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Abstract—Thermoelectric cooler (TEC) is a promising active
cooling device to remove the localized hot spots precisely in
VLSI chips. In this article, we use a novel implicit physics-
constrained neural networks (called IPCNNs) to build a surrogate
model for the single TEC device with the reduction from 3-D to
1-D. First, the surrogate model represented by the deep neu-
ral networks (DNNs) allows parameterization of key design and
running parameters, such as current density, length, and thermal
boundary conditions of the TEC. Second, the proposed method
tries to partition the physics laws into two different groups,
which then are enforced by supervised learning and physics-
informed neural networks (PINNs) framework sequentially. Such
implicit PCNN scheme can lead to much faster training speed
and better convergent accuracy for the unsupervised training.
The existing plain PINN enforces all the physics laws via the loss
functions and the network tends to have very slow training speed
and a large convergent error for large problems. An extreme
learning machine (ELM) is used for the networks in the first
stage. Compared with fully connected network (FCN) trained by
the traditional back-propagation algorithm, ELM can be easily
trained and converges much faster. Furthermore, by leveraging
the differential nature of the DNN model, we can directly esti-
mate the derivative of the cooling heat flux with respect to current
density instead of using a finite difference approximation. The
calculated derivatives are used to find the optimal current den-
sity to achieve maximum cooling heat flux via Newton’s method.
Last but not least, we propose a novel hybrid finite element
neural network (FENN) method to perform thermal analysis of
the VLSI chip system with the TEC device. The DNN model is
embedded into COMSOL through the heat flux boundary condi-
tions. Experimental results show that the machine learning-based
method can achieve about 8.5× speedup with good accuracy than
the COMSOL-based finite element method. Furthermore, the
proposed IPCNN is more stable and accurate than the existing
PINN. The proposed FENN can have a 5.1× speedup and 5.4×

memory reduction over the traditional numerical method.

Index Terms—Heat cooling flux, implicit physics-constrained
neural networks (IPCNNs), temperature-dependent materials,
thermoelectric cooler (TEC).
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I. INTRODUCTION

T
HERMOELECTRIC cooler (TEC) is a promising heat

removal solution for VLSI chips due to its precise con-

trol, compact size, and noiseless operation [1], [2], [3]. With

the Peltier effect, TEC can actively provide efficient and local-

ized cooling for hot spots in the chip. Localized heat fluxes of

the microprocessors can reach >300 W/cm2 [1]. The power

densities generated by the chip will continue to increase as

the technology node advanced into the next generation. To

meet the increasing cooling demand, several efforts have been

made to improve the maximum cooling heat flux of TEC

devices. New thermoelectric materials with a high figure of

merit ZT were developed and the thickness of thermoelec-

tric materials was reduced [1], [2]. For instance, the TEC

with Sb2Te3/Bi2Te3 superlattice has a cooling heat flux of 258

W/cm2 [2]. Maximum cooling heat flux is a key performance

metric of the single TEC device at a temperature difference

across the module of zero [2], [4]. In general, the current den-

sity of the single TEC has an optimal value where the cooling

heat flux is maximum. Accurate TEC modeling and current

density optimization are important to study the performance

of the single TEC device.

Based on the energy conversation, simplified energy equi-

librium model [1], [2], [3], [4] was first proposed to

describe the TEC device by using the approximated expres-

sions. This model can not consider a large thermal gra-

dient and temperature-dependent coefficients [3] because

it suffers from low accuracy. In contrast to the simpli-

fied energy equilibrium model, partial differential equations

(PDEs) [3], [5], [6], [7], [8] describing the TEC effect can

predict more accurate results even though the thermal gradient

is large and the coefficients are nonlinear.

There are several numerical and analytical methods

employed to solve the PDEs for modeling a single TEC device.

Numerical methods can perform accurate simulations for large

and complex structures with temperature-dependent materi-

als. Antonova and Looman first used the commercial code in

ANSYS to perform finite element (FE) analysis for 3-D TEC

geometry [5]. Chen et al. [6] implemented 3-D thermoelec-

tric generator (TEG) model in a finite volume method CFD

package, which is FLUENT software. Fateh et al. [7] utilized a

finite difference method to explore the design and optimization

of TEG devices. However, numerical methods require huge
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computation costs and are very time consuming due to the dis-

cretization of both spatial and temporal space. For each new

parameter, numerical methods have to assemble a new lin-

ear system to recalculate the final results. Such methods are

impractical for real-time applications and multiple predictions

required by optimization problem. To improve the efficiency,

an analytical approach [8], [9] is also used to understand the

thermal characteristics of the TEC. Sheikhnejad et al. [8] first

reduced 3-D to 1-D with a realistic approximation and then

used the separation of variables method to obtain the exact

solution of the PDEs. Chen et al. [9] proposed a new bound-

ary condition which considers the TEC effect and derived an

analytical solution for optimal current density to achieve the

maximum cooling heat flux. However, these analytical works

assumed that thermal conductivity, Seebeck coefficient and

electrical conductivity are constant. Experimental measure-

ment shows these coefficients are temperature dependent [10].

The analytical methods failed to solve the nonlinear 1-D TEC

equation with temperature-dependent coefficients. Therefore,

new efficient and accurate methods are highly desired for

solving the nonlinear 1-D TEC equations.

Recently, machine learning (ML) methods are increasingly

being used to develop a surrogate model for the PDEs in var-

ious applications based on the universal approximation and

excellent expressivity of neural networks [11], [12], [13],

[14], [15]. Therefore, the ML-based surrogate model is an

alternative way to describe the nonlinear 1-D TEC equation

due to its capability of representing strong nonlinearity and high

dimensionality. An ML-based surrogate model approximates a

relationship between inputs and outputs of a system. The inputs

can be any parameters, such as geometry information, bound-

ary conditions, operation conditions, coefficients, etc. Such

ML-based surrogate model can be evaluated several times and

efficiently for real-time applications and optimization problem.

One of the ML-based approaches to build the surrogate model

is physics-informed neural networks (PINNs) [15] which is

a supervised learning method. PINN is proposed to integrate

the mathematical formula such as PDEs into neural networks.

Compared with data-driven methods [12], [13], [14], the class

of PINN methods does not need the labeled dataset. Basically,

the PINN framework can be viewed as a meshfree method,

which employs the meshless points, such as the problem data,

the boundary and initial conditions, to produce the final results.

The main advantage of the PINN over traditional numerical

methods is that first we can add design parameters into the

networks so that the trained network can work for all the param-

eter space in the solutions (no retraining is required), which

was demonstrated in works [16], [17], [18]. Second, the PINN

can obtain the sensitivity information trivially by simply using

back propagation, which is extremely useful for sensitivity-

based optimization. For the traditional numerical method, the

numerical differential is needed, which requires solving for more

solution points and can be expensive. The PINNs method has

shown very promising performance in forward and optimization

problems [11], [15], [16], [17], [18].

In this work, we propose a novel implicit physics-

constrained neural networks (IPCNNs) to build a versatile

surrogate model for the nonlinear 1-D TEC PDEs first, which

Fig. 1. Two neural networks connected (a) in parallel and (b) in cascade for
solving nonlinear partial equations with nonlinear coefficients.

consists of a prebuilt physics-enforced model for coefficients

as shown in Fig. 1(b). Our key contributions are summarized

as follows.

1) We propose to apply the PINN concept to build a param-

eterized surrogate model for a single TEC device and

optimize its cooling heat flux. Based on heat conduc-

tion equation, the 1-D TEC equation integrates Peltier

effect to provide active cooling heat flux. The resulting

PDE surrogate models represented by the deep neu-

ral networks (DNNs) allows parameterization of design

parameters (such as current density and length) and run-

ning parameters (such as thermal boundary conditions)

of the TEC. Among them, the current density is the key

design parameter in our TEC device optimization.

2) To mitigate the slow convergence of loss function for

existing plain PINNs, we propose a novel IPCNN frame-

work to build a parameterized surrogate model for non-

linear 1-D TEC equations. First, we divide the physics

requirements into two different groups. In the first

stage, an extreme learning machine (ELM) algorithm is

employed to approximate temperature-dependent param-

eters [10] via a supervised learning process with the

published data. ELM is easily trained and converges

much faster than a fully connected network (FCN)

trained by a back-propagation method. Then for the sec-

ond stage, the physics-constrained loss is applied with

the trained ELM from the first stage. In this way, some

physics laws are implicitly enforced in the first stage and

the number of variables and constraints are significantly

reduced for the second stage for solving the overall PDE

problem via PINN. Therefore, the two-stage training

method leads to much faster training and convergence

speed for the unsupervised training.

3) By capitalizing the differential nature of the ML-based

surrogate model and parameterization of current density,

we can directly estimate the derivative of the cool-

ing heat flux with respect to current density instead of

finite difference approximation. Then, we use derivative-

based Newton’s method to find optimal current density

to achieve maximum cooling heat flux with the deriva-

tives. This fast optimization algorithm benefits from the

differentiability of the ML-based model.

4) Based on the ML-based surrogate model and parame-

terization of boundary conditions, we propose a novel

hybrid FE neural network (FENN) method to perform

thermal analysis of VLSI chip systems with the TEC
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device. This method adds the ML-based surrogate model

into FE-based COMSOL via heat flux boundary condi-

tions. In heat flux boundaries, temperature and heat flux

should be continuous. This FENN method can signifi-

cantly reduce the number of degrees of freedom while

maintaining high accuracy.

Experimental results show that the ML model has very

high accuracy for temperature, its derivatives and cooling heat

flux qc compared with FE-based COMSOL. The ML model

can achieve 8.5× speedup over the COMSOL. Our proposed

IPCNN is more robust and stable than existing PINN. The

proposed FENN can have a 5.1× speedup and 5.4× memory

reduction over the traditional numerical method. In addition,

simulation considering temperature-dependent parameters can

predict the rapid degradation of TEC cooling performance at

high temperature, which is more realistic than the results with

constant coefficients.

This article is organized as follows: Section II reviews

some related prior works. Section III reviews the TEC models.

Section IV presents the new IPCNN framework to build a param-

eterized surrogate model for the nonlinear 1-D TEC equation.

Based on the ML model, we calculate the cooling heat flux qc

and further optimize qc. In Section V, a novel FENN method

is proposed to perform thermal analysis of VLSI chip systems

with the TEC devices. Experimental results are presented in

Section VI. Finally, Section VII concludes this article.

II. RELATED PRIOR WORKS OF MACHINE

LEARNING APPROACHES

Recently, ML methods have shown breakthroughs in com-

puter vision and natural language processing, which inspires

new solutions to solve PDEs for many applications in scien-

tific communities [19]. Furthermore, similar to the analytical

methods, the trained ML models are differentiable so that

they can calculate the derivatives directly without discretiza-

tion errors [20], [21]. Several ML methods have been applied

to solve heat conduction equation for thermal analysis with-

out the TEC effect, which are divided into two strategies.

One approach is the data-driven method which is supervised

learning. Zhang et al. [22] employed the FCN to predict

the thermal response of many temperature sensors on the

processors. Sadiqbatcha et al. [23] applied long short-term

memory (LSTM) network to capture dynamic temperature pro-

files measured by infrared thermal imaging setup. Jin et al. [24]

took the performance metrics as input to generate full-

chip thermal maps by using generative adversarial networks.

Chhabria et al. [25] performed thermal analysis by using a con-

volutional neural network (CNN) based on encoder–decoder

architecture. Those data-driven methods require a database

with ground truth to train the model, which restricts their

applications in real problems as data generation is a big issue.

On the other hand, an unsupervised learning method, called

PINN [15], was proposed recently to tackle the problem of

data generation. Based on automatic differentiation, PINN esti-

mates the differential operator and adds the information of

physics law, such as governing equations, boundary condi-

tions, and initial conditions, into the loss functions, which

Fig. 2. (a) 3-D view of thin-film TEC device. (b) 1-D reduction from 3-D
TEC device. Heat source and VCC are placed on the cold side. Heat sink and
GND are located on the hot side.

is used to train the neural network by back-propagation

without a dataset. Cai et al. [26] have applied PINN to var-

ious prototype heat transfer problems, including forced and

mixed convection, and two-phase Stefan problem. Central

ML Team at ANSYS investigates heat transfer in electronic

chips using PINN [27]. NVIDIA presents a PINN-based PDE

solver, known as Modulus, and uses the toolkit to simu-

late and optimize heat sink design with the parameterized

technique [17]. Those methods tried to seek optimal design

simply by looping through all parameter combinations, which

is a brute-force and inefficient method. The aforementioned

works only consider the constant thermal conductivity in

heat transfer problems without the TEC effect. However,

temperature-dependent parameters can lead to nonlinearity in

the heat conduction equation, which is difficult to be solved.

Shukla et al. [28] used two neural networks to represent the

solutions of nonlinear elastic wave equations and position-

dependent parameters, respectively. The inputs of two neural

networks contain the same variables which is the position x.

Therefore, the two neural networks are connected in paral-

lel, as shown in Fig. 1(a). Their works [28] and NVIDIA

Modulus [17] train two neural networks simultaneously since

the two neural networks are connected parallelly. However, for

the nonlinear thermal problem, we can not use the two paral-

lel neural networks to represent temperature and coefficients,

respectively, because outputs of the first neural network are

inputs of the second neural network. Therefore, PINN for

the nonlinear thermal analysis of the TEC still needs to be

explored.

III. SINGLE TEC DEVICE AND ITS MODELING

IN NUTSHELL

Fig. 2(a) shows a detailed 3-D view of the thin-film TEC

device, which consists of N-type and P-type materials. These

N–P pairs of legs are connected in series. Heat is absorbed

from heat sources located at the cold (bottom) side and gen-

erated on the hot (top) side with the heat sink based on the

thermoelectric effect which is an energy conversion between

electric and thermal fields. The complex thermoelectric effect

consists of Seebeck, Peltier, Thomson, Joule heating, and

Fourier transfer effects.

A Simplified 1-D energy equilibrium model [1], [2], [3], [4]

was first proposed and frequently used to predict the

performance of such TEC device, as shown in Fig. 2(a). The

cooling heat flux at the cold side is represented by

qc = STcJ −
1

2

J2L

σ
−

κ

L
(Th − Tc) (1)
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where κ is the thermal conductivity, S is the Seebeck coef-

ficient, σ is the electrical conductivity, Tc and Th are the

temperatures on the cold and hot sides, respectively, J is the

current density, and L is the thickness of the TEC. However,

this model is overly simplified and gives an approximated

expression. The results provided by the model are inaccu-

rate when the thermal gradient is large and coefficients are

temperature dependent.

Therefore, a PDEs-based model [3], [5], [6], [7], [8], which

describes the TEC effect more accurately, was developed to

understand the thermal characteristics of the thermoelectric

applications. The 3-D TEC array device in Fig. 2(a) only

has vertical heat flux. Heat does not transfer along horizontal

directions. All thermal legs have the same current density as

they are connected in series. For single TEC device simula-

tion and optimization, the boundary conditions are uniform.

Therefore, to simulate single 3-D TEC device, we can reduce

the 3-D TEC device into 1-D problem, as shown in Fig. 2(b).

The reduction from 3-D to 1-D is the same as the previous

approach [8]. The 1-D PDEs to describe 3-D TEC can be

expressed as follows:

∂

∂x

[

−κ(T)
∂T

∂x
+ S(T)TJ

]

=
J2

σ(T)

BC : T(x = 0) = T0 K

BC : − n ·

(

−κ(T)
∂T

∂x
+ S(T)TJ

)
∣

∣

∣

∣

x=L

= qc W/m2 (2)

where T(x) is the temperature, J is the current density

along x-direction, κ(T) is the temperature-dependent ther-

mal conductivity, S(T) is the temperature-dependent Seebeck

coefficient, and σ(T) is the temperature-dependent electrical

conductivity, n is the unit outward vector of the boundary sur-

face, T0 is the ambient temperature, and qc is the heat flux

at the boundary. The governing equation considers the Peltier

effect, which is different from the traditional heat conduction.

We can parameterize the ambient temperature T0 and heat

flux qc boundary conditions to consider different boundary

conditions.

Cooling heat flux represents the performance of the TEC.

The maximum cooling heat flux qmax is defined as the max-

imum cooling heat flux that the thermoelectric module is

capable of providing at a temperature difference across the

module of zero [2], [4]. To estimate qmax, the temperature at

two sides should be the same, T(0) = T(L) = T0 K, which are

different from the boundary conditions of (2). T(0) represents

boundary conditions at the heat sink. T(L) represents boundary

conditions at the heat source. Therefore, one straightforward

method uses an optimization algorithm to find qc to meet the

constraint T(0) = T(L) = T0 K. Another method is that we

directly set the boundary conditions as T(0) = T(L) = T0 K

and cooling heat flux is estimated by

qc = −n ·

(

−κ(T)
∂T

∂x
+ S(T)TJ

)

. (3)

Based on cooling heat flux qc with constraint T(0) = T(L),

we optimize the current density to achieve maximum cool-

ing heat flux qmax. Note that the smaller length L and higher

ambient temperature T0 of TEC lead to the higher maximum

Fig. 3. Overall framework of IPCNNs for temperature-dependent TEC. In the
first stage, based on experimental data of materials, an ELM is trained first to
approximate temperature-dependent parameters (such as thermal conductivity,
Seebeck coefficient, and electrical conductivity) and their derivatives. In the
second stage, an FCN is employed to model temperature T with respect to
position x, length L, current density J, temperature boundary condition T0,
and heat flux boundary condition qc. The two networks are then applied to
construct the 1-D governing equation loss MSEr , boundary conditions loss
MSEb1 and MSEb2 with their derivatives obtained by automatic differentiation.
The only FCN is trained by Adam optimization algorithm based on back-
propagation of loss function.

cooling heat flux. Therefore, we do not need to optimize the

length and ambient temperature.

IV. IMPLICIT PHYSICS-CONSTRAINED NEURAL

NETWORKS FOR TEMPERATURE-DEPENDENT TEC

A schematic diagram of IPCNN to build a surrogate model

for temperature-dependent TEC is shown in Fig. 3. In the

proposed IPCNN, we propose to use two cascade neural

networks to describe the nonlinear TEC problem and param-

eterize the current density, length, and boundary conditions

of the TEC. Among them, current density is the key design

parameter in our TEC device optimization. Then, correspond-

ing 1-D TEC equations should be normalized as we normalize

the inputs and outputs of neural networks. After that, we pro-

pose to apply the two-step training method to train the two

cascade neural networks. The details are illustrated below.

A. Parameterization of Length, Current Density,

and Boundary Conditions

Universal approximation theorem [29] shows that neural

networks can be employed to approximate any complex and

nonlinear functions, such as the solution T(x, L, J, T0, qc) of

PDEs (2). Any parameter impacting on the output can be

taken as the input of neural networks. In this article, we take

length, current density, and boundary conditions as the inputs.

Therefore, we have

T = N (x, L, J, T0, qc) (4)

where the notation N represents the FCN to approximate tem-

perature T with respect to position x, length L, current density

J, temperature boundary condition T0, and heat flux boundary

condition qc.

With this parameterized technique, the IPCNN method has

several advantages over traditional numerical methods: first,

we can add design parameters into the networks so that the
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trained network can work for all the parameter space in the

solutions (no retraining is required), which was demonstrated

in works [16], [17], [18]. For this problem, we parameterize

the current density as it is a key design parameter for our

optimization problem. Second, the IPCNN with parameterized

technique can obtain the sensitivity information trivially by

simply using back propagation, which is extremely useful for

sensitivity-based optimization as demonstrated in our work.

For a traditional numerical method, the numerical differential

is needed, which requires solving for more solution points and

can be expensive. Section IV-E describes the optimization of

current density for TEC based on the neural network model.

B. Normalization of Inputs and Outputs

In this article, the length of TEC is in the range of 0.8 ×

10−3–1×10−3 m and position x is in the range of 0–1×10−3.

Then we determine the range of current density, temperature,

and heat flux that we are interested in. The current density

J ranges between −1 × 107 and 0 A/m2. The temperature

T is the range of 300–600 K. The ambient temperature T0

is the range of 300–400 K. The heat flux qc ranges between

0.8×105–1.2×105 W/m2. Therefore, we normalize the inputs

and outputs data to the interval [−2, 2], which is easy to be

trained for neural networks. The scaling transformations of x,

J, T , and qc are formulated as follows:

x̂ = ³x, Ĵ = ´J, T̂ = µ T, q̂c = θqc (5)

where ³ = 103, ´ = 10−7, µ = 1/300, and θ = 10−5 are

scaling factors. Once we normalized the inputs and outputs,

the 1-D TEC PDEs will also be changed by adding scaling

factors. Based on (5), the 1-D TEC PDEs (2) can be rewritten

as follows:

−
³2

µ 2

∂κ(T)

∂T

(

∂T̂

∂ x̂

)2

−
³2

µ
κ(T)

∂2T̂

∂ x̂2

+
³

µ 2´
T̂ Ĵ

∂S(T)

∂T

∂T̂

∂ x̂
+

³

µ´
S(T)Ĵ

∂T̂

∂ x̂
=

1

´2

Ĵ2

σ(T)

BC : T̂(0) = µ T0

BC : − n ·

(

−
³

µ
κ(T)

∂T̂

∂ x̂
+

1

µ´
S(T)T̂ Ĵ

)

∣

∣

∣

∣

x̂=³L

=
q̂c

θ
. (6)

Then, the FCN can be formulated by

T̂ = N

(

x̂, L̂, Ĵ, T̂0, q̂c

)

. (7)

C. Two-Step Training Method

After the preprocessing, we can apply the novel IPCNN to

build a parameterized surrogate model for the transformed 1-D

TEC PDEs (6) using the two-step training method.

From (6), we can observe that the derivatives ∂κ(T)/∂T

and ∂S(T)/∂T are required to be evaluated. However, the FCN

N (x̂, t, Ĵ) can only provide the derivatives ∂T̂/∂ x̂, ∂2T̂/∂ x̂2,

and ∂T̂/∂ t̂. Therefore, in the first stage, based on supervised

learning method, a simple and differentiable approximator,

which can provide the corresponding derivatives, should be

used to fit the temperature-dependent thermal conductivity

κ(T), Seebeck coefficient S(T) and electrical conductivity

σ(T), which are obtained from experimental data [10]. The

ELM algorithm [30] is used since it is a convenient func-

tion approximator using a feed-forward neural network with

one hidden layer. It is an optimization-free neural network,

which means its weights and biases can be directly determined

by solving linear equations. The ELM can be expressed as

follows:

f (x) =

n
∑

i=1

viφ(wix + bi) + b (8)

where vi and wi are weights, bi and b are biases, φ(·) is acti-

vation function, and n is the number of neurons in the hidden

layer. wi and bi are randomly generated. In this article, tanh(·)

is chosen as the activation function. The data pairs with m

sampling points are (xj, f (xj)) and j = 1, 2, . . . , m. Then, (8)

can be written in matrix form

Hv = β (9)

where

H =

£

¤

¤

¤

¥

φ(w1x1 + b1) φ(w2x1 + b2) · · · φ(wnx1 + bn) 1

φ(w1x2 + b1) φ(w2x2 + b2) · · · φ(wnx2 + bn) 1
...

...
. . .

...
...

φ(w1xm + b1) φ(w2xm + b2) · · · φ(wnxm + bn) 1

¦

§

§

§

¨

v =
[

v1 v2 · · · vn b
]T

β =
[

´1 ´2 · · · ´m

]T
.

Then, the unknown parameters vi and b can be estimated by

v = pinv(H)β (10)

where pinv represents the Moore–Penrose generalized inverse

of matrix H since the matrix H is not to be square in most of

the cases. Finally, we can calculate the derivative of function

f (x), which is given by

∂f (x)

∂x
=

n
∑

i=1

viwiφ
′(wix + bi). (11)

FCN can be also used to approximate the temperature-

dependent parameters. However, ELM can be trained faster

than FCN by using the optimization-free algorithm, called

Moore–Penrose generalized inverse pinv. Therefore, we

employ ELM to fit experimental data [10]. Once ELM is

trained, the weights vi and bias b are fixed. In the next step, we

only train the FCN using a physics-constrained loss function

and do not change the weights vi and bias b of ELM.

A physics-constrained loss function is an unsupervised

learning strategy, which does not require labeled training data

because they add physics information of governing equation,

boundary conditions and initial conditions into the loss func-

tion of FCN [15]. In the second stage, the parameters of FCN

can only be trained by minimizing the physics-constrained

loss function using the unsupervised learning method. For

this TEC problem, the physics-constrained loss function is

represented by

L = λrMSEr + λb1MSEb1 + λb2MSEb2 (12)
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where

MSEr =
1

Nr

Nr
∑

i=1

∣

∣

∣
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∣

∣

⎛
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µ 2
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∣

∣

∣

(
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∣

∣
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2
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1
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∣

∣

∣
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(

³

µ
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∂T̂
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−

1

µ´
S(T)T̂ Ĵ −

q̂c

θ

)

|(x̂=³L)

∣

∣

∣

∣

2

where MSEr, MSEb1, and MSEb2 are the mean-square errors of

governing equation, left boundary condition, and right bound-

ary condition, respectively, λr, λb1, and λb2 are the penalty

coefficients, Nr is the number of sampling points, which are

randomly selected in the combinational domains of space,

length, current densities, and boundary conditions, Nb1 and

Nb2 are the numbers of sampling points, which are selected

randomly in the combinational domains of length, current den-

sities, temperature and heat flux boundary conditions at the

boundaries x = 0 and at the boundaries x = L, respectively.

D. Comparison of Proposed Method and Existing PINN

Existing PINN adds all physics laws into loss function

which is represented by

L = λrMSEr + λb1MSEb1 + λb2MSEb2 + λdataMSEdata (13)

where

MSEdata =
1

Ndata

Ndata
∑

i=1

∣

∣

∣

∣

Ndata(Ti) − [κ(Ti), S(Ti), σ (Ti)]

∣

∣

∣

∣

2

where Ndata represents the additional FCN, MSEdata is the

mean-square error of Ndata and experimental data, λdata is

the penalty coefficient, Ndata represents the number of exper-

imental data. Therefore, existing PINN trains the two FCNs

simultaneously by using the loss function (13), which is called

the one-step training method. In our IPCNN framework, we

train ELM and FCN separately, which is called two-step train-

ing method. In the first stage, we use the Moore–Penrose

generalized inverse algorithm to train ELM using experimental

data [10] and determine the weights and bias of ELM so that

it cannot be changed later. In the second stage, we only train

the FCN N using a physics-constrained loss function (12).

In the IPCNN, ELM has a single hidden layer with four

neurons to approximate the temperature-dependent parameters.

The FCN has six layers with 512 neurons. For the existing

PINN method, the two FCNs have six layers with 512 neurons.

This is because the default FCN is set as six layers with 512

neurons in the NVIDIA modulus [17]. The starting learning

rate is 10−3. Both IPCNN and the existing PINN methods use

Fig. 4. Loss history of one-step and two-step training methods for
the nonlinear TEC problem with the length range of (a) 0.8–1 mm and
(b) 0.05–1.2 mm.

the cascaded neural network to solve this problem because the

parallel neural networks can not solve the nonlinear equation

with temperature-dependent parameters.

Fig. 4(a) shows loss history of one-step and two-step train-

ing methods applied for the nonlinear TEC problem with the

length range of 0.8–1 mm. The current density J, ambient tem-

perature T0, and heat flux qc are also parameterized. As we

can see, the loss function (13) of one-step training method

converges to 10−1, which is a very large error. The loss func-

tion (12) of two-step training method converges successfully

from 10 to 10−6 with much better accuracy.

To further demonstrate the stability and robustness of IPCNN

and the existing PINN, we increase the length range to 0.05–

1.2 mm. The other settings remain the same. The loss history is

shown in Fig. 4(b). The loss function (12) of IPCNN converges

successfully from 54 to 4×10−6. However, the loss function (13)

of existing PINN is oscillating and fails to converge. This

is because the two FCNs are trained simultaneously, which

increases the searching space of the optimization algorithm.

Due to the two FCNs connected in cascade, one FCN can

impact another FCN a lot and it is difficult for the optimizer to

find the final solution. Therefore, our proposed IPCNN method

is more stable and accurate than the existing PINN because

we ensure that the FCN is not affected by the ELM.

As the range of length increases, the accuracy of IPCNN

is reduced because the loss function increases from 10−6 to

4 × 10−6. To improve the accuracy of neural networks for a

wide range of lengths, we can use several neural networks to

represent different subregions. For example, we can divide the

range [0.05, 1.2] into six subregions ([0.05, 0.2], [0.2, 0.4],

[0.4, 0.6], [0.6, 0.8], [0.8, 1.0], and [1.0, 1.2]) and use six

individual neural networks for each subregion.

We highlight the features of proposed IPCNN: parame-

terization of several important parameters, normalized TEC

equations, two cascaded neural networks, two-step training

method, and an ELM algorithm which is used to replace FCN

as ELM has a faster training speed over FCN.

E. Current Density Optimization

Once we obtain the ML-based parameterized surrogate

model T̂ = N (x̂, Ĵ) using IPCNN, we can calculate the

cooling heat flux qc based on the differentiability of FCN

qc =
³

µ
κ

(

T̂
)

Nx̂

(

x̂ = ³L, Ĵ
)

−
1

µ´
S(T)T̂ Ĵ (14)
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Fig. 5. (a) Side view of the VLSI chip system with the TEC device. (b) 3-D
FE-based model in COMSOL for VLSI chip system with the TEC device.

where Nx̂ denotes the derivative of N with respect to x̂, which

can be easily obtained by automatic differentiation.

When ∂qc/∂J = 0, the cooling heat flux qc reaches the

maximum values. Newton’s method is a quick iterative algo-

rithm to find the solution of ∂qc/∂J = 0, which is formulated

as follows:

Jn+1 = Jn −

∂qc

∂J
|J=Jn

∂2qc

∂J2 |J=Jn

(15)

where

∂qc

∂J
= κ(T)

∂2T

∂x∂J
− S(T)T,

∂2qc

∂J2
= κ(T)

∂3T

∂x∂J2
.

Based on the FCN model, (15) is rewritten as follows:

Jn+1 = Jn −
³´κ(T)N

x̂Ĵ

(

x̂ = ³L, Ĵn

)

− S(T)T̂

³´2κ(T)N
x̂Ĵ2

(

x̂ = ³L, Ĵn

) (16)

where N
x̂Ĵ

is the derivative of Nx̂ with respect to Ĵ, and N
x̂Ĵ2

is the derivative of N
x̂Ĵ

with respect to Ĵ. The FCN model uses

automatic differentiation to estimate N
x̂Ĵ

and N
x̂Ĵ2 without dis-

cretization error. Newton’s method requires fewer evaluations

of the FCN model compared to the brute-force method for

this optimization. What is more, benefiting from the differen-

tial nature of the FCN, it can directly provide the derivatives

instead of the finite difference approximation which needs

more evaluations. Therefore, the ML-based surrogate model

shows promises for the optimization problem.

V. APPLICATION OF TEC ML-BASED MODEL

IN VLSI CHIP

Fig. 5(a) shows that thin-film TEC devices are employed to

remove the heat generated by VLSI chips. The thermal sim-

ulation for the VLSI system with the TEC device by using

COMSOL software is complicated since it involves two kinds

of equations: 1) heat conduction equation and 2) TEC equa-

tion. For convenience, we simplified the structure in Fig. 5(a)

as the 3-D model in Fig. 5(b). We build this thermal model

by using “General Form PDE” in the Mathematics module

of COMSOL. In the TEC devices, the 3-D TEC equations

are employed to consider TEC effects. In the other parts, 3-D

heat conduction equations are used to describe the heat trans-

fer in solid. Then, we configure the power map and boundary

conditions and start the thermal simulation in COMSOL. The

thermal results are shown in Fig. 6(a). Based on the tempera-

ture distribution, we observed that the temperature on the TEC

legs is uniform in the y–z plane and increases proportionally

Fig. 6. (a) Temperature distribution of the VLSI chip system with the TEC
device. (b) Heat flux distribution for the chip layer. (c) Heat flux distribution
for the TEC array layer.

along the x-axis. We plot the heat flux for chip and TEC array

in Fig. 6(b) and (c), respectively. As we can see, there are tem-

perature gradients of x-, y-, and z- all directions in the chip

layer. Therefore, 3-D thermal simulation should be considered

for the chip layer. But in the TEC layer, heat mainly flows in

the vertical direction due to Peltier cooling effect. As a result,

it is reasonable to assume that the heat flux mainly exists in x-

direction and heat does not transfer along y- and z- direction.

Therefore, we can use 1-D TEC ML-based model to describe

the single 3-D TEC device.

To apply the 1-D TEC ML-based model in the 3-D VLSI

chip system, we set one side of the TEC leg as temperature

boundary condition of 303.5 K since this side is connected

with the heat spreader and heat sink (temperature is uniform).

If we know the temperature T on another side of the TEC leg,

the heat flux q can be calculated by the 1-D TEC ML-based

model. By using the differentiability of FCN, we can obtain

the heat flux

q = −
³

µ
κ

(

T̂
)

Nx̂

(

T̂
)

+
1

µ´
S(T)T̂ Ĵ (17)

where T̂ is the temperature of one side which is connected to

the chip layer. We parameterize the temperature T̂ to calculate

the heat flux of the TEC leg based on different temperature

values. Then, we proposed to combine the ML-based model

and FE-based model to simulate the VLSI chip system with

TEC devices based on interior boundary conditions (tempera-

ture and heat flux are continuous), as shown in Fig. 7. In the

FE-based COMSOL, we set the heat flux boundary condition

of the chip layer as the (17) obtained by the neural network.

Then, we can significantly decrease the number of degrees of

freedom by using this combination method (called FENN). We

will show the accuracy and efficiency of the proposed FENN

method in the following result Section VI.
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Fig. 7. Combination of 1-D TEC ML-based model and 3-D FE-based model
for VLSI chip systems with the TEC device.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we first use ELM to approximate the

temperature-dependent parameters. Then, we demonstrate the

accuracy and speed of the parameterized surrogate model FCN

obtained by the IPCNN framework. With the parameterized

FCN, we employ Newton’s method to optimize current den-

sity to achieve the maximum cooling heat flux. Finally, we

emphasize the importance of considering the temperature-

dependent parameters compared with the results calculated by

using constant parameters.

The parameterized IPCNN is implemented in the NVIDIA

Modulus platform [17], which is developed for solving PDEs

and built on TensorFlow. ELM is trained in MATLAB and then

integrated into Modulus. The model is trained and tested on a

Linux desktop with AMD Ryzen 5 1600 3.2-GHz processors

and NVIDIA GTX 1060 GPU with 6G memory.

A. Temperature-Dependent Parameters Approximated

by ELM

Fig. 8 shows the experimental data of one TEC material’s

parameters, such as thermal conductivity, Seebeck coeffi-

cient, and electrical conductivity, which are obtained from the

research article [10]. A fast ELM algorithm is employed to fit

the parameters and can output the derivatives of κ(T), S(T),

and σ(T) with respect to T . It can be seen from Fig. 8 that the

fitting curves exactly fit the experimental data and are smooth.

B. Accuracy and Speed of the IPCNN Surrogate Model

To validate the accuracy of the new IPCNN framework,

we first compare the temperature T(x, J) obtained by FCN

and COMSOL with the length L = 1 mm, ambient temper-

ature T0 = 300 K, and heat flux qc = 1 × 105 W/m2, as

shown in Fig. 9(a)–(c). The results from IPCNN agree well

with the solutions from COMSOL. The maximum absolute

error is 1.8 K, which is small compared with the maximum

temperature 397 K. Based on the differentiability of FCN, we

also validate the accuracy of the derivative of T with respect

to x in Fig. 9(d)–(f) since it is used to compute cooling heat

flux qc. As we can see, the derivatives obtained by FCN and

COMSOL are matched very well. Therefore, the derivatives

calculated by FCN are also convincing and accurate.

TABLE I
SPEED COMPARISON OF FCN AND COMSOL

The FCN obtained by IPCNN in this work can parameterize

current density, length, and thermal boundary conditions. But

we want to stress that it can include many other parameters

as needed. Due to these parameterizations, the trained FCN

model can be viewed as a library and can be used for many

different applications and optimization problems as long as all

the relevant design and running parameters are included.

To further validate accuracy of the FCN, we sweep length L,

ambient temperature T0, and heat flux qc. Fig. 10 shows that

temperature on the line with different length L is estimated by

IPCNN and COMSOL. They have a good agreement with each

other for each length. We can also change boundary condi-

tions, such as ambient temperature T0 and heat flux qc. We use

FCN model to predict temperature distributions with different

T0 and qc, as shown in Figs. 11 and 12. As we can see, the

FCN model has a good accuracy by comparison to COMSOL.

Therefore, the ML-based method shows the capability of solv-

ing high-dimensional PDEs with several parameters. Note that

Figs. 9–12 are obtained by one FCN model which is only

trained once.

To demonstrate the efficiency of FCN trained by the IPCNN

framework, we take Fig. 9(a) and (b) as an example. We build

1-D TEC model (2) in COMSOL. The current density interval

is �J = 1 × 104 A/m2 and space interval is �x = 20 μm.

The mesh element size is set as 10 μm and the number of

degrees of freedom is 201. To make their results consistent,

the FCN predicts the temperature at 501 × 991 points. Table I

shows the time to obtain Fig. 9(a) and (b) using FCN and

COMSOL, respectively. The FCN can achieve 8.5× speedup

over FE-based COMSOL.

C. Optimization of Cooling Heat Flux

To estimate the maximum cooling heat flux, we set the

boundary conditions as T(0) = T(L) = T0. Then, we use

the IPCNN framework to obtain the FCN model. Fig. 13(a)

shows that temperature on the line with different current densi-

ties is estimated by IPCNN and COMSOL. They have a good

agreement with each other for each current density. As we can

see, the IPCNN method can deal with different combinations

of boundary conditions.

Fig. 13(b) shows the first and second derivatives of qc with

respect to J, which are obtained by using the FCN model.

We can use Newton’s method to find optimal current den-

sity quickly with the derivatives. The iteration procedure using

FCN is shown in Table II. Nsim represents the total number of

FCN model evaluations. It takes four steps to find the optimal

current density Jopt = −8.0942 × 106 A/m2. For numerical

methods, like COMSOL, the derivatives cannot be calculated

directly and are usually approximated by the finite difference

method. ∂qc/∂J and ∂2qc/∂J2 can be approximated by

∂qc

∂J
≈

qc(J + h) − qc(J − h)

2h
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(a) (b) (c)

Fig. 8. Real data of (a) thermal conductivity, (b) Seebeck coefficient, and (c) electrical conductivity with different temperatures, which are approximated by
ELM.

Fig. 9. Comparison of the IPCNN results with the solution obtained by using COMSOL. (a) IPCNN solution TFCN(x, J), (b) COMSOL solution
TCOMSOL(x, J), (c) absolute error |TFCN − TCOMSOL|. (d) IPCNN solution ∂TFCN(x, J)/∂x, (e) COMSOL solution ∂TCOMSOL(x, J)/∂x, and (f) absolute
error |∂TFCN/∂x − ∂TCOMSOL/∂x|.

TABLE II
ITERATION PROCEDURE OF NEWTON METHOD USING FCN

∂2qc

∂J2
≈

qc(J + h) − 2qc(J) + qc(J − h)

h2
(18)

where h is a small value. In this article, h is set to 1 × 105.

The number of COMSOL evaluations is 3 for each iteration

of Newton’s method because the derivatives require the values

of qc(J +h), qc(J), and qc(J −h). Table III shows the iteration

TABLE III
ITERATION PROCEDURE OF NEWTON METHOD USING COMSOL

procedure using COMSOL. It also takes four steps to find the

optimal current density Jopt = −8.0921×106 A/m2. But Nsim

for COMSOL is 12, which is three times larger than Nsim of

FCN. Therefore, for this optimization problem, the ML method

can achieve 3 × 8.5 = 25.5× speedup over the conventional

numerical method.
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Fig. 10. Temperature comparison of IPCNN and COMSOL one the line

with different length L. The current density J = −8 ×106 A/m2, the ambient

temperature T0 = 300 K, and heat flux qc = 1 × 105 W/m2.

Fig. 11. Temperature comparison of IPCNN and COMSOL on the line
with different temperature boundary conditions T0. The current density J =
−8 × 106 A/m2, the length L = 1 mm, and heat flux qc = 1 × 105 W/m2.

Fig. 12. Temperature comparison of IPCNN and COMSOL on the line with

different heat flux boundary conditions qc. The current density J = −8 ×106

A/m2, the length L = 1 mm, and the ambient temperature T0 = 300 K.

D. Impact of Temperature-Dependent Parameters on Cooling

Heat Flux

Fig. 14 shows the cooling heat flux estimated with

temperature-dependent and constant temperature. As we can

see, the cooling heat flux obtained by FCN agrees well with

the results from COMSOL. For constant temperature, we

set the temperature as 375 K. The notation “TD” represents

temperature-dependent temperature and “CT” denotes constant

temperature. As we can see, when the current density is not too

Fig. 13. (a) Temperature comparison of IPCNN and COMSOL on the line

with different current densities J. (b) ∂qc/∂J and ∂2qc/∂J2 with different
current densities.

Fig. 14. Cooling heat flux qc with temperature-dependent and constant
temperature.

large (J < 1×107 A/m2), their cooling heat fluxes are similar.

However, when the current density is large and Joule heating

effect leads to a large temperature rise, cooling heat flux for

the temperature-dependent case drops quickly, which is quite

different from the constant case. This is because high temper-

ature can degrade the performance of TEC dramatically. That

is the reason why we do not observe that the cooling heat

flux increases infinitely as described in [9] even though the

dimensionless figure of merit ZT0 > 1. Therefore, considering

temperature-dependent parameters are important for accurate

modeling and simulation of TEC.
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Fig. 15. Thermal map comparison between the proposed FENN and COMSOL. (a) Power density in chip layer, (b) FENN solution TFENN(y, z), (c) COMSOL
solution TCOMSOL(y, z), (d) absolute error |TFENN − TCOMSOL|. (x = 0.15 mm).

TABLE IV
SPEED COMPARISON OF THE PROPOSED FENN AND COMSOL

E. Accuracy and Efficiency of the Proposed Finite Element

Neural Network

We proposed a novel FENN to perform thermal simula-

tions of the VLSI chip system with the TEC device. This

method combines the FE method and the ML-based model

through heat flux boundary conditions (convection boundary

condition). First, we employed the proposed IPCNN with the

boundary conditions parameterization to obtain the 1-D TEC

ML-based model. Then, based on the heat flux calculated by

the neural network, the proposed FENN method only simulates

the chip layer with the boundary conditions, which signifi-

cantly reduces the number of degrees of freedom. We use the

example shown in Fig. 6(a) to demonstrate the accuracy and

efficiency of the proposed FENN method. Fig. 15(a) shows

the power density that we generate randomly in the chip layer.

Note that the proposed FENN method is not limited to this case

and can be also used to perform thermal analysis for power

densities of some benchmarks and industrial cases. Fig. 15

shows the chip thermal maps in the chip layer (x = 0.15 mm)

obtained by the proposed FENN method and COMSOL. As

we can see, the results from FENN and COMSOL match each

other perfectly. Therefore, the TEC reduction from 3-D to 1-D

we used is reasonable and the proposed FENN is very accu-

rate compared with ground truth. Table IV shows the speed

comparison of the FENN and COMSOL. With high accuracy,

the FENN can achieve 5.1× speedup and 5.4× memory reduc-

tion over the COMSOL. Our proposed ML-based model can

improve the efficiency of traditional numerical methods with

high accuracy.

VII. CONCLUSION

In this article, we proposed a novel IPCNN to develop

a parameterized surrogate model for nonlinear 1-D PDEs

describing the single TEC device by using the two cas-

caded neural network architecture. The PDE surrogate model

parameterizes current density, length, and thermal boundary

conditions of the TEC. Among them, the current density is the

key design parameter in our TEC device optimization. The loss

function for existing PINN converges to a large error since it

deals with large numbers of learnable parameters at the same

time. To mitigate the problem, we proposed IPCNN concepts

in which the two-stage training method for two separate neural

networks are carried out sequentially. The two-stage training

method leads to much faster training speed and much better

accuracy for the unsupervised training. On top of this, benefit-

ing from the automatic differentiation of the ML-based model

and parameterization of current density, we calculated the

derivative of the cooling heat flux with respect to current den-

sity. Then, the derivative-based Newton’s method is employed

to find the optimal current density to achieve maximum cool-

ing heat flux efficiently. We also proposed a novel hybrid

FENN method to perform the thermal analysis of the VLSI

chip system with TEC devices. Experimental results show that

the ML-based method can achieve 8.5× speedup with good

accuracy in the simulation of the single TEC device com-

pared with the conventional numerical method. Our proposed

two-step training method is more stable and accurate than the

one-step training method. The proposed FENN can have a

5.1× speedup and 5.4× memory reduction over the traditional

numerical method. In addition, it is very important to consider

the temperature-dependent parameters because they impact the

maximum cooling heat flux significantly.
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