an efficient PINN-based unsu-
pervised learning approach, called ThermPINN, to solve the
differential equations for full-chip thermal analysis of VLSI
chips. Our new contributions are as follows:

e First, to mitigate the long training issues of the plain
PINN approach, we propose to partially enforce some
physics laws based on the discrete cosine series. More
importantly, the boundary conditions are implicitly en-
forced in this way. As a result, the number of variables
in the loss function is reduced dramatically. Furthermore,
due to the exponential convergence speed of the discrete
cosine series, the loss function can converge rapidly by
the back-propagation algorithm. Therefore, the training
speed of proposed ThermPINN is improved significantly
and can achieve 150x speedup over the plain PINN.

e Second, to consider the different design parame-
ters and running conditions, we further parameterize
ambient temperature and effective convection coeffi-
cient in ThermPINN, which leads to the parameterized
ThermPINN. Then, the surrogate model obtained by the
parameterized ThermPINN can be used for fast design
space and running condition exploration and for perform-
ing uncertainty quantification (UQ).

e Third, the numerical results on alpha21264 processor
show that the proposed ThermPINN has 2x speedup and
3 better accuracy over the state-of-the-art VarSim. The
experimental results for 2-D full-chip thermal analysis
of 3171 cases show that the proposed parameterized
ThermPINN considering both training and inference time
can achieve a 6x speedup over commercial COMSOL
with an average Mean absolute error (AE) of 0.47
K. In terms of training time, the proposed parameter-
ized ThermPINN is 11x faster than the parameterized
plain PINN with similar accuracy. The UQ analysis
with 5000 samples for maximum temperature propagated
from ambient temperature shows that the parameterized
ThermPINN and parameterized plain PINN are 113 and
22 x faster than COMSOL, respectively.

The paper is organized as follows: Section II reviews the
traditional and ML-based methods for thermal map estimation
of the full chip. Section III introduces the thermal modeling for
full chip and temperature dependence of thermal conductivity
and leakage power. Inspired by separation of variables method,
we propose a novel ThermPINN architecture with parameter-
ized ambient temperature and effective convection coefficient
in Section IV. Experimental results are presented in Section V.
Finally, Section VI concludes this paper.

II. RELEVANT WORK

Several traditional thermal algorithms have been developed
to obtain full-chip thermal maps for early design stages. Go-
plen et al. utilized the finite element method (FEM) to directly
discretize temperature field for thermal-aware placements [7].
FEM method is widely used in commercial software, such
as COMSOL and ANSYS. Finite difference method (FDM)
was also employed to discretize the differential operator to
capture temperature distribution with power density [8]. Li et
al. presented a multigrid approach to speed up the FDM for
a full-chip thermal analysis [9]. Based on FDM, Huang et
al. proposed a compact thermal model (HotSpot) to perform
thermal simulation of full chip with desired levels of abstrac-
tion [10]. Above numerical methods require discretization of

the full chip, which is very time-consuming. To avoid volume
meshing procedure of the chip, several analytical methods are
proposed to perform fast thermal analysis for rectangle-shaped
chips. Zhan et al. applied Green’s function method to obtain
thermal map efficiently by using the convolution of Green’s
function and power density map [11]. Then, separation of
variables method was developed to represent the full chip
thermal maps with truncated cosine series [13].

Several works were conducted to consider temperature-
dependent thermal conductivity and leakage power. Yang et al.
showed that temperature dependence of thermal conductivity
can lead to an increase of 5 K in peak temperature [14]. Liu
et al. employed an iterative way to calculate the temperature
distribution considering the impact of temperature dependent
leakage power [15]. Sultan et al. proposed modified Green’s
function to consider both temperature-dependent thermal con-
ductivity and leakage power in full chip thermal simula-
tion [21]. However, such an analytical method approximated
the leakage power with a linear function of temperature.

Machine learning (ML)-based methods have shown great
potential to solve the high dimensional and nonlinear PDEs
with fast speed and high accuracy. ML-based methods ap-
plied in full chip thermal simulation are divided into two
categories, data-driven methods and unsupervised learning
methods. Data-driven methods require labeled data to train
the neural networks. Sheriff et al. applied Long-Short-Term-
Memory (LSTM) network to capture dynamic temperature
profiles measured by infrared thermal imaging setup [22].
Jin et al. took the performance metrics as input to gener-
ate full-chip thermal maps by using generative adversarial
networks [23]. This kind of work collects data from the
real chip and is not suitable for thermal predictions in the
design process. Based on the CTM, Juan et al. proposed a
learning-based autoregressive model to estimate the thermal
map of the target chip [24]. However, this model needs to
be retrained when the floorplan of the target chip changes
significantly. To provide a transferable ML model, Wen et al.
divided the whole chip into several small regions (tiles) where
DNN-based solvers are applied [25]. Chhabria et al. [26]
performed thermal analysis by using convolutional encoder-
decoder networks. Chen et al. [27] applied graph convolution
networks (GCN) to represent the compact thermal model
and obtained thermal maps for chips with different sizes by
using the transferability of GCN. However, those data-driven
methods require a database with ground truth to train the
model, which restricts their applications in real problems as
data generation may not be available or be very expensive to
generate.

Conversely, unsupervised learning methods, especially the
recently proposed PINN concept [16], have emerged as a
solution to address the challenge of data generation. The
essence of the PINN approach involves incorporating essential
physics principles, including governing equations, boundary
conditions, and initial conditions, into the loss functions.
These augmented loss functions are then harnessed in back-
propagation for training the neural network devoid of a
conventional dataset. The efficacy of the PINN paradigm is
well demonstrated in tackling electrostatics problems [28].
Additionally, Cai et al. have effectively applied the PINN
methodology to a diverse array of prototype heat transfer
scenarios, encompassing forced and mixed convection, as well
as the two-phase Stefan problem [29]. Notably, the Central ML
Team at ANSYS delves into the exploration of heat transfer
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in electronic chips through PINN [30]. NVIDIA contributes
to this trajectory by introducing a PINN-based PDE solver,
named Modulus, that aids in the simulation and optimization
of heat sink designs employing parameterized techniques [31].
Recently, Liu et al. proposed a DeepOHeat framework to
perform a fast thermal analysis of 3D IC from the function
space of several PDE configurations to the function space of
the solution [32]. However, these endeavors predominantly
center around resolving the heat conduction equation with
constant parameters, and they encounter challenges associated
with the gradual training convergence of conventional PINN,
particularly when confronted with larger-scale problems.
Furthermore, boundary and initial conditions in PINN are
difficult to be enforced using loss functions as the boundary
(BC)/initial conditions (IC) should be satisfied absolutely for a
valid solution. To address this issue, Sun et al. proposed to use
penalty coefficients A to differentiate the magnitudes of gov-
erning equation loss and boundary/initial conditions loss [33].
However, such penalty coefficient method still cannot ensure
the complete IC/BC compliance. Then, hard constraints con-
cept was proposed to convert multiple losses to one single loss
by using the augmented Lagrangian method [19], [20]. But this
method still needs to explicitly consider the boundary/initial
conditions in loss functions. In this paper, we use discrete
cosine neural networks (DCN) to represent the solution. The
new method we proposed only considers governing equation in
loss function since DCN automatically enforces the boundary
conditions. At the same time, DCN has a better convergence
speed than the fully-connected neural networks (FCN), which
significantly reduces the training time of the PINN method.

III. PROBLEM FORMULATION
A. Thermal modeling for a full chip

Functional units on the chip generate lots of heat, which
leads to nonuniform temperature distributions. The steady-
state temperature profile of the full chip is governed by thermal
equation [11], [13]

V- (=k(r)VT(r)) = g(r) (1)

where r represents the position (z,y,z), T(r) is the tem-
perature, g(r) is the power density and x(r) is the thermal
conductivity. For boundary conditions, the bottom surface of
the chip is set as convection boundary condition with the
convection coefficient i and other surfaces are set as adiabatic
boundary conditions, which can be expressed as

or|  _or| _or| _
Ox r=0,a 83} y=0,b 0z z=0
oT 2
KJE . = h(T|z:C — TO)

where T} is the ambient temperature. The chip system consists
of several layers, such as thermal interface material (TIM)
layer, TSV layer, chip layer, etc. We can reduce the 3D
problem to 2D problem because of the multi-layer structure.
The reduced thermal equations are written as [34], [35]

9 (P + 2 (xwZE) — 2 — 1) = g(r)
Or ( or oy dy
T

BC:— = — =
C@w dy 0

y=0,b

z=0,a

3)

where m 1is the effective convection coefficient, which de-
scribes the vertical heat transfer behavior.

Separation of variables method is an efficient and accurate
method to solve the thermal equation (3) with constant thermal
conductivity and power density [35]. Based on boundary
conditions, the temperature distribution can be expressed as

Q P
T(z,y) = ZZ Clpq COS (p;rx) cos (?y) 4)
q=0 p=0
where P and () represent the truncated number of series along
x- and y- directions, respectively, a and b are the widths of
the chip along z- and y- directions, respectively, and C),
is the coefficients to be determined by governing equation
of (3). If the thermal conductivity and power density are
constant, the C,, can be calculated analytically by using the
formula in [35]. However, in the real application, thermal
conductivity and power density are temperature-dependent,
which is illustrated in the next subsection. The separation of
variables method fails to solve this nonlinear thermal equation
with temperature-dependent parameters.

B. Temperature-dependent parameters

Several parameters of the chip are impacted by temperature,
such as thermal conductivity and leakage power. Thermal
conductivity «(r) is position dependent in the chip. Also,
thermal conductivity is a function of temperature, which is

given by [14]
T -n
H(T) = Ko (300) (5)

where kg is the thermal conductivity at temperature 300 K
and 7 is a constant for the specific material.

Leakage power has a strong dependence on temperature and
is approximated by a linear model [21]

P]eak(T) = P]eak,O(1 + ﬁAT) (6)

where P, is the leakage power at 300 K, 3 is the coef-
ficient, and AT = T — T,. However, this linear model only
works for a small range of temperature (such as 318-343 K). If
the chip works beyond this range of temperature, a piece-wise
linear model is employed to describe the leakage power [15].

IV. THE PROPOSED THERMPINN FOR FULL-CHIP
THERMAL ANALYSIS

A. The proposed ThermPINN

Due to the temperature-dependent thermal conductivity and
power density, we can not directly obtain C), analytically
for the thermal equation (3). To overcome this problem, we
propose a discrete cosine neural networks (DCN) to repre-
sent (4), as shown in Fig. 1(a). Based on automatic differential
of DCN, we can build the governing equation of (3) and use
unsupervised learning method to find C)4, which is similar
to recently proposed PINN [16]. The separation of spatial
variables x and y forms two cosine vectors. Then @) x P matrix
is obtained by the matrix product of two cosine vectors. The
temperature value is calculated by the inner product of Q) x P
matrix and the coefficients Cpq matrix. Such network is called
the DCN.

To consider the variations of ambient temperature 7y and
effective convection coefficient m, we parameterize these two
variables, as shown in Fig. 1(a). The coefficients C), depend
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Fig. 1. Overall frameworks of (a) the proposed ThermPINN and (b) the plain PINN with parameterized ambient temperature Tp and effective convection

coefficient m.

on the two variables. We use multi-layer perception (MLP) to
build a connection between C),, and two variables. Therefore,
we have

Q P

o) = 373 MR Ty con () o (2,

q=0 p=0
(7

Then, we use back-propagation algorithm to learn the param-
eters of MLP.

Unsupervised learning method trains the parameters of
networks without using labeled data and adds the physics law
into the loss function. Thermal equations (3) consist of gov-
erning equation and boundary conditions. The expression (7)
automatically satisfies the boundary conditions. Therefore, we
only need to build governing equation based on (7) and the
loss function then can be expressed as

2 (K<T)g§>

0 or 2
+ o (WG ) A= 1)~ gl

N
;N
Linermpiny = MSE, = A ;

(wi,yi,mi,Toq)

®)
where M SFE, is the mean-square errors of governing equation,
N, is the number of sampling points, which are randomly

selected in the combinational domains of space, ambient
temperature, and effective convection coefficient.

B. The plain PINN
As shown in Fig. 1(b), the plain PINN directly uses MLP
to model the temperature distribution, which is given by

T(x,y,m,To) = MLP(x,y,m,TO) (9)

Then, plain PINN adds all physics laws into loss function
which is represented by

LpinNy = Ay MSE, + M\ MSE, (10)
where
wsre= 35 )+ (5
b = — —_— PR
N = I\ 02 | (o0 9 | (y=o,p)
(1)

where MSE, is the mean-square error of boundary con-
ditions, A, and ), are the penalty coefficients, IV, is the
numbers of sampling points, which are selected randomly in
the combinational domains of space, ambient temperature and
effective convection coefficient at the boundaries.

C. Comparison of proposed ThermPINN and plain PINN

As shown in Fig. 1, compared with plain PINN, the pro-
posed ThermPINN only needs to consider governing equation
constraints and does not require sampling points on the bound-
aries. The reduced input data leads to faster training speed.
We only need a small number of series to obtain accurate
temperature distribution. The number of learning parameters
is significantly less than plain PINN. Therefore, the training
speed of ThermPINN is much faster than that of plain PINN,
which is demonstrated in Section V. In addition, the proposed
ThermPINN can avoid the impact of penalty coefficients A,
and )\, on the accuracy of the physics-informed methods since
the loss function of the proposed ThermPINN only consists of
governing equations. It is very difficult for the plain PINN to
find proper penalty coefficients to achieve good accuracy.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we demonstrate the accuracy and speed of
the proposed ThermPINN method by using two floorplans
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Fig. 2. Thermal maps of Alpha21264 with four cores by using (a) commercial COMSOL, (b) proposed ThermPINN with 60x60 eigenvalues, and (c) plain
PINN. (d) Power density map of Alpha21264 with four cores. (¢) The absolute error between ThermPINN and COMSOL. (f) The absolute error between

plain PINN and COMSOL

TABLE I
ACCURACY AND SPEED COMPARISON FOR ALPHA21264 PROCESSOR
. ThermPINN . .
M lain PINN [2 Y 21 MSOL
etrics 10x10 | 20x20 | 30x30 | 40x40 | 50x50 | 60x60 | P " [29] arSim [21] ) COMSO
Mean AE (K) 1.93 0.97 0.55 0.41 0.30 0.23 0.05 0.61 Ground
Max Deviation (K) | 9.92 330 1.68 1.16 112 1.03 0.22 0.55 ruth,
Percent Mean AE | 336 % | 1.64% | 093% | 0.69% | 051% | 039% 0.08% 2%
Tg‘;‘:;gg 544s | 836s | 12.04s | 3378s | 80245 | 160.55s 5076 s Unkown (offline) -
Insfggeerlice 0.6l ms | 0.6l ms | 0.64ms | 0.59 ms | 0.65ms | 0.67 ms 1.04 ms 1.3 ms (online) 5s

of full chip. One is the Alpha21264 processor with four
CPU cores. Another more complicated floorplan is randomly
generated, which consists of many function units with different
sizes and power densities. To show the advantage of the
proposed ThermPINN, we further apply the surrogate model
for the uncertainty quantification analysis, which is a hyper-
dimensional problem.

The proposed ThermPINN and plain PINN are implemented
in the PyTorch platform. All programs, including training,
inference and generating ground truth, are run on a Linux
server with Xeon ES 2.2 GHz CPU and NVIDIA Titan RTX
GPU.

A. Accuracy and speedup of ThermPINN without parameter-
ization

For ease of analysis, we first implement the individual
ThermPINN without parameterization to obtain temperature
profile of Alpha21264 processor, as shown in Fig. 2(d). The
training data has 10000 sampling points in the interior domain
of the chip. For plain PINN, there are extra 500 sampling
points for boundary conditions. Both thermal conductivity

and leakage power are temperature-dependent, which is a
nonlinear problem and can not be solved by the separation
of variables method. Therefore, we propose the ThermPINN
method to calculate the cosine coefficients C, of equa-
tion (4). The starting learning rate of the Adam optimizer for
ThermPINN is 0.1.

Based on separation of variables methods, the number of
truncated cosine series has a great impact on the accuracy
and speed of the cosine series solution. Then, we explore the
number P x () of cosine series to trade off the accuracy and
speed of the proposed ThermPINN. As illustrated in Table I,
the Mean absolute error (AE) is reduced from 1.93 K to 0.23
K and the training time increases from 5.44 s to 160.55 s
when the number of cosine series increases from 10 x 10 to
60 x 60. “Mean AE” represents the average absolute error
Zg(ioo | Toredicti — Tiruni|/10000 for one thermal map. As we
can see, 40 x 40 is a proper number of cosine series, which
has relatively less training time of 33.78 s with acceptable
accuracy of Max Deviation 1.16 K. “Max Deviation” is used to
represent the difference of maximum temperature between two
results. As the number of cosine series continues to increase,
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the accuracy is improved slightly.

We also implement plain PINN to solve the same nonlinear
thermal equations. The MLP used in the plain PINN has 6
layers and 128 neurons for each layer. The inputs of MLP are
position x and y. Its output is the temperature 7'. The starting
learning rate of the Adam optimizer is 10~3. Commercial
COMSOL tool is employed to generate ground truth, as
shown in Fig. 2(a). “Percent Mean AE” represents the ratio
of Mean AE to maximum temperature rise (59 K). Based
on ground truth, The mean AE and Max Deviation of plain
PINN is 0.05 K and 0.22 K, respectively, which are better
than that of proposed ThermPINN with 60 x 60 eigenvalues.
Fig. 2(b) and Fig. 2(c) are the temperature distributions for
ThermPINN and plain PINN, respectively. The corresponding
absolute errors for ThermPINN and plain PINN are shown in
Fig. 2(e) and Fig. 2(f), respectively. As we can see, they are in
the same accuracy level, although the plain PINN has better
accuracy than the ThermPINN. With enough accuracy, training
and inference speed of ThermPINN (40 x 40) are 150x and
1.76x faster than that of plain PINN, respectively, as shown
in Table I. The results show that the proposed ThermPINN
reduces training time significantly and can be of more practical
use in EDA fields by comparison to plain PINN.

Compared with the plain PINN, the ThermPINN has
fewer parameters to be learned, which reduces both training
and inference time. In addition, the cosine series used in
ThermPINN automatically satisfy the boundary conditions.
Therefore, ThermPINN does not require sampling points on
the boundaries and just needs to learn the parameter to satisfy
the constraints of governing equation. ThermPINN does not
require the penalty coefficients to balance boundary loss and
governing equation loss. The coefficients C),, of the cosine
series converge exponentially so that the main value of C),
that ThermPINN learns can change the loss function rapidly,
which leads to a fast convergence speed of ThermPINN’s loss
function.

We also use the floorplan of alpha21264 processor to
compare the proposed ThermPINN with the recently proposed
VarSim, as shown in Table I. The 0.23 K Mean AE of the Pro-
posed ThermPINN is smaller than 0.61 K of VarSim, although
our example with four CPU cores is more complicated than the
alpha21264 processor in VarSim. What’s more, the inference
speed of the proposed ThermPINN achieves 2x speedup over
the VarSim. This is because the VarSim needs to double the
size of the chip to consider the adiabatic boundary conditions
for edges and corners.

We note that we did not compare ThermPINN with fast
thermal simulator HotSpor [10] because HotSpot can not
directly solve the nonlinear heat conduction equation with
temperature-dependent parameters and requires many iterative
calculations to find the final solution, which is slower than
commercial software COMSOL. We did not compare the
ThermPINN with the recently proposed DNN based method
such as CNN-based method [26] and GAN-based method [23]
as they are supervised learning methods.

B. Accuracy and speedup of ThermPINN with parameteriza-
tion

To explore various running environments and design spaces,
we parameterize the ambient temperature 7 and effective
convection coefficient m in the ThermPINN, which is no-
toriously difficult for traditional numerical methods because
of high dimensionality. The ambient temperature is set in

lel0

Power Density (W/m?)

0.0

6 8
X (mm)

Fig. 3. A more complicated power density map.

the range of 300~310 K and effective convection coeffi-
cient ranges between 1500 and 1650. In the parameterized
ThermPINN, a MLP with 5 layers and [2, 200, 400, 800,
1200, 1600] neurons is employed to build connection between
parameters (1, m) and coefficients (Cpq). The number of
cosine series is set as 40 x 40. The inputs data are 60000
sampling points, which consist of 10000 sampling points
in the space domain and 6 combinations of 7 and m,
which are (7=300,m=1500), (T,=330,m=1500), (17,=300,
m=1650), (1px=330,m=1650) and others.

TABLE II
ACCURACY AND SPEED COMPARISON FOR 3171 CASES

. parameterized | parameterized
Metrics ThermPINN | plain PINN | COMSOL
Max Mean AE (K) 1.21 0.39
Min Mean AE (K) 0.15 0.09 G d
Mean Mean AE (K) 047 0.17 ruth
Max Deviation (K) 3.60 1.33
Percent Mean Mean AE 0.66 % 0.24%
Tgl‘)‘é‘;gg 2122 s 7.2 hours -
Inference
Speed 119 s 474 s 14008 s

To validate the accuracy and speed of the proposed pa-
rameterized ThermPINN, we generate a more complicated
floorplan, as shown in Fig. 3. We use COMSOL to gener-
ate ground truth by sweeping parameters 7y and m. Their
intervals are 0.5 K and 1, respectively. The total number of
cases are 3171 (21x151). For each case, we can obtain one
thermal map of the chip by using parameterized ThermPINN.
“Mean AE” represents mean absolute error for one thermal
map. “Max Mean AE”, “Min Mean AE”, and “Mean Mean
AE” are the maximum, minimum, and mean Mean AE for
3171 cases, respectively, as shown in Table. II. Percent Mean
Mean AE represents the ratio of Mean Mean AE to maxi-
mum temperature rise (71 K). As we can see, parameterized
ThermPINN yields Mean AE from 0.15 to 1.21 K and achieves
an average Mean AE of 0.47 K. Fig. 4(b)and 4(e) show
the thermal maps of both the cases with Min and Max
Mean AE predicted by proposed parameterized ThermPINN.
Ground truth also is generated by COMSOL, as shown in
Fig. 4(a) and 4(d). The absolute errors between parameterized
ThermPINN and COMSOL are shown in Fig. 4(c) and 4(f).
We note that solution time including training and inference
time of parameterized ThermPINN is 6x smaller than that
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Fig. 4. Thermal maps of full chip by using (a)(d) commercial COMSOL, and (b)(e) proposed parameterized ThermPINN with 40x40 eigenvalues. (c)(f) The
absolute error between parameterized ThermPINN and COMSOL. (a)-(c) The best case with a Min Mean AE of 0.15 K, m=1557 and Tp=330 K. (d)-(f) The

worst case with a Max Mean AE of 1.21 K, m=1649 and T,=330 K.

of COMSOL for this high dimensional problem. The results
show the great advantage of the parameterized ThermPINN
for various running environments and design space exploration
over the traditional COMSOL.

To compare the parameterized ThermPINN with parameter-
ized plain PINN, we also apply the parameterization technique
for plain PINN. The MLP has 6 layers and 256 neurons for
each layer. The inputs of MLP are T, m, « and y and the
output is T'. The parameterized plain PINN achieves the Mean
AE from 0.09 to 0.39 K, respectively, which are better than the
parameterized ThermPINN. But parameterized ThermPINN
achieves 11x speedup over the parameterized plain PINN in
terms of training time.

C. Uncertainty quantification based on surrogate model
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Fig. 5. Probability density of maximum temperature Tmax propagated from
a truncated Gaussian distributed ambient temperature T (m=1587).

Based on the parameterized surrogate model, we can easily
predict the thermal maps with different 7y and m. Then, the
surrogate model is applied for uncertainty propagation from

TABLE III
ACCURACY AND SPEED COMPARISON FOR 5000 SAMPLES
Metri parameterized | parameterized COMSOL
etries ThermPINN | plain PINN
Mean AE of Timax (K) 0.59 0.25 Ground
Percent Mean AE of Thnax 0.93 % 0.39% truth
Inference 199 s 996 s
Speed (113x) (22x) 22568 s

Ty to maximum temperature 7Ty, of the full chip based
on Monte Carlo (MC) simulation. We use python normal
distribution function to generate 5000 MC samples for ambient
temperature 7y with a mean value of 305 and a standard
deviation value of 1.5, as shown in Fig. 5. With m=1587,
we obtain the maximum temperature of 5000 thermal maps
as ground truth based on COMSOL, which costs 6.3 hours.
We plot the distribution of maximum temperature with 5000
cases in Fig. 5. The maximum temperature distribution is also
normal. Its mean value is 353.2 and the standard deviation
value is 2.4. If the thermal conductivity and the leakage
power are constant, the standard deviation of the maximum
temperature distribution should be equal to that of the ambi-
ent temperature distribution. For our cases, the dependence
of thermal conductivity and leakage power on temperature
increases the standard deviation of maximum temperature
distribution.

To validate the accuracy and speed of the surrogate model
obtained by parameterized ThermPINN and parameterized
plain PINN, we predict the maximum temperature for 5000
cases and their distributions are shown in Fig. 5. Compared
with ground truth, the Mean AEs of T,, for parameterized
ThermPINN and parameterized plain PINN are 0.59 and 0.25,
respectively, as shown in Table III. Percent Mean AE of
Tinax represents the ratio of Mean AE of T}, to maximum
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temperature rise (63 K). The parameterized plain PINN has
better accuracy than parameterized ThermPINN. Both of them
can match the results of ground truth, as shown in Fig. 5.
We note that parameterized ThermPINN can achieve 113X
speedup over the COMSOL, which shows a great acceleration
in UQ analysis. The parameterized plain PINN is 22 x faster
than COMSOL and slower than parameterized ThermPINN.

VI. CONCLUSION

In this paper, we have proposed a novel full-chip thermal
numerical analysis approach based on the cosine series and
DNN, called ThermPINN, which is faster than plain PINN
for training. To consider design space exploration and various
running environments using ThermPINN, we parameterized
the ambient temperature and effective convection coefficient.
Then, the obtained surrogate model is used to explore design
space and perform UQ analysis. The numerical results on
alpha21264 processor show that the proposed ThermPINN has
2x speedup and 3x better accuracy over the state-of-the-art
VarSim. The experimental results for 2-D full-chip thermal
analysis of 3171 cases show that the proposed parameterized
ThermPINN considering both training and inference time
can achieve a 6x speedup over commercial COMSOL with
an average Mean absolute error (AE) of 0.47 K. In terms
of training time, the proposed parameterized ThermPINN is
11x faster than the parameterized plain PINN with similar
accuracy. The UQ analysis with 5000 samples for maximum
temperature propagated from ambient temperature shows that
the parameterized ThermPINN and parameterized plain PINN
are 113x and 22x faster than COMSOL, respectively.
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