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via Surrogate Modeling Using Implicit
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Abstract—Thermoelectric cooler (TEC) is a promising active
cooling device to remove the localized hot spots precisely in
VLSI chips. In this article, we use a novel implicit physics-
constrained neural networks (called IPCNNs) to build a surrogate
model for the single TEC device with the reduction from 3-D to
1-D. First, the surrogate model represented by the deep neu-
ral networks (DNNs) allows parameterization of key design and
running parameters, such as current density, length, and thermal
boundary conditions of the TEC. Second, the proposed method
tries to partition the physics laws into two different groups,
which then are enforced by supervised learning and physics-
informed neural networks (PINNs) framework sequentially. Such
implicit PCNN scheme can lead to much faster training speed
and better convergent accuracy for the unsupervised training.
The existing plain PINN enforces all the physics laws via the loss
functions and the network tends to have very slow training speed
and a large convergent error for large problems. An extreme
learning machine (ELM) is used for the networks in the first
stage. Compared with fully connected network (FCN) trained by
the traditional back-propagation algorithm, ELM can be easily
trained and converges much faster. Furthermore, by leveraging
the differential nature of the DNN model, we can directly esti-
mate the derivative of the cooling heat flux with respect to current
density instead of using a finite difference approximation. The
calculated derivatives are used to find the optimal current den-
sity to achieve maximum cooling heat flux via Newton’s method.
Last but not least, we propose a novel hybrid finite element
neural network (FENN) method to perform thermal analysis of
the VLSI chip system with the TEC device. The DNN model is
embedded into COMSOL through the heat flux boundary condi-
tions. Experimental results show that the machine learning-based
method can achieve about 8.5x speedup with good accuracy than
the COMSOL-based finite element method. Furthermore, the
proposed IPCNN is more stable and accurate than the existing
PINN. The proposed FENN can have a 5.1x speedup and 5.4x
memory reduction over the traditional numerical method.

Index Terms—Heat cooling flux, implicit physics-constrained
neural networks (IPCNNs), temperature-dependent materials,
thermoelectric cooler (TEC).
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I. INTRODUCTION

HERMOELECTRIC cooler (TEC) is a promising heat
T removal solution for VLSI chips due to its precise con-
trol, compact size, and noiseless operation [1], [2], [3]. With
the Peltier effect, TEC can actively provide efficient and local-
ized cooling for hot spots in the chip. Localized heat fluxes of
the microprocessors can reach >300 W/cm? [1]. The power
densities generated by the chip will continue to increase as
the technology node advanced into the next generation. To
meet the increasing cooling demand, several efforts have been
made to improve the maximum cooling heat flux of TEC
devices. New thermoelectric materials with a high figure of
merit ZT were developed and the thickness of thermoelec-
tric materials was reduced [1], [2]. For instance, the TEC
with Sb,Te3/BiyTes superlattice has a cooling heat flux of 258
W/cm? [2]. Maximum cooling heat flux is a key performance
metric of the single TEC device at a temperature difference
across the module of zero [2], [4]. In general, the current den-
sity of the single TEC has an optimal value where the cooling
heat flux is maximum. Accurate TEC modeling and current
density optimization are important to study the performance
of the single TEC device.

Based on the energy conversation, simplified energy equi-
librium model [1], [2], [3], [4] was first proposed to
describe the TEC device by using the approximated expres-
sions. This model can not consider a large thermal gra-
dient and temperature-dependent coefficients [3] because
it suffers from low accuracy. In contrast to the simpli-
fied energy equilibrium model, partial differential equations
(PDEs) [3], [5], [6], [7], [8] describing the TEC effect can
predict more accurate results even though the thermal gradient
is large and the coefficients are nonlinear.

There are several numerical and analytical methods
employed to solve the PDEs for modeling a single TEC device.
Numerical methods can perform accurate simulations for large
and complex structures with temperature-dependent materi-
als. Antonova and Looman first used the commercial code in
ANSYS to perform finite element (FE) analysis for 3-D TEC
geometry [5]. Chen et al. [6] implemented 3-D thermoelec-
tric generator (TEG) model in a finite volume method CFD
package, which is FLUENT software. Fateh et al. [7] utilized a
finite difference method to explore the design and optimization
of TEG devices. However, numerical methods require huge
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computation costs and are very time consuming due to the dis-
cretization of both spatial and temporal space. For each new
parameter, numerical methods have to assemble a new lin-
ear system to recalculate the final results. Such methods are
impractical for real-time applications and multiple predictions
required by optimization problem. To improve the efficiency,
an analytical approach [8], [9] is also used to understand the
thermal characteristics of the TEC. Sheikhnejad et al. [8] first
reduced 3-D to 1-D with a realistic approximation and then
used the separation of variables method to obtain the exact
solution of the PDEs. Chen et al. [9] proposed a new bound-
ary condition which considers the TEC effect and derived an
analytical solution for optimal current density to achieve the
maximum cooling heat flux. However, these analytical works
assumed that thermal conductivity, Seebeck coefficient and
electrical conductivity are constant. Experimental measure-
ment shows these coefficients are temperature dependent [10].
The analytical methods failed to solve the nonlinear 1-D TEC
equation with temperature-dependent coefficients. Therefore,
new efficient and accurate methods are highly desired for
solving the nonlinear 1-D TEC equations.

Recently, machine learning (ML) methods are increasingly
being used to develop a surrogate model for the PDEs in var-
ious applications based on the universal approximation and
excellent expressivity of neural networks [11], [12], [13],
[14], [15]. Therefore, the ML-based surrogate model is an
alternative way to describe the nonlinear 1-D TEC equation
due to its capability of representing strong nonlinearity and high
dimensionality. An ML-based surrogate model approximates a
relationship between inputs and outputs of a system. The inputs
can be any parameters, such as geometry information, bound-
ary conditions, operation conditions, coefficients, etc. Such
ML-based surrogate model can be evaluated several times and
efficiently for real-time applications and optimization problem.
One of the ML-based approaches to build the surrogate model
is physics-informed neural networks (PINNs) [15] which is
a supervised learning method. PINN is proposed to integrate
the mathematical formula such as PDEs into neural networks.
Compared with data-driven methods [12], [13], [14], the class
of PINN methods does not need the labeled dataset. Basically,
the PINN framework can be viewed as a meshfree method,
which employs the meshless points, such as the problem data,
the boundary and initial conditions, to produce the final results.
The main advantage of the PINN over traditional numerical
methods is that first we can add design parameters into the
networks so that the trained network can work for all the param-
eter space in the solutions (no retraining is required), which
was demonstrated in works [16], [17], [18]. Second, the PINN
can obtain the sensitivity information trivially by simply using
back propagation, which is extremely useful for sensitivity-
based optimization. For the traditional numerical method, the
numerical differential is needed, which requires solving for more
solution points and can be expensive. The PINNs method has
shown very promising performance in forward and optimization
problems [11], [15], [16], [17], [18].

In this work, we propose a novel implicit physics-
constrained neural networks (IPCNNs) to build a versatile
surrogate model for the nonlinear 1-D TEC PDE:s first, which
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Fig. 1. Two neural networks connected (a) in parallel and (b) in cascade for
solving nonlinear partial equations with nonlinear coefficients.

consists of a prebuilt physics-enforced model for coefficients
as shown in Fig. 1(b). Our key contributions are summarized
as follows.

1) We propose to apply the PINN concept to build a param-
eterized surrogate model for a single TEC device and
optimize its cooling heat flux. Based on heat conduc-
tion equation, the 1-D TEC equation integrates Peltier
effect to provide active cooling heat flux. The resulting
PDE surrogate models represented by the deep neu-
ral networks (DNNs) allows parameterization of design
parameters (such as current density and length) and run-
ning parameters (such as thermal boundary conditions)
of the TEC. Among them, the current density is the key
design parameter in our TEC device optimization.

2) To mitigate the slow convergence of loss function for
existing plain PINNs, we propose a novel IPCNN frame-
work to build a parameterized surrogate model for non-
linear 1-D TEC equations. First, we divide the physics
requirements into two different groups. In the first
stage, an extreme learning machine (ELM) algorithm is
employed to approximate temperature-dependent param-
eters [10] via a supervised learning process with the
published data. ELM is easily trained and converges
much faster than a fully connected network (FCN)
trained by a back-propagation method. Then for the sec-
ond stage, the physics-constrained loss is applied with
the trained ELM from the first stage. In this way, some
physics laws are implicitly enforced in the first stage and
the number of variables and constraints are significantly
reduced for the second stage for solving the overall PDE
problem via PINN. Therefore, the two-stage training
method leads to much faster training and convergence
speed for the unsupervised training.

3) By capitalizing the differential nature of the ML-based
surrogate model and parameterization of current density,
we can directly estimate the derivative of the cool-
ing heat flux with respect to current density instead of
finite difference approximation. Then, we use derivative-
based Newton’s method to find optimal current density
to achieve maximum cooling heat flux with the deriva-
tives. This fast optimization algorithm benefits from the
differentiability of the ML-based model.

4) Based on the ML-based surrogate model and parame-
terization of boundary conditions, we propose a novel
hybrid FE neural network (FENN) method to perform
thermal analysis of VLSI chip systems with the TEC
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device. This method adds the ML-based surrogate model
into FE-based COMSOL via heat flux boundary condi-
tions. In heat flux boundaries, temperature and heat flux
should be continuous. This FENN method can signifi-
cantly reduce the number of degrees of freedom while
maintaining high accuracy.

Experimental results show that the ML model has very
high accuracy for temperature, its derivatives and cooling heat
flux g, compared with FE-based COMSOL. The ML model
can achieve 8.5x speedup over the COMSOL. Our proposed
IPCNN is more robust and stable than existing PINN. The
proposed FENN can have a 5.1x speedup and 5.4x memory
reduction over the traditional numerical method. In addition,
simulation considering temperature-dependent parameters can
predict the rapid degradation of TEC cooling performance at
high temperature, which is more realistic than the results with
constant coefficients.

This article is organized as follows: Section II reviews
some related prior works. Section III reviews the TEC models.
Section I'V presents the new IPCNN framework to build a param-
eterized surrogate model for the nonlinear 1-D TEC equation.
Based on the ML model, we calculate the cooling heat flux g,
and further optimize g.. In Section V, a novel FENN method
is proposed to perform thermal analysis of VLSI chip systems
with the TEC devices. Experimental results are presented in
Section VI. Finally, Section VII concludes this article.

II. RELATED PRIOR WORKS OF MACHINE
LEARNING APPROACHES

Recently, ML methods have shown breakthroughs in com-
puter vision and natural language processing, which inspires
new solutions to solve PDEs for many applications in scien-
tific communities [19]. Furthermore, similar to the analytical
methods, the trained ML models are differentiable so that
they can calculate the derivatives directly without discretiza-
tion errors [20], [21]. Several ML methods have been applied
to solve heat conduction equation for thermal analysis with-
out the TEC effect, which are divided into two strategies.
One approach is the data-driven method which is supervised
learning. Zhang et al. [22] employed the FCN to predict
the thermal response of many temperature sensors on the
processors. Sadigbatcha et al. [23] applied long short-term
memory (LSTM) network to capture dynamic temperature pro-
files measured by infrared thermal imaging setup. Jin et al. [24]
took the performance metrics as input to generate full-
chip thermal maps by using generative adversarial networks.
Chhabria et al. [25] performed thermal analysis by using a con-
volutional neural network (CNN) based on encoder—decoder
architecture. Those data-driven methods require a database
with ground truth to train the model, which restricts their
applications in real problems as data generation is a big issue.

On the other hand, an unsupervised learning method, called
PINN [15], was proposed recently to tackle the problem of
data generation. Based on automatic differentiation, PINN esti-
mates the differential operator and adds the information of
physics law, such as governing equations, boundary condi-
tions, and initial conditions, into the loss functions, which
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Fig. 2. (a) 3-D view of thin-film TEC device. (b) 1-D reduction from 3-D
TEC device. Heat source and VCC are placed on the cold side. Heat sink and
GND are located on the hot side.

is used to train the neural network by back-propagation
without a dataset. Cai et al. [26] have applied PINN to var-
ious prototype heat transfer problems, including forced and
mixed convection, and two-phase Stefan problem. Central
ML Team at ANSYS investigates heat transfer in electronic
chips using PINN [27]. NVIDIA presents a PINN-based PDE
solver, known as Modulus, and uses the toolkit to simu-
late and optimize heat sink design with the parameterized
technique [17]. Those methods tried to seek optimal design
simply by looping through all parameter combinations, which
is a brute-force and inefficient method. The aforementioned
works only consider the constant thermal conductivity in
heat transfer problems without the TEC effect. However,
temperature-dependent parameters can lead to nonlinearity in
the heat conduction equation, which is difficult to be solved.
Shukla et al. [28] used two neural networks to represent the
solutions of nonlinear elastic wave equations and position-
dependent parameters, respectively. The inputs of two neural
networks contain the same variables which is the position x.
Therefore, the two neural networks are connected in paral-
lel, as shown in Fig. 1(a). Their works [28] and NVIDIA
Modulus [17] train two neural networks simultaneously since
the two neural networks are connected parallelly. However, for
the nonlinear thermal problem, we can not use the two paral-
lel neural networks to represent temperature and coefficients,
respectively, because outputs of the first neural network are
inputs of the second neural network. Therefore, PINN for
the nonlinear thermal analysis of the TEC still needs to be
explored.

III. SINGLE TEC DEVICE AND ITS MODELING
IN NUTSHELL

Fig. 2(a) shows a detailed 3-D view of the thin-film TEC
device, which consists of N-type and P-type materials. These
N-P pairs of legs are connected in series. Heat is absorbed
from heat sources located at the cold (bottom) side and gen-
erated on the hot (top) side with the heat sink based on the
thermoelectric effect which is an energy conversion between
electric and thermal fields. The complex thermoelectric effect
consists of Seebeck, Peltier, Thomson, Joule heating, and
Fourier transfer effects.

A Simplified 1-D energy equilibrium model [1], [2], [3], [4]
was first proposed and frequently used to predict the
performance of such TEC device, as shown in Fig. 2(a). The
cooling heat flux at the cold side is represented by

1°L «
qc = ST.J — E_ — =Ty —T) (1)
o L
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where « is the thermal conductivity, S is the Seebeck coef-
ficient, o is the electrical conductivity, T, and T} are the
temperatures on the cold and hot sides, respectively, J is the
current density, and L is the thickness of the TEC. However,
this model is overly simplified and gives an approximated
expression. The results provided by the model are inaccu-
rate when the thermal gradient is large and coefficients are
temperature dependent.

Therefore, a PDEs-based model [3], [5], [6], [7], [8], which
describes the TEC effect more accurately, was developed to
understand the thermal characteristics of the thermoelectric
applications. The 3-D TEC array device in Fig. 2(a) only
has vertical heat flux. Heat does not transfer along horizontal
directions. All thermal legs have the same current density as
they are connected in series. For single TEC device simula-
tion and optimization, the boundary conditions are uniform.
Therefore, to simulate single 3-D TEC device, we can reduce
the 3-D TEC device into 1-D problem, as shown in Fig. 2(b).
The reduction from 3-D to 1-D is the same as the previous
approach [8]. The 1-D PDEs to describe 3-D TEC can be
expressed as follows:

9 TaT S(HTJ | =
a["“ ) S ]—

BC: T(x=0)=Tp K
BC: —n- <—K(T)8—T +S(T)TJ)
0x

2

o ()

=g, Wim* (2)
x=L

where T(x) is the temperature, J is the current density
along x-direction, «(7T) is the temperature-dependent ther-
mal conductivity, S(T) is the temperature-dependent Seebeck
coefficient, and o (7) is the temperature-dependent electrical
conductivity, n is the unit outward vector of the boundary sur-
face, Tj is the ambient temperature, and g, is the heat flux
at the boundary. The governing equation considers the Peltier
effect, which is different from the traditional heat conduction.
We can parameterize the ambient temperature 7 and heat
flux g, boundary conditions to consider different boundary
conditions.

Cooling heat flux represents the performance of the TEC.
The maximum cooling heat flux gmax is defined as the max-
imum cooling heat flux that the thermoelectric module is
capable of providing at a temperature difference across the
module of zero [2], [4]. To estimate gmax, the temperature at
two sides should be the same, 7(0) = T(L) = Ty K, which are
different from the boundary conditions of (2). T(0) represents
boundary conditions at the heat sink. 7 (L) represents boundary
conditions at the heat source. Therefore, one straightforward
method uses an optimization algorithm to find g, to meet the
constraint 7(0) = T(L) = Ty K. Another method is that we
directly set the boundary conditions as T(0) = T(L) = Tp K
and cooling heat flux is estimated by

oT
gc = —n- <—K(T)a + S(T)TJ). 3)

Based on cooling heat flux g, with constraint 7(0) = T(L),
we optimize the current density to achieve maximum cool-
ing heat flux gmax. Note that the smaller length L and higher
ambient temperature 7y of TEC lead to the higher maximum
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Fig. 3. Overall framework of IPCNNs for temperature-dependent TEC. In the
first stage, based on experimental data of materials, an ELM is trained first to
approximate temperature-dependent parameters (such as thermal conductivity,
Seebeck coefficient, and electrical conductivity) and their derivatives. In the
second stage, an FCN is employed to model temperature 7" with respect to
position x, length L, current density J, temperature boundary condition T,
and heat flux boundary condition g.. The two networks are then applied to
construct the 1-D governing equation loss MSE,, boundary conditions loss
MSE},1 and MSE}; with their derivatives obtained by automatic differentiation.
The only FCN is trained by Adam optimization algorithm based on back-
propagation of loss function.

cooling heat flux. Therefore, we do not need to optimize the
length and ambient temperature.

IV. IMPLICIT PHYSICS-CONSTRAINED NEURAL
NETWORKS FOR TEMPERATURE-DEPENDENT TEC

A schematic diagram of IPCNN to build a surrogate model
for temperature-dependent TEC is shown in Fig. 3. In the
proposed IPCNN, we propose to use two cascade neural
networks to describe the nonlinear TEC problem and param-
eterize the current density, length, and boundary conditions
of the TEC. Among them, current density is the key design
parameter in our TEC device optimization. Then, correspond-
ing 1-D TEC equations should be normalized as we normalize
the inputs and outputs of neural networks. After that, we pro-
pose to apply the two-step training method to train the two
cascade neural networks. The details are illustrated below.

A. Parameterization of Length, Current Density,
and Boundary Conditions

Universal approximation theorem [29] shows that neural
networks can be employed to approximate any complex and
nonlinear functions, such as the solution 7T'(x, L, J, Ty, g.) of
PDEs (2). Any parameter impacting on the output can be
taken as the input of neural networks. In this article, we take
length, current density, and boundary conditions as the inputs.
Therefore, we have

T=NxL,J, Ty, qc) @

where the notation A represents the FCN to approximate tem-
perature T with respect to position x, length L, current density
J, temperature boundary condition T, and heat flux boundary
condition g¢..

With this parameterized technique, the IPCNN method has
several advantages over traditional numerical methods: first,
we can add design parameters into the networks so that the
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trained network can work for all the parameter space in the
solutions (no retraining is required), which was demonstrated
in works [16], [17], [18]. For this problem, we parameterize
the current density as it is a key design parameter for our
optimization problem. Second, the IPCNN with parameterized
technique can obtain the sensitivity information trivially by
simply using back propagation, which is extremely useful for
sensitivity-based optimization as demonstrated in our work.
For a traditional numerical method, the numerical differential
is needed, which requires solving for more solution points and
can be expensive. Section IV-E describes the optimization of
current density for TEC based on the neural network model.

B. Normalization of Inputs and Outputs

In this article, the length of TEC is in the range of 0.8 x
1073~1 x 1073 m and position x is in the range of 0—1 x 1073.
Then we determine the range of current density, temperature,
and heat flux that we are interested in. The current density
J ranges between —1 x 107 and 0 A/m>. The temperature
T is the range of 300-600 K. The ambient temperature T
is the range of 300—400 K. The heat flux g, ranges between
0.8 x 10°-1.2 x 10° W/m?. Therefore, we normalize the inputs
and outputs data to the interval [—2, 2], which is easy to be
trained for neural networks. The scaling transformations of x,
J, T, and g, are formulated as follows:

ax, J=BJ, T=yT, §.=0q. (5)

where o = 103, B = 1077, y = 1/300, and § = 107 are
scaling factors. Once we normalized the inputs and outputs,
the 1-D TEC PDEs will also be changed by adding scaling
factors. Based on (5), the 1-D TEC PDEs (2) can be rewritten
as follows:

AN\ 2 N
a2 3k (T) ( dT o? 92T
————|) =D
ys 0T ox y ax
-~ 3S(T) T AT 1 T
(@ 308D @ 0T 1T
v2B oT 9x  yB ax  B2o(T)
BC: 7(0) = yTy

X=

Y P _ e
BC : n< K(T) + ﬁsmn) o ©

i=al

Then, the FCN can be formulated by

A A A

F=N (x i.3. T, q;). 7

C. Two-Step Training Method

After the preprocessing, we can apply the novel IPCNN to
build a parameterized surrogate model for the transformed 1-D
TEC PDEs (6) using the two-step training method.

From (6), we can observe that the derivatives d«x(T)/0T
and 0§ (T)/ oT are required to be evaluated. However, the FCN
N (&, t,J) can only provide the derivatives aT /0%, 02T/332
and BT/ 1. Therefore, in the first stage, based on superv1sed
learning method, a simple and differentiable approximator,
which can provide the corresponding derivatives, should be
used to fit the temperature-dependent thermal conductivity
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k(T), Seebeck coefficient S(T) and electrical conductivity
o (T), which are obtained from experimental data [10]. The
ELM algorithm [30] is used since it is a convenient func-
tion approximator using a feed-forward neural network with
one hidden layer. It is an optimization-free neural network,
which means its weights and biases can be directly determined
by solving linear equations. The ELM can be expressed as
follows:

= Z vig(wix + b;) + b

i=1

fx) (8)
where v; and w; are weights, b; and b are biases, ¢ (-) is acti-
vation function, and » is the number of neurons in the hidden
layer. w; and b; are randomly generated. In this article, tanh(-)
is chosen as the activation function. The data pairs with m

sampling points are (xj,f(x;)) and j = 1,2,..., m. Then, (8)
can be written in matrix form
Hv = (€))
where
¢wixi +by1)  P(waxy + ba) ¢(wpxi +by) 1
dwixy +b1)  d(waxz + by) G (Wnxa + by) 1
¢(W1xr;l +by1) ¢(W2x;;1 +b2) ¢(an;;l + by) 1
V= [v1 12 Vi b]T
B=[B B ﬂm]T-

Then, the unknown parameters v; and b can be estimated by

v = pinv(H)B (10

where pinv represents the Moore—Penrose generalized inverse
of matrix H since the matrix H is not to be square in most of
the cases. Finally, we can calculate the derivative of function
f(x), which is given by

of (x)

n
=D viwig' (wix + by). (1)
i=1

FCN can be also used to approximate the temperature-
dependent parameters. However, ELM can be trained faster
than FCN by using the optimization-free algorithm, called
Moore—Penrose generalized inverse pinv. Therefore, we
employ ELM to fit experimental data [10]. Once ELM is
trained, the weights v; and bias b are fixed. In the next step, we
only train the FCN using a physics-constrained loss function
and do not change the weights v; and bias b of ELM.

A physics-constrained loss function is an unsupervised
learning strategy, which does not require labeled training data
because they add physics information of governing equation,
boundary conditions and initial conditions into the loss func-
tion of FCN [15]. In the second stage, the parameters of FCN
can only be trained by minimizing the physics-constrained
loss function using the unsupervised learning method. For
this TEC problem, the physics-constrained loss function is
represented by

L = AMSE, + AptMSEp| + ApoMSEp» (12)
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where
AN 2 N
1 & a?ak(r) (0T o 92T
MSE, = — Y| == — | - ==
N, P y< oT |\ ox y ax
-~ 3S(T) dT ~oT
y2p oT 9x  yB 0%
2
1 J?
B2 o (T) o
(At Liv]i3 0,i é( z)
1 Np1
MSEy = — (T— yTo)| -
Np1 ; (x=0)
MSE, SIE (T)a? Lseryig - 4, ’
b2 = 7 k() — — - — =
N =[\y" o yp 6 )=t

where MSE,, MSEy1, and MSE}, are the mean-square errors of
governing equation, left boundary condition, and right bound-
ary condition, respectively, A,, Ap1, and Apy are the penalty
coefficients, N, is the number of sampling points, which are
randomly selected in the combinational domains of space,
length, current densities, and boundary conditions, Np; and
Npy are the numbers of sampling points, which are selected
randomly in the combinational domains of length, current den-
sities, temperature and heat flux boundary conditions at the
boundaries x = 0 and at the boundaries x = L, respectively.

D. Comparison of Proposed Method and Existing PINN
Existing PINN adds all physics laws into loss function
which is represented by

L = AMSE, + Apt MSEp + AppMSEp + AdataMSEdaa (13)

where

2
Naata(T7) — [k (T), S(T}), o (T1)]

1%1
i=1
where Aga, represents the additional FCN, MSEg,., is the
mean-square error of Nga, and experimental data, Aga is
the penalty coefficient, Ny, represents the number of exper-
imental data. Therefore, existing PINN trains the two FCNs
simultaneously by using the loss function (13), which is called
the one-step training method. In our IPCNN framework, we
train ELM and FCN separately, which is called two-step train-
ing method. In the first stage, we use the Moore—Penrose
generalized inverse algorithm to train ELM using experimental
data [10] and determine the weights and bias of ELM so that
it cannot be changed later. In the second stage, we only train
the FCN N using a physics-constrained loss function (12).
In the IPCNN, ELM has a single hidden layer with four
neurons to approximate the temperature-dependent parameters.
The FCN has six layers with 512 neurons. For the existing
PINN method, the two FCNs have six layers with 512 neurons.
This is because the default FCN is set as six layers with 512
neurons in the NVIDIA modulus [17]. The starting learning
rate is 1073, Both IPCNN and the existing PINN methods use

MSEdata =

data

4095

107 107
10 107
10° 10°
10° 10
102 102
i i
810! 810
S103 S100
102 102 — Two-step
] 8 ", —— Two-step }8 " One-step
10° One-step 10°
10° 10°
107 107
10° 10°
1050 100 750 200 250 300 350 400 100 50 100 150 200 250 300 350 400
Step (x10°) Step (x10°)
(@) (b)

Fig. 4. Loss history of one-step and two-step training methods for
the nonlinear TEC problem with the length range of (a) 0.8-1 mm and
(b) 0.05-1.2 mm.

the cascaded neural network to solve this problem because the
parallel neural networks can not solve the nonlinear equation
with temperature-dependent parameters.

Fig. 4(a) shows loss history of one-step and two-step train-
ing methods applied for the nonlinear TEC problem with the
length range of 0.8—1 mm. The current density J, ambient tem-
perature Ty, and heat flux g, are also parameterized. As we
can see, the loss function (13) of one-step training method
converges to 10!, which is a very large error. The loss func-
tion (12) of two-step training method converges successfully
from 10 to 10~® with much better accuracy.

To further demonstrate the stability and robustness of IPCNN
and the existing PINN, we increase the length range to 0.05-
1.2 mm. The other settings remain the same. The loss history is
shown in Fig. 4(b). The loss function (12) of IPCNN converges
successfully from 54 to 4 x 10~°. However, the loss function (13)
of existing PINN is oscillating and fails to converge. This
is because the two FCNs are trained simultaneously, which
increases the searching space of the optimization algorithm.
Due to the two FCNs connected in cascade, one FCN can
impact another FCN a lot and it is difficult for the optimizer to
find the final solution. Therefore, our proposed [IPCNN method
is more stable and accurate than the existing PINN because
we ensure that the FCN is not affected by the ELM.

As the range of length increases, the accuracy of IPCNN
is reduced because the loss function increases from 107° to
4 x 1075, To improve the accuracy of neural networks for a
wide range of lengths, we can use several neural networks to
represent different subregions. For example, we can divide the
range [0.05, 1.2] into six subregions ([0.05, 0.2], [0.2, 0.4],
[0.4, 0.6], [0.6, 0.8], [0.8, 1.0], and [1.0, 1.2]) and use six
individual neural networks for each subregion.

We highlight the features of proposed IPCNN: parame-
terization of several important parameters, normalized TEC
equations, two cascaded neural networks, two-step training
method, and an ELM algorithm which is used to replace FCN
as ELM has a faster training speed over FCN.

E. Current Density Optimization

Once we obtain the ML-based parameterized surrogate
model T = N(%,J) using IPCNN, we can calculate the
cooling heat flux g, based on the differentiability of FCN
[N R A 1 An
ge = —K(T)/\/}C(x —al, J) — sl a4

Y vB
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Fig. 5. (a) Side view of the VLSI chip system with the TEC device. (b) 3-D
FE-based model in COMSOL for VLSI chip system with the TEC device.

where N; denotes the derivative of N with respect to X, which
can be easily obtained by automatic differentiation.

When dq./d0J = 0, the cooling heat flux g, reaches the
maximum values. Newton’s method is a quick iterative algo-
rithm to find the solution of d¢q./dJ = 0, which is formulated
as follows:

e =
g =y = =" (15)
572 =1
where
dq. 3T 824, 3T
=x(T)— —S(DT, =«(T .
05 Dy ST G = Dyan
Based on the FCN model, (15) is rewritten as follows:
aB (DN (i = oL, J,) = ST
Jo1 =Jy — (16)

QBN (% = oL,

where N;; is the derivative of \; with respect to J, and Nij
is the derivative of \V;; with respect to J. The FCN model uses
automatic differentiation to estimate N5 and V5, without dis-
cretization error. Newton’s method requires fewer evaluations
of the FCN model compared to the brute-force method for
this optimization. What is more, benefiting from the differen-
tial nature of the FCN, it can directly provide the derivatives
instead of the finite difference approximation which needs
more evaluations. Therefore, the ML-based surrogate model
shows promises for the optimization problem.

V. APPLICATION OF TEC ML-BASED MODEL
IN VLSI CHIP

Fig. 5(a) shows that thin-film TEC devices are employed to
remove the heat generated by VLSI chips. The thermal sim-
ulation for the VLSI system with the TEC device by using
COMSOL software is complicated since it involves two kinds
of equations: 1) heat conduction equation and 2) TEC equa-
tion. For convenience, we simplified the structure in Fig. 5(a)
as the 3-D model in Fig. 5(b). We build this thermal model
by using “General Form PDE” in the Mathematics module
of COMSOL. In the TEC devices, the 3-D TEC equations
are employed to consider TEC effects. In the other parts, 3-D
heat conduction equations are used to describe the heat trans-
fer in solid. Then, we configure the power map and boundary
conditions and start the thermal simulation in COMSOL. The
thermal results are shown in Fig. 6(a). Based on the tempera-
ture distribution, we observed that the temperature on the TEC
legs is uniform in the y—z plane and increases proportionally
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Fig. 6. (a) Temperature distribution of the VLSI chip system with the TEC
device. (b) Heat flux distribution for the chip layer. (c) Heat flux distribution
for the TEC array layer.

along the x-axis. We plot the heat flux for chip and TEC array
in Fig. 6(b) and (c), respectively. As we can see, there are tem-
perature gradients of x-, y-, and z- all directions in the chip
layer. Therefore, 3-D thermal simulation should be considered
for the chip layer. But in the TEC layer, heat mainly flows in
the vertical direction due to Peltier cooling effect. As a result,
it is reasonable to assume that the heat flux mainly exists in x-
direction and heat does not transfer along y- and z- direction.
Therefore, we can use 1-D TEC ML-based model to describe
the single 3-D TEC device.

To apply the 1-D TEC ML-based model in the 3-D VLSI
chip system, we set one side of the TEC leg as temperature
boundary condition of 303.5 K since this side is connected
with the heat spreader and heat sink (temperature is uniform).
If we know the temperature 7' on another side of the TEC leg,
the heat flux g can be calculated by the 1-D TEC ML-based
model. By using the differentiability of FCN, we can obtain
the heat flux

g= —EK(T)./\[;C(T> n YL’BS(T)f? 17)

where 7T is the temperature of one side which is connected to
the chip layer. We parameterize the temperature T to calculate
the heat flux of the TEC leg based on different temperature
values. Then, we proposed to combine the ML-based model
and FE-based model to simulate the VLSI chip system with
TEC devices based on interior boundary conditions (tempera-
ture and heat flux are continuous), as shown in Fig. 7. In the
FE-based COMSOL, we set the heat flux boundary condition
of the chip layer as the (17) obtained by the neural network.
Then, we can significantly decrease the number of degrees of
freedom by using this combination method (called FENN). We
will show the accuracy and efficiency of the proposed FENN
method in the following result Section VI
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Fig. 7. Combination of 1-D TEC ML-based model and 3-D FE-based model
for VLSI chip systems with the TEC device.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we first use ELM to approximate the
temperature-dependent parameters. Then, we demonstrate the
accuracy and speed of the parameterized surrogate model FCN
obtained by the IPCNN framework. With the parameterized
FCN, we employ Newton’s method to optimize current den-
sity to achieve the maximum cooling heat flux. Finally, we
emphasize the importance of considering the temperature-
dependent parameters compared with the results calculated by
using constant parameters.

The parameterized IPCNN is implemented in the NVIDIA
Modulus platform [17], which is developed for solving PDEs
and built on TensorFlow. ELM is trained in MATLAB and then
integrated into Modulus. The model is trained and tested on a
Linux desktop with AMD Ryzen 5 1600 3.2-GHz processors
and NVIDIA GTX 1060 GPU with 6G memory.

A. Temperature-Dependent Parameters Approximated
by ELM

Fig. 8 shows the experimental data of one TEC material’s
parameters, such as thermal conductivity, Seebeck coeffi-
cient, and electrical conductivity, which are obtained from the
research article [10]. A fast ELM algorithm is employed to fit
the parameters and can output the derivatives of «(T), S(T),
and o (T) with respect to T. It can be seen from Fig. § that the
fitting curves exactly fit the experimental data and are smooth.

B. Accuracy and Speed of the IPCNN Surrogate Model

To validate the accuracy of the new IPCNN framework,
we first compare the temperature 7(x,J) obtained by FCN
and COMSOL with the length L = 1 mm, ambient temper-
ature 7o = 300 K, and heat flux ¢, = 1 x 105 W/m?, as
shown in Fig. 9(a)—(c). The results from IPCNN agree well
with the solutions from COMSOL. The maximum absolute
error is 1.8 K, which is small compared with the maximum
temperature 397 K. Based on the differentiability of FCN, we
also validate the accuracy of the derivative of T with respect
to x in Fig. 9(d)—(f) since it is used to compute cooling heat
flux g.. As we can see, the derivatives obtained by FCN and
COMSOL are matched very well. Therefore, the derivatives
calculated by FCN are also convincing and accurate.
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TABLE I
SPEED COMPARISON OF FCN AND COMSOL

[ FCN [ COMSOL [ Speedup
Fig. 9(a) and Fig. 9(b) Estimation [ 0.94 s | 8 s [ 85x

The FCN obtained by IPCNN in this work can parameterize
current density, length, and thermal boundary conditions. But
we want to stress that it can include many other parameters
as needed. Due to these parameterizations, the trained FCN
model can be viewed as a library and can be used for many
different applications and optimization problems as long as all
the relevant design and running parameters are included.

To further validate accuracy of the FCN, we sweep length L,
ambient temperature Ty, and heat flux g.. Fig. 10 shows that
temperature on the line with different length L is estimated by
IPCNN and COMSOL. They have a good agreement with each
other for each length. We can also change boundary condi-
tions, such as ambient temperature Ty and heat flux g.. We use
FCN model to predict temperature distributions with different
Ty and q., as shown in Figs. 11 and 12. As we can see, the
FCN model has a good accuracy by comparison to COMSOL.
Therefore, the ML-based method shows the capability of solv-
ing high-dimensional PDEs with several parameters. Note that
Figs. 9-12 are obtained by one FCN model which is only
trained once.

To demonstrate the efficiency of FCN trained by the IPCNN
framework, we take Fig. 9(a) and (b) as an example. We build
1-D TEC model (2) in COMSOL. The current density interval
is AJ = 1 x 10* A/m? and space interval is Ax = 20 um.
The mesh element size is set as 10 um and the number of
degrees of freedom is 201. To make their results consistent,
the FCN predicts the temperature at 501 x 991 points. Table I
shows the time to obtain Fig. 9(a) and (b) using FCN and
COMSOL, respectively. The FCN can achieve 8.5x speedup
over FE-based COMSOL.

C. Optimization of Cooling Heat Flux

To estimate the maximum cooling heat flux, we set the
boundary conditions as 7(0) = T(L) = Tp. Then, we use
the IPCNN framework to obtain the FCN model. Fig. 13(a)
shows that temperature on the line with different current densi-
ties is estimated by IPCNN and COMSOL. They have a good
agreement with each other for each current density. As we can
see, the [IPCNN method can deal with different combinations
of boundary conditions.

Fig. 13(b) shows the first and second derivatives of g, with
respect to J, which are obtained by using the FCN model.
We can use Newton’s method to find optimal current den-
sity quickly with the derivatives. The iteration procedure using
FCN is shown in Table II. Ngjy, represents the total number of
FCN model evaluations. It takes four steps to find the optimal
current density Jopr = —8.0942 x 10° A/m?. For numerical
methods, like COMSOL, the derivatives cannot be calculated
directly and are usually approximated by the finite difference
method. dg./d8J and 3°¢./dJ* can be approximated by

% ~ QC(J+h) - ‘Ic(-] - h)
aJ 2h
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Fig. 8. Real data of (a) thermal conductivity, (b) Seebeck coefficient, and (c) electrical conductivity with different temperatures, which are approximated by
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TABLE II
ITERATION PROCEDURE OF NEWTON METHOD USING FCN

TABLE III
ITERATION PROCEDURE OF NEWTON METHOD USING COMSOL

. Current Density | Cooling heat qnti—gn _ . Current Density | Cooling heat qnti—gn _
Iteration (A/m?) flux (W/m2) BT Nsim Iteration (A/m?) flux (W/m2) @ Nsim
1 —1.0000 x 10° | 4.8982 x 103 / 1 1 —1.0000 x 10° | 4.5894 x 103 / 3
2 —7.1466 x 10° | 1.7745 x 10° | 3522.76% 2 2 —6.3802 x 10° | 1.7147 x 10° | 3636.22% 6
3 —8.2167 x 10° | 1.8023 x 10° 1.57% 3 3 —8.0135 x 10° | 1.8021 x 10° 5.1% 9
4 —8.0942 x 10° | 1.8030 x 10° 0.039% 4 4 —8.0921 x 10° | 1.8023 x 10° 0.011% 12
qc _ qe( +h) —29.() + ge(J — h) (18) procedure using COMSOL. It also takes four steps to find the

a2 h?
where £ is a small value. In this article, & is set to 1 x 10°.
The number of COMSOL evaluations is 3 for each iteration
of Newton’s method because the derivatives require the values
of g.(J+h), q-(J), and g.(J — h). Table III shows the iteration

optimal current density Jopt = —8.0921 x 10° A/m?. But Ngim
for COMSOL is 12, which is three times larger than N, of
FCN. Therefore, for this optimization problem, the ML method
can achieve 3 x 8.5 = 25.5x speedup over the conventional
numerical method.
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Fig. 10. Temperature comparison of IPCNN and COMSOL one the line
with different length L. The current density J = —8 x 10° A/m?2, the ambient
temperature 7o = 300 K, and heat flux g =1 x 10° W/m?.
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Fig. 11.  Temperature comparison of IPCNN and COMSOL on the line
with different temperature boundary conditions 7. The current density J =
—8 x 100 A/mz, the length L = 1 mm, and heat flux g. = 1 x 105 W/m2.

360
—— COMSOL
340+ — — -IPCNN
q.=1.2x10° W/m?
320+ °

q,=1.1x10° W/m?

= q,=1x10° W/m?
§3OO q,=0.9x10° W/m?
280+ q,=0.8x10 *Wim?
260+
240+
0.0 0.2 0.4 0.6 0.8 1.0
X (mm)

Fig. 12. Temperature comparison of [IPCNN and COMSOL on the line with
different heat flux boundary conditions g.. The current density J = —8 x 100
A/m?, the length L = 1 mm, and the ambient temperature 7o = 300 K.

D. Impact of Temperature-Dependent Parameters on Cooling
Heat Flux

Fig. 14 shows the cooling heat flux estimated with
temperature-dependent and constant temperature. As we can
see, the cooling heat flux obtained by FCN agrees well with
the results from COMSOL. For constant temperature, we
set the temperature as 375 K. The notation “TD” represents
temperature-dependent temperature and “CT” denotes constant
temperature. As we can see, when the current density is not too
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Fig. 13. (a) Temperature comparison of IPCNN and COMSOL on the line
with different current densities J. (b) dg./dJ and 8251L-/BJ2 with different
current densities.
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Fig. 14.  Cooling heat flux g, with temperature-dependent and constant
temperature.

large (J < 1x 107 A/m?), their cooling heat fluxes are similar.
However, when the current density is large and Joule heating
effect leads to a large temperature rise, cooling heat flux for
the temperature-dependent case drops quickly, which is quite
different from the constant case. This is because high temper-
ature can degrade the performance of TEC dramatically. That
is the reason why we do not observe that the cooling heat
flux increases infinitely as described in [9] even though the
dimensionless figure of merit ZT() > 1. Therefore, considering
temperature-dependent parameters are important for accurate
modeling and simulation of TEC.
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Fig. 15. Thermal map comparison between the proposed FENN and COMSOL. (a) Power density in chip layer, (b) FENN solution TrgnN (s 2), (¢) COMSOL
solution TcomsoL (s 2), (d) absolute error |[TFgNN — TcomsoL|- (x = 0.15 mm).

TABLE IV
SPEED COMPARISON OF THE PROPOSED FENN AND COMSOL

T Number of degrees
1me of freedom
FENN 10's 65083
COMSOL | 51s 351773
5.1x 5.4x

E. Accuracy and Efficiency of the Proposed Finite Element
Neural Network

We proposed a novel FENN to perform thermal simula-
tions of the VLSI chip system with the TEC device. This
method combines the FE method and the ML-based model
through heat flux boundary conditions (convection boundary
condition). First, we employed the proposed IPCNN with the
boundary conditions parameterization to obtain the 1-D TEC
ML-based model. Then, based on the heat flux calculated by
the neural network, the proposed FENN method only simulates
the chip layer with the boundary conditions, which signifi-
cantly reduces the number of degrees of freedom. We use the
example shown in Fig. 6(a) to demonstrate the accuracy and
efficiency of the proposed FENN method. Fig. 15(a) shows
the power density that we generate randomly in the chip layer.
Note that the proposed FENN method is not limited to this case
and can be also used to perform thermal analysis for power
densities of some benchmarks and industrial cases. Fig. 15
shows the chip thermal maps in the chip layer (x = 0.15 mm)
obtained by the proposed FENN method and COMSOL. As
we can see, the results from FENN and COMSOL match each
other perfectly. Therefore, the TEC reduction from 3-D to 1-D
we used is reasonable and the proposed FENN is very accu-
rate compared with ground truth. Table IV shows the speed
comparison of the FENN and COMSOL. With high accuracy,
the FENN can achieve 5.1x speedup and 5.4 x memory reduc-
tion over the COMSOL. Our proposed ML-based model can
improve the efficiency of traditional numerical methods with
high accuracy.

VII. CONCLUSION

In this article, we proposed a novel IPCNN to develop
a parameterized surrogate model for nonlinear 1-D PDEs
describing the single TEC device by using the two cas-
caded neural network architecture. The PDE surrogate model
parameterizes current density, length, and thermal boundary

conditions of the TEC. Among them, the current density is the
key design parameter in our TEC device optimization. The loss
function for existing PINN converges to a large error since it
deals with large numbers of learnable parameters at the same
time. To mitigate the problem, we proposed IPCNN concepts
in which the two-stage training method for two separate neural
networks are carried out sequentially. The two-stage training
method leads to much faster training speed and much better
accuracy for the unsupervised training. On top of this, benefit-
ing from the automatic differentiation of the ML-based model
and parameterization of current density, we calculated the
derivative of the cooling heat flux with respect to current den-
sity. Then, the derivative-based Newton’s method is employed
to find the optimal current density to achieve maximum cool-
ing heat flux efficiently. We also proposed a novel hybrid
FENN method to perform the thermal analysis of the VLSI
chip system with TEC devices. Experimental results show that
the ML-based method can achieve 8.5x speedup with good
accuracy in the simulation of the single TEC device com-
pared with the conventional numerical method. Our proposed
two-step training method is more stable and accurate than the
one-step training method. The proposed FENN can have a
5.1x speedup and 5.4 x memory reduction over the traditional
numerical method. In addition, it is very important to consider
the temperature-dependent parameters because they impact the
maximum cooling heat flux significantly.
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